4-channel BTL driver for CD players BA6997FP / BA6997FM

The BA6997FP and BA6997FM, both designed for CD players, have an internal 4-channel BTL driver and 5V regulator (which requires attached PNP transistor), as well as switches for the 5V regulator and temperature monitor pins.

Applications

CD players and other optical disc devices

Features

- 1) 4-channel BTL driver for CD players.
- 2) Wide dynamic range.
- 3) Internal thermal shutdown circuit.

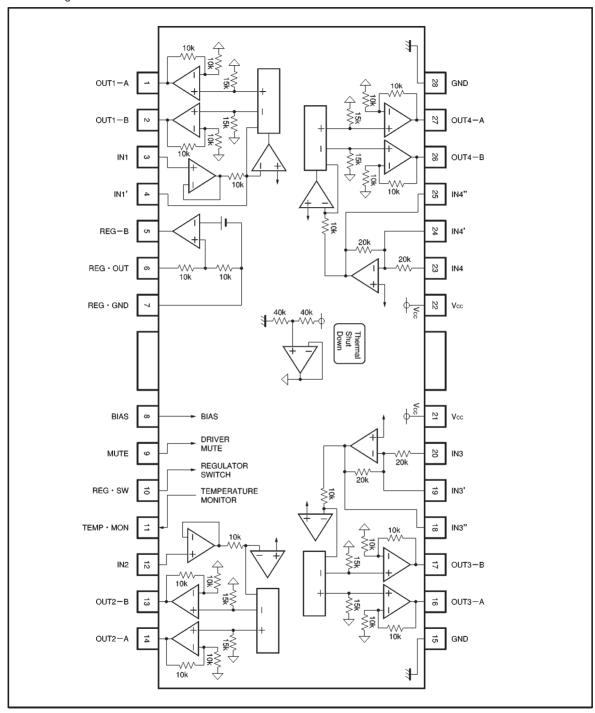
- Internal level shift circuit, for a minimum of attached components.
- 5) Internal 5V regular with switch.

● Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit
Power supply voltage		Vcc	18	V
Power dissipation	BA6997FP	Pd	1800*1 *2	mW
	BA6997FM	Pu	2200*1 *3	mvv
Operating temperature		Topr	−40~+85	°C
Storage temperature		Tstg	−55~+150	Ĉ

^{*1} When mounted on a $70 \times 70 \times 1.6$ mm glass epoxy board with less than 3% copper foil.

•Recommended operating conditions (Ta = 25°C)


Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply veltage	Vcc	4.5	_	12	V
Power supply voltage	Vcc*4	6.0	_	12	, v

^{*4} With regulator

^{*2} Reduced by 14.4 mW for each increase in Ta of 1°C over 25°C.

^{*3} Reduced by 17.6 mW for each increase in Ta of 1°C over 25°C.

Block diagram

Pin descriptions

Pin No.	Pin name	Function
1	OUT1-A	Channel 1 driver output
2	OUT2-B	Channel 1 driver output
3	IN1	Channel 1 input
4	IN1'	Adjusting channel 1 gain
5	REG-B	Base connection for regulator power transistor
6	REG · OUT	Base connection for regulator output power transistor
7	REG · GND	Regulator ground/common circuit ground*1
8	BIAS	Bias input
9	MUTE	Mute control
10	REG · SW	Regulator switch
11	TEMP • MON	Temperature monitor*2
12	IN2	Channel 2 input
13	OUT2-B	Channel 2 driver output
14	OUT2-A	Channel 2 driver output
15	GND	Substrate ground
16	OUT3-A	Channel 3 driver output
17	оитз-в	Channel 3 driver output
18	IN3"	Adjusting channel 3 gain
19	IN3'	Adjusting channel 3 gain
20	IN3	Channel 3 input
21	Vcc	V _{CC}
22	Vcc	Vcc
23	IN4	Channel 4 input
24	IN4'	Adjusting channel 4 gain
25	IN4"	Adjusting channel 4 gain
26	OUT4-B	Channel 4 driver output
27	OUT4-A	Channel 4 driver output
28	GND	Substrate ground

st1 Also serves as a common circuit ground and so should be connected to the ground pin even when the regulator is not used.

^{*2} See operation notes

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 8V, f = 1kHz, RL = 8Ω)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions			Measurement Circuit
Quiescent current dissipation 1	lq ₁	5.5	11.0	14.5	mA	No load, mute off, regulator on			Fig. 1
Quiescent current dissipation 2	lq2	_	_	6.0	mA	No load, mute on, regulator off		Fig. 1	
(Drivers)									
Output offset voltage	ffset voltage V ₀₀ -100 - 100 mV Preamplifier buffer configured		Fig. 1						
Max. output amplitude	Vом	5.0	5.4	_	٧				Fig. 1
Closed loop voltage gain 1	Gvc ₁	14.1	15.6	17.1	dB	V _{IN} = 0.1 V _{rms} , channels 1 and 2			Fig. 1
Closed loop voltage gain 2	Gvc2	13.6	15.6	17.6	dB	V _{IN} = 0.1 V _{rms} , channels 3 and 4			Fig. 1
MUTE-OFF voltage	VMOFF	2.0	_	_	٧				Fig. 1
MUTE-ON voltage	VMON	_	_	0.5	٧			Fig. 1	
Ripple rejection ratio	RR	-	60	-	dB	V _{IN} =0.1V _{rms} , 100Hz	Preamplifier		Fig. 1
Interchannel crosstalk	СТ	_	60	_	dB	V _{IN} =0.1V _{rms} , 1kHz	buffer configured		Fig. 1
⟨Pre-stage operational amplifier⟩		•							•
Input bias current	lв	_	_	300	nA				Fig. 1
Common mode input voltage	Vісм	0	_	6.8	٧				Fig. 1
Output high level voltage	Vонор	6.6	7.1	_	٧				Fig. 1
Output low level voltage	VOLOP	_	0.8	1.1	٧	CH1		- CH1	Fig. 1
Output high level current	Іонор	2	_	_	mA	Ground at 100 Ω output		CH2	Fig. 1
Output low level current	IOLOP	5	_	_	mA	Voc at 100 Courtnut		Excluding	Fig. 1
Slew rate	SRop	_	2	_	V/μs			channel 2	Fig. 1
⟨5 V regulator⟩									
Output voltage	V _{reg}	4.75	5.00	5.25	٧	IL=100mA		Fig. 1	
Output load	$\triangle V_{RL}$	-50	0	10	mV	IL=0~200mA		Fig. 1	
Supply voltage	△Vvcc	-10	0	25	mV	(Vcc=6~9V)I∟=100mA		Fig. 1	
Ripple rejection ratio	RREG	_	50	_	dB	V _{IN} =1V _{P-P} 1kHz		Fig. 1	
Regulator switch-on voltage	VREGON	2.0	_	_	٧			Fig. 1	
Regulator switch-off voltage	VREGOFF	_	_	0.5	٧				Fig. 1

ONot designed for radiation resistance.

Application example SERVO PRE AMP TRACKING SPINDLE FOCUS SLED BIAS TRACKING SLED COIL MOTOR M Vcc -25 24 23 21 20 19 18 26 6 10 2 3 4 5 7 8 9 11 12 13 14 $\pm 22 \mu F$ loo SPINDLE FOCUS REG · SW → 5V OUT **MOTOR** COIL 2SB1132

Fig. 1

Vcc -

Operation notes

- (1) The BA6997FP and BA6997FM have an internal thermal shutdown circuit. Output current is muted when the chip temperature exceeds 175°C (typically).
- (2) The output current can be muted by opening the mute pin (pin 9) voltage or lowering it below 0.5V. This pin should be pulled up above 2.0V during normal operation. When muting occurs, the output pins output the internal bias voltage, roughly Vcc/2.
- (3) The regulator can be turned off by opening the regulator switch (pin 10) or lowering it below 0.5V. This pin should be pulled up above 2.0V during normal operation.
- (4) Muting also occurs when the bias pin (8 pin) voltage drops below 1.4V (typically). This pin should stay above 1.6V during normal operation.
- (5) Attach a bypass capacitor (roughly $0.1\mu F$) to the power supply, at the base of the IC.
- (6) Be sure to connect the radiating fin to an external ground.

- (7) The capacitor between regulator output (pin 6) and REGGND (pin 7) also serves to prevent oscillation of the IC, so select one with good temperature characteristics.
- (8) We recommend 2SB1132 as the PNP transistor to attach to the regulator.
- (9) The internal circuitry of the temperature monitor pin is shown in the diagram below. Note that the internal reference voltage is also used for the 5V regulator, which will cease to operate normally when the temperature monitor pin emits a current exceeding the regulator's capacity. Set I to several dozen μA.

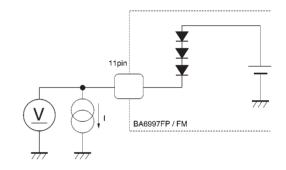


Fig. 2

Electrical characteristic curves

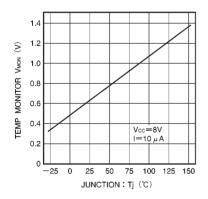


Fig. 3 Tj vs. VMON

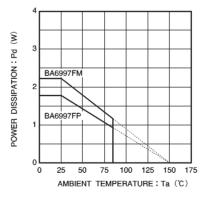


Fig. 4 Thermal derating curve

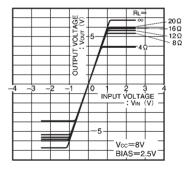
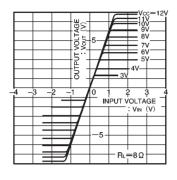



Fig. 5 Driver I / O characteristics (variable load)



COMPRESIDENT VOLTAGE: Vcc (V)

Fig. 6 Driver I / O characteristics (variable Vcc)

Fig. 7 Power supply voltage vs. operational amplifier output drive current

External dimensions (Units: mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

