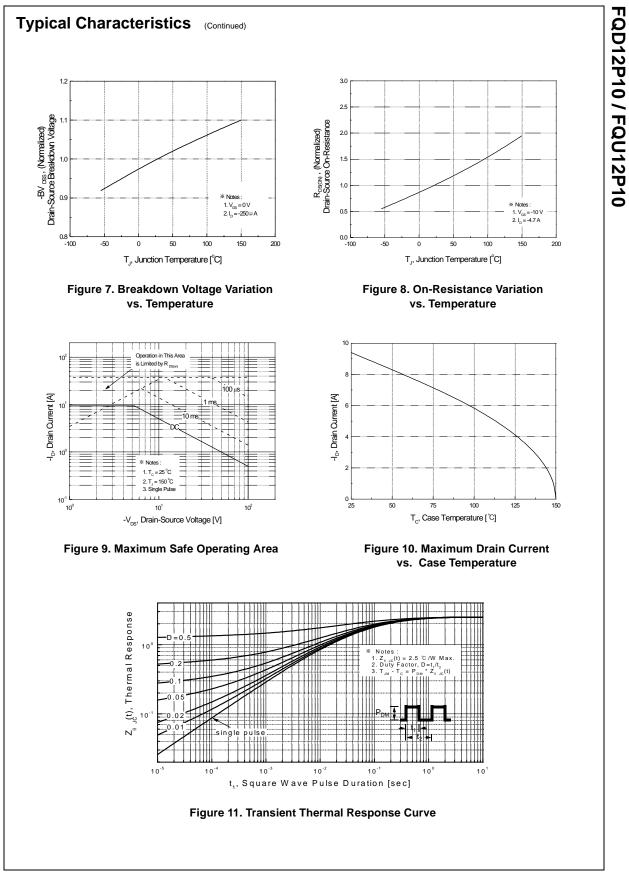
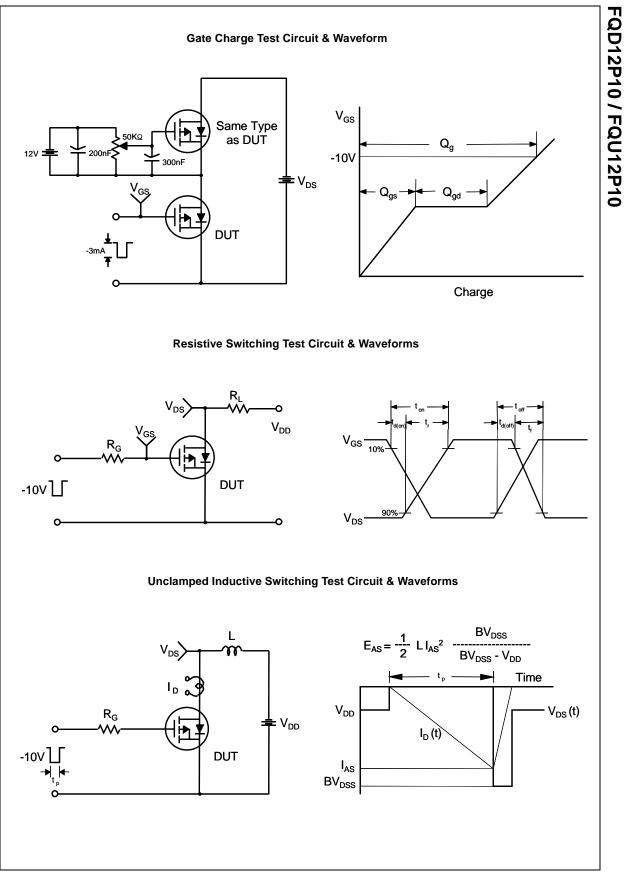
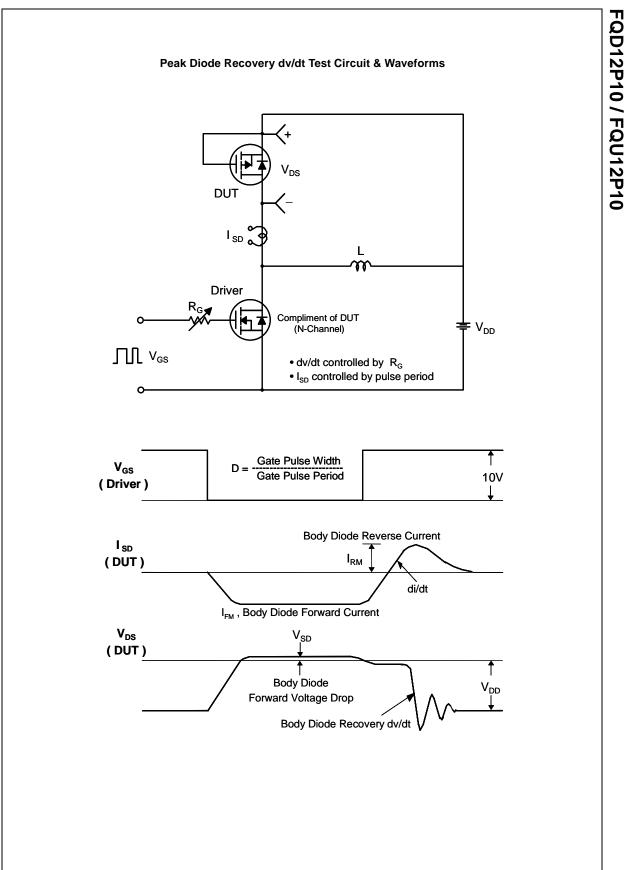
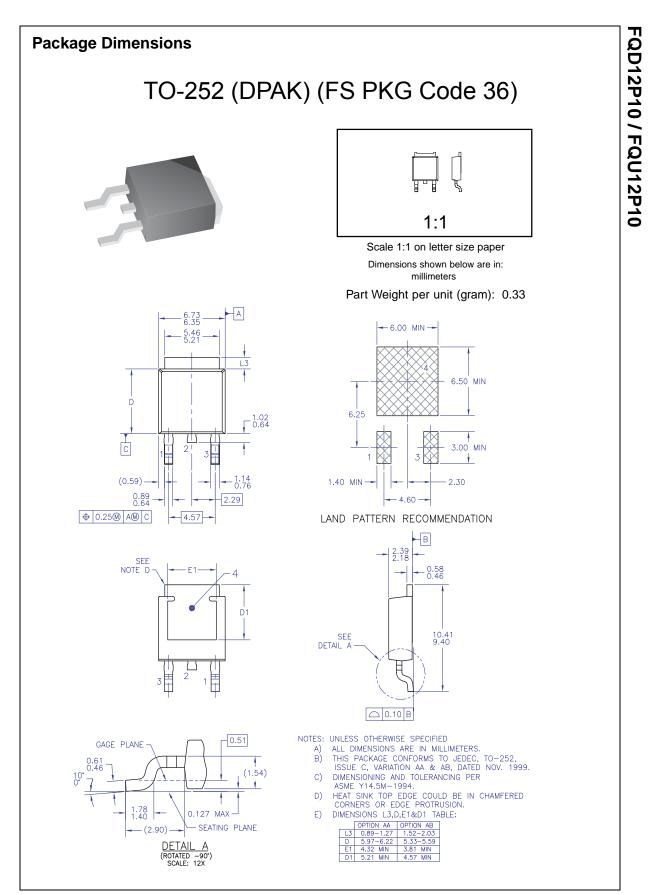

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

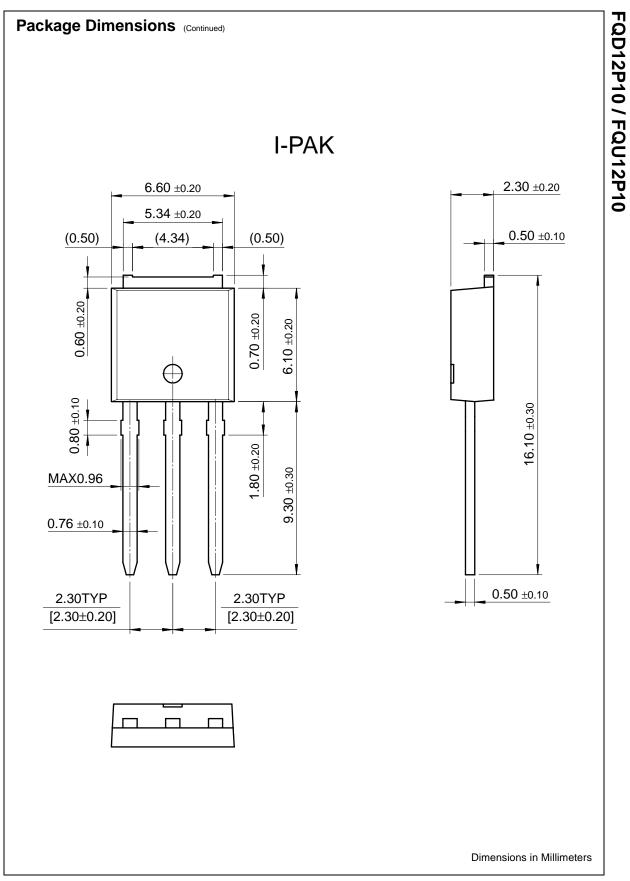
Symbol	Parameter		FQD12P10 / FQU12P10	Units
V _{DSS}	Drain-Source Voltage		-100	V
I _D	Drain Current - Continuous (T _C = 25°C)		-9.4	А
	- Continuous (T _C = 100°C)		-6.0	А
I _{DM}	Drain Current - Pulsed	(Note 1)	-37.6	А
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		370	mJ
I _{AR}	Avalanche Current	(Note 1)	-9.4	А
E _{AR}	Repetitive Avalanche Energy (Note		5.0	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		-6.0	V/ns
P _D	Power Dissipation ($T_A = 25^{\circ}C$) *		2.5	W
	Power Dissipation ($T_C = 25^{\circ}C$)		50	W
	- Derate above 25°C		0.4	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C


Thermal Characteristics


Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		2.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		50	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		110	°C/W


BV _{DSS} ΔBV _{DSS} ′ΔT _J	racteristics		Min	Тур	Max	Units
BV _{DSS} ΔBV _{DSS} ΔΔT _J						
ABV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = -250 μA	-100			V
DSS	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		-0.1		V/°C
	Zara Gata Valtaga Drain Current	V _{DS} = -100 V, V _{GS} = 0 V			-1	μA
	Zero Gate Voltage Drain Current	$V_{DS} = -80 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$			-10	μA
GSSF	Gate-Body Leakage Current, Forward	$V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			-100	nA
GSSR	Gate-Body Leakage Current, Reverse	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
On Cha	racteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-2.0		-4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = -10 V, I _D = -4.7 A		0.24	0.29	Ω
ĴFS	Forward Transconductance	$V_{DS} = -40 \text{ V}, I_D = -4.7 \text{ A}$ (Note 4)		6.3		S
Dynamı C _{iss}	c Characteristics	$V_{DS} = -25 V_{c} V_{cS} = 0 V_{c}$		620	800	pF
2 _{iss}	Input Capacitance	V _{DS} = -25 V, V _{GS} = 0 V,		620	800	pF
	Output Capacitance	f = 1.0 MHz		220	290	pF
Srss	Reverse Transfer Capacitance			65	85	pF
C _{oss} C _{rss} Switchi	Reverse Transfer Capacitance ng Characteristics			65	85	pF
Switchi	·	Vpp = -50 V. lp = -11.5 A.		65 15	85 40	pF ns
Crss Switchi d(on)	ng Characteristics	V _{DD} = -50 V, I _D = -11.5 A, R _G = 25 Ω			[
C _{rss} Switchi d(on) r	ng Characteristics Turn-On Delay Time	$R_{G} = 25 \Omega$		15	40	ns
C _{rss} Switchi d(on) r d(off)	ng Characteristics Turn-On Delay Time Turn-On Rise Time			15 160	40 330	ns
S _{rss}	ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	$R_{G} = 25 \Omega$		15 160 35	40 330 80	ns ns ns
C _{rss} Switchi d(on) r d(off) f Q _g	ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	R _G = 25 Ω (Note 4, 5)	 	15 160 35 60	40 330 80 130	ns ns ns ns
C _{rss} Switchi d(on) r d(off) f	ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$R_G = 25 $ Ω (Note 4, 5) $V_{DS} = -80 $ V, $I_D = -11.5$ A,	 	15 160 35 60 21	40 330 80 130 27	ns ns ns ns nC
\hat{c}_{rss} Switchi d(on) r d(off) f \hat{c}_{g} \hat{c}_{gs} \hat{c}_{gd}	ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$R_{G} = 25 \ \Omega$ (Note 4, 5) $V_{DS} = -80 \ V, \ I_{D} = -11.5 \ A,$ $V_{GS} = -10 \ V$ (Note 4, 5)	 	15 160 35 60 21 4.6	40 330 80 130 27 	ns ns ns nC nC
Crss Switchi d(on) r d(off) f Δg Δg Δgg Δgg Δgg Drain-S	ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_{G} = 25 \ \Omega$ (Note 4, 5) $V_{DS} = -80 \ V, I_{D} = -11.5 \ A,$ $V_{GS} = -10 \ V$ (Note 4, 5) Note 4, 5)	 	15 160 35 60 21 4.6	40 330 80 130 27 	ns ns ns nC nC
\sum_{rss} Switchi d(on) r d(off) f λ_g λ_{gs} λ_{gd} Drain-S s	ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics ar	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = -80 V, I_{D} = -11.5 A,$ $V_{GS} = -10 V$ (Note 4, 5) (Note 4, 5	 	15 160 35 60 21 4.6	40 330 80 130 27 	ns ns ns nC nC
Crss Switchi d(on) r d(off) f Ωg Ωgs Ωgg Ωrain-S s SM	ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics an Maximum Continuous Drain-Source Diode	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = -80 V, I_{D} = -11.5 A,$ $V_{GS} = -10 V$ (Note 4, 5) (Note 4, 5	 	15 160 35 60 21 4.6 11.5	40 330 80 130 27 	ns ns ns nC nC nC
\sum_{rss} Switchi d(on) r d(off) f 2_{g} 2_{gs} 2_{gd}	ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge ource Diode Characteristics an Maximum Continuous Drain-Source Diode F	$R_{G} = 25 \ \Omega$ (Note 4, 5) $V_{DS} = -80 \ V, I_{D} = -11.5 \ A,$ $V_{GS} = -10 \ V$ (Note 4, 5) (N	 	15 160 35 60 21 4.6 11.5	40 330 80 130 27 	ns ns ns nC nC A A


Rev. B1, January 2009



Rev. B1, January 2009

Rev. B1, January 2009

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ <i>CROSSVOLT</i> ™ CTL™ Current Transfer Logic™ EcoSPARK [®] EfficentMax™ EZSWITCH™ *	FRFET [®] Global Power Resource SM Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™	Programmable Active Droop™ QFET [®] QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW /W /kW at a time™ SmartMax™ SmartMax™	the franchise TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyPWM™
Fairchild [®] Fairchild [®] Factrolid Semiconductor [®] FACT Quiet Series [™] FACT [®] FAST [®]	MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®	SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™	µSérDes™ SerDes" UHC [®] Ultra FRFET™ UniFET™ VCX™ VisualMax™
FastvCore™ FlashWriter® * FPS™ F-PFS™ * EZSWITCH™ and FlashWriter [®] ar	PDP SPM™ Power-SPM™ PowerTrench [®] PowerXS™ e trademarks of System General Corporati	ESYSTEM [®] GENERAL The Power Franchise [®] ion, used under license by Fairchild Semiconduct	XS™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

EARCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Earichild strongly encourages customers to purchase Farichild parts either directly from Fairchild of the or Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		