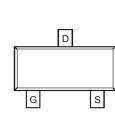
DMN3404L

Product Summary

TY Semicondutor[®]

V _{(BR)DSS}	R _{DS(ON)} max	l _D max T _A = +25°C
30V	28mΩ @ V _{GS} = 10V	5.8A
	42mΩ @ V _{GS} = 4.5V	4.8A
	82mΩ @ V _{GS} = 3V	2.0A


Description

This MOSFET has been designed to minimize the on-state resistance (R_{DS(ON)}) and yet maintain superior switching performance, making it ideal for high efficiency power management applications.

Applications

- **Battery Charging**
- **Power Management Functions**
- **DC-DC Converters**
- Portable Power Adaptors

Top View

Top View

Ordering Information (Note 4 & 5)

Part Number	Compliance	Case	Packaging
DMN3404L-7	Standard	SOT23	3000/Tape & Reel
DMN3404LQ-7	Automotive	SOT23	3000/Tape & Reel

O Source

Internal Schematic

Drain

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.

2. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Marking Information

Notes:

34N	ΥM	34N = Pro YM = Dat Y = Year M = Mont

oduct Type Marking Code

te Code Marking

(ex: W = 2009)

th (ex: 9 = September)

Date Code Key 2010 2011 2014 2009 2012 2013 2015 Year W Code Х Y В С 7 А Month Jan Feb Mar May Jun Jul Sep Oct Nov Dec Apr Aug Code 1 2 3 4 5 6 7 8 9 0 Ν D

N-CHANNEL ENHANCEMENT MODE MOSFET

Features and Benefits

- Low On-Resistance
- Low Input Capacitance
- Fast Switching Speed
- Low Input/Output Leakage
- Totally Lead-Free & Fully RoHS compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability

Mechanical Data

- Case: SOT23
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin annealed over Copper leadframe. Solderable per MIL-STD-202, Method 208 (3)
- Terminals Connections: See Diagram Below
- Weight: 0.008 grams (approximate)

Product specification

DMN3404L

Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Characteristic Drain-Source Voltage (Note 6 & 7) Gate-Source Voltage			Symbol VDSS	Value 30	Units V
			VGSS	±20	V
Continuous Drain Current (Note 6) V _{GS} = 10V	Steady State	T _A = -40°C T _A = +25°C T _A = +85°C	Ι _D	4.6 4.2 3.0	A
Continuous Drain Current (Note 7) V _{GS} = 10V	Steady State	T _A = -40°C T _A = +25°C T _A = +85°C	ID	6.2 5.8 4.0	А
Continuous Drain Current (Note 7) V _{GS} = 4.5V	Steady State	T _A = -40°C T _A = +25°C T _A = +85°C	ID	5.2 4.8 3.2	A
Continuous Drain Current (Note 7) V _{GS} = 3V	Steady State	T _A = -40°C T _A = +25°C T _A = +85°C	ID	2.2 2.0 1.0	A
Pulsed Drain Current			I _{DM}	30	А

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 6)	PD	0.72	W
Thermal Resistance, Junction to Ambient @T _A = +25°C	R _{0JA}	173	°C/W
Power Dissipation (Note 7)	PD	1.4	W
Thermal Resistance, Junction to Ambient @T _A = +25°C	R _{0JA}	90	°C/W
Operating and Storage Temperature Range	T _{J,} T _{STG}	-55 to +150	°C

Notes:

Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.
Device mounted on FR-4 substrate PC board, 2oz copper, with thermal bias to bottom layer 1inch square copper plate.

Product specification

DMN3404L

Electrical Characteristics (@T _A = +25°C, unless otherwise specified.)							
Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition	
OFF CHARACTERISTICS (Note 8)						·	
Drain-Source Breakdown Voltage	BV _{DSS}	30		_	V	V _{GS} = 0V, I _D = 250µA	
Zero Gate Voltage Drain Current T _J = +25°C	I _{DSS}	_		1.0	μA	$V_{DS} = 30V, V_{GS} = 0V$	
Gate-Source Leakage	I _{GSS}	_		±100	nA	V_{GS} = ±20V, V_{DS} = 0V	
ON CHARACTERISTICS (Note 8)							
Gate Threshold Voltage	V _{GS(th)}	1.0	1.5	2.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	
Static Drain-Source On-Resistance $T_1 = -40^{\circ}C$ (Note 9)	D	—	23	27	_	V _{GS} = 4.5V, I _D = 4.8A	
Static Drain-Source On-Resistance 1 J = -40 C (Note 9)	R _{DS(ON)}	—	57	74	—	V _{GS} =3V, I _D =2A	
		_	24	28		V _{GS} = 10V, I _D = 5.8A	
Static Drain-Source On-Resistance $T_J = +25^{\circ}C$	R _{DS(ON)}	—	33	42	mΩ	V _{GS} = 4.5V, I _D = 4.8A	
		_	63	82		V _{GS} =3V, I _D =2A	
Static Drain-Source On-Resistance T _J = +85°C (Note 9)	R _{DS(ON)}	_	71	95	mΩ	V _{GS} =3V, I _D =2A	
Forward Transfer Admittance	Y _{fs}	_	10	_	S	V _{DS} = 5V, I _D = 5.8A	
Diode Forward Voltage	V _{SD}	_	0.75	1.0	V	V _{GS} = 0V, I _S = 1A	
DYNAMIC CHARACTERISTICS (Note 10)							
Input Capacitance	Ciss	_	498	_	pF		
Output Capacitance	Coss	_	52	_	pF	V _{DS} = 15V, V _{GS} = 0V, f = 1.0MHz	
Reverse Transfer Capacitance	Crss	_	45	_	pF		
Gate Resistance	Rg	—	1.75	2.8	Ω	V_{DS} = 0V, V_{GS} = 0V, f = 1MHz	
Total Gate Charge (V _{GS} = 3V)	Qg		3.8	5.3	nC	V _{GS} = 3V, V _{DS} = 15V, I _D = 1A	
Total Gate Charge (V _{GS} = 4.5V)	Qg	—	5.3	7.5	nC		
Total Gate Charge (V _{GS} = 10V)	Qg	—	11.3	16	nC	V _{GS} = 10V/4.5V, V _{DS} = 15V,	
Gate-Source Charge	Q _{gs}	—	1.4		nC	I _D = 5.8A	
Gate-Drain Charge	Q _{gd}	—	2.1		nC		
Turn-On Delay Time	t _{D(on)}	—	3.41	10	ns		
Turn-On Rise Time	tr	_	6.18	13	ns	V _{DD} = 15V, V _{GS} = 10V,	
Turn-Off Delay Time	t _{D(off)}	—	13.92	28	ns	R_L = 2.6 Ω , R_G = 3 Ω	
Turn-Off Fall Time	t _f	_	2.84	10	ns		

Notes:

Short duration pulse test used to minimize self-heating effect.
Guaranteed by design and 25°C data. Not subject to production testing
Guaranteed by design. Not subject to production testing.