78KOR/Lx 3

User's Manual: Hardware

16-Bit Single-Chip Microcontrollers

> All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
(6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

How to Use This Manual

Readers
<R>

This manual is intended for user engineers who wish to understand the functions of the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers and design and develop application systems and programs for these devices.
The target products are as follows.

- 78K0R/LF3: μ PD78F1500A, 78F1501A, 78F1502A, 78F1510A, 78F1512A
- 78K0R/LG3: μ PD78F1503A, 78F1504A, 78F1505A, 78F1513A, 78F1515A
- 78K0R/LH3: μ PD78F1506A, 78F1507A, 78F1508A, 78F1516A, 78F1518A

Purpose This manual is intended to give users an understanding of the functions described in the Organization below.

Organization

- Pin functions
- Internal block functions
- Interrupts
- Other on-chip peripheral functions
- Electrical specifications
- CPU functions
- Instruction set

78K0R Microcontrollers

User's Manual
Instructions

- Explanation of each instruction

The manual for the 78K0R/Lx3 microcontrollers is separated into two parts: this manual and the instructions edition (common to the 78K0R Microcontroller Series).

78K0R/Lx3
Preliminary User's Manual
(This Manual)

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electrical engineering, logic circuits, and microcontrollers.

- To gain a general understanding of functions:
\rightarrow Read this manual in the order of the CONTENTS. The mark " $<\mathrm{R}>$ " shows major revised points. The revised points can be easily searched by copying an " $<\mathrm{R}>$ " in the PDF file and specifying it in the "Find what." field.
- How to interpret the register format:
\rightarrow For a bit number enclosed in angle brackets, the bit name is defined as a reserved word in the RA78KOR, and is defined as an sfr variable using the \#pragma sfr directive in the CC78K0R.
- To know details of the 78K0R Series instructions:
\rightarrow Refer to the separate document 78KOR Microcontrollers Instructions User's Manual (R01US0029E).

```
Conventions Data significance: Higher digits on the left and lower digits on the right
Active low representations: }\overline{x\timesx}\mathrm{ (overscore over pin and signal name)
Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention
Remark: Supplementary information
Numerical representations: Binary \cdots
    Decimal \cdots...xxxx
    Hexadecimal }\cdots\times\times\times\times\times
```

Related Documents
The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
78K0R/Lx3 User's Manual Hardware	This manual
78K0R Microcontrollers Instructions User's Manual	R01US0029E

Documents Related to Development Tools (Software) (User's Manuals)

Document Name	Document No.	
CC78K0R Ver. 2.00 C Compiler	Operation	U18549E
	Language	U18548E
RA78K0R Ver. 1.20 Assembler Package	Operation	U18547E
	Language	U18546E
SM+ System Simulator	Operation	U18601E
	User Open Interface	U18212E
PM+ Ver. 6.30		U18416E
ID78K0R-QB Ver. 3.20 Integrated Debugger	Operation	U17839E

Documents Related to Development Tools (Hardware) (User's Manuals)

Document Name	Document No.
QB-78K0RLX3 In-Circuit Emulator	U19336E
QB-MINI2 On-Chip Debug Emulator with Programming Function	U18371E

Documents Related to Flash Memory Programming (User's Manuals)

Document Name	Document No.	
PG-FP5 Flash Memory Programmer	Operation	R20UT0008E
QB-Programmer Programming GUI	U18527E	

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

Other Documents

Document Name	Document No.
RENESAS MICROCOMPUTER GENERAL CATALOG	R01CS0001E
SEMICONDUCTOR SELECTION GUIDE - Products and Packages -	X13769X
Semiconductor Device Mount Manual	Note
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

$<R>$ Note See the "Semiconductor Device Mount Manual" website (http://www.renesas.com/prod/package/manual/index.html).

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

All trademarks and registered trademarks are the property of their respective owners.
EEPROM is a trademark of Renesas Electronics Corporation.
Windows is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries. SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

CONTENTS

CHAPTER 1 OUTLINE 1
1.1 Features 1
1.2 Ordering Information 3
1.3 Pin Configuration (Top View) 4
1.3.1 78KOR/LF3 4
1.3.2 78KOR/LG3 7
1.3.3 78KOR/LH3 10
1.4 Block Diagram 13
1.4.1 78K0R/LF3 13
1.4.2 78KOR/LG3 15
1.4.3 78KOR/LH3 17
1.5 Outline of Functions 19
CHAPTER 2 PIN FUNCTIONS 23
2.1 Pin Function List 23
2.1.1 78K0R/LF3 24
2.1.2 78KOR/LG3 30
2.1.3 78K0R/LH3 36
2.2 Description of Pin Functions 43
2.2.1 P00 to P02 43
2.2.2 P10 to P17 44
2.2.3 P20 to P27 46
2.2.4 P30 to P34 47
2.2.5 P40, P41 48
2.2.6 P50 to P57 49
2.2.7 P60, P61 50
2.2.8 P70 to P77 51
2.2.9 P80 to P87 52
2.2.10 P90 to P97 53
2.2.11 P100 to P102 54
2.2.12 P110, P111 54
2.2.13 P120 to P124 55
2.2.14 P130 56
2.2.15 P140 to P147 56
2.2.16 P150 to P152, P157 57
2.2.17 COM0 to COM7 57
2.2.18 SEGxx 57
2.2.19 VLCO to VLC3 57
2.2.20 VREFOUT/AVREFP (μ PD78F150xA only) 58
2.2.21 AVREF (μ PD78F151xA only) 58
2.2.22 RESET 58
2.2.23 REGC 58
2.2.24 FLMDO 58
2.2.25 AVDD0, AVDD1, AVDD, EVDD1, AVSS, EVDD, EVSS, VDD, VSS 59
2.3 Pin I/O Circuits and Recommended Connection of Unused Pins 60
2.3.1 78K0R/LF3 60
2.3.2 78K0R/LG3 63
2.3.3 78KOR/LH3 66
CHAPTER 3 CPU ARCHITECTURE 74
3.1 Memory Space 74
3.1.1 Internal program memory space 79
3.1.2 Mirror area 81
3.1.3 Internal data memory space 83
3.1.4 Special function register (SFR) area 84
3.1.5 Extended special function register (2nd SFR: 2nd Special Function Register) area 84
3.1.6 Data memory addressing 85
3.2 Processor Registers 88
3.2.1 Control registers 88
3.2.2 General-purpose registers 90
3.2.3 ES and CS registers 92
3.2.4 Special function registers (SFRs) 93
3.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers) 99
3.3 Instruction Address Addressing 108
3.3.1 Relative addressing 108
3.3.2 Immediate addressing 108
3.3.3 Table indirect addressing 109
3.3.4 Register direct addressing 110
3.4 Addressing for Processing Data Addresses 111
3.4.1 Implied addressing 111
3.4.2 Register addressing 111
3.4.3 Direct addressing 112
3.4.4 Short direct addressing 113
3.4.5 SFR addressing 114
3.4.6 Register indirect addressing 115
3.4.7 Based addressing 116
3.4.8 Based indexed addressing 119
3.4.9 Stack addressing 120
CHAPTER 4 PORT FUNCTIONS 121
4.1 Port Functions 121
4.2 Port Configuration 129
4.2.1 Port 0 130
4.2.2 Port 1. 133
4.2.3 Port 2 138
4.2.4 Port 3 142
4.2.5 Port 4 144
4.2.6 Port 5 146
4.2.7 Port 6 150
4.2.8 Port 7 151
4.2.9 Port 8. 156
4.2.10 Port 9 162
4.2.11 Port 10 165
4.2.12 Port 11 167
4.2.13 Port 12 168
4.2.14 Port 13 172
4.2.15 Port 14 173
4.2.16 Port 15 176
4.3 Registers Controlling Port Function 180
4.4 Port Function Operations 197
4.4.1 Writing to I/O port 197
4.4.2 Reading from I/O port 197
4.4.3 Operations on I/O port 197
4.4.4 Connecting to external device with different power potential (2.5 V, 3 V) 198
4.5 Settings of Port Mode Register and Output Latch When Using Alternate Function 200
4.6 Cautions on 1-bit Manipulation Instruction for Port Register n (Pn) 205
CHAPTER 5 CLOCK GENERATOR 206
5.1 Functions of Clock Generator 206
5.2 Configuration of Clock Generator 207
5.3 Registers Controlling Clock Generator 209
5.4 System Clock Oscillator 222
5.4.1 X1 oscillator 222
5.4.2 XT1 oscillator 222
5.4.3 Internal high-speed oscillator 226
5.4.4 Internal low-speed oscillator 226
5.4.5 Prescaler 226
5.5 Clock Generator Operation 227
5.6 Controlling Clock 232
5.6.1 Example of controlling high-speed system clock 232
5.6.2 Example of controlling internal high-speed oscillation clock 235
5.6.3 Example of controlling subsystem clock 237
5.6.4 Example of controlling internal low-speed oscillation clock 239
5.6.5 CPU clock status transition diagram 240
5.6.6 Condition before changing CPU clock and processing after changing CPU clock 247
5.6.7 Time required for switchover of CPU clock and main system clock 249
5.6.8 Conditions before clock oscillation is stopped 250
CHAPTER 6 TIMER ARRAY UNIT 251
6.1 Functions of Timer Array Unit 253
6.1.1 Functions of each channel when it operates independently 253
6.1.2 Functions of each channel when it operates with another channel 254
6.1.3 LIN-bus supporting function (channel 7 of timer array unit 0 only) 254
6.2 Configuration of Timer Array Unit 255
6.3 Registers Controlling Timer Array Unit 261
6.4 Channel Output (TOpq pin) Control 289
6.4.1 TOpq pin output circuit configuration 289
6.4.2 TOpq Pin Output Setting 290
6.4.3 Cautions on Channel Output Operation 291
6.4.4 Collective manipulation of TOpq bits 294
6.4.5 Timer Interrupt and TOpq Pin Output at Operation Start 295
6.5 Channel Input Control 296
6.5.1 Edge detection circuit 296
6.6 Basic Function of Timer Array Unit 297
6.6.1 Overview of single-operation function and combination operation function 297
6.6.2 Basic rules of combination operation function 297
6.6.3 Applicable range of basic rules of combination operation function 298
6.7 Operation of Timer Array Unit as Independent Channel 299
6.7.1 Operation as interval timer/square wave output 299
6.7.2 Operation as external event counter 306
6.7.3 Operation as frequency divider 310
6.7.4 Operation as input pulse interval measurement 315
6.7.5 Operation as input signal high-/low-level width measurement 319
6.8 Operation of Plural Channels of Timer Array Unit 323
6.8.1 Operation as PWM function 323
6.8.2 Operation as one-shot pulse output function 330
6.8.3 Operation as multiple PWM output function 337
CHAPTER 7 REAL-TIME COUNTER 345
7.1 Functions of Real-Time Counter 345
7.2 Configuration of Real-Time Counter 345
7.3 Registers Controlling Real-Time Counter 347
7.4 Real-Time Counter Operation 362
7.4.1 Starting operation of real-time counter 362
7.4.2 Shifting to STOP mode after starting operation 363
7.4.3 Reading/writing real-time counter 364
7.4.4 Setting alarm of real-time counter 366
7.4.5 1 Hz output of real-time counter 367
7.4.6 32.768 kHz output of real-time counter 367
7.4.7 512 Hz or 16.384 kHz output of real-time counter 368
7.4.8 Example of watch error correction of real-time counter 369
CHAPTER 8 WATCHDOG TIMER 374
8.1 Functions of Watchdog Timer 374
8.2 Configuration of Watchdog Timer 375
8.3 Register Controlling Watchdog Timer 376
8.4 Operation of Watchdog Timer 377
8.4.1 Controlling operation of watchdog timer 377
8.4.2 Setting overflow time of watchdog timer 378
8.4.3 Setting window open period of watchdog timer 379
8.4.4 Setting watchdog timer interval interrupt 380
CHAPTER 9 CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER 381
9.1 Functions of Clock Output/Buzzer Output Controller 381
9.2 Configuration of Clock Output/Buzzer Output Controller 382
9.3 Registers Controlling Clock Output/Buzzer Output Controller 382
9.4 Operations of Clock Output/Buzzer Output Controller 384
9.4.1 Operation as output pin 384
CHAPTER 10 12-BIT A/D CONVERTER (μ PD78F150xA), 10-BIT A/D CONVERTER (μ PD78F151xA) 385
10.1 Function of A/D Converter 385
10.2 Configuration of A/D Converter 388
10.3 Registers Used in A/D Converter 390
10.4 A/D Converter Operations 403
10.4.1 Basic operations of A/D converter 403
10.4.2 Input voltage and conversion results 405
10.4.3 A/D converter operation modes 406
10.5 How to Read A/D Converter Characteristics Table 412
10.6 Cautions for A/D Converter 414
CHAPTER 11 D/A CONVERTER (μ PD78F150xA only) 418
11.1 Function of D/A Converter. 418
11.2 Configuration of D/A Converter 418
11.3 Registers Used in D/A Converter 420
11.4 Operation of D/A Converter 423
11.4.1 Operation in normal mode 423
11.4.2 Operation in real-time output mode 423
11.5 Cautions for D/A Converter 424
CHAPTER 12 OPERATIONAL AMPLIFIER (μ PD78F150xA only) 425
12.1 Function of Operational Amplifier 425
12.2 Configuration of Operational Amplifier 425
12.3 Amplifier Registers Used in Operational Amplifier 427
12.4 Operational Amplifier Operations 433
12.4.1 Single AMP Mode 433
CHAPTER 13 VOLTAGE REFERENCE (μ PD78F150xA only) 434
13.1 Function of Voltage Reference 434
13.2 Configuration of Voltage Reference 434
13.3 Amplifier Registers Used in Voltage Reference 435
13.4 Voltage Reference Operations 437
13.4.1 Reference voltage output mode 437
13.5 Cautions for Voltage Reference 437
CHAPTER 14 SERIAL ARRAY UNIT 438
14.1 Functions of Serial Array Unit 439
14.1.1 3-wire serial I/O (CSI00, CSI01, CSI10, CSI20) 439
14.1.2 UART (UARTO, UART1, UART2, UART3) 439
14.1.3 Simplified I ${ }^{2} \mathrm{C}$ (IIC10, IIC20) 440
14.2 Configuration of Serial Array Unit 441
14.3 Registers Controlling Serial Array Unit. 446
14.4 Operation stop mode 469
14.4.1 Stopping the operation by units 469
14.4.2 Stopping the operation by channels 470
14.5 Operation of 3-Wire Serial I/O (CSI00, CSI01, CSI10, CSI20) Communication 472
14.5.1 Master transmission 473
14.5.2 Master reception 482
14.5.3 Master transmission/reception 488
14.5.4 Slave transmission 496
14.5.5 Slave reception 505
14.5.6 Slave transmission/reception 511
14.5.7 Calculating transfer clock frequency 520
14.6 Operation of UART (UART0, UART1, UART2, UART3) Communication 522
14.6.1 UART transmission 523
14.6.2 UART reception 533
14.6.3 LIN transmission 540
14.6.4 LIN reception 543
14.6.5 Calculating baud rate 548
14.7 Operation of Simplified I ${ }^{2}$ C (IIC10, IIC20) Communication 552
14.7.1 Address field transmission 553
14.7.2 Data transmission 558
14.7.3 Data reception 561
14.7.4 Stop condition generation 565
14.7.5 Calculating transfer rate 566
14.8 Processing Procedure in Case of Error 569
14.9 Relationship Between Register Settings and Pins 571
CHAPTER 15 SERIAL INTERFACE IICA 578
15.1 Functions of Serial Interface IICA 578
15.2 Configuration of Serial Interface IICA 581
15.3 Registers Controlling Serial Interface IICA 584
15.4 I 2 C Bus Mode Functions 596
15.4.1 Pin configuration 596
15.4.2 Setting transfer clock by using IICWL and IICWH registers 597
15.5 I ${ }^{2} \mathrm{C}$ Bus Definitions and Control Methods 598
15.5.1 Start conditions 598
15.5.2 Addresses 599
15.5.3 Transfer direction specification 599
15.5.4 Acknowledge (ACK) 600
15.5.5 Stop condition 601
15.5.6 Wait 602
15.5.7 Canceling wait 604
15.5.8 Interrupt request (INTIICA) generation timing and wait control 605
15.5.9 Address match detection method 606
15.5.10 Error detection 606
15.5.11 Extension code 606
15.5.12 Arbitration 607
15.5.13 Wakeup function 609
15.5.14 Communication reservation 612
15.5.15 Cautions 616
15.5.16 Communication operations 617
15.5.17 Timing of $I^{2} C$ interrupt request (INTIICA) occurrence 625
15.6 Timing Charts 646
CHAPTER 16 LCD CONTROLLER/DRIVER 661
16.1 Functions of LCD Controller/Driver 661
16.2 Configuration of LCD Controller/Driver 665
16.3 Registers Controlling LCD Controller/Driver 667
16.4 LCD Display Data Memory 675
16.5 Setting LCD Controller/Driver 678
16.6 Common and Segment Signals 680
16.7 Display Modes 687
16.7.1 Static display example 687
16.7.2 Two-time-slice display example 690
16.7.3 Three-time-slice display example 693
16.7.4 Four-time-slice display example 697
16.7.5 Eight-time-slice display example 700
16.8 Supplying LCD Drive Voltages VLC0, VLC1, VLC2, and VLC3 703
16.8.1 External resistance division method 703
16.8.2 Internal voltage boosting method 704
16.8.3 Capacitor split method 705
16.9 Selection of LCD Display Data 706
16.9.1 A-pattern area and B-pattern area data display 706
16.9.2 Blinking display (Alternately displaying A-pattern and B-pattern area data) 707
CHAPTER 17 MULTIPLIER/DIVIDER 708
17.1 Functions of Multiplier/Divider 708
17.2 Configuration of Multiplier/Divider 708
17.3 Register Controlling Multiplier/Divider 713
17.4 Operations of Multiplier/Divider 714
17.4.1 Multiplication operation 714
17.4.2 Division operation 715
CHAPTER 18 DMA CONTROLLER 717
18.1 Functions of DMA Controller 717
18.2 Configuration of DMA Controller 718
18.3 Registers Controlling DMA Controller 721
18.4 Operation of DMA Controller 724
18.4.1 Operation procedure 724
18.4.2 Transfer mode 725
18.4.3 Termination of DMA transfer 725
18.5 Example of Setting of DMA Controller 725
18.5.1 CSI consecutive transmission 725
18.5.2 CSI master reception 727
18.5.3 CSI transmission/reception 729
18.5.4 Consecutive capturing of A / D conversion results 731
18.5.5 UART consecutive reception + ACK transmission 733
18.5.6 Holding DMA transfer pending by DWAITn 735
18.5.7 Forced termination by software 736
18.6 Cautions on Using DMA Controller 738
CHAPTER 19 INTERRUPT FUNCTIONS 740
19.1 Interrupt Function Types 740
19.2 Interrupt Sources and Configuration 741
19.3 Registers Controlling Interrupt Functions 746
19.4 Interrupt Servicing Operations 764
19.4.1 Maskable interrupt acknowledgment 764
19.4.2 Software interrupt request acknowledgment 766
19.4.3 Multiple interrupt servicing 767
19.4.4 Interrupt request hold 770
CHAPTER 20 KEY INTERRUPT FUNCTION 771
20.1 Functions of Key Interrupt 771
20.2 Configuration of Key Interrupt 771
20.3 Register Controlling Key Interrupt 772
CHAPTER 21 STANDBY FUNCTION 773
21.1 Standby Function and Configuration 773
21.1.1 Standby function 773
21.1.2 Registers controlling standby function 773
21.2 Standby Function Operation 776
21.2.1 HALT mode 776
21.2.2 STOP mode 782
CHAPTER 22 RESET FUNCTION 788
22.1 Register for Confirming Reset Source 797
CHAPTER 23 POWER-ON-CLEAR CIRCUIT 798
23.1 Functions of Power-on-Clear Circuit 798
23.2 Configuration of Power-on-Clear Circuit 799
23.3 Operation of Power-on-Clear Circuit 799
23.4 Cautions for Power-on-Clear Circuit 802
CHAPTER 24 LOW-VOLTAGE DETECTOR 804
24.1 Functions of Low-Voltage Detector 804
24.2 Configuration of Low-Voltage Detector 805
24.3 Registers Controlling Low-Voltage Detector 805
24.4 Operation of Low-Voltage Detector 810
24.4.1 When used as reset 811
24.4.2 When used as interrupt 817
24.5 Cautions for Low-Voltage Detector 823
CHAPTER 25 REGULATOR 827
25.1 Regulator Overview 827
25.2 Registers Controlling Regulator 827
CHAPTER 26 OPTION BYTE 829
26.1 Functions of Option Bytes 829
26.1.1 User option byte (000 COH to $000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 0 \mathrm{H}$ to 010 C 2 H) 829
26.1.2 On-chip debug option byte (000C3H/ 010C3H) 830
26.2 Format of User Option Byte 830
26.3 Format of On-chip Debug Option Byte 832
26.4 Setting of Option Byte. 833
CHAPTER 27 FLASH MEMORY 834
27.1 Writing with Flash Memory Programmer 834
27.2 Programming Environment 834
27.3 Communication Mode 835
27.4 Connection of Pins on Board 837
27.4.1 FLMDO pin 837
27.4.2 TOOLO pin 838
27.4.3 RESET pin 838
27.4.4 Port pins 838
27.4.5 REGC pin 838
27.4.6 X1 and X2 pins 838
27.4.7 Power supply 839
27.5 Registers Controlling Flash Memory 839
27.6 Programming Method 840
27.6.1 Controlling flash memory 840
27.6.2 Flash memory programming mode 840
27.6.3 Selecting communication mode 841
27.6.4 Communication commands 841
27.7 Security Settings 843
27.8 Flash Memory Programming by Self-Programming 845
27.8.1 Boot swap function 847
27.8.2 Flash shield window function. 849
27.9 Creating ROM Code to Place Order for Previously Written Product 850
27.9.1 Procedure for using ROM code to place an order 850
CHAPTER 28 ON-CHIP DEBUG FUNCTION 851
28.1 Connecting QB-MINI2 to 78K0R/Lx3 microcontrollers 851
28.2 On-Chip Debug Security ID 852
28.3 Securing of User Resources 852
CHAPTER 29 BCD CORRECTION CIRCUIT 854
29.1 BCD Correction Circuit Function 854
29.2 Registers Used by BCD Correction Circuit 854
29.3 BCD Correction Circuit Operation 855
CHAPTER 30 INSTRUCTION SET 857
30.1 Conventions Used in Operation List 857
30.1.1 Operand identifiers and specification methods 857
30.1.2 Description of operation column 858
30.1.3 Description of flag operation column 859
30.1.4 PREFIX instruction 859
30.2 Operation List 860
CHAPTER 31 ELECTRICAL SPECIFICATIONS 877
CHAPTER 32 PACKAGE DRAWINGS 934
32.1 78KOR/LF3 934
32.2 78KOR/LG3 936
32.3 78K0R/LH3 937
CHAPTER 33 RECOMMENDED SOLDERING CONDITIONS 938
APPENDIX A DEVELOPMENT TOOLS 940
A. 1 Software Package 943
A. 2 Language Processing Software 943
A. 3 Flash Memory Programming Tools 944
A.3.1 When using flash memory programmer PG-FP5 and FL-PR5 944
A.3.2 When using on-chip debug emulator with programming function QB-MINI2 944
A. 4 Debugging Tools (Hardware) 945
A.4.1 When using in-circuit emulator QB-78K0RLX3 945
A.4.2 When using on-chip debug emulator with programming function QB-MINI2 946
A. 5 Debugging Tools (Software) 946
APPENDIX B REGISTER INDEX 947
B. 1 Register Index (In Alphabetical Order with Respect to Register Names) 947
B. 2 Register Index (In Alphabetical Order with Respect to Register Symbol) 952
APPENDIX C LIST OF CAUTIONS 957
APPENDIX D REVISION HISTORY 996
D. 1 Major Revisions in This Edition 996
D. 2 Revision History of Preceding Editions 1000

Renesns

CHAPTER 1 OUTLINE

The $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers are 16 -bit single-chip microcontrollers that include the 78 KOR CPU core and peripheral functions such as ROM/RAM, LCD controller/driver, A/D converter, D/A converter, operational amplifier, multifunctional serial interfaces, multifunctional timers, real-time counter, and watchdog timer.

1.1 Features

O Minimum instruction execution time can be changed from high speed ($0.05 \mu \mathrm{~s}$: @ 20 MHz operation with high-speed system clock) to ultra low-speed ($61 \mu \mathrm{~s}$: @ 32.768 kHz operation with subsystem clock)
O General-purpose register: 8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)
O ROM, RAM capacities

Program Memory (ROM)	Data Memory (RAM)	78K0R/LF3	78K0R/LG3	78K0R/LH3
		80 pins	100 pins	128 pins
$64 K B$	$4 K B$	$\begin{aligned} & \mu \text { PD78F1500A, } \\ & \mu \text { PD78F1510A } \end{aligned}$	μ PD78F1503A, μ PD78F1513A	$\begin{aligned} & \mu \text { PD78F1506A, } \\ & \mu \text { PD78F1516A } \end{aligned}$
96 KB	$6 K B$	μ PD78F1501A	μ PD78F1504A	μ PD78F1507A
128 KB	$7 K B$	$\begin{aligned} & \mu \text { PD78F1502A, } \\ & \mu \text { PD78F1512A } \end{aligned}$	μ PD78F1505A, μ PD78F1515A	μ PD78F1508A, μ PD78F1518A

O On-chip internal high-speed oscillation clock

- 20 MHz internal high-speed s oscillation clock: $20 \mathrm{MHz} \pm 2.4 \%$
- 8 MHz internal high-speed s oscillation clock: $8 \mathrm{MHz} \pm 2 \%$ (when $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$)
- 1 MHz internal high-speed s oscillation clock: $1 \mathrm{MHz} \pm 13 \%$

O On-chip single-power-supply flash memory (with prohibition of chip erase/block erase/writing function)
O Self-programming (with boot swap function/flash shield window function)
O On-chip debug function
O On-chip power-on-clear (POC) circuit and low-voltage detector (LVI)
O On-chip watchdog timer (can operate on dedicated internal low-speed oscillation clock)
O On-chip multiplier/divider (16 bits $\times 16$ bits, 32 bits $\div 32$ bits)
O On-chip key interrupt function
O On-chip clock output/buzzer output controller (output: 2)
O On-chip BCD adjustment
O I/O ports:

- 78K0R/LF3: 51
- 78K0R/LG3: 67 (N-ch open drain: 2)
- 78K0R/LH3: 83 (N-ch open drain: 2)

O Timer

Timer	78K0R/LF3	$78 \mathrm{KOR} /$ LG3	78K0R/LH3
16-bit timer	12 ch (input: 6, output: 6)	12 ch (input: 8, output: 8)	12 ch (input: 12, output: 12)
Watchdog timer	1 ch		
Real-time counter	1 ch (output:2)		

O Serial interface: 1 channel

- 78KOR/LF3: CSI: 1 channel/UART: 1 channel/simplified I ${ }^{2} \mathrm{C}$: 1 channel CSI: 1 channel/UART: 1 channel/simplified $I^{2} \mathrm{C}: 1$ channel UART (LIN-bus supported): 1 channel
- 78K0R/LG3: CSI: 1 channel/UART: 1 channel

CSI: 1 channel/UART: 1 channel/simplified ${ }^{2} \mathrm{C}: 1$ channel
CSI: 1 channel/UART: 1 channel/simplified $I^{2} \mathrm{C}: 1$ channel
UART (LIN-bus supported): 1 channel
Multimaster $\mathrm{I}^{2} \mathrm{C}$: 1 channel

- 78KOR/LH3: CSI: 2 channels/UART: 1 channel

CSI: 1 channel/UART: 1 channel/simplified $I^{2} \mathrm{C}: 1$ channel CSI: 1 channel/UART: 1 channel/simplified I ${ }^{2} \mathrm{C}: 1$ channel UART (LIN-bus supported): 1 channel Multimaster $I^{2} \mathrm{C}$: 1 channel
O 12-bit resolution A/D conversion (μ PD78F150xA only)

- 78K0R/LF3: 8 channels
- 78K0R/LG3, 78K0R/LH3: 12 channels

O 10-bit resolution A/D conversion (μ PD78F151xA only)

- 78K0R/LF3: 8 channels
- 78K0R/LG3, 78K0R/LH3: 12 channels

O 12-bit resolution D/A converter (μ PD78F150xA only): 2 channels
O Operational amplifier (μ PD78F150xA only)

- 78K0R/LF3: 2 channels
- 78K0R/LG3, 78K0R/LH3: 3 channels

O On-chip voltage reference ($2.0 \mathrm{~V} / 2.5 \mathrm{~V}$) (μ PD78F150xA only)
O LCD controller/driver (Internal voltage boosting method, capacitor split method, and external resistance division method are switchable)

LCD controller/driver	$78 \mathrm{KOR} / \mathrm{LF} 3$	$78 \mathrm{KOR} / \mathrm{LG} 3$	$78 \mathrm{KOR} / \mathrm{LH} 3$
Segment signal output	$31(27)^{\text {Note }}$	$40(36)^{\text {Note }}$	$54(50)^{\text {Note }}$
Common signal output	$4(8)^{\text {Note }}$		

Note The values in parentheses are the number of signal outputs when 8 com is used.

O DMA controller: 2 channels
O Power supply voltage: $\mathrm{VDD}_{\mathrm{D}}=1.8$ to 5.5 V
O Operating ambient temperature: $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

1.2 Ordering Information

<R>

- Flash memory version (Lead-free products)

78K0R/Lx3 microcontrollers	Package	Part Number
78K0R/LF3	80-pin plastic LQFP (14x14)	μ PD78F1500AGC-GAD-AX, 78F1501AGC-GAD-AX, 78F1502AGC-GAD-AX, 78F1510AGC-GAD-AX, 78F1512AGC-GAD-AX,
	80-pin plastic LQFP (fine pitch) (12x12)	μ PD78F1500AGK-GAK-AX, 78F1501AGK-GAK-AX, 78F1502AGK-GAK-AX, 78F1510AGK-GAK-AX, 78F1512AGK-GAK-AX
78K0R/LG3	100-pin plastic LQFP (fine pitch) (14×14)	μ PD78F1503AGC-UEU-AX, 78F1504AGC-UEU-AX, 78F1505AGC-UEU-AX, 78F1513AGC-UEU-AX, 78F1515AGC-UEU-AX
78K0R/LH3	128-pin plastic LQFP (fine pitch) (14×20)	μ PD78F1506AGF-GAT-AX, 78F1507AGF-GAT-AX, 78F1508AGF-GAT-AX, 78F1516AGF-GAT-AX, 78F1518AGF-GAT-AX

Caution The 78KOR/Lx3 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

1.3 Pin Configuration (Top View)

1.3.1 78KOR/LF3

(1) μ PD78F150xA

- 80-pin plastic LQFP (14×14)
- 80 -pin plastic LQFP (fine pitch) (12×12)

Cautions 1. Make AVss the same potential as Vss.

2. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).
<R> (2) μ PD78F150xA

Cautions 1. Make AVss the same potential as Vss.

2. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Pin Identification

1.3.2 78KOR/LG3

(1) μ PD78F150xA

- 100-pin plastic LQFP (fine pitch) (14×14)

Cautions 1. Make AVss the same potential as Vss.

2. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).
(2) μ PD78F151xA

- 100-pin plastic LQFP (fine pitch) (14×14)

Cautions 1. Make AVss the same potential as Vss.

2. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Pin Identification

AMPO- to AMP2- :	Amplifier Input Minus	P130:	Port 13
AMP0+ to AMP2+ :	Amplifier Input Plus	P140 to P147 :	Port 14
AMP00 to AMP2O :	Amplifier Output	P150 to P152, P157 :	Port 15
ANI0 to ANI10,		PCLBUZ0, PCLBUZ1:	Programmable Clock Output
ANI15 :	Analog Input (ADC)		/Buzzer Output
ANOO, ADO1:	Analog Output (DAC)	REGC :	Regulator Capacitance
AVref :	Analog Reference Voltage	RESET:	Reset
AVrefm:	Analog Reference Voltage Minus	RTC1HZ :	Real-time Counter Correction Clock (1 Hz) Output
AVrefp :	Analog Reference Voltage Plus	RTCCL :	Real-time Counter Clock
AVss :	Analog Ground		(32 kHz Original Oscillation) Output
AVdo:	Analog Power Supply	RTCDIV :	Real-time Counter Clock
AVddo :	Analog Power Supply		(32 kHz Divided Frequency) Output
	(ADC/VREF/OPAMP)	RxD0 to RxD3 :	Receive Data
AVDD1:	Analog Power Supply (DAC)	$\overline{\text { SCK00, }}$, SCK10,	
CAPH, CAPL :	Capacitor for LCD	SCK20 :	Serial Clock Input/Output
COM0 to COM7 :	LCD Common Output	SCL0, SCL10, SCL20 :	Serial Clock Input/Output
EVdd, EVdd1:	Power Supply for Port	SDA0, SDA10, SDA20 :	Serial Data Input/Output
EVss :	GND for Port	SEG0 to SEG39 :	LCD Segment Output
EXCLK :	External Clock Input (Main system clock)	SI00, SI10, SI20 :	Serial Data Input
		SO00, SO10, SO2	Serial Data Output
EXLVI:	External Potential Input	TI00 to TI07	Timer Input
	for Low Voltage Detector	TO00 to TO07 :	Timer Output
FLMDO :	Flash Programming Mode	TOOLO	Data Input/Output for Tool
INTP0 to INTP11 :	External Interrupt Input	TOOL1:	Clock Output for Tool
P 00 to P02 :	Port 0	TxD0 to TxD3 :	Transmit Data
P10 to P16	Port 1	Vdd:	Power Supply
P20 to P27 :	Port 2	Vlcoto Vlc3:	LCD Power Supply
P30 to P34	Port 3	Vrefout :	Voltage Reference Output
P40, P41:	Port 4	Vss:	Ground
P50 to P57 :	Port 5	X1, X2 :	Crystal Oscillator
P60, P61:	Port 6		(Main system clock)
P80 to P82 :	Port 8	XT1, XT2 :	Crystal Oscillator (Subsystem Clock)
P90 to P97 :	Port 9		
P100:	Port 10		
P110, P111:	Port 11		
P120 to P124 :	Port 12		

1.3.3 78KOR/LH3

(1) μ PD78F150xA

- 128-pin plastic LQFP (fine pitch) (14×20)

Cautions 1. Make AVss the same potential as Vss.

2. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).
<R> (2) μ PD78F151xA

Cautions 1. Make AVss the same potential as Vss.

2. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Pin Identification

	AMPO- to AMP2- :	Amplifier Input Minus	P130:	Port 13
	AMP0+ to AMP2+ :	Amplifier Input Plus	P140 to P147 :	Port 14
	AMP00 to AMP2O :	Amplifier Output	P150 to P152, P157 :	Port 15
	ANIO to ANI10, ANI15 :	Analog Input (ADC)	PCLBUZ0, PCLBUZ1 :	Programmable Clock Output /Buzzer Output
	ANOO, ADO1 :	Analog Output (DAC)	REGC :	Regulator Capacitance
<R>	AV $\mathrm{fef}_{\text {: }}$	Analog Reference Voltage	RESET:	Reset
	AVrefm:	Analog Reference Voltage Minus	RTC1HZ :	Real-time Counter Correction Clock (1 Hz) Output
	AVrefp : AVss :	Analog Reference Voltage Plus Analog Ground	RTCCL :	Real-time Counter Clock (32 kHz Original Oscillation) Output
<R>	AVdd : AVddo	Analog Power Supply Analog Power Supply (ADC/VREF/OPAMP)	RTCDIV : RxD0 to RxD3 :	Real-time Counter Clock (32 kHz Divided Frequency) Output Receive Data
	AVDD1:	Analog Power Supply (DAC)	$\overline{\text { SCK00, }}$ SCK01,	
	CAPH, CAPL:	Capacitor for LCD	$\overline{\text { SCK10, }}$ SCK20	Serial Clock Input/Output
	COM0 to COM7 :	LCD Common Output	SCL0, SCL10, SCL20 :	Serial Clock Input/Output
<R>	EVdd, EVddi:	Power Supply for Port	SDA0, SDA10, SDA20 :	Serial Data Input/Output
	EVss:	GND for Port	SEG0 to SEG53 :	LCD Segment Output
	EXCLK:	External Clock Input (Main system clock)	SI00, SIO1, SI10, SI20 : SO00, SO01, SO10,	Serial Data Input
	EXLVI:	External Potential Input for Low Voltage Detector	$\begin{aligned} & \text { SO20 : } \\ & \text { TI00 to TI07, } \end{aligned}$	Serial Data Output
	FLMDO :	Flash Programming Mode	Tl10 to TI13 :	Timer Input
	INTP0 to INTP11:	External Interrupt Input	TO00 to TO07,	
	KR0 to KR7 :	Key Return	TO10 to TO13	Timer Output
	P00 to P02 :	Port 0	TOOLO :	Data Input/Output for Tool
	P10 to P17 :	Port 1	TOOL1:	Clock Output for Tool
	P20 to P27:	Port 2	TxD0 to TxD3 :	Transmit Data
	P30 to P34 :	Port 3	VDD:	Power Supply
	P40, P41:	Port 4	VLco to VLC3:	LCD Power Supply
	P50 to P57 :	Port 5	Vrefout :	Voltage Reference Output
	P60, P61:	Port 6	Vss:	Ground
	P70 to P77 :	Port 7	X1, X2 :	Crystal Oscillator
	P80 to P87 :	Port 8		(Main system clock)
	P90 to P97 :	Port 9	XT1, XT2 :	Crystal Oscillator (Subsystem Clock)
	P100 to P102 :	Port 10		
	P110, P111:	Port 11		
	P120 to P124 :	Port 12		

1.4 Block Diagram

1.4.1 78K0R/LF3

<R> (1) μ PD78F1500A, 78F1501A, 78F1502A

<R> (2) μ PD78F1510A, 78F1512A

1.4.2 78K0R/LG3
<R> (1) μ PD78F1503A, 78F1504A, 78F1505A

<R> (2) μ PD78F1513A, 78F1515A

1.4.3 78K0R/LH3

<R> (1) μ PD78F1506A, 78F1507A, 78F1508A

<R> (2) μ PD78F1516A, 78F1518A

1.5 Outline of Functions

Item			78K0R/LF3			78K0R/LG3			78K0R/LH3		
			$\begin{aligned} & \mu \mathrm{PD} 78 \\ & \mathrm{~F} 1500 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \text { PD78 } \\ & \text { F1501A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \\ & \mathrm{~F} 1502 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \text { PD78 } \\ & \text { F1503A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \\ & \mathrm{~F} 1504 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \text { PD78 } \\ & \text { F1505A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78 } \\ & \text { F1506A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \\ & \mathrm{~F} 1507 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \\ & \mathrm{~F} 1508 \mathrm{~A} \end{aligned}$
Internal memory	Flash memory (self-programming supported)		64 KB	96 KB	128 KB	64 KB	96 KB	128 KB	64 KB	96 KB	128 KB
	RAM		4 KB	6KB	7KB	4 KB	6KB	7KB	4 KB	6KB	7KB
Memory space			1 MB								
Main system clock (Oscillation frequency)	High-speed system clock		X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) 2 to $20 \mathrm{MHz}: \mathrm{V}_{\mathrm{dD}}=2.7$ to 5.5 V , 2 to 5 MHz : $\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V								
	Internal high-speed oscillation clock		Internal oscillation 1 MHz (TYP.) or 8 MHz (TYP.) selected by an option byte								
	20 MHz Internal highspeed oscillation clock		Internal oscillation 20 MHz (TYP.) : VDD $=2.7$ to 5.5 V								
Subsystem clock (Oscillation frequency)			XT1 (crystal) oscillation 32.768 kHz (TYP.)								
Internal low-speed oscillation clock (For WDT)			Internal oscillation 30 kHz (TYP.)								
General-purpose register			8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)								
Minimum instruction execution time			0.05μ s (High-speed system clock: $\mathrm{fmx}=20 \mathrm{MHz}$ operation)								
			0.125μ (Internal high-speed oscillation clock: $\mathrm{fIH}^{\text {(}}=8 \mathrm{MHz}$ (TYP.) operation)								
			$30.5 \mu \mathrm{~s}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)								
Instruction set			- 8-bit operation, 16-bit operation - Multiply (16 bits $\times 16$ bits) - Bit manipulation (Set, reset, test, and Boolean operation), etc.								
I/O port	Total		51			67			83		
	I/O	CMOS	46			60			76		
		N -ch	-			2			2		
	Output	CMOS	1			1			1		
	Input	CMOS	4			4			4		
Timer			- 16-bit timer: 12 channels - Watchdog timer: 1 channel - Real-time counter: 1 channel								
	Timer outputs		6 (PWM output: 5 (Timer array unit 0))			8 (PWM output: 7 (Timer array unit 0))			12 (PWM output: 7 (Timer array unit 0), 3 (Timer array unit 1))		
	RTC outputs		2 - 1 Hz (Subsystem clock: fsub $=32.768 \mathrm{kHz}$) - 512 Hz or 16.384 kHz or 32.768 kHz (Subsystem clock: fsub $=32.768 \mathrm{kHz}$)								
Clock output/buzzer output			2 - $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Peripheral hardware clock: $\mathrm{f}_{\text {main }}=20 \mathrm{MHz}$ operation) - $256 \mathrm{~Hz}, 512 \mathrm{~Hz}, 1.024 \mathrm{kHz}, 2.048 \mathrm{kHz}, 4.096 \mathrm{kHz}, 8.192 \mathrm{kHz}, 16.384 \mathrm{kHz}, 32.768 \mathrm{kHz}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)								
A/D converter			12-bit resolution $\times 8$ channels ${ }^{\text {a }}$ 12-bit resolution $\times 12$ channels								
D/A converter			12-bit resolution $\times 2$ channels								

$\mu \mathrm{PD} 78 \mathrm{~F} 150 \times \mathrm{A}$ (2/2)											
Item			78K0R/LF3			78K0R/LG3			78K0R/LH3		
			$\begin{aligned} & \mu \text { PD78 } \\ & \text { F1500A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \\ & \mathrm{~F} 1501 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \\ & \mathrm{~F} 1502 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \\ & \mathrm{~F} 1503 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \text { PD78 } \\ & \text { F1504A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78 } \\ & \text { F1505A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \\ & \mathrm{~F} 1506 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \text { PD78 } \\ & \text { F1507A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \\ & \mathrm{~F} 1508 \mathrm{~A} \end{aligned}$
Operational amplifier			2 channels			3 channels					
Voltage reference			2.0 V/2.5 V								
Serial interface	UART supporting LIN-bus		1								
	CSI/UART/ simplified $\mathrm{I}^{2} \mathrm{C}$		2								
	CSI/UART		-			1			-		
	CSI (2 ch) /UART		-			-			1		
	Multimaster $\mathrm{I}^{2} \mathrm{C}$		-			1					
LCD controller/driver			Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.								
	Segment signal output		$31(27)^{\text {Note } 1}$			$40(36)^{\text {Note } 1}$			$54(50)^{\text {Note } 1}$		
	Common signal output		$4(8)^{\text {Note } 1}$								
Multiplier/divider			16 bits $\times 16$ bits $=32$ bits (multiplication), 32 bits $\div 32$ bits $=32$ bits, 32 -bit remainder (division)								
DMA controller			2 channels								
Vectored interrupt sources		Internal	30			33			33		
		External	8			12			13		
Key interrupt			-						Key interrupt (INTKR) occurs by detecting falling edge of the key input pins (KR0 to KR7).		
Reset			- Reset by RESET pin - Internal reset by watchdog timer - Internal reset by power-on-clear - Internal reset by low-voltage detector - Internal reset by illegal instruction execution ${ }^{\text {Note } 2}$								
Power-on-clear circuit			- Power-on-reset: $\quad 1.61 \pm 0.09 \mathrm{~V}$ - Power-down-reset: $1.59 \pm 0.09 \mathrm{~V}$								
Low-voltage detector	VDD voltage detector		1.91 V to 4.22 V (16 stages)								
	EXLV	I voltage detector	$1.21 \mathrm{~V}$								
On-chip debug function			Provided								
BCD adjustment											
Power supply voltage			$V_{D D}=1.8$ to 5.5 V								
Operating ambient temperature			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$								
Package			- 80-pin plastic LQFP (14×14) - 80-pin plastic LQFP (fine pitch) (12×12)			100-pin plastic LQFP (fine pitch) (14x14)			128-pin plastic LQFP (fine pitch) (14×20)		

Notes 1. The values in parentheses are the number of signal outputs when 8 com is used.
2. When instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.
μ PD78F151xA (1/2)

Item			78K0R/LF3		78K0R/LG3		78K0R/LH3	
			$\begin{aligned} & \mu \text { PD78 } \\ & \text { F1500A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \\ & \mathrm{~F} 1502 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \text { PD78 } \\ & \text { F1503A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78 } \\ & \text { F1505A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78 } \\ & \text { F1506A } \end{aligned}$	$\begin{aligned} & \mu \text { PD78 } \\ & \text { F1508A } \end{aligned}$
Internal memory	Flash memory (self-programming supported)		64 KB	128 KB	64 KB	128 KB	64 KB	128 KB
	RAM		4 KB	7KB	4 KB	7KB	4 KB	7KB
Memory space			1 MB					
Main system clock (Oscillation frequency)	High-speed system clock		X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) 2 to 20 MHz : $\mathrm{V}_{\mathrm{dd}}=2.7$ to 5.5 V , 2 to 5 MHz V $\mathrm{Vd}=1.8$ to 5.5 V					
	Internal high-speed oscillation clock		Internal oscillation 1 MHz (TYP.) or 8 MHz (TYP.) selected by an option byte					
	20 MHz Internal highspeed oscillation clock		Internal oscillation 20 MHz (TYP.) : VDD $=2.7$ to 5.5 V					
Subsystem clock (Oscillation frequency)			XT1 (crystal) oscillation 32.768 kHz (TYP.)					
Internal low-speed oscillation clock (For WDT)			Internal oscillation 30 kHz (TYP.)					
General-purpose register			8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)					
Minimum instruction execution time			0.05μ s (High-speed system clock: $\mathrm{fmx}=20 \mathrm{MHz}$ operation)					
			0.125μ (Internal high-speed oscillation clock: $\mathrm{fIH}^{\text {(}}$ = 8 MHz (TYP.) operation)					
			$30.5 \mu \mathrm{~s}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)					
Instruction set			- 8-bit operation, 16-bit operation - Multiply (16 bits $\times 16$ bits) - Bit manipulation (Set, reset, test, and Boolean operation), etc.					
I/O port	Total		51		67		83	
	I/O	CMOS	46		60		76	
		N -ch	-		2		2	
	Output	CMOS	1		1		1	
	Input	CMOS	4		4		4	
Timer			- 16-bit timer: 12 channels - Watchdog timer: 1 channel - Real-time counter: 1 channel					
	Timer outputs		6 (PWM output: 5 (Timer array unit 0))		8 (PWM output: 7 (Timer array unit 0))		12 (PWM output: 7 (Timer array unit 0), 3 (Timer array unit 1))	
	RTC outputs		2 - 1 Hz (Subsystem clock: fsub $=32.768 \mathrm{kHz}$) - 512 Hz or 16.384 kHz or 32.768 kHz (Subsystem clock: fsub $=32.768 \mathrm{kHz}$)					
Clock output/buzzer output			2 - $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Peripheral hardware clock: fmain $=20 \mathrm{MHz}$ operation) - $256 \mathrm{~Hz}, 512 \mathrm{~Hz}, 1.024 \mathrm{kHz}, 2.048 \mathrm{kHz}, 4.096 \mathrm{kHz}, 8.192 \mathrm{kHz}, 16.384 \mathrm{kHz}, 32.768 \mathrm{kHz}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)					
A/D converter			12-bit resolution $\times 8$ channels		12 -bit resolution $\times 12$ channels			

$\mu \mathrm{PD} 78 \mathrm{~F} 150 \times \mathrm{A}(2 / 2)$								
Item			78K0R/LF3		78K0R/LG3		78K0R/LH3	
			$\begin{aligned} & \mu \mathrm{PD} 78 \\ & \mathrm{~F} 1500 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \\ & \mathrm{~F} 1502 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \\ & \mathrm{~F} 1503 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \\ & \mathrm{~F} 1505 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mu \text { PD78 } \\ & \text { F1506A } \end{aligned}$	$\begin{aligned} & \mu \mathrm{PD} 78 \\ & \mathrm{~F} 1508 \mathrm{~A} \end{aligned}$
Serial interface	UART supporting LIN-bus		1					
	CSI/UART/ simplified $\mathrm{I}^{2} \mathrm{C}$		2					
	CSI/UART		-		1		-	
	CSI (2 ch) /UART		-		-		1	
	Multimaster $\mathrm{I}^{2} \mathrm{C}$		-		1			
LCD controller/driver			Internal voltage boosting method, capacitor split method, and external resistance division method are switchable.					
	Segment signal output		$31(27)^{\text {Note } 1}$		$40(36)^{\text {Note } 1}$		$54(50)^{\text {Note } 1}$	
	Common signal output		$4(8)^{\text {Note } 1}$					
Multiplier/divider			16 bits $\times 16$ bits $=32$ bits (multiplication), 32 bits $\div 32$ bits $=32$ bits, 32 -bit remainder (division)					
DMA controller			2 channels					
Vectored interrupt sources		Internal	30		33		33	
		External	8		12		13	
Key interrupt			-				Key interrupt (INTKR) occurs by detecting falling edge of the key input pins (KR0 to KR7).	
Reset			- Reset by RESET pin - Internal reset by watchdog timer - Internal reset by power-on-clear - Internal reset by low-voltage detector - Internal reset by illegal instruction execution ${ }^{\text {Note } 2}$					
Power-on-clear circuit			$\begin{array}{ll}\text { - Power-on-reset: } & 1.61 \pm 0.09 \mathrm{~V} \\ \text { - Power-down-reset: } & 1.59 \pm 0.09 \mathrm{~V}\end{array}$					
Low-voltage detector	VDD voltage detector		1.91 V to 4.22 V (16 stages)					
	EXLV	voltage detector	1.21 V					
On-chip debug function			Provided					
BCD adjustment								
Power supply voltage			$\mathrm{V} D \mathrm{D}=1.8$ to 5.5 V					
Operating ambient temperature			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$					
Package			- 80-pin plastic LQFP (14×14) - 80-pin plastic LQFP (fine pitch) (12×12)		100-pin plastic LQFP (fine pitch) (14x14)		128-pin plastic LQFP (fine pitch) (14x20)	

Notes 1. The values in parentheses are the number of signal outputs when 8 com is used.
2. When instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

CHAPTER 2 PIN FUNCTIONS

2.1 Pin Function List

$<R>\quad$ There are four types of pin I/O buffer power supplies: AVddo, AVDD, AVDD1, EVDD1, EVDD, and VdD. The relationship between these power supplies and the pins is shown below.

Table 2-1. Pin I/O Buffer Power Supplies

Power Supply	Corresponding Pins
AVddo, AVdd	P20 to P27, P150 to P152, P157
AVdD1, EVdD1	P110, P111
EVdo	- Port pins other than P20 to P27, P110, P111, P150 to P152, P157 - $\overline{\text { RESET }}$, FLMDO pins
Vdd	Pins other than port, $\overline{\text { RESET, }}$, FLMD0 pins

2.1.1 78KOR/LF3

(1) Port functions (1/2) : 78K0R/LF3

Function Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0. 3-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	CAPH
P01				CAPL
P02				VıC3
P10	I/O	Port 1. 6-bit I/O port. Input/output can be specified in 1-bit units. Input of P10, P11, P14 and P15 can be set to TTL buffer. Output of P10 to P15 can be set to N-ch open-drain output (Vdd tolerance). Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SCK20/SCL20
P11				SI20/RxD2/SDA20/ INTP6
P12				SO20/TxD2/TO02
P13				SO10/TxD1/TO04
P14				SI10/RxD1/SDA10/ INTP4
P15				$\overline{\text { SCK10/SCL10/INTP7 }}$
P20	I/O	Port 2. 7-bit I/O port. Input/output can be specified in 1-bit units.	Digital input port	ANIO/AMPO- ${ }^{\text {Note } 1}$
P21				ANI1/AMP00 ${ }^{\text {Note } 1}$
P22				ANI2/AMPO $+{ }^{\text {Note } 1}$
P23				ANI3/AMP1- ${ }^{\text {Note } 1}$
P24				ANI4/AMP1O ${ }^{\text {Note } 1}$
P25				ANI5/AMP1+ ${ }^{\text {Note } 1}$
P26				ANI6
P30	I/O	Port 3. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TI03/TO00/RTC1HZ/ INTP1
P31				TI00/TO03/RTCDIV/ RTCCL/PCLBUZ1/ INTP2
P32				TI01/TO01/INTP5/ PCLBUZ0
P33				TI07/TO07/INTP3
$\mathrm{P} 40{ }^{\text {Note } 2}$	I/O	Port 4. 2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TOOLO
P41				TOOL1

<R> Notes 1. AMPxx applies to μ PD78F150xA only.
2. If on-chip debugging is enabled by using an option byte, be sure to pull up the P40/TOOLO pin externally.

(1) Port functions (2/2) : 78K0R/LF3

Function Name	I/O	Function	After Reset	Alternate Function
P50	I/O	Port 5. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG30/RxD3
P51				SEG29/TxD3
P52				SEG28/TI02
P53				SEG27/TI04
P54 to P57				SEG26 to SEG23
P90 to P92	I/O	Port 9. 3-bit I/O port. Inputs/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG22 to SEG20
P100	I/O	Port 10. 1-bit I/O port. Inputs/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG11
P110	I/O	Port 11. 2-bit I/O port. Inputs/output can be specified in 1-bit units.	Input port	$\mathrm{ANOO}^{\text {Note }}$
P111				ANO1 ${ }^{\text {Note }}$
P120	I/O	Port 12. 1-bit I/O port and 4-bit input port. For only P120, input/output can be specified in 1-bit units. For only P120, use of an on-chip pull-up resistor can be specified by a software setting.	Input port	INTPO/EXLVI
P121	Input			X1
P122				X2/EXCLK
P123				XT1
P124				XT2
P130	Output	Port 13. 1-bit output port.	Output port	-
P140 to P147	I/O	Port 14. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG19 to SEG12
P157	I/O	Port 15. 1-bit I/O port. Input/output can be specified in 1-bit units.	Digital input port	ANI15/AV ReFm $^{\text {Note }}$

Note ANOx and AVReFm apply to μ PD78F150xA only.
(2) Non-port functions (1/4) : 78K0R/LF3

Function Name	I/O	Function	After Reset	Alternate Function
ANIO	Input	A/D converter analog input	Digital input port	P20/AMPO- ${ }^{\text {Note } 1}$
ANI1				P21/AMP00 ${ }^{\text {Note } 1}$
ANI2				P22/AMP0+ ${ }^{\text {Note }} 1$
ANI3				P23/AMP1- ${ }^{\text {Note } 1}$
ANI4				P24/AMP10 ${ }^{\text {Note }} 1$
ANI5				P25/AMP1+ ${ }^{\text {Note } 1}$
ANI6				P26
ANI15				P157/AV ReFm $^{\text {Note }} 1$
AMPO- ${ }^{\text {Note } 1}$	Input	Operational amplifier input (negative side)	Digital input port	P20/ANIO
AMP1- Note 1				P23/ANI3
AMPO+ ${ }^{\text {Note }} 1$	Input	Operational amplifier input (positive side)	Digital input port	P22/ANI2
AMP1+ ${ }^{\text {Note } 1}$				P25/AN15
AMP00 ${ }^{\text {Note } 1}$	Output	Operational amplifier output	Digital input port	P21/ANI1
AMP10 ${ }^{\text {Note } 1}$				P24/AN14
$A V_{\text {Refm }}{ }^{\text {Note } 1}$	Input	Analog negative reference voltage input	Digital input port	P157/ANI15
$\mathrm{AV}_{\text {Refp }}{ }^{\text {Note } 1}$		Analog positive reference voltage input	Input	$\mathrm{V}_{\text {REFOUT }}{ }^{\text {Note } 1}$
$A V_{\text {REF }} \text { Note } 2$				-
$\mathrm{V}_{\text {refout }}{ }^{\text {Note }} 1$	Output	Analog reference voltage output	Input	$\mathrm{AV}_{\text {Refp }}{ }^{\text {Note } 1}$
ANOO ${ }^{\text {Note } 1}$	Output	D/A converter analog output	Input port	P110
ANO1 ${ }^{\text {Note } 1}$				P111
$\begin{aligned} & \text { SEGO to } \\ & \text { SEG3 } \end{aligned}$	Output	LCD controller/driver segment signal outputs	Output	COM4 to COM7
$\begin{aligned} & \text { SEG4 to } \\ & \text { SEG10 } \end{aligned}$				-
SEG11				P100
SEG12 to SEG19				P147 to P140
$\begin{aligned} & \text { SEG20 to } \\ & \text { SEG22 } \end{aligned}$				P92 to P90
$\begin{aligned} & \text { SEG23 to } \\ & \text { SEG26 } \end{aligned}$				P57 to P54
SEG27				P53/T104
SEG28				P52/T102
SEG29				P51/TxD3
SEG30				P50/RxD3
COMO to COM3	Output	LCD controller/driver common signal outputs	Output	-
COM4 to COM7				SEG0 to SEG3
VLCo to VLC2	-	LCD drive voltage	-	-
VLC3			Input port	P02

Notes 1. AMPxx, ANOx, AVrefp, AVrefm, and Vrefout apply to μ PD78F150xA only.
2. AVref applies to μ PD78F151xA only.
(2) Non-port functions (2/4) : 78K0R/LF3

Function Name	I/O	Function	After Reset	Alternate Function
CAPH	-	Connecting a capacitor for LCD controller/driver	Input port	P00
CAPL				P01
EXLVI	Input	Potential input for external low-voltage detection	Input port	P120/INTP0
INTPO	Input	External interrupt request input for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified	Input port	P120/EXLVI
INTP1				P30/TI03/TO00/ RTC1HZ
INTP2				P31/TI00/TO03/ RTCDIV/RTCCL/ PCLBUZ1
INTP3				P33/T107/TO07
INTP4				P14/SI10/RxD1/ SDA10
INTP5				P32/TI01/TO01/ PCLBUZO
INTP6				$\begin{aligned} & \text { P11/SI20/RxD2/ } \\ & \text { SDA20 } \end{aligned}$
INTP7				P15/SCK10/SCL10
PCLBUZO	Output	Clock output/buzzer output	Input port	P32/TI01/TO01/ INTP5
PCLBUZ1				P31/T100/TO03/ RTCDIV/RTCCL/INTP2
REGC	-	Connecting regulator output (2.4 V) stabilization capacitance for internal operation. Connect to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).	-	-
RTCDIV	Output	Real-time counter clock (32 kHz divided frequency) output	Input port	P31/T100/TO03/ PCLBUZ1/RTCCL/ INTP2
RTCCL	Output	Real-time counter clock (32 kHz original oscillation) output	Input port	P31/TI00/TO03/ PCLBUZ1/RTCDIV/ INTP2
RTC1HZ	Output	Real-time counter correction clock (1 Hz) output	Input port	P30/TIO3/TO00/ INTP1
RESET	Input	System reset input	-	-
RxD1	Input	Serial data input to UART1	Input port	P14/SI10/SDA10/ INTP4
RxD2		Serial data input to UART2		P11/SI20/SDA20/ INTP6
RxD3		Serial data input to UART3		P50/SEG30
$\overline{\text { SCK10 }}$	I/O	Clock input/output for CSI10	Input port	P15/SCL10/INTP7
$\overline{\text { SCK20 }}$		Clock input/output for CSI20		P10/SCL20
SCL10	I/O	Clock input/output for simplified $\mathrm{I}^{2} \mathrm{C}$	Input port	P15/SCK10/INTP7
SCL20				P10/ $\overline{\text { SCK20 }}$

(2) Non-port functions (3/4) : 78K0R/LF3

Function Name	I/O	Function	After Reset	Alternate Function
SDA10	I/O	Serial data I/O for simplified $\mathrm{I}^{2} \mathrm{C}$	Input port	P14/SI10/RxD1/ INTP4
SDA20				P11/SI20/RxD2/ INTP6
SI10		Serial data input to CSI10		P14/RxD1/SDA10/ INTP4
SI20		Serial data input to CSI20		P11/RxD2/SDA20/ INTP6
SO10	Output	Serial data output from CSI10	Input port	P13/TxD1/TO04
SO20		Serial data output from CSI20		P12/TxD2/TO02
TIOO	Input	External count clock input to 16-bit timer 00	Input port	P31/TO03/RTCDIV/ RTCCL/PCLBUZ1/ INTP2
TI01		External count clock input to 16-bit timer 01		P32TO01/INTP5/ PCLBUZO
TIO2		External count clock input to 16-bit timer 02		P52/SEG28
TIO3		External count clock input to 16-bit timer 03		P30/TO00/RTC1HZ/ INTP1
TIO4		External count clock input to 16-bit timer 04		P53/SEG27
TIO7		External count clock input to 16-bit timer 07		P33/TO07/INTP3
TO00	Output	16-bit timer 00 output	Input port	P30/TIO3/RTC1HZ/ INTP1
TO01		16-bit timer 01 output		P32/TIO1/INTP5/ PCLBUZO
TO02		16-bit timer 02 output		P12/SO20/TxD2
TO03		16-bit timer 03 output		P31/TI00/RTCDIV/ RTCCL/PCLBUZ1/ INTP2
TO04		16-bit timer 04 output		P13/SO10/TxD1
TO07		16-bit timer 07 output		P33/TI07/INTP3
TxD1	Output	Serial data output from UART1	Input port	P13/SO10/TO04
TxD2		Serial data output from UART2		P12/SO20/TO02
TxD3		Serial data output from UART3		P51/SEG29
X1	-	Resonator connection for main system clock	Input port	P121
X2	-		Input port	P122/EXCLK
EXCLK	Input	External clock input for main system clock	Input port	P122/X2
XT1	-	Resonator connection for subsystem clock	Input port	P123
XT2	-		Input port	P124
Vod	-	Positive power supply (Pins other than port and $\overline{\text { RESET }}$, FLMD0 pins)	-	-
EVdo	-	Positive power supply for RESET, FLMD0 pins, and port pins other than P20 to P26, P110, P111, P157	-	-

(2) Non-port functions (4/4) : 78K0R/LF3

Function Name	I/O	Function	After Reset	Alternate Function
$\begin{aligned} & A V_{D D}{ }^{\text {Note } 1} \\ & A V_{D D}{ }^{\text {Notete } 2} \end{aligned}$	-	Positive power supply for P20 to P26, P157	-	-
$\begin{aligned} & A V_{D D 1}{ }^{\text {Note } 1} \\ & E V_{D D 1}{ }^{\text {Note } 2} \end{aligned}$	-	Positive power supply for P110, P111	-	-
Vss	-	Ground potential (Pins other than port and RESET, FLMDO pins)	-	-
EVss	-	Ground potential for $\overline{\text { RESET }}$, FLMDO pins, and port pins other than P20 to P26, P110, P111, P157	-	-
AVss	-	Ground potential for P20 to P26, P110, P111, P157	-	-
FLMD0	-	Flash memory programming mode setting	-	-
TOOLO	I/O	Data I/O for flash memory programmer/debugger	Input port	P40
TOOL1	Output	Clock output for debugger	Input port	P41

Notes 1. AVdoo and $\operatorname{AVDD1}$ apply to μ PD78F150xA only.
2. $A V_{D D}$ and EVDD1 apply to μ PD78F151xA only.

2.1.2 78KOR/LG3

(1) Port functions (1/2) : 78K0R/LG3

	Function Name	I/O	Function	After Reset	Alternate Function
	P00	I/O	Port 0. 3-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	CAPH
	P01				CAPL
	P02				VLC3
	P10	I/O	Port 1. 7-bit I/O port. Input/output can be specified in 1-bit units. Input of P10, P11, P14 and P15 can be set to TTL buffer. Output of P10 to P15 can be set to N-ch open-drain output (VDD tolerance). Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	$\overline{\text { SCK20/SCL20 }}$
	P11				SI20/RxD2/SDA20/ INTP6
	P12				SO20/TxD2/TO02
	P13				SO10/TxD1/TO04
	P14				SI10/RxD1/SDA10/ INTP4
	P15				$\overline{\text { SCK10/SCL10/INTP7 }}$
	P16				TI05/TO05/INTP10
<R>	P20	I/O	Port 2. 8-bit I/O port. Input/output can be specified in 1-bit units.	Digital input port	ANIO/AMPO- Note 1
	P21				ANI1/AMP00 ${ }^{\text {Note } 1}$
	P22				ANI2/AMP0 $+{ }^{\text {Note } 1}$
	P23				ANI3/AMP1- Note 1
	P24				ANI4/AMP1O ${ }^{\text {Note } 1}$
	P25				ANI5/AMP1+ ${ }^{\text {Note } 1}$
	P26				ANI6/AMP2- ${ }^{\text {Note } 1}$
	P27				ANI7/AMP2O ${ }^{\text {Note } 1}$
	P30	I/O	Port 3. 5-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TI03/TO00/RTC1HZ/ INTP1
	P31				TI00/TO03/RTCDIV/ RTCCL/PCLBUZ1/ INTP2
	P32				TI01/TO01/INTP5/ PCLBUZO
	P33				TI07/TO07/INTP3
	P34				TI06/TO06/INTP8
<R>	$\mathrm{P} 40{ }^{\text {Note } 2}$	I/O	Port 4. 2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TOOLO
	P41				TOOL1

Notes 1. AMPxx applies to μ PD78F150xA only.
2. If on-chip debugging is enabled by using an option byte, be sure to pull up the $\mathrm{P} 40 / \mathrm{TOOLO}$ pin externally.

(1) Port functions (2/2) : 78K0R/LG3

$<\mathrm{R}>\quad$ Note ANOx and AVREFM apply to μ PD78F150xA only.
(2) Non-port functions (1/4) : 78K0R/LG3

Function Name	I/O		Function	After Reset

Notes 1. AMPxx, ANOx, AVrefp, AVrefm, and Vrefout apply to μ PD78F150xA only.
(2) Non-port functions (2/4) : 78K0R/LG3

Function Name	I/O	Function	After Reset	Alternate Function
COMO to COM3	Output	LCD controller/driver common signal outputs	Output	-
COM4 to COM7				SEG0 to SEG3
VLCo to VLC2	-	LCD drive voltage	-	-
VLC3			Input port	P02
CAPH	-	Connecting a capacitor for LCD controller/driver	Input port	P00
CAPL				P01
EXLVI	Input	Potential input for external low-voltage detection	Input port	P120/INTP0
INTP0	Input	External interrupt request input for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified	Input port	P120/EXLVI
INTP1				P30/TI03/TO00/ RTC1HZ
INTP2				P31/T100/TO03/ RTCDIV/RTCCL/ PCLBUZ1
INTP3				P33/T107/TO07
INTP4				P14/S110/RxD1/ SDA10
INTP5				P32/TI01/TO01/ PCLBUZO
INTP6				$\begin{aligned} & \text { P11/SI20/RxD2/ } \\ & \text { SDA20 } \end{aligned}$
INTP7				P15/SCK10/SCL10
INTP8				P34/T106/TO06
INTP9				P81/RxD0/SI00
INTP10				P16/TI05/TO05
INTP11				P80/SCK00
PCLBUZO	Output	Clock output/buzzer output	Input port	P32/TI01/TO01/ INTP5
PCLBUZ1				P31/TI00/TO03/ RTCDIV/RTCCLINTP2
REGC	-	Connecting regulator output (2.4 V) stabilization capacitance for internal operation. Connect to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).	-	-
RTCDIV	Output	Real-time counter clock (32 kHz divided frequency) output	Input port	P31/TI00/TO03/ PCLBUZ1/RTCCL/ INTP2
RTCCL	Output	Real-time counter clock (32 kHz original oscillation) output	Input port	P31/TI00/TO03/ PCLBUZ1/RTCDIV/ INTP2
RTC1HZ	Output	Real-time counter correction clock (1 Hz) output	Input port	P30/TIO3/TO00/ INTP1
RESET	Input	System reset input	-	-

(2) Non-port functions (3/4) : 78K0R/LG3

Function Name	I/O	Function	After Reset	Alternate Function
RxD0	Input	Serial data input to UART0	Input port	P81/SI00/INTP9
RxD1		Serial data input to UART1		P14/SI10/SDA10/ INTP4
RxD2		Serial data input to UART2		P11/SI20/SDA20/ INTP6
RxD3		Serial data input to UART3		P50/SEG39
$\overline{\text { SCK00 }}$	I/O	Clock input/output for CSIOO	Input port	P80/INTP11
$\overline{\text { SCK10 }}$		Clock input/output for CSI10		P15/SCL10/INTP7
$\overline{\text { SCK20 }}$		Clock input/output for CSI20		P10/SCL20
SCLO	I/O	Clock input/output for $\mathrm{I}^{2} \mathrm{C}$	Input port	P60
SCL10	I/O	Clock input/output for simplified $\mathrm{I}^{2} \mathrm{C}$	Input port	P15/ $\overline{\text { SCK10 }} /$ INTP7
SCL20				P10/SCK20
SDA0	I/O	Serial data I/O for $\mathrm{I}^{2} \mathrm{C}$	Input port	P61
SDA10	I/O	Serial data I/O for simplified I ${ }^{2} \mathrm{C}$	Input port	P14/SI10/RxD1/ INTP4
SDA20				P11/SI20/RxD2/ INTP6
SIOO	Input	Serial data input to CSIOO	Input port	P81/RxD0/INTP9
SI10		Serial data input to CSI10		P14/RxD1/SDA10/ INTP4
SI20		Serial data input to CSI20		P11/RxD2/SDA20/ INTP6
SO00	Output	Serial data output from CSIO0	Input port	P82/TxD0
SO10		Serial data output from CSI10		P13/TxD1/TO04
SO20		Serial data output from CSI20		P12/TxD2/TO02
TIOO	Input	External count clock input to 16-bit timer 00	Input port	P31/TO03/RTCDIV/ RTCCL/PCLBUZ1/ INTP2
TIO1		External count clock input to 16-bit timer 01		P32/TO01/INTP5/ PCLBUZO
TIO2		External count clock input to 16-bit timer 02		P52/SEG37
TIO3		External count clock input to 16-bit timer 03		P30/TO00/RTC1HZ/ INTP1
TIO4		External count clock input to 16-bit timer 04		P53/SEG36
TI05		External count clock input to 16-bit timer 05		P16/TO05/INTP10
TI06		External count clock input to 16-bit timer 06		P34/TO06/INTP8
TI07		External count clock input to 16-bit timer 07		P33/TO07/INTP3

(2) Non-port functions (4/4) : 78K0R/LG3

Function Name	1/O	Function	After Reset	Alternate Function
TO00	Output	16-bit timer 00 output	Input port	P30/TI03/RTC1HZ/ INTP1
TO01		16-bit timer 01 output		P32/TIO1/INTP5/ PCLBUZO
TO02		16-bit timer 02 output		P12/SO20/TxD2
TO03		16-bit timer 03 output		P31/TI00/RTCDIV/ RTCCL/PCLBUZ1/ INTP2
TO04		16-bit timer 04 output		P13/SO10/TxD1
TO05		16-bit timer 05 output		P16/TI05/INTP10
TO06		16-bit timer 06 output		P34/TI06/INTP8
TO07		16-bit timer 07 output		P33/TI07/INTP3
TxD0	Output	Serial data output from UART0	Input port	P82/SO00
TxD1		Serial data output from UART1		P13/SO10/TO04
TxD2		Serial data output from UART2		P12/SO20/TO02
TxD3		Serial data output from UART3		P51/SEG38
X1	-	Resonator connection for main system clock	Input port	P121
X2	-		Input port	P122/EXCLK
EXCLK	Input	External clock input for main system clock	Input port	P122/X2
XT1	-	Resonator connection for subsystem clock	Input port	P123
XT2	-		Input port	P124
Vod	-	Positive power supply (Pins other than port and $\overline{\text { RESET }}$, FLMDO pins)	-	-
EVdd	-	Positive power supply for RESET, FLMDO pins, and port pins other than P20 to P27, P110, P111, P150 to P152, P157	-	-
$\begin{aligned} & A V_{D D}{ }^{\text {Note } 1} \\ & A V_{D D}{ }^{\text {Notete } 2} \end{aligned}$	-	Positive power supply for P20 to P27, P150 to P152, P157	-	-
$\begin{aligned} & A V_{D D 1}{ }^{\text {Note } 1} \\ & E_{D D 1}{ }^{\text {Note } 2} \end{aligned}$	-	Positive power supply for P110, P111	-	-
Vss	-	Ground potential (Pins other than port and $\overline{\text { RESET, }}$, FLMDO pins)	-	-
EVss	-	Ground potential for $\overline{\text { RESET }}$, FLMDO pins, and port pins other than P20 to P27, P110, P111, P150 to P152, P157	-	-
AVss	-	Ground potential for P20 to P27, P110, P111, P150 to P152, P157	-	-
FLMD0	-	Flash memory programming mode setting	-	-
TOOLO	I/O	Data I/O for flash memory programmer/debugger	Input port	P40
TOOL1	Output	Clock output for debugger	Input port	P41

<R> Notes 1. AVDDo and AVDD1 apply to μ PD78F150xA only.
2. AVDd and EVDD1 apply to μ PD78F151xA only.

2.1.3 78KOR/LH3

(1) Port functions (1/3) : 78K0R/LH3

Function Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0. 3-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	CAPH
P01				CAPL
P02				Vıc3
P10	I/O	Port 1. 8-bit I/O port. Input/output can be specified in 1-bit units. Input of P10, P11, P14 and P15 can be set to TTL buffer. Output of P10 to P15 can be set to N-ch open-drain output (Vdd tolerance). Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	$\overline{\text { SCK20/SCL20 }}$
P11				SI20/RxD2/SDA20/ INTP6
P12				SO20/TxD2/TO02
P13				SO10/TxD1/TO04
P14				SI10/RxD1/SDA10/ INTP4
P15				$\overline{\text { SCK10/SCL10/INTP7 }}$
P16				TI05/TO05/INTP10
P17				-
P20	I/O	Port 2. 8-bit I/O port. Input/output can be specified in 1-bit units.	Digital input port	ANIO/AMPO- ${ }^{\text {Note } 1}$
P21				ANI1/AMP00 ${ }^{\text {Note } 1}$
P22				ANI2/AMP0 $+{ }^{\text {Note } 1}$
P23				ANI3/AMP1- Note 1
P24				ANI4/AMP1O ${ }^{\text {Note }}$
P25				ANI5/AMP1+ ${ }^{\text {Note } 1}$
P26				ANI6/AMP2- ${ }^{\text {Note } 1}$
P27				ANI7/AMP2O ${ }^{\text {Note } 1}$
P30	I/O	Port 3. 5-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TI03/TO00/RTC1HZ/ INTP1
P31				TI00/TO03/RTCDIV/ RTCCL/PCLBUZ1/ INTP2
P32				TI01/TO01/INTP5/ PCLBUZO
P33				T107/TO07/INTP3
P34				TI06/TO06/INTP8
P40 ${ }^{\text {Note } 2}$	I/O	Port 4. 2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TOOLO
P41				TOOL1

Notes 1. AMPxx applies to μ PD78F150xA only.
2. If on-chip debugging is enabled by using an option byte, be sure to pull up the P40/TOOLO pin externally.
(1) Port functions (2/3) : 78K0R/LH3

Function Name	I/O	Function	After Reset	Alternate Function
P50	I/O	Port 5. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG53/RxD3
P51				SEG52/TxD3
P52				SEG51/TI02
P53				SEG50/TI04
P54 to P57				SEG49 to SEG46
P60	I/O	Port 6. 2-bit I/O port. Output is N -ch open-drain output (6 V tolerance). Input/output can be specified in 1-bit units.	Input port	SCLO
P61				SDA0
P70 to P74	I/O	Port 7. 8-bit I/O port. Input/output can be specified in 1-bit units. Input of P75 and P76 can be set to TTL buffer. Output of P75 and P77 can be set to N-ch open-drain output (Vdo tolerance). Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	KR0 to KR4
P75				KR5/SCK01
P76				KR6/SI01
P77				KR7/SO01
P80	I/O	Port 8. 8-bit I/O port. Inputs/output can be specified in 1-bit units. Output of P80 and P82 can be set to N-ch open-drain output (Vdo tolerance). Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	$\overline{\text { SCK00/INTP11 }}$
P81				RxD0/SI00/INTP9
P82				TxD0/SO00
P83				-
P84				TI10/TO10
P85				TI11/TO11
P86				Tl12/TO12
P87				TI13/TO13
P90 to P97	I/O	Port 9. 8-bit I/O port. Inputs/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG45 to SEG38
P100 to P102	I/O	Port 10. 3-bit I/O port. Inputs/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG29 to SEG27
P110	I/O	Port 11. 2-bit I/O port. Inputs/output can be specified in 1-bit units.	Input port	$\mathrm{ANOO}^{\text {Note }}$
P111				ANO1 ${ }^{\text {Note }}$
P120	I/O	Port 12. 1-bit I/O port and 4-bit input port. For only P120, input/output can be specified in 1-bit units. For only P120, use of an on-chip pull-up resistor can be specified by a software setting.	Input port	INTPO/EXLVI
P121	Input			X1
P122				X2/EXCLK
P123				XT1
P124				XT2
P130	Output	Port 13. 1-bit output port.	Output port	-

Note ANOx applies to μ PD78F150xA only.

(1) Port functions (3/3) : 78K0R/LH3

Function Name	I/O	Function	After Reset	Alternate Function
P140 to P147	I/O	Port 14. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG37 to SEG30
P150	I/O	Port 15. 4-bit I/O port. Input/output can be specified in 1-bit units.	Digital input port	ANI8/AMP2+ ${ }^{\text {Note }}$
P151				ANI9
P152				ANI10
P157				ANI15/AV REFM $^{\text {Note }}$

Note AMP2+ and AVrefm apply to μ PD78F150xA only.
(2) Non-port functions (1/5) : 78K0R/LH3

Function Name	I/O	Function	After Reset	Alternate Function
ANIO	Input	A/D converter analog input	Digital input port	P20/AMP0- ${ }^{\text {Note } 1}$
ANI1				P21/AMP00 ${ }^{\text {Note } 1}$
ANI2				P22/AMP0 + Note 1
ANI3				P23/AMP1- ${ }^{\text {Note } 1}$
ANI4				P24/AMP1O ${ }^{\text {Note } 1}$
ANI5				P25/AMP1+ ${ }^{\text {Note } 1}$
ANI6				P26/AMP2- ${ }^{\text {Note } 1}$
ANI7				P27/AMP2O ${ }^{\text {Note } 1}$
ANI8				P150/AMP2+ ${ }^{\text {Note } 1}$
ANI9				P151
ANI10				P152
ANI15				P157/AV Refm $^{\text {Note } 1}$
AMP0- Note 1	Input	Operational amplifier input (negative side)	Digital input port	P20/ANIO
AMP1- ${ }^{\text {Note } 1}$				P23/ANI3
AMP2- ${ }^{\text {Note } 1}$				P26/ANI6
AMP0+ ${ }^{\text {Note } 1}$	Input	Operational amplifier input (positive side)	Digital input port	P22/ANI2
AMP1+ ${ }^{\text {Note } 1}$				P25/ANI5
AMP2+ ${ }^{\text {Note } 1}$				P150/ANI8
AMP00 ${ }^{\text {Note } 1}$	Output	Operational amplifier output	Digital input port	P21/ANI1
AMP10 ${ }^{\text {Note } 1}$				P24/ANI4
AMP2O ${ }^{\text {Note } 1}$				P27/ANI7
AVrefm ${ }^{\text {Note } 1}$	Input	Analog negative reference voltage input	Digital input port	P157/ANI15
$A V_{\text {refp }}{ }^{\text {Note }} 1$		Analog positive reference voltage input	Input	$\mathrm{V}_{\text {Refout }}{ }^{\text {Note } 1}$
AV $\mathrm{REF}^{\text {Note } 2}$				-
$\mathrm{V}_{\text {REFOUT }}{ }^{\text {Note } 1}$	Output	Analog reference voltage output	Input	A $V_{\text {refp }}{ }^{\text {Note }} 1$
ANOO ${ }^{\text {Note } 1}$	Output	D/A converter analog output	Input port	P110
ANO1 ${ }^{\text {Note } 1}$				P111

Notes 1. AMPxx, ANOx, AVrefp, $A V_{\text {refm, }}$ and $A V_{\text {refout }}$ apply to μ PD78F150xA only.
2. AVref applies to μ PD78F151xA only.
(2) Non-port functions (2/5) : 78KOR/LH3

Function Name	I/O	Function	After Reset	Alternate Function
SEG0 to SEG3	Output	LCD controller/driver segment signal outputs	Output	COM4 to COM7
$\begin{aligned} & \text { SEG4 to } \\ & \text { SEG26 } \end{aligned}$				-
$\begin{aligned} & \text { SEG27 to } \\ & \text { SEG29 } \end{aligned}$				P102 to P100
$\begin{aligned} & \text { SEG30 to } \\ & \text { SEG37 } \end{aligned}$				P147 to P140
$\begin{aligned} & \text { SEG38 to } \\ & \text { SEG45 } \end{aligned}$				P97 to P90
$\begin{aligned} & \text { SEG46 to } \\ & \text { SEG49 } \end{aligned}$				P57 to P54
SEG50				P53/T104
SEG51				P52/T102
SEG52				P51/TxD3
SEG53				P50/RxD3
COMO to COM3	Output	LCD controller/driver common signal outputs	Output	-
COM4 to COM7				SEG0 to SEG3
VLCo to V LC 2	-	LCD drive voltage	-	-
VLC3			Input port	P02
CAPH	-	Connecting a capacitor for LCD controller/driver	Input port	P00
CAPL				P01
EXLVI	Input	Potential input for external low-voltage detection	Input port	P120/INTP0
INTPO	Input	External interrupt request input for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified	Input port	P120/EXLVI
INTP1				P30/TI03/TO00/ RTC1HZ
INTP2				P31/TI00/TO03/ RTCDIV/RTCCL/ PCLBUZ1
INTP3				P33/T107/TO07
INTP4				P14/SI10/RxD1/ SDA10
INTP5				P32/T101/TO01/ PCLBUZO
INTP6				$\begin{aligned} & \text { P11/SI20/RxD2/ } \\ & \text { SDA20 } \end{aligned}$
INTP7				P15/SCK10/SCL10
INTP8				P34/TI06/TO06
INTP9				P81/RxD0/SI00
INTP10				P16/TI05/TO05
INTP11				P80/SCK00

(2) Non-port functions (3/5) : 78K0R/LH3

Function Name	I/O	Function	After Reset	Alternate Function
KR0 to KR4	Input	Key interrupt input	Input port	P70-P74
KR5				P75/SCK01
KR6				P76/SI01
KR7				P77/SO01
PCLBUZO	Output	Clock output/buzzer output	Input port	P32/TI01/TO01/ INTP5
PCLBUZ1				P31/TI00/TO03/ RTCDIV/RTCCL/INTP2
REGC	-	Connecting regulator output (2.4 V) stabilization capacitance for internal operation. Connect to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).	-	-
RTCDIV	Output	Real-time counter clock (32 kHz divided frequency) output	Input port	P31/TI00/TO03/ PCLBUZ1/RTCCL/ INTP2
RTCCL	Output	Real-time counter clock (32 kHz original oscillation) output	Input port	P31/TI00/TO03/ PCLBUZ1/RTCDIV/ INTP2
RTC1HZ	Output	Real-time counter correction clock (1 Hz) output	Input port	P30/TI03/TO00/ INTP1
RESET	Input	System reset input	-	-
RxD0	Input	Serial data input to UART0	Input port	P81/SI00/INTP9
RxD1		Serial data input to UART1		P14/SI10/SDA10/ INTP4
RxD2		Serial data input to UART2		P11/SI20/SDA20/ INTP6
RxD3		Serial data input to UART3		P50/SEG53
SCK00	I/O	Clock input/output for CSIOO	Input port	P80/INTP11
$\overline{\text { SCK01 }}$		Clock input/output for CSI01		P75/KR5
$\overline{\text { SCK10 }}$		Clock input/output for CSI10		P15/SCL10/INTP7
$\overline{\text { SCK20 }}$		Clock input/output for CSI20		P10/SCL20
SCLO	I/O	Clock input/output for $\mathrm{I}^{2} \mathrm{C}$	Input port	P60
SCL10	I/O	Clock input/output for simplified $\mathrm{I}^{2} \mathrm{C}$	Input port	P15/SCK10/INTP7
SCL20				P10/SCK20
SDA0	I/O	Serial data I/O for $\mathrm{I}^{2} \mathrm{C}$	Input port	P61
SDA10	I/O	Serial data I/O for simplified I ${ }^{2} \mathrm{C}$	Input port	P14/SI10/RxD1/ INTP4
SDA20				P11/SI20/RxD2/ INTP6

(2) Non-port functions (4/5) : 78K0R/LH3

Function Name	I/O	Function	After Reset	Alternate Function
SIOO	Input	Serial data input to CSIOO	Input port	P81/RxD0/INTP9
SI01		Serial data input to CSI01		P76/KR6
SI10		Serial data input to CSI10		P14/RxD1/SDA10/ INTP4
SI20		Serial data input to CSI20		P11/RxD2/SDA20/ INTP6
SO00	Output	Serial data output from CSIO0	Input port	P82/TxD0
SO01		Serial data output from CSI01		P77/KR7
SO10		Serial data output from CSI10		P13/TxD1/TO04
SO20		Serial data output from CSI20		P12/TxD2/TO02
TIOO	Input	External count clock input to 16-bit timer 00	Input port	P31/TO03/RTCDIV/ RTCCL/PCLBUZ1/ INTP2
TI01		External count clock input to 16-bit timer 01		P32/TO01/INTP5/ PCLBUZO
TIO2		External count clock input to 16-bit timer 02		P52/SEG51
TIO3		External count clock input to 16-bit timer 03		P30/TO00/RTC1HZ/ INTP1
TIO4		External count clock input to 16-bit timer 04		P53/SEG50
TI05		External count clock input to 16-bit timer 05		P16/TO05/INTP10
TI06		External count clock input to 16-bit timer 06		P34/TO06/INTP8
TI07		External count clock input to 16-bit timer 07		P33/TO07/INTP3
TI10		External count clock input to 16-bit timer 10		P84/TO10
Tl11		External count clock input to 16-bit timer 11		P85/TO11
Tl12		External count clock input to 16-bit timer 12		P86/TO12
TI13		External count clock input to 16-bit timer 13		P87/TO13
TO00	Output	16-bit timer 00 output	Input port	P30/TI03/RTC1HZ/ INTP1
TO01		16-bit timer 01 output		P32/TI01/INTP5/ PCLBUZO
TO02		16-bit timer 02 output		P12/SO20/TxD2
TO03		16-bit timer 03 output		P31/TI00/RTCDIV/ RTCCL/PCLBUZ1/ INTP2
TO04		16-bit timer 04 output		P13/SO10/TxD1
TO05		16-bit timer 05 output		P16/TI05/INTP10
TO06		16-bit timer 06 output		P34/TI06/INTP8
TO07		16-bit timer 07 output		P33/TI07/INTP3

(2) Non-port functions (5/5) : 78K0R/LH3

Function Name	I/O	Function	After Reset	Alternate Function
TO10	Output	16-bit timer 10 output	Input port	P84/TI10
TO11		16-bit timer 11 output		P85/TI11
TO12		16-bit timer 12 output		P86/TI12
TO13		16-bit timer 13 output		P87/TI13
TxD0	Output	Serial data output from UART0	Input port	P82/SO00
TxD1		Serial data output from UART1		P13/SO10/TO04
TxD2		Serial data output from UART2		P12/SO20/TO02
TxD3		Serial data output from UART3		P51/SEG52
X1	-	Resonator connection for main system clock	Input port	P121
X2	-		Input port	P122/EXCLK
EXCLK	Input	External clock input for main system clock	Input port	P122/X2
XT1	-	Resonator connection for subsystem clock	Input port	P123
XT2	-		Input port	P124
Vod	-	Positive power supply (Pins other than port and $\overline{\text { RESET, }}$, FLMDO pins)	-	-
EVdD	-	Positive power supply for $\overline{\text { RESET, }}$, FLMDO pins, and port pins other than P20 to P27, P110, P111, P150 to P152, P157	-	-
$\begin{aligned} & A V_{D D},{ }^{\text {Note } 1} \\ & A V_{D D}{ }^{\text {Note } 2} \end{aligned}$	-	Positive power supply for P20 to P27, P150 to P152, P157	-	-
$\begin{aligned} & \mathrm{AV}_{\mathrm{DD} 1}{ }^{\text {Note } 1} \\ & \mathrm{EV}_{\mathrm{DD} 1}{ }^{\text {Note } 2} \end{aligned}$	-	Positive power supply for P110, P111	-	-
Vss	-	Ground potential (Pins other than port and RESET, FLMDO pins)	-	-
EVss	-	Ground potential for $\overline{\text { RESET }}$, FLMDO pins, and port pins other than P20 to P27, P110, P111, P150 to P152, P157	-	-
AVss	-	Ground potential for P20 to P27, P110, P111, P150 to P152, P157	-	-
FLMD0	-	Flash memory programming mode setting	-	-
TOOLO	I/O	Data I/O for flash memory programmer/debugger	Input port	P40
TOOL1	Output	Clock output for debugger	Input port	P41

Notes 1. $A V_{d D o}$ and $A V_{d D 1}$ apply to μ PD78F150xA only.
2. AVDD and EVDD1 apply to μ PD78F151xA only.

2.2 Description of Pin Functions

Remark The pins mounted depend on the product. Refer to 1.3 Pin Configuration (Top View) and 2.1 Pin Function List.

2.2.1 P00 to P02

P00 to P02 function as an I/O port. This port can also be used for connecting a capacitor for LCD controller/driver, and power supply voltage pin for driving the LCD.

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P00/CAPH	\checkmark		
P01/CAPL	\checkmark		
P02/VLC3	$\sqrt{ }$		

The following operation modes can be specified in 1-bit units.
(1) Port mode

P00 to P02 function as an I/O port. P00 to P02 can be set to input or output port in 1-bit units using port mode register 0 (PMO). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 0 (PU0).
(2) Control mode

P00 to P02 function as connecting a capacitor for LCD controller/driver, and power supply voltage pin for driving the LCD.
(a) CAPH, CAPL

These are the pins for connecting a capacitor for LCD controller/driver.
(b) VLC3

This is the pin for inputting a power supply voltage pin for driving the LCD.

Caution To use P00/CAPH, P01/CAPL, and P02/Vlc3 as a general-purpose port, set bit 5 (MDSET1) and bit 4 (MDSETO) of LCD mode register (LCDMD) to " 0 ", which is the same as their default status setting.

2.2.2 P10 to P17

P10 to P17 function as an I/O port. This port can also be used for external interrupt request input, serial interface data I / O, clock I/O, and timer I/O.

Input to the P10, P11, P14, and P15 pins can be specified through a normal input buffer or a TTL input buffer in 1-bit units using port input mode register 1 (PIM1).

Output from the P10-P15 pins can be specified as N-ch open-drain output (Vdo tolerance) in 1-bit units using port output mode register 1 (POM1).

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P10/SCK20/SCL20		\checkmark	
P11/SI20/RxD2/SDA20/INTP6		\checkmark	
P12/SO20/TxD2/TO02		\checkmark	
P13/SO10/TxD1/TO04		\checkmark	
P14/SI10/RxD1/SDA10/INTP4		\checkmark	
P15/SCK10/SCL10/INTP7		\checkmark	
P16/TI05/TO05/INTP10	-	\checkmark	$\sqrt{ }$
P17	-	-	\checkmark

The following operation modes can be specified in 1-bit units.

(1) Port mode

P10 to P17 function as an I/O port. P10 to P17 can be set to input or output port in 1-bit units using port mode register 1 (PM1). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 1 (PU1).

(2) Control mode

P10 to P17 function as serial interface clock I/O, data I/O, timer I/O, and external interrupt request input.
(a) $\overline{\text { SCK10 }}, \overline{\text { SCK20 }}$

These are serial clock I/O pin of serial interface CSI10 and CSI20.
(b) $\mathrm{SI} 10, \mathrm{SI} 20$

These are serial data input pin of serial interface CSI10 and CSI20.
(c) SO10, SO 20

These are serial data output pin of serial interface CSI10 and CSI20.
(d) SCL10, SCL20

These are serial clock I/O pin of serial interface IIC10 and IIC20 (simplified I ${ }^{2} \mathrm{C}$).
(e) SDA10, SDA20

These are serial data I/O pin of serial interface IIC10 and IIC20 (simplified $I^{2} C$).

(f) RxD1, RxD2

These are serial data input pin of serial interface UART1 and UART2.
(g) TxD1, TxD2

These are serial data output pin of serial interface UART1 and UART2.
(h) TI05

This is a timer input pin of 16-bit timer 05.
(i) TO02, TO04, TO05

These are the timer output pins of 16 -bit timers 02,04 , and 05.
(j) INTP4, INTP6, INTP7, INTP10

These are the external interrupt request input pins for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

Cautions 1. To use P10/SCK20/SCL20 and P11/SI20/RxD2/SDA20/INTP6 as a general-purpose port, note the serial array unit 1 setting. For details, refer to Table 14-9 Relationship Between Register Settings and Pins (Channel 0 of unit 1: CSI20, UART2 Reception, IIC20).
2. To use P12/TO02/SO20/TxD2 as a general-purpose port, set bit 2 (TO02) of timer output register 0 (TOO) and bit 2 (TOEO2) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting. And as a general-purpose port, note the serial array unit 1 setting. For details of serial array unit 1 setting, refer to Table 14-9 Relationship Between Register Settings and Pins (Channel 0 of unit 1: CSI20, UART2 Reception, IIC20).
3. To use P13/TO04/SO10/TxD1 as a general-purpose port, set bit 4 (TO04) of timer output register 0 (TOO) and bit 4 (TOEO4) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting. And as a general-purpose port, note the serial array unit 0 setting. For details of serial array unit 0 setting, refer to Table 14-7 Relationship Between Register Settings and Pins (Channel 2 of unit 0: CSI10, UART1 Transmission, IIC10)
4. To use P14/SI10/RxD1/SDA10/INTP4 and P15/SCK10/SCL10/INTP7 as a general-purpose port, note the serial array unit 0 setting. For details, refer to Table 14-7 Relationship Between Register Settings and Pins (Channel 2 of unit 0: CSI10, UART1 Transmission, IIC10)
5. To use P16/TO05/TI05/INTP10 as a general-purpose port, set bit 5 (TO05) of timer output register 0 (TOO) and bit 5 (TOEO5) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting.

2.2.3 P20 to P27

P20 to P27 function as an I/O port. This port can also be used for A/D converter analog input, and operational amplifier I/O.

	μ PD78F150xA			μ PD78F151xA		
	78K0R/LF3 (80 pins)	78K0R/LG3 (100 pins)	78K0R/LH3 (128 pins)	78K0R/LF3 (80 pins)	78K0R/LG3 (100 pins)	78K0R/LH3 (128 pins)
P20/ANIO/AMP0-	\checkmark			P20/ANIO		
P21/ANI1/AMP00	$\sqrt{ }$			P20/ANI1		
P22/ANI2/AMP0+	$\sqrt{ }$			P20/ANI2		
P23/ANI3/AMP1-	$\sqrt{ }$			P20/ANI3		
P24/ANI4/AMP1O	$\sqrt{ }$			P20/ANI4		
P25/ANI5/AMP1+	$\sqrt{ }$			P20/ANI5		
P26/ANI6/AMP2-	P26/ANI6	\checkmark		P26/ANI6		
P27/ANI7/AMP2O	-	$\sqrt{ }$		-	P27/ANI7	

The following operation modes can be specified in 1-bit units.

(1) Port mode

P20 to P27 function as an I/O port. P20 to P27 can be set to input or output port in 1-bit units using port mode register 2 (PM2).
(2) Control mode

P20 to P27 function as A/D converter analog input and operational amplifier I/O.
(a) ANIO to ANI7

These are A/D converter analog input pins.
(b) AMP0-, AMP1-, AMP2-

These are pins that the input voltage on the negative side of operational amplifiers 0 to 2 .
(c) AMPO+, AMP1+

These are pins that the input voltage on the positive side of operational amplifiers 0 and 1.
(d) AMP0O, AMP1O, AMP2O

These are operational amplifiers 0 to 2 output pins.

Cautions 1. P20/ANIO/AMPO- to P27/ANI7/ANP2O are set in the digital input (general-purpose port) mode after release of reset.
2. When using at least one port of ports P20/ANIO/AMP0- to P27/ANI7/ANP2O as a digital port, set AVddo to the same potential as EVdd or Vdd.

2.2.4 P30 to P34

P30 to P34 function as an I/O port. This port can also be used for timer I/O, real-time counter clock output, correction clock output, clock output/buzzer output, and external interrupt request input.

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	```78K0R/LG3 (100 pins: }\mu\mathrm{ PD78F15x3A, 78F1504A, 78F15x5A)```	```78K0R/LH3 (128 pins: }\mu\mathrm{ PD78F15x6A, 78F1507A, 78F15x8A)```
P30/TI03/TO00/RTC1HZ/INTP1		\checkmark	
P31/TI00/TO03/RTCDIV/RTCCL/ PCLBUZ1/INTP2		\checkmark	
P32/TI01/TO01/PCLBUZ0/INTP5		\checkmark	
P33/TI07/TO07/ INTP3		\checkmark	
P34/TI06/TO06/ INTP8	-		

The following operation modes can be specified in 1-bit units.

(1) Port mode

P30 to P34 function as an I/O port. P30 to P34 can be set to input or output port in 1-bit units using port mode register 3 (PM3). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 3 (PU3).

(2) Control mode

P30 to P34 function as timer I/O, real-time counter clock output, correction clock output, clock output/buzzer output, and external interrupt request input.
(a) TIOO, TIO1, TIO3 TI06, $\mathrm{TIO7}$

These are the timer input pins of 16 -bit timers $00,01,03,06$, and 07.
(b) TO00, TO01, TO03, TO06, TO07

These are the timer output pins of 16 -bit timers $00,01,03,06$, and 07.
(c) RTCCL

This is a real-time counter clock (32 kHz , original oscillation) output pin.
(d) RTCDIV

This is a real-time counter clock (32 kHz , divided) output pin.
(e) RTC1HZ

This is a real-time counter correction clock (1 Hz) output pin.
(f) PCLBUZO, PCLBUZ1

These are clock output/buzzer output pins.

(g) INTP1, INTP2, INTP3, INTP5, INTP8

These are the external interrupt request input pins for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

Cautions 1. To use P30/TO00/TI03/RTC1HZ/INTP1 as a general-purpose port, set bit 5 (RCLOE1) of real-time counter control register 0 (RTCCO), bit 0 (TOOO) of timer output register 0 (TOO) and bit 0 (TOEOO) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting.
2. To use P31/TO03/TIO0/RTCDIV/RTCCL/PCLBUZ1/INTP2 as a general-purpose port, set bit 4 (RCLOEO) of real-time counter control register 0 (RTCCO), bit 6 (RCLOE2) of real-time counter control register 2 (RTCC2), bit 3 (TO03) of timer output register 0 (TOO), bit 3 (TOE03) of timer output enable register 0 (TOEO) and bit 7 of clock output select register 1 (CKS1) to " 0 ", which is the same as their default status setting.
3. To use P32/TO01/TI01/INTP5/PCLBUZ0 as a general-purpose port, set bit 1 (TO01) of timer output register 0 (TOO), bit 1 (TOEO1) of timer output enable register 0 (TOEO) and bit 7 of clock output select register 0 (CKSO) to " 0 ", which is the same as their default status setting.
4. To use P33/TO07/TIO7/INTP3 and P34/TO06/TI06/INTP8 as a general-purpose port, set bit 7, 6 (TO07, TO06) of timer output register 0 (TO0), and bit 7, 6 (TOE07, TOE06) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting.

2.2.5 P40, P41

P40 and P41 function as an I/O port. These pins also function as data I/O for a flash memory programmer/debugger and clock output for a debugger.

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P40/TOOL0	\checkmark		
P41/TOOL1	\checkmark		

The following operation modes can be specified in 1-bit units.
(1) Port mode

P40 and P41 function as an I/O port. P40 and P41 can be set to input or output port in 1-bit units using port mode register 4 (PM4). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 4 (PU4).
Be sure to connect an external pull-up resistor to P40 when on-chip debugging is enabled (by using an option byte).
(2) Control mode

P40 and P41 function as data I/O for a flash memory programmer/debugger and clock output for a debugger.

(a) TOOLO

This is a data I/O pin for a flash memory programmer/debugger.
Be sure to pull up this pin externally when on-chip debugging is enabled (pulling it down is prohibited).
(b) TOOL1

This is a clock output pin for a debugger.
When the on-chip debug function is used, P41/TOOL1 pin can be used as follows by the mode setting on the debugger.
1-line mode: can be used as a port (P41).
2-line mode: used as a TOOL1 pin and cannot be used as a port (P41).
Caution The function of the P40/TOOLO pin varies as described in (a) to (c) below. In the case of (b) or (c), make the specified connection.
(a) In normal operation mode and when on-chip debugging is disabled (OCDENSET $=0$) by an option byte $(000 \mathrm{C} 3 \mathrm{H})$
=> Use this pin as a port pin (P40).
(b) In normal operation mode and when on-chip debugging is enabled (OCDENSET = 1) by an option byte $(000 \mathrm{C} 3 \mathrm{H})$
=> Connect this pin to Vdd via an external resistor, and always input a high level to the pin before reset release.
(c) When on-chip debug function is used, or in write mode of flash memory programmer => Use this pin as TOOLO.

Directly connect this pin to the on-chip debug emulator or a flash memory programmer, or pull it up by connecting it to Vdd via an external resistor.

2.2.6 P50 to P57

P50 to P57 function as an I/O port. This port can also be used for serial interface data I/O, timer input, and segment output of LCD controller/driver.

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78KOR/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P50/RxD3/SEGxx	$\sqrt{ }(x x=30)$	$\sqrt{ }(x x=39)$	$\sqrt{ }(x x=53)$
P51/TxD3/SEGxx	$\sqrt{ }(x x=29)$	$\sqrt{ }(x x=38)$	$\sqrt{ }(x x=52)$
P52/TI02/SEGxx	$\sqrt{ }(x x=28)$	$\sqrt{ }(x x=37)$	$\sqrt{ }(x x=51)$
P53/TI04/SEGxx	$\sqrt{ }(x x=27)$	$\sqrt{ }(x x=36)$	$\sqrt{ }(x x=50)$
P54/SEGxx	$\sqrt{ }(x x=26)$	$\sqrt{ }(x x=35)$	$\sqrt{ }(x x=49)$
P55/SEGxx	$\sqrt{ }(x x=25)$	$\sqrt{ }(x x=34)$	$\sqrt{ }(x x=48)$
P56/SEGxx	$\sqrt{ }(x x=24)$	$\sqrt{ }(x x=33)$	$\sqrt{ }(x x=47)$
P57/SEGxx	$\sqrt{ }(x x=23)$	$\sqrt{ }(x x=32)$	$\sqrt{ }(x x=46)$

The following operation modes can be specified in 1-bit units.

(1) Port mode

P50 to P57 function as an I/O port. P50 to P57 can be set to input or output port in 1-bit units using port mode register 5 (PM5). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 5 (PU5).
(2) Control mode

P50 to P57 function as serial interface data I/O, timer input, and segment output of LCD controller/driver.
(a) RxD3

This is a serial data input pin of serial interface UART3.
(b) TxD3

This is a serial data output pin of serial interface UART3.
(c) TIO2, $\mathrm{TIO4}$

These are the timer input pins of 16 -bit timers 02 and 04 .
(d) SEGxx

This is a segment output pin of LCD controller/driver.

2.2.7 P60, P61

P60 and P61 function as an I/O port. This port can also be used for s serial interface IICA data I/O and clock I/O.

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P60/SCL0	-	\checkmark	
P61/SDA0	-		

The following operation modes can be specified in 1-bit units.
(1) Port mode

P60 and P61 function as an I/O port. P60 and P61 can be set to input port or output port in 1-bit units using port mode register 6 (PM6).
Output of P60 and P61 is N-ch open-drain output (6 V tolerance).
(2) Control mode

P60 and P61 function as serial interface IICA clock I/O and data I/O.
(a) SCLO

This is a serial clock I/O pin of serial interface IICA.
(b) SDAO

This is a serial data I/O pin of serial interface IICA.

Caution When using P60/SCLO and P61/SDA0 as a general-purpose port, stop the operation of serial interface IICA.

2.2.8 P70 to P77

P70 to P77 function as an I/O port. This port can also be used for key return input, serial interface clock I/O, and data I/O.

Input to the P75, and P76 pins can be specified through a normal input buffer or a TTL input buffer in 1-bit units using port input mode register 7 (PIM7).

Output from the P75, and P77 pins can be specified as N-ch open-drain output (Vdo tolerance) in 1-bit units using port output mode register 7 (POM7).

$>$	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P70/KR0			$\sqrt{ }$
P71/KR1			$\sqrt{ }$
P72/KR2			$\sqrt{ }$
P73/KR3			$\sqrt{ }$
P74/KR4			\checkmark
P75/SCK01			$\sqrt{ }$
P76/KR6/SI01			\checkmark
P77/KR7/SO01			\checkmark

The following operation modes can be specified in 1-bit units.

(1) Port mode

P70 to P77 function as an I/O port. P70 to P77 can be set to input or output port in 1-bit units using port mode register 7 (PM7). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 7 (PU7).
(2) Control mode

P70 to P77 function as key interrupt input, serial interface clock I/O, and data I/O.
(a) KRO to KR7

These are the key return input pins
(b) $\overline{\text { SCK01 }}$

This is a clock I/O pin of serial interface CSIO1.
(c) $\mathrm{SIO1}$

This is a serial data input pin of serial interface CSIO1.
(d) $\mathrm{SOO1}$

This is a serial data output pin of serial interface CSIO1.

Caution To use P75/SCK01/KR5, P76/SI01/KR6, and P77/SO01/KR7, as a general-purpose port, note the serial array unit 0 setting. For details, refer to Table 14-6 Relationship Between Register Settings and Pins (Channel 1 of unit 0: CSI01, UARTO Reception).

2.2.9 P80 to P87

P80 to P87 function as an I/O port. This port can also be used for serial interface clock I/O, data I/O, timer I/O, and external interrupt request input.

Output from the P80 and P82 pins can be specified as N-ch open-drain output (VDD tolerance) in 1-bit units using port output mode register 8 (POM8).

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P80/SCK00/INTP11	-	\checkmark	\checkmark
P81/RxD0/SI00/INTP9	-	\checkmark	\checkmark
P82/TxD0/SO00	-	\checkmark	$\sqrt{ }$
P83	-	-	$\sqrt{ }$
P84/TO10/TI10	-	-	\checkmark
P85/TO11/TI11	-	-	\checkmark
P86/TO12/TI12	-	-	\checkmark
P87/TO13/TI13	-	-	\checkmark

The following operation modes can be specified in 1-bit units.

(1) Port mode

P80 to P87 function as an I/O port. P80 to P87 can be set to input or output port in 1-bit units using port mode register 8 (PM8). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 8 (PU8).
(2) Control mode

P80 to P87 function as serial interface clock I/O, data I/O, timer I/O, and external interrupt request input.
(a) SCK00

This is a clock I/O pin of serial interface CSIOO.
(b) SIOO

This is a serial data input pin of serial interface CSIOO.
(c) SOOO

This is a serial data output pin of serial interface CSIOO.
(d) RxDO

This is a serial data input pin for serial interface UARTO.
(e) TxD0

This is a serial data output pin for serial interface UARTO.
(f) TI10 to TI13

These are the timer input pins of 16 -bit timers 10 to 13 .

(g) TO10 to TO13

These are the timer output pins of 16 -bit timers 10 to 13 .
(h) INTP9, INTP11

These are the external interrupt request input pins for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

Caution To use P80/SCK00/INTP11, P81/RxD0/SI00/INTP9, and P82/SO00/TxD0, as a general-purpose port, note the serial array unit 0 setting. For details, refer to Table 14-5 Relationship Between Register Settings and Pins (Channel 0 of unit 0: CSIOO, UARTO Reception).

2.2.10 P90 to P97

P90 to P97 function as an I/O port. This port can also be used for segment output of LCD controller/driver.

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P90/SEGxx	$\sqrt{ }(x x=22)$	$\sqrt{ }(x x=31)$	$\sqrt{ }(x x=45)$
P91/SEGxx	$\sqrt{ }(x x=21)$	$\sqrt{ }(x x=30)$	$\sqrt{ }(x x=44)$
P92/SEGxx	$\sqrt{ }(x x=20)$	$\sqrt{ }(x x=29)$	$\sqrt{ }(x x=43)$
P93/SEGxx	-	$\sqrt{ }(x x=28)$	$\sqrt{ }(x x=42)$
P94/SEGxx	-	$\sqrt{ }(x x=27)$	$\sqrt{ }(x x=41)$
P95/SEGxx	-	$\sqrt{ }(x x=26)$	$\sqrt{ }(x x=40)$
P96/SEGxx	-	$\sqrt{ }(x x=25)$	$\sqrt{ }(x x=39)$
P97/SEGxx	-	$\sqrt{ }(x x=24)$	$\sqrt{ }(x x=38)$

The following operation modes can be specified in 1-bit units.
(1) Port mode

P90 to P97 function as an I/O port. P90 to P97 can be set to input or output port in 1-bit units using port mode register 9 (PM9). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 9 (PU9).
(2) Control mode

P90 to P97 function as segment output of LCD controller/driver (SEGxx).

2.2.11 P100 to P102

P100 to P102 function as an I/O port. This port can also be used for segment output of LCD controller/driver.

	78K0R/LF3 $(80$ pins: μ PD78F15x0A, $78 F 1501 A, ~ 78 F 15 x 2 A) ~$	78K0R/LG3 $(100$ pins: μ PD78F15x3A, $78 F 1504 A, 78 F 15 x 5 A)$	78K0R/LH3 $(128$ pins: μ PD78F15x6A, $78 F 1507 A, 78 F 15 x 8 A) ~$
P100/SEGxx	$\sqrt{ }(x x=11)$	$\sqrt{ }(x x=15)$	$V(x x=29)$
P101/SEGxx	-	-	$V(x x=28)$
P102/SEGxx	-	-	$V(x x=27)$

The following operation modes can be specified in 1-bit units.

(1) Port mode

P100 to P102 function as an I/O port. P100 to P102 can be set to input or output port in 1-bit units using port mode register 10 (PM10). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 10 (PU10).
(2) Control mode

P100 to P102 function as segment output of LCD controller/driver (SEGxx).

2.2.12 P110, P111

P110 and P111 function as an I/O port. This port can also be used for D/A converter analog output.

	μ PD78F150xA			μ PD78F151xA		
	78K0R/LF3 (80 pins)	78K0R/LG3 (100 pins)	78K0R/LH3 (128 pins)	78K0R/LF3 (80 pins)	78K0R/LG3 (100 pins)	78K0R/LH3 (128 pins)
P110/ANO0	\checkmark			P110		
P111/ANO1	\checkmark			P111		

The following operation modes can be specified in 1-bit units.
(1) Port mode

P110 and P111 function as an I/O port. P110 and P111 can be set to input or output port in 1-bit units using port mode register 11 (PM11).
(2) Control mode

P110 and P111 function as D/A converter analog output (ANO0, ANO1).

Caution When using at least one port of P110/ANO0 and P111/ANO1 as a digital port, set AVdD1 to the same potential as EVdd or Vdd.

2.2.13 P120 to P124

P120 function as an I/O port. P121 to P124 function as an input port. These pins also function as potential input for external low-voltage detection, connecting resonator for main system clock, connecting resonator for subsystem clock, external clock input for main system clock, and external interrupt request input.

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	```78K0R/LG3 (100 pins: }\mu\mathrm{ PD78F15x3A, 78F1504A, 78F15x5A)```	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P120/INTP0/EXLVI		\checkmark	
P121/X1		\checkmark	
P122/X2/EXCLK		\checkmark	
P123/XT1		\checkmark	
P124/XT2		\checkmark	

The following operation modes can be specified in 1-bit units.

(1) Port mode

P120 functions as an I/O port. P120 can be set to input port or output port using port mode register 12 (PM12). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 12 (PU12).
P121 to P124 function as an input port.

(2) Control mode

P120 to P124 function as potential input for external low-voltage detection, connecting resonator for main system clock, connecting resonator for subsystem clock, external clock input for main system clock, and external interrupt request input.
(a) EXLVI

This is a potential input pin for external low-voltage detection.
(b) $\mathrm{X} 1, \mathrm{X} 2$

These are the pins for connecting a resonator for main system clock.
(c) EXCLK

This is an external clock input pin for main system clock.
(d) $\mathrm{XT} 1, \mathrm{XT} 2$

These are the pins for connecting a resonator for subsystem clock.
(e) INTPO

This is an external interrupt request input pin for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

Caution The function setting on P121 to P124 is available only once after the reset release. The port once set for connection to an oscillator cannot be used as an input port unless the reset is performed.

2.2.14 P130

P130 functions as an output port.

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P130	\checkmark		

Remark The P130 pin outputs a low level when it is used as a port function pin and a reset is effected. If P130 is set to output a high level before reset is effected, the output signal of P130 can be dummy-output as the CPU reset signal (see the figure for Remark in 4.2.14 Port 13).

2.2.15 P140 to P147

P140 to P147 function as an I/O port. This port can also be used for segment output of LCD controller/driver.

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	```78K0R/LG3 (100 pins: }\mu\mathrm{ PD78F15x3A, 78F1504A, 78F15x5A)```	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P140/SEGxx	$\sqrt{ }(x x=19)$	$\sqrt{ }(x x=23)$	$\sqrt{ }(x x=37)$
P141/SEGxx	$\sqrt{ }(x x=18)$	$\sqrt{ }(x x=22)$	$\sqrt{ }(x x=36)$
P142/SEGxx	$\sqrt{ }(x x=17)$	$\sqrt{ }(x x=21)$	$\sqrt{ }(x x=35)$
P143/SEGxx	$\sqrt{ }(x x=16)$	$\sqrt{ }(x x=20)$	$\sqrt{ }(x x=34)$
P144/SEGxx	$\sqrt{ }(x x=15)$	$\sqrt{ }(x x=19)$	$\sqrt{ }(x x=33)$
P145/SEGxx	$\sqrt{ }(x x=14)$	$\sqrt{ }(x x=18)$	$\sqrt{ }(x x=32)$
P146/SEGxx	$\sqrt{ }(x x=13)$	$\sqrt{ }(x x=17)$	$\sqrt{ }(x x=31)$
P147/SEGxx	$\sqrt{ }(x x=12)$	$\sqrt{ }(x x=16)$	$\sqrt{ }(x x=30)$

The following operation modes can be specified in 1-bit units.

(1) Port mode

P140 to P147 function as an I/O port. P140 to P147 can be set to input or output port in 1-bit units using port mode register 14 (PM14). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 14 (PU14).

(2) Control mode

P140 to P147 function as segment output of LCD controller/driver (SEGxx).

2.2.16 P150 to P152, P157

P150 to P152 and P157 function as an I/O port. This port can also be used for A/D converter analog input, reference voltage input, and operational amplifier input.

	μ PD78F150xA			$\mu \mathrm{PD} 78 \mathrm{~F} 151 \times \mathrm{A}$		
	78K0R/LF3 (80 pins)	78K0R/LG3 (100 pins)	78K0R/LH3 (128 pins)	78K0R/LF3 (80 pins)	78K0R/LG3 (100 pins)	78K0R/LH3 (128 pins)
P150/ANI8/AMP2+	-	\checkmark		-	P150/ANI8	
P151/ANI9	-	$\sqrt{ }$		-	\checkmark	
P152/ANI10	-	$\sqrt{ }$		-	$\sqrt{ }$	
P157/ANI15/AVrefm	\checkmark			P157/ANI15		

The following operation modes can be specified in 1-bit units.
(1) Port mode

P150 to P152 and P157 function as an I/O port. P150 to P152 and P157 can be set to input or output port in 1-bit units using port mode register 15 (PM15).
(2) Control mode

P150 to P152 and P157 function as A/D converter analog input, reference voltage input, and operational amplifier input.
(a) ANI8 to ANI10, ANI15

These are A/D converter analog input pins.
(b) AVrefm

This is the pin that inputs the negative reference voltage of A / D converter.
(c) AMP2+

This is the pin that the input voltage on the positive side of operational amplifier 2.

Cautions 1. P150/ANI8/AMP2+ to P152/ANI10 and P157/ANI15/AVrefm are set in the digital input (generalpurpose port) mode after release of reset.
2. When using at least one port of P150/ANI8/AMP2+ to P152/ANI10 and P157/ANI15/AVrefm as a digital port, set AVdDo to the same potential as EVdD or Vdd.

2.2.17 COMO to COM7

These are common outputs of LCD controller/driver.

2.2.18 SEGxx

These are segment outputs of LCD controller/driver.

Remark 78K0R/LF3: SEG0 to SEG30
78K0R/LG3: SEG0 to SEG39
78K0R/LH3: SEG0 to SEG53

2.2.19 Vlco to Vlc3

These are the pins for inputting a power supply voltage pin for driving the LCD.

2.2.20 Vrefout/AVrefp (μ PD78F150xA only)

$V_{\text {REFOUt }}$ is an analog reference voltage output pin for voltage reference.
AVREFP is the pin that inputs the positive reference voltage of the A/D converter and D/A converter.

2.2.21 AVref (μ PD78F151xA only)

AVref is the pin that inputs the positive reference voltage of the A/D converter.

2.2.22 RESET

This is the active-low system reset input pin.
When the external reset pin is not used, connect this pin directly to EVDD or via a resistor.
When the external reset pin is used, design the circuit based on Vod.

2.2.23 REGC

This is the pin for connecting regulator output (2.4 V) stabilization capacitance for internal operation. Connect this pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Also, use a capacitor with good characteristics, since it is used to stabilize internal voltage.

Caution Keep the wiring length as short as possible for the broken-line part in the above figure.

2.2.24 FLMDO

This is a pin for setting flash memory programming mode.
Perform either of the following processing.

(a) In normal operation mode

It is recommended to leave this pin open during normal operation.
The FLMDO pin must always be kept at the Vss level before reset release but does not have to be pulled down externally because it is internally pulled down by reset. However, pulling it down must be kept selected (i.e., FLMDPUP = "0", default value) by using bit 7 (FLMDPUP) of the background event control register (BECTL) (see 27.5 (1) Back ground event control register). To pull it down externally, use a resistor of $200 \mathrm{k} \Omega$ or smaller.

Self programming and the rewriting of flash memory with the programmer can be prohibited using hardware, by directly connecting this pin to the Vss pin.
(b) In self programming mode

It is recommended to leave this pin open when using the self programming function. To pull it down externally, use a resistor of $100 \mathrm{k} \Omega$ to $200 \mathrm{k} \Omega$.
In the self programming mode, the setting is switched to pull up in the self programming library.
(c) In flash memory programming mode

Directly connect this pin to a flash memory programmer when data is written by the flash memory programmer. This supplies a writing voltage of the VDD level to the FLMDO pin.
The FLMDO pin does not have to be pulled down externally because it is internally pulled down by reset. To pull it down externally, use a resistor of $1 \mathrm{k} \Omega$ to $200 \mathrm{k} \Omega$.

(1) AVDDo (μ PD78F150xA only)

This is the ground potential pin of A/D converter, operational amplifier, voltage reference, P20 to P27, P150 to P152 and P157.

When using at least one port of ports 2 and 15 as a digital port, or when not using the A/D converter, operational amplifier, or voltage reference, set AVdDo to the same potential as EVDD or Vdd.
(2) AVDD1 (μ PD78F150xA only)

This is the ground potential pin of D/A converter, P110 and P111.
When using at least one port of ports 11 as a digital port, or when not using the D/A converter set AVDD1 to the same potential as EVDD or VDD.
(3) AVdd (μ PD78F151xA only)

This is the ground potential pin of A/D converter, P20 to P27, P150 to P152 and P157.
When using at least one port of ports 2 and 15 as a digital port, or when not using the A/D converter, set AVDD to the same potential as EVDD or VDD.
(4) EVddi (μ PD78F151xA only)

This is the ground potential pin of P110 and P111.
When using at least one port of ports 11 as a digital port, set EVDD1 to the same potential as EVDD or VdD.
(5) AVss

This is the ground potential pin of A / D converter, D / A converter, operational amplifier, voltage reference, P 20 to P 27 , P110, P111, P150 to P152, and P157. Even when the A/D converter, D/A converter, operational amplifier, and voltage reference is not used, always use this pin with the same potential as EVss and Vss.
(6) $E V_{d o}$

This is the positive power supply pin for ports other than P20 to P27, P110, P111, P150 to P152, and P157 as well as for the RESET and FLMDO pins.
(7) EVss

This is the ground potential pin for ports other than P20 to P27, P110, P111, P150 to P152, and P157 as well as for the RESET and FLMDO pins.
(8) Vdd

This is the positive power supply pin other than ports, RESET, and FLMDO pins.
(9) Vss

This is the ground potential pin other than ports, $\overline{\text { RESET }}$, and FLMDO pins.

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

2.3.1 78KOR/LF3

Table 2-2 shows the types of pin I/O circuits and the recommended connections of unused pins.
Table 2-2. Connection of Unused Pins (78KOR/LF3) (1/3)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/CAPH	12-H	I/O	Input: Independently connect to EVdd or EVss via a resistor. Output: Leave open.
P01/CAPL			
P02/VLC3	5-AT		
P10/SCK20/SCL20	5-AN		
P11/SI20/RxD2/SDA20/ INTP6			
P12/SO20/TxD2/TO02	5-AG		
P13/SO10/TxD1/TO04			
P14/SI10/RxD1/SDA10/ INTP4	5-AN		
P15/ $\overline{\text { SCK10 }}$ /SCL10/INTP7			
P20/ANIO/AMP0- ${ }^{\text {Note } 1,2}$	$11-\mathrm{P}^{\text {Note } 3}$		Input: Independently connect to $A V_{\text {ddo }}$ or $A V$ ss via a resistor. Output: Leave open.
P21/ANI1/AMP00 ${ }^{\text {Note } 1,2}$	$11-\mathrm{S}^{\text {Note } 3}$		
P22/ANI2/AMP0 $+{ }^{\text {Note 1,2 }}$	$11-\mathrm{N}^{\text {Note } 3}$		
P23/ANI3/AMP1- Note 1,2	$11-\mathrm{P}^{\text {Note } 3}$		
P24/ANI4/AMP1O ${ }^{\text {Note 1,2 }}$	$11-\mathrm{S}^{\text {Note } 3}$		
P25/ANI5/AMP1+ ${ }^{\text {Note 1, } 2}$	$11-\mathrm{N}^{\text {Note } 3}$		
P26/ANI6 ${ }^{\text {Note } 1,2}$	$11-\mathrm{G}^{\text {Note } 3}$		
P30/TI03/TO00/RTC1HZ/ INTP1	8-R		Input: Independently connect to EVdd or EVss via a resistor. Output: Leave open.
P31/TI00/TO03/RTCDIV/ RTCCL/PCLBUZ1/INTP2			
P32/TI01/TO01/INTP5/ PCLBUZO			
P33/T107/TO07/INTP3			
P40/TOOL0			<When on-chip debugging is enabled> Pull this pin up (pulling it down is prohibited). <When on-chip debugging is disabled> Input: Independently connect to EVdD or EVss via a resistor. Output: Leave open.
P41/TOOL1	5-AG		Input: Independently connect to EVDD or EVss via a resistor. Output: Leave open.
P50/SEG30/RxD3	17-Q		<When setting to port I/O> Input: Independently connect to EVDD or EVss via a resistor. Output: Leave open. <When setting to segment output> Leave open.
P51/SEG29/TxD3	17-P		
P52/SEG28/TI02	17-Q		
P53/SEG27/TI04			
P54/SEG26 to P57/SEG23	17-P		

Notes 1. P20/ANIO/AMP0- to P26/ANI6 are set in the digital input port mode after release of reset.
2. AMPxx applies to μ PD78F150xA only.
3. μ PD78F151xA corresponds to type 11-G.

Table 2-2. Connection of Unused Pins (78KOR/LF3) (2/3)

Notes 1. Use recommended connection above in input port mode (see Figure 5-2 Format of Clock Operation Mode Control Register (CMC)) when these pins are not used.
2. P157/ANI15/AV refm is set in the digital input port mode after release of reset.
3. ANOx and AVrefm apply to μ PD78F150xA only.
4. μ PD78F151xA corresponds to type 5 .
5. μ PD78F151xA corresponds to type 11-G.

Table 2-2. Connection of Unused Pins (78K0R/LF3) (3/3)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins

Notes 1. Dedicated to μ PD78F150xA
2. Dedicated to μ PD78F151xA

2.3.2 78K0R/LG3

Table 2-3 shows the types of pin I/O circuits and the recommended connections of unused pins.

Table 2-3. Connection of Unused Pins (78K0R/LG3) (1/3)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/CAPH	12-H	I/O	Input: Independently connect to EVDD or EVss via a resistor.
P01/CAPL			Output: Leave open.
P02/VLC3	5-AT		
P10/ $\overline{\text { SCK20/SCL20 }}$	5-AN		
P11/SI20/RxD2/SDA20/ INTP6			
P12/SO20/TxD2/TO02	5-AG		
P13/SO10/TxD1/TO04			
P14/SI10/RxD1/SDA10/ INTP4	5-AN		
P15/ $\overline{\text { SCK10/SCL10/INTP7 }}$			
P16/TI05/TO05/INTP10	8-R		
P20/ANIO/AMPO- ${ }^{\text {Notet } 1,2}$	$11-\mathrm{P}^{\text {Note } 3}$		Input: Independently connect to $A V_{\text {ddo }}$ or $A V$ ss via a resistor.
P21/ANI1/AMP00 ${ }^{\text {Note 1, } 2}$	$11-S^{\text {Note } 3}$		Output: Leave open.
P22/ANI2/AMP0 $+{ }^{\text {Note } 1,2}$	$11-\mathrm{N}^{\text {Note } 3}$		
P23/ANI3/AMP1- Note 1,2	$11-\mathrm{P}^{\text {Note } 3}$		
P24/ANI4/AMP1O ${ }^{\text {Note 1,2 }}$	$11-S^{\text {Note } 3}$		
P25/ANI5/AMP1+ ${ }^{\text {Note } 1,2}$	$11-\mathrm{N}^{\text {Note } 3}$		
P26/ANI6/AMP2- ${ }^{\text {Note } 1,2}$	$11-\mathrm{P}^{\text {Note } 3}$		
P27/ANI7/AMP2O ${ }^{\text {Note 1,2 }}$	$11-S^{\text {Note } 3}$		
P30/TI03/TO00/RTC1HZ/ INTP1	8-R		Input: Independently connect to EVdd or EVss via a resistor. Output: Leave open.
P31/TI00/TO03/RTCDIV/ RTCCL/PCLBUZ1/INTP2			
P32/TI01/TO01/INTP5/ PCLBUZO			
P33/T107/TO07/INTP3			
P34/T106/TO06/INTP8			
P40/TOOL0	8-R		<When on-chip debugging is enabled> Pull this pin up (pulling it down is prohibited). <When on-chip debugging is disabled> Input: Independently connect to EVDD or EVss via a resistor. Output: Leave open.
P41/TOOL1	5-AG		Input: Independently connect to EVdd or EVss via a resistor. Output: Leave open.

Notes 1. P20/ANIO/AMP0- to P27/ANI7/ANP2O are set in the digital input port mode after release of reset.
2. AMPxx applies to μ PD78F150xA only.
3. μ PD78F151xA corresponds to type 11-G.

Table 2-3. Connection of Unused Pins (78K0R/LG3) (2/3)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P50/SEG39/RxD3	17-Q	I/O	<When setting to port I/O> Input: Independently connect to EVDD or EVss via a resistor. Output: Leave open. <When setting to segment output> Leave open.
P51/SEG38/TxD3	17-P		
P52/SEG37/TI02	17-Q		
P53/SEG36/TI04			
P54/SEG35 to P57/SEG32	17-P		
P60/SCL0	13-R		Input: Independently connect to EVDD or EVss via a resistor. Output: Leave open.
P61/SDA0			
P80/SCK00/INTP11	8-R		
P81/RxD0/SI00/INTP9			
P82/SO00/TxD0	5-AG		
P90/SEG31 to P97/SEG24	17-P		<When setting to port I/O> Input: Independently connect to EVdd or EVss via a resistor. Output: Leave open. <When setting to segment output> Leave open.
P100/SEG15			
$\begin{aligned} & \text { P110/ANO0 }{ }^{\text {Note } 1} \text {, } \\ & \text { P111/ANO1 }{ }^{\text {Note } ~} \end{aligned}$	12-A		Input: Independently connect to $\mathrm{AV} \mathrm{VD1}$ or AVss via a resistor. Output: Leave open.
P120/INTP0/EXLVI	8-R		Input: Independently connect to EVDD or EVss via a resistor. Output: Leave open.
$\mathrm{P} 121 / \mathrm{X} 1^{\text {Note } 3}$	37-C	Input	Independently connect to EVdD or EVss via a resistor.
P122/X2/EXCLK ${ }^{\text {Note } 3}$			
P123/XT1 ${ }^{\text {Note } 3}$	37-A		
P124/XT2 ${ }^{\text {Note } 3}$			
P130	3-C	Output	Leave open.
P140/SEG23 to P147/SEG16	17-P	I/O	<When setting to port I/O> Input: Independently connect to EVDD or EVss via a resistor. Output: Leave open. <When setting to segment output> Leave open.

Notes 1. ANOx and AV refm apply to μ PD78F150xA only.
2. μ PD78F151xA corresponds to type 5.
3. Use recommended connection above in input port mode (see Figure 5-2 Format of Clock Operation Mode Control Register (CMC)) when these pins are not used.

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P150/ANI8/AMP2+ ${ }^{\text {Note } 1}$	11-N	I/O	Input: Independently connect to $A V_{\text {dDo }}$ or $A V$ ss via a resistor. Output: Leave open.
P151/ANI9 ${ }^{\text {Note } 1}$	11-G		
P152/ANI10 ${ }^{\text {Note } 1}$			
P157/ANI15/AV refm $^{\text {Note } 1,2}$	$11-\mathrm{T}^{\text {Note } 3}$		
SEG0/COM4 to SEG3/COM7	18-F	Output	Leave open.
SEG4 to SEG14	17-T		
COM0 to COM3	18-E		
V Lco to VLC2	-	-	
AV ${ }_{\text {doo }}$	-	-	<When one or more of P20 to P27, P150 to P152, or P157 are set as a digital port> Make this pin the same potential as EVDd or VDD. <When all of P20 to P27, P150 to P152, and P157 are set as analog ports> Make this pin to have a potential where $2.3 \mathrm{~V} \leq \mathrm{AV}$ DDo $\leq \mathrm{VDD}$.
AVDD1	-	-	<When one or more of P110 or P111 are set as a digital port> Make this pin the same potential as EVDD or VDD. <When all of P110 and P111 are set as analog ports> Make this pin to have a potential where $2.3 \mathrm{~V} \leq \mathrm{AV} \mathrm{VDI}^{\leq} \leq \mathrm{VDD}$.
AVss	-	-	Make this pin the same potential as the EVss or Vss.
Vrefout/AVrefp	-	-	Make this pin the same potential as the AVddo, EVdd or Vdd.
FLMD0	2-W	-	Leave open or connect to Vss via a resistor of $100 \mathrm{k} \Omega$ or more.
RESET	2	Input	Connect directly to EVDD or via a resistor.
REGC	-	-	Connect to Vss via capacitor (0.47 to $1 \mu \mathrm{~F}$).

Notes 1. P150/ANI8/AMP2+ to P152/ANI10 and P157/ANI15/AVREFM are set in the digital input port mode after release of reset.
2. ANOx and AVrefm apply to μ PD78F150xA only.
3. μ PD78F151xA corresponds to type 11-G.

2.3.3 78KOR/LH3

Table 2-4 to shows the types of pin I/O circuits and the recommended connections of unused pins.
Table 2-4. Connection of Unused Pins (78K0R/LH3) (1/3)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/CAPH	12-H	I/O	Input: Independently connect to EVdD or EVss via a resistor.
P01/CAPL			Output: Leave open.
P02/VLC3	5-AT		
P10/SCK20/SCL20	5-AN		
P11/SI20/RxD2/SDA20/ INTP6			
P12/SO20/TxD2/TO02	5-AG		
P13/SO10/TxD1/TO04			
P14/SI10/RxD1/SDA10/ INTP4	5-AN		
P15/SCK10/SCL10/INTP7			
P16/TI05/TO05/INTP10	8-R		
P17	5-AG		
P20/ANIO/AMPO- Note 1,2	$11-\mathrm{P}^{\text {Note } 3}$		Input: Independently connect to AV dDo or AVss via a resistor.
P21/ANI1/AMP00 ${ }^{\text {Note 1, } 2}$	$11-\mathrm{S}^{\text {Note } 3}$		Output: Leave open.
P22/ANI2/AMP0 $+{ }^{\text {Note 1, } 2}$	$11-\mathrm{N}^{\text {Note } 3}$		
P23/ANI3/AMP1- ${ }^{\text {Note } 1,2}$	$11-\mathrm{P}^{\text {Note } 3}$		
P24/ANI4/AMP1O ${ }^{\text {Note 1,2 }}$	$11-\mathrm{S}^{\text {Note } 3}$		
P25/ANI5/AMP1+ ${ }^{\text {Note 1, } 2}$	$11-\mathrm{N}^{\text {Note } 3}$		
P26/ANI6/AMP2- ${ }^{\text {Note } 1,2}$	$11-\mathrm{P}^{\text {Note } 3}$		
P27/ANI7/AMP2O ${ }^{\text {Note 1,2 }}$	$11-S^{\text {Note } 3}$		
P30/TIO3/TO00/RTC1HZ/ INTP1	8-R		Input: Independently connect to EVdd or EVss via a resistor. Output: Leave open.
P31/TI00/TO03/RTCDIV/ RTCCL/PCLBUZ1/INTP2			
P32/TI01/TO01/INTP5/ PCLBUZO			
P33/T107/TO07/INTP3			
P34/T106/TO06/INTP8			
P40/TOOL0	8-R		<When on-chip debugging is enabled> Pull this pin up (pulling it down is prohibited). <When on-chip debugging is disabled> Input: Independently connect to EVDD or EVss via a resistor. Output: Leave open.
P41/TOOL1	5-AG		Input: Independently connect to EVdD or EVss via a resistor. Output: Leave open.

Notes 1. P20/ANIO/AMP0- to P27/ANI7/ANP2O are set in the digital input port mode after release of reset.
2. AMPxx applies to μ PD78F150xA only.
3. μ PD78F151xA corresponds to type 11-G.

Table 2-4. Connection of Unused Pins (78K0R/LH3) (2/3)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P50/SEG53/RxD3	17-Q	I/O	<When setting to port I/O> Input: Independently connect to EVDD or EVss via a resistor. Output: Leave open. <When setting to segment output> Leave open.
P51/SEG52/TxD3	17-P		
P52/SEG51/TI02	17-Q		
P53/SEG50/TI04			
P54/SEG49 to P57/SEG46	17-P		
P60/SCL0	13-R		Input: Independently connect to EVdd or EVss via a resistor. Output: Leave open.
P61/SDA0			
P70/KR0 to P74/KR4	8-R		
P75/KR5/SCK01	5-AN		
P76/KR6/SI01			
P77/KR7/SO01	8-R		
P80/SCK00/INTP11			
P81/RxD0/SI00/INTP9			
P82/SO00/TxD0	5-AG		
P83			
P84/TI10/TO10	8-R		
P85/TI11/TO11			
P86/TI12/TO12			
P87/TI13/TO13			
P90/SEG45 to P97/SEG38	17-P		<When setting to port I/O> Input: Independently connect to EVdd or EVss via a resistor. Output: Leave open. <When setting to segment output> Leave open.
P100/SEG29 to P102/SEG27			
$\begin{aligned} & \text { P110/ANO0 }{ }^{\text {Note } 1} \text {, } \\ & \text { P111/ANO1 }{ }^{\text {Note } ~} \end{aligned}$	$12-\mathrm{A}^{\text {Note } 2}$		Input: Independently connect to $A V_{\text {DD1 }}$ or $A V$ ss via a resistor. Output: Leave open.
P120/INTP0/EXLVI	8-R	I/O	Input: Independently connect to EVDD or EVss via a resistor. Output: Leave open.
P121/X1 ${ }^{\text {Note } 3}$	37-C	Input	Independently connect to EVdD or EVss via a resistor.
P122/X2/EXCLK ${ }^{\text {Note } 3}$			
P123/XT1 ${ }^{\text {Note } 3}$	37-A		
P124/XT2 ${ }^{\text {Note } 3}$			
P130	3-C	Output	Leave open.
P140/SEG37 to P147/SEG30	17-P	I/O	<When setting to port I/O> Input: Independently connect to EVDD or EVss via a resistor. Output: Leave open. <When setting to segment output> Leave open.

Notes 1. ANOx applies to μ PD78F150xA only.
2. μ PD78F151xA corresponds to type 5 .
3. Use recommended connection above in input port mode (see Figure 5-2 Format of Clock Operation Mode Control Register (CMC)) when these pins are not used.

Table 2-4. Connection of Unused Pins (78K0R/LH3) (3/3)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P150/ANI8/AMP2+ ${ }^{\text {Note } 1}$	11-N	I/O	Input: Independently connect to AV dDo or AV ss via a resistor. Output: Leave open.
P151/ANI9 ${ }^{\text {Note } 1}$	$11-\mathrm{G}^{\text {Note } 3}$		
P152/ANI10 ${ }^{\text {Note } 1}$			
P157/ANI15/AV $\mathrm{REFm}^{\text {Note } 1,2}$	11-T		
SEG0/COM4 to SEG3/COM7	18-F	Output	Leave open.
SEG4 to SEG26	17-T		
COM0 to COM3	18-E		
V Lco to VLC2	-	-	
AV ${ }_{\text {do }}$	-	-	<When one or more of P20 to P27, P150 to P152, or P157 are set as a digital port> Make this pin the same potential as EVDD or VDD. <When all of P20 to P27, P150 to P152, and P157 are set as analog ports> Make this pin to have a potential where $2.3 \mathrm{~V} \leq \mathrm{A} \mathrm{V}_{\mathrm{DDO}} \leq \mathrm{V}_{\mathrm{DD}}$.
$\mathrm{AV}_{\mathrm{DD} 1}$	-	-	<When one or more of P110 or P111 are set as a digital port> Make this pin the same potential as EVdd or Vdd. <When all of P110 and P111 are set as analog ports> Make this pin to have a potential where $2.3 \mathrm{~V} \leq \mathrm{AVDD1} \leq \mathrm{VDD}_{\mathrm{D}}$.
AVss	-	-	Make this pin the same potential as the EVss or Vss.
Vrefout/AVrefp	-	-	Make this pin the same potential as the AVddo, EVdd or Vdd.
FLMD0	2-W	-	Leave open or connect to Vss via a resistor of $100 \mathrm{k} \Omega$ or more.
RESET	2	Input	Connect directly to EVDD or via a resistor.
REGC	-	-	Connect to Vss via capacitor (0.47 to $1 \mu \mathrm{~F}$).

Notes 1. P150/ANI8/AMP2+ to P152/ANI10 and P157/ANI15/AVREFM are set in the digital input port mode after release of reset.
2. AV REFM applies to μ PD78F150xA only.
3. μ PD78F151xA corresponds to type 11-G.

Figure 2-1. Pin I/O Circuit List (1/5)

Figure 2-1. Pin I/O Circuit List (2/5)

Type 5-AT	Type 11-S
Type 8-R	Type 11-G
Type 11-N	Type 11-P

Figure 2-1. Pin I/O Circuit List (3/5)

Figure 2-1. Pin I/O Circuit List (4/5)

Figure 2-1. Pin I/O Circuit List (5/5)

CHAPTER 3 CPU ARCHITECTURE

3.1 Memory Space

Products in the $78 \mathrm{~K} 0 \mathrm{R} / \mathrm{Lx} 3$ microcontrollers can access a 1 MB memory space. Figures 3-1 to 3-3 show the memory maps.

Figure 3-1. Memory Map (μ PD78F1500A, 78F1503A, 78F1506A, 78F1510A, 78F1513A, 78F1516A)

Notes 1. Instructions can be executed from the RAM area excluding the general-purpose register area.
2. When boot swap is not used: Set the option bytes to 000 COH to 000 C 3 H , and the on-chip debug security IDs to 000 C 4 H to 000 CDH .
When boot swap is used: Set the option bytes to 000 COH to 000 C 3 H and 010 C 0 H to 010 C 3 H , and the on-chip debug security IDs to 000 C 4 H to 000 CDH and 010 C 4 H to 010 CDH .
3. Writing boot cluster 0 can be prohibited depending on the setting of security (see 27.7 Security Setting).

Figure 3-2. Memory Map (μ PD78F1501A, 78F1504A, 78F1507A)

Notes 1. Instructions can be executed from the RAM area excluding the general-purpose register area.
2. When boot swap is not used: Set the option bytes to 000 C 0 H to 000 C 3 H , and the on-chip debug security IDs to 000 C 4 H to 000 CDH .
When boot swap is used: Set the option bytes to 000 COH to 000 C 3 H and 010 C 0 H to 010 C 3 H , and the on-chip debug security IDs to 000 C 4 H to 000 CDH and 010 C 4 H to 010 CDH .
3. Writing boot cluster 0 can be prohibited depending on the setting of security (see 27.7 Security Setting).

Figure 3-3. Memory Map (μ PD78F1502A, 78F1505A, 78F1508A, 78F1512A, 78F1515A, 78F1518A)

Notes 1. Instructions can be executed from the RAM area excluding the general-purpose register area.
2. When boot swap is not used: Set the option bytes to 000 COH to 000 C 3 H , and the on-chip debug security IDs to 000 C 4 H to 000 CDH .
When boot swap is used: Set the option bytes to 000 COH to 000 C 3 H and 010 C 0 H to 010 C 3 H , and the on-chip debug security IDs to 000 C 4 H to 000 CDH and 010 C 4 H to 010 CDH .
3. Writing boot cluster 0 can be prohibited depending on the setting of security (see 27.7 Security Setting).

Remark The flash memory is divided into blocks (one block $=1 \mathrm{~KB}$). For the address values and block numbers, see Table 3-1 Correspondence Between Address Values and Block Numbers in Flash Memory.

OFFFFH	Block 3FH	
$\begin{aligned} & 0 \mathrm{FCOOH} \\ & 0 \mathrm{FBFFH} \end{aligned}$		
$007 \mathrm{FFH}$	Block 01H	
$\begin{aligned} & 003 F F H \\ & 00000 H \end{aligned}$	Block 00H	$1 \mathrm{~KB}$

Correspondence between the address values and block numbers in the flash memory are shown below.

Table 3-1. Correspondence Between Address Values and Block Numbers in Flash Memory

Address Value	Block Number						
00000H to 003FFH	00H	08000H to 083FFH	20H	10000 H to 103FFH	40H	18000 H to 183FFH	60H
00400H to 007FFH	01H	08400H to 087FFH	21H	10400 H to 107FFH	41H	18400 H to 187FFH	61H
00800H to 00BFFH	02H	08800H to 08BFFH	22 H	10800 H to 10BFFH	42H	18800 H to 18BFFH	62H
00 COOH to 00FFFH	03H	08 COOH to 08FFFH	23H	10 COOH to 10FFFH	43H	18 COOH to 18FFFH	63H
01000 H to 013FFH	04H	09000H to 093FFH	24H	11000 H to 113FFH	44H	19000 H to 193FFH	64H
01400H to 017FFH	05H	09400H to 097FFH	25H	11400 H to 117FFH	45H	19400 H to 197FFH	65H
01800H to 01BFFH	06H	09800H to 09BFFH	26H	11800 H to 11BFFH	46H	19800 H to 19BFFH	66H
$01 \mathrm{C00H}$ to 01FFFH	07H	$09 \mathrm{C00H}$ to 09FFFH	27H	11 COOH to 11FFFH	47H	19 COOH to 19FFFH	67H
02000 H to 023FFH	08H	OA000H to 0A3FFH	28H	12000 H to 123FFH	48H	$1 \mathrm{A000H}$ to 1A3FFH	68H
02400H to 027FFH	09H	0A400H to 0A7FFH	29H	12400 H to 127FFH	49H	1 A 400 H to 1A7FFH	69H
02800H to 02BFFH	OAH	OA800H to 0ABFFH	2 AH	12800 H to 12BFFH	4AH	1 A 800 H to 1 ABFFH	6AH
02 COOH to 02FFFH	OBH	OACOOH to 0AFFFH	2BH	12 COOH to 12FFFH	4BH	$1 \mathrm{AC00H}$ to 1AFFFH	6BH
03000 H to 033FFH	0 CH	OB000H to 0B3FFH	2CH	13000 H to 133 FFH	4 CH	$1 \mathrm{B000H}$ to 1B3FFH	6 CH
03400 H to 037FFH	ODH	0B400H to 0B7FFH	2DH	13400 H to 137FFH	4DH	1B400H to 1B7FFH	6DH
03800H to 03BFFH	OEH	OB800H to OBBFFH	2EH	13800 H to 13BFFH	4EH	$1 \mathrm{B800H}$ to 1BBFFH	6EH
03 COOH to 03FFFH	OFH	OBCOOH to OBFFFH	2FH	13 COOH to 13FFFH	4FH	$1 \mathrm{BC00H}$ to 1BFFFH	6FH
04000H to 043FFH	10H	0C000H to 0C3FFH	30 H	14000 H to 143 FFH	50 H	$1 \mathrm{C000H}$ to 1C3FFH	70H
04400H to 047FFH	11H	0C400H to 0C7FFH	31H	14400 H to 147FFH	51H	1C400H to 1C7FFH	71H
04800H to 04BFFH	12H	0C800H to 0CBFFH	32H	14800 H to 14BFFH	52H	1 C 800 H to 1CBFFH	72H
04 COOH to 04FFFH	13H	OCCOOH to OCFFFH	33H	14 C 00 H to 14FFFH	53H	1 CCOOH to 1CFFFH	73H
05000 H to 053FFH	14H	0D000H to 0D3FFH	34H	15000 H to 153FFH	54H	1D000H to 1D3FFH	74H
05400H to 057FFH	15H	0D400H to 0D7FFH	35H	15400 H to 157FFH	55H	1D400H to 1D7FFH	75H
05800H to 05BFFH	16H	0D800H to 0DBFFH	36H	15800H to 15BFFH	56H	1D800H to 1DBFFH	76H
05 COOH to 05FFFH	17H	ODCOOH to ODFFFH	37H	15 C 00 H to 15 FFFH	57H	1DC00H to 1DFFFH	77H
06000H to 063FFH	18H	0E000H to 0E3FFH	38 H	16000 H to 163FFH	58H	1E000H to 1E3FFH	78H
06400H to 067FFH	19H	0E400H to 0E7FFH	39H	16400 H to 167 FFH	59H	1 E 400 H to 1E7FFH	79H
06800H to 06BFFH	1AH	OE800H to 0EBFFH	3AH	16800H to 16BFFH	5AH	1E800H to 1EBFFH	7AH
06 COOH to 06FFFH	1BH	OECOOH to OEFFFH	3BH	16 C 00 H to 16FFFH	5BH	$1 \mathrm{EC00H}$ to 1EFFFH	7BH
07000H to 073FFH	1 CH	OF000H to 0F3FFH	3 CH	17000 H to 173FFH	5 CH	1F000H to 1F3FFH	7 CH
07400H to 077FFH	1DH	0F400H to 0F7FFH	3DH	17400 H to 177FFH	5DH	1F400H to 1F7FFH	7DH
07800H to 07BFFH	1EH	0F800H to 0FBFFH	3EH	17800 H to 17BFFH	5EH	1F800H to 1FBFFH	7EH
07 COOH to 07FFFH	1FH	OFCOOH to OFFFFFH	3FH	17 COOH to 17FFFH	5FH	1 FCOOH to 1FFFFH	7FH

<R> Remark $\quad \mu$ PD78F1500A, 78F1503A, 78F1506A, 78F1510A, 78F1513A, 78F1516A: Block numbers 00H to 3FH μ PD78F1501A, 78F1504A, 78F1507A: Block numbers 00H to 5FH
μ PD78F1502A, 78F1505A, 78F1508A, 78F1512A, 78F1515A, 78F1518A: Block numbers 00H to 7FH

3.1.1 Internal program memory space

The internal program memory space stores the program and table data. Normally, it is addressed with the program counter (PC).

78K0R/Lx3 microcontrollers products incorporate internal ROM (flash memory), as shown below.

Table 3-2. Internal ROM Capacity

Part Number	Internal ROM	
	Structure	

The internal program memory space is divided into the following areas.

(1) Vector table area

The 128 -byte area 00000 H to 0007 FH is reserved as a vector table area. The program start addresses for branch upon reset or generation of each interrupt request are stored in the vector table area. Furthermore, the interrupt jump address is a 64 K address of 00000 H to 0 FFFFH, because the vector code is assumed to be 2 bytes.
Of the 16 -bit address, the lower 8 bits are stored at even addresses and the higher 8 bits are stored at odd addresses.

Table 3-3. Vector Table

Vector Table Address	Interrupt Source	LF3	LG3	LH3	Vector Table Address	Interrupt Source	LF3	LG3	LH3
00000H	RESET input, POC, LVI, WDT, TRAP	\checkmark	\checkmark	$\sqrt{ }$	00030H	INTTM02	\checkmark	$\sqrt{ }$	\checkmark
					00032H	INTTM03	$\sqrt{ }$	$\sqrt{ }$	\checkmark
00004H	INTWDTI	\checkmark	$\sqrt{ }$	\checkmark	00034H	INTAD	\checkmark	$\sqrt{ }$	\checkmark
00006H	INTLVI	\checkmark	\checkmark	$\sqrt{ }$	00036H	INTRTC	\checkmark	$\sqrt{ }$	\checkmark
00008H	INTPO	\checkmark	\checkmark	\checkmark	00038H	INTRTCI	\checkmark	\checkmark	\checkmark
0000AH	INTP1	\checkmark	\checkmark	\checkmark	0003AH	INTKR	-	-	\checkmark
0000CH	INTP2	\checkmark	\checkmark	\checkmark	0003CH	INTST2	\checkmark	\checkmark	\checkmark
0000EH	INTP3	\checkmark	\checkmark	\checkmark		INTCSI20	\checkmark	\checkmark	\checkmark
00010H	INTP4	\checkmark	\checkmark	\checkmark		INTIIC20	\checkmark	$\sqrt{ }$	\checkmark
00012H	INTP5	$\sqrt{ }$	$\sqrt{ }$	\checkmark	0003EH	INTSR2	\checkmark	$\sqrt{ }$	\checkmark
00014H	INTST3	\checkmark	\checkmark	\checkmark	00040H	INTSRE2	\checkmark	$\sqrt{ }$	\checkmark
00016H	INTSR3	\checkmark	\checkmark	\checkmark	00042H	INTTM04	\checkmark	\checkmark	\checkmark
00018H	INTSRE3	\checkmark	\checkmark	$\sqrt{ }$	00044H	INTTM05	\checkmark	$\sqrt{ }$	\checkmark
0001AH	INTDMAO	\checkmark	\checkmark	$\sqrt{ }$	00046H	INTTM06	\checkmark	$\sqrt{ }$	\checkmark
0001CH	INTDMA1	\checkmark	\checkmark	$\sqrt{ }$	00048H	INTTM07	\checkmark	\checkmark	\checkmark
0001EH	INTSTO	-	\checkmark	\checkmark	0004AH	INTP6	\checkmark	\checkmark	\checkmark
	INTCSIOO	-	\checkmark	\checkmark	0004 CH	INTP7	\checkmark	$\sqrt{ }$	\checkmark
00020H	INTSR0	-	\checkmark	\checkmark	0004EH	INTP8	-	\checkmark	\checkmark
	INTCSI01	-	-	\checkmark	00050H	INTP9	-	\checkmark	\checkmark
00022H	INTSRE0	\checkmark	\checkmark	\checkmark	00052H	INTP10	-	\checkmark	\checkmark
00024H	INTST1	\checkmark	\checkmark	\checkmark	00054H	INTP11	-	\checkmark	\checkmark
	INTCSI10	\checkmark	\checkmark	$\sqrt{ }$	00056H	INTTM10	\checkmark	$\sqrt{ }$	\checkmark
	INTIIC10	\checkmark	\checkmark	\checkmark	00058H	INTTM11	\checkmark	\checkmark	\checkmark
00026H	INTSR1	\checkmark	\checkmark	$\sqrt{ }$	0005AH	INTTM12	\checkmark	$\sqrt{ }$	\checkmark
00028H	INTSRE1	$\sqrt{ }$	\checkmark	$\sqrt{ }$	0005CH	INTTM13	\checkmark	$\sqrt{ }$	\checkmark
0002AH	INTIICA	-	$\sqrt{ }$	\checkmark	0005EH	INTMD	\checkmark	\checkmark	\checkmark
0002CH	INTTM00	\checkmark	$\sqrt{ }$	\checkmark	0007EH	BRK	\checkmark	$\sqrt{ }$	\checkmark
0002EH	INTTM01	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$					

(2) CALLT instruction table area

The 64 -byte area 00080 H to 000 BFH can store the subroutine entry address of a 2-byte call instruction (CALLT). Set the subroutine entry address to a value in a range of 00000 H to 0 FFFFH (because an address code is of 2 bytes).
To use the boot swap function, set a CALLT instruction table also at 01080H to 010BFH.

(3) Option byte area

A 4-byte area of 000 C 0 H to 000 C 3 H can be used as an option byte area. Set the option byte at 010 C 0 H to 010 C 3 H when the boot swap is used. For details, see CHAPTER 26 OPTION BYTE.

(4) On-chip debug security ID setting area

A 10 -byte area of 000 C 4 H to 000 CDH and 010 C 4 H to 010 CDH can be used as an on-chip debug security ID setting area. Set the on-chip debug security ID of 10 bytes at 000 C 4 H to 000 CDH when the boot swap is not used and at 000 C 4 H to 000 CDH and 010 C 4 H to 010 CDH when the boot swap is used. For details, see CHAPTER 28 ON-CHIP DEBUG FUNCTION.

3.1.2 Mirror area

The $\mu \mathrm{PD} 78 \mathrm{~F} 1500 \mathrm{~A}, 78 \mathrm{~F} 1503 \mathrm{~A}, 78 \mathrm{~F} 01506 \mathrm{~A}, 78 \mathrm{~F} 1510 \mathrm{~A}, 78 \mathrm{~F} 1513 \mathrm{~A}$, and 78 F 1516 A mirror the data flash area of 00000 H to $0 F F F F H$, to F 0000 H to FFFFFH (the data flash area to be mirrored is set by the processor mode control register (PMC)).

The μ PD78F1501A, 78F1502A, 78F1504A, 78F1505A, 78F1507A, 78F1508A, 78F1512A, 78F1515A, and 78F1518A mirror the data flash area of 00000 H to 0 FFFFH or 10000 H to 1 FFFFH, to F0000H to FFFFFFH (the data flash area to be mirrored is set by the processor mode control register (PMC)).

By reading data from FOOOOH to FFFFFH, an instruction that does not have the ES registers as an operand can be used, and thus the contents of the data flash can be read with the shorter code. However, the data flash area is not mirrored to the SFR, extended SFR, RAM, and use prohibited areas.

The mirror area can only be read and no instruction can be fetched from this area.

The following show examples.

Example 1μ PD78F1500A, 78F1503A, 78F1506A, 78F1510A, 78F1513A, 78F1516A
(Flash memory: 64 KB, RAM: 4 KB)
Setting MAA $=0$

Example 2μ PD78F1502A, 78F1505A, 78F1508A, 78F1512A, 78F1515A, 78F1518A
(Flash memory: 128 KB, RAM: 7 KB)
Setting MAA = 1

Remark MAA: Bit 0 of the processor mode control register (PMC).

PMC register is described below.

- Processor mode control register (PMC)

This register selects the flash memory space for mirroring to area from F0000H to FFFFFH.
PMC can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets this register to 00 H .

Figure 3-4. Format of Configuration of Processor Mode Control Register (PMC)

Address: FFFFFEH After reset: 00 H R/W								
Symbol	7	6	5	4	3	2	1	<0>
PMC	0	0	0	0	0	0	0	MAA

MAA	Selection of flash memory space for mirroring to area from F0000H to FFFFFH
0	00000 H to 0 FFFFH is mirrored to $F 0000 \mathrm{H}$ to FFFFFH
1	10000 H to 1 FFFFH is mirrored to $\mathrm{F0000H} \mathrm{to} \mathrm{FFFFFH}$

Cautions 1. Set PMC only once during the initial settings prior to operating the DMA controller. Rewriting PMC other than during the initial settings is prohibited.
2. After setting PMC, wait for at least one instruction and access the mirror area.
3. When the μ PD78F1500A, 78F1503A, 78F1506A, 78F1510A, 78F1513A, and 78F1516A (flash memory size: 64 KB) are used, be sure to set bit 0 (MAA) of this register to 0 .

3.1.3 Internal data memory space

78K0R/Lx3 microcontrollers products incorporate the following RAMs.

Table 3-4. Internal RAM Capacity

Part Number	Internal RAM
μ PD78F1500A, 78F1503A, 78F1506A, 78F1510A, 78F1513A, 78F1516A	4096×8 bits (FEF00H to FFEFFH)
μ PD78F1501A, 78F1504A, 78F1507A	6144×8 bits (FE700H to FFEFFH)
μ PD78F1502A, 78F1505A, 78F1508A, 78F1512A, 78F1515A, 78F1518A	7168×8 bits (FE300H to FFEFFH)

The internal RAM can be used as a data area and a program area where instructions are written and executed. Four general-purpose register banks consisting of eight 8 -bit registers per bank are assigned to the 32-byte area of FFEEOH to FFEFFH of the internal RAM area. However, instructions cannot be executed by using general-purpose registers.

The internal RAM is used as a stack memory.

Cautions 1. It is prohibited to use the general-purpose register (FFEEOH to FFEFFH) space for fetching instructions or as a stack area.
2. While using the self-programming function, the area of FFE20H to FFEFFH cannot be used as a stack memory.

3.1.4 Special function register (SFR) area

On-chip peripheral hardware special function registers (SFRs) are allocated in the area FFFOOH to FFFFFH.

Caution Do not access addresses to which SFRs are not assigned.
3.1.5 Extended special function register (2nd SFR: 2nd Special Function Register) area

On-chip peripheral hardware special function registers (2nd SFRs) are allocated in the area F0000H to F07FFH.
SFRs other than those in the SFR area (FFFOOH to FFFFFH) are allocated to this area. An instruction that accesses the 2nd SFR area, however, is 1 byte longer than an instruction that accesses the SFR area.

Caution Do not access addresses to which 2nd SFRs are not assigned.

3.1.6 Data memory addressing

Addressing refers to the method of specifying the address of the instruction to be executed next or the address of the register or memory relevant to the execution of instructions.

Several addressing modes are provided for addressing the memory relevant to the execution of instructions for the 78K0R/Lx3 microcontrollers, based on operability and other considerations. For areas containing data memory in particular, special addressing methods designed for the functions of special function registers (SFR) and general-purpose registers are available for use. Figures 3-5 to 3-7 show correspondence between data memory and addressing.

Figure 3-5. Correspondence Between Data Memory and Addressing (μ PD78F1500A, 78F1503A, 78F1506A, 78F1510A, 78F1513A, 78F1516A)

Figure 3-6. Correspondence Between Data Memory and Addressing (μ PD78F1501A, 78F1504A, 78F1507A)

Figure 3-7. Correspondence Between Data Memory and Addressing (μ PD78F1502A, 78F1505A, 78F1508A, 78F1512A, 78F1515A, 78F1518A)

3.2 Processor Registers

The 78K0R/Lx3 microcontrollers products incorporate the following processor registers.

3.2.1 Control registers

The control registers control the program sequence, statuses and stack memory. The control registers consist of a program counter (PC), a program status word (PSW) and a stack pointer (SP).

(1) Program counter (PC)

The program counter is a 20-bit register that holds the address information of the next program to be executed.
In normal operation, PC is automatically incremented according to the number of bytes of the instruction to be fetched.
When a branch instruction is executed, immediate data and register contents are set.
Reset signal generation sets the reset vector table values at addresses 0000 H and 0001 H to the program counter.

Figure 3-8. Format of Program Counter

(2) Program status word (PSW)

The program status word is an 8-bit register consisting of various flags set/reset by instruction execution.
Program status word contents are stored in the stack area upon interrupt request generation or PUSH PSW instruction execution and are restored upon execution of the RETB, RETI and POP PSW instructions.
Reset signal generation sets PSW to 06H.

Figure 3-9. Format of Program Status Word

(a) Interrupt enable flag (IE)

This flag controls the interrupt request acknowledge operations of the CPU.
When 0 , the IE flag is set to the interrupt disabled (DI) state, and all maskable interrupt requests are disabled.
When 1 , the IE flag is set to the interrupt enabled (EI) state and interrupt request acknowledgment is controlled with an in-service priority flag (ISP1, ISP0), an interrupt mask flag for various interrupt sources, and a priority specification flag.
The IE flag is reset (0) upon DI instruction execution or interrupt acknowledgment and is set (1) upon El instruction execution.
(b) Zero flag (Z)

When the operation result is zero, this flag is set (1). It is reset (0) in all other cases.
(c) Register bank select flags (RBSO, RBS1)

These are 2-bit flags to select one of the four register banks.
In these flags, the 2-bit information that indicates the register bank selected by SEL RBn instruction execution is stored.
(d) Auxiliary carry flag (AC)

If the operation result has a carry from bit 3 or a borrow at bit 3 , this flag is set (1). It is reset (0) in all other cases.
(e) In-service priority flags (ISP1, ISPO)

This flag manages the priority of acknowledgeable maskable vectored interrupts. Vectored interrupt requests specified lower than the value of ISP0 and ISP1 by a priority specification flag register (PRnOL, PRnOH, PRn1L, PRn1H, PRn2L, PRn2H) (see 19.3 (3)) can not be acknowledged. Actual request acknowledgment is controlled by the interrupt enable flag (IE).

Remark $\mathrm{n}=0,1$

(f) Carry flag (CY)

This flag stores overflow and underflow upon add/subtract instruction execution. It stores the shift-out value upon rotate instruction execution and functions as a bit accumulator during bit operation instruction execution.
(3) Stack pointer (SP)

This is a 16-bit register to hold the start address of the memory stack area. Only the internal RAM area can be set as the stack area.

Figure 3-10. Format of Stack Pointer

$$
\begin{aligned}
& 15 \\
&
\end{aligned}
$$

The SP is decremented ahead of write (save) to the stack memory and is incremented after read (restored) from the stack memory.
Each stack operation saves data as shown in Figure 3-11.

Cautions 1. Since reset signal generation makes the SP contents undefined, be sure to initialize the SP before using the stack.

2. It is prohibited to use the general-purpose register (FFEEOH to FFEFFH) space as a stack area.
3. While using the self-programming function, the area of FFE20H to FFEFFH cannot be used as a stack memory.

Figure 3-11. Data to Be Saved to Stack Memory

3.2.2 General-purpose registers

General-purpose registers are mapped at particular addresses (FFEEOH to FFEFFH) of the data memory. The generalpurpose registers consists of 4 banks, each bank consisting of eight 8-bit registers (X, A, C, B, E, D, L, and H).

Each register can be used as an 8 -bit register, and two 8 -bit registers can also be used in a pair as a 16-bit register (AX, $B C, D E$, and $H L$).

These registers can be described in terms of function names ($\mathrm{X}, \mathrm{A}, \mathrm{C}, \mathrm{B}, \mathrm{E}, \mathrm{D}, \mathrm{L}, \mathrm{H}, \mathrm{AX}, \mathrm{BC}, \mathrm{DE}$, and HL) and absolute names (R0 to R7 and RP0 to RP3).

Register banks to be used for instruction execution are set by the CPU control instruction (SEL RBn). Because of the 4register bank configuration, an efficient program can be created by switching between a register for normal processing and a register for interrupts for each bank.

Caution It is prohibited to use the general-purpose register (FFEEOH to FFEFFH) space for fetching instructions or as a stack area.

Figure 3-12. Configuration of General-Purpose Registers
(a) Function name

(b) Absolute name

3.2.3 ES and CS registers

The ES register is used for data access and the CS register is used to specify the higher address when a branch instruction is executed.

The default value of the ES register after reset is 0 FH , and that of the CS register is 00 H .

Figure 3-13. Configuration of ES and CS Registers

ES

7	6	5	4	3	2	1	0
0	0	0	0	ES3	ES2	ES1	ES0

CS

7	6	5	4	3	2	1	0
0	0	0	0	CS3	CP2	CP1	CP0

3.2.4 Special function registers (SFRs)

Unlike a general-purpose register, each SFR has a special function.
SFRs are allocated to the FFFOOH to FFFFFH area.
SFRs can be manipulated like general-purpose registers, using operation, transfer, and bit manipulation instructions. The manipulable bit units, 1,8 , and 16 , depend on the SFR type.

Each manipulation bit unit can be specified as follows.

- 1-bit manipulation

Describe the symbol reserved by the assembler for the 1-bit manipulation instruction operand (sfr.bit). This manipulation can also be specified with an address.

- 8-bit manipulation

Describe the symbol reserved by the assembler for the 8 -bit manipulation instruction operand (sfr). This manipulation can also be specified with an address.

- 16-bit manipulation

Describe the symbol reserved by the assembler for the 16-bit manipulation instruction operand (sfrp). When specifying an address, describe an even address.

Table 3-5 gives a list of the SFRs. The meanings of items in the table are as follows.

- Symbol

Symbol indicating the address of a special function register. It is a reserved word in the RA78K0R, and is defined as an sfr variable using the \#pragma sfr directive in the CC78K0R. When using the RA78K0R, ID78K0R-QB, and SM+ for 78 KOR , symbols can be written as an instruction operand.

- R/W

Indicates whether the corresponding SFR can be read or written.
R/W: Read/write enable
R: Read only
W: Write only

- Manipulable bit units
" $\sqrt{\prime \prime}$ indicates the manipulable bit unit (1,8 , or 16). "-" indicates a bit unit for which manipulation is not possible.
- After reset

Indicates each register status upon reset signal generation.

Caution Do not access addresses to which SFRs are not assigned.

Remark For extended SFRs (2nd SFRs), see 3.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers).

Table 3-5. SFR List (1/5)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipulable Bit Range			After Reset	$\begin{aligned} & \text { N } \\ & \text { D } \\ & \text { 人 } \\ & \text { D } \\ & \text { T } \\ & \omega \end{aligned}$			
				1-bit	8-bit	16-bit						
FFF00H	Port register 0	P0			R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark
FFF01H	Port register 1	P1		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	$\sqrt{ }$	
FFF02H	Port register 2	P2		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	
FFF03H	Port register 3	P3		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	$\sqrt{ }$	
FFF04H	Port register 4	P4		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	$\sqrt{ }$	
FFF05H	Port register 5	P5		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	
FFF06H	Port register 6	P6		R/W	\checkmark	\checkmark	-	00H	-	\checkmark	$\sqrt{ }$	
FFF07H	Port register 7	P7		R/W	\checkmark	\checkmark	-	OOH	-	-	$\sqrt{ }$	
FFF08H	Port register 8	P8		R/W	\checkmark	\checkmark	-	OOH	-	\checkmark	\checkmark	
FFF09H	Port register 9	P9		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	$\sqrt{ }$	
FFF0AH	Port register 10	P10		R/W	\checkmark	\checkmark	-	OOH	\checkmark	\checkmark	$\sqrt{ }$	
FFFOBH	Port register 11	P11		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	
FFFOCH	Port register 12	P12		R/W	$\sqrt{ }$	$\sqrt{ }$	-	Undefined	\checkmark	\checkmark	$\sqrt{ }$	
FFFODH	Port register 13	P13		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	$\sqrt{ }$	
FFFOEH	Port register 14	P14		R/W	\checkmark	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark	
FFFOFH	Port register 15	P15		R/W	$\sqrt{ }$	$\sqrt{ }$	-	00H	\checkmark	\checkmark	$\sqrt{ }$	
FFF10H	Serial data register 00	$\begin{aligned} & \text { TXD0/ } \\ & \text { SIOOO } \end{aligned}$	SDR00	R/W	-	\checkmark	\checkmark	0000H	-	\checkmark	\checkmark	
FFF11H		-			-	-			-	\checkmark	$\sqrt{ }$	
FFF12H	Serial data register 01	$\begin{aligned} & \text { RXD0/ } \\ & \text { SIO01 } \end{aligned}$	SDR01	R/W	-	\checkmark	\checkmark	0000H	-	\checkmark	$\sqrt{ }$	
FFF13H		-			-	-			-	\checkmark	\checkmark	
FFF14H	Serial data register 12	TXD3	SDR12	R/W	-	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
FFF15H		-			-	-			\checkmark	\checkmark	$\sqrt{ }$	
FFF16H	Serial data register 13	RXD3	SDR13	R/W	-	$\sqrt{ }$	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
FFF17H		-			-	-			\checkmark	\checkmark	$\sqrt{ }$	
FFF18H	Timer data register 00	TDR00		R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
FFF19H												
FFF1AH	Timer data register 01	TDR01		R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	$\sqrt{ }$	
FFF1BH												
FFF1EH	12-bit A/D conversion result register ${ }^{\text {Note }}$ (ADCR		R	-	-	\checkmark	0000H	\checkmark	\checkmark	$\sqrt{ }$	
FFF1FH		ADCRH		R	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	
FFF20H	Port mode register 0	PM0		R/W	\checkmark	\checkmark	-	FFH	\checkmark	\checkmark	\checkmark	
FFF21H	Port mode register 1	PM1		R/W	$\sqrt{ }$	\checkmark	-	FFH	\checkmark	\checkmark	$\sqrt{ }$	
FFF22H	Port mode register 2	PM2		R/W	\checkmark	\checkmark	-	FFH	\checkmark	\checkmark	\checkmark	
FFF23H	Port mode register 3	PM3		R/W	\checkmark	\checkmark	-	FFH	\checkmark	\checkmark	\checkmark	
FFF24H	Port mode register 4	PM4		R/W	\checkmark	\checkmark	-	FFH	\checkmark	\checkmark	$\sqrt{ }$	
FFF25H	Port mode register 5	PM5		R/W	\checkmark	\checkmark	-	FFH	\checkmark	\checkmark	\checkmark	
FFF26H	Port mode register 6	PM6		R/W	\checkmark	\checkmark	-	FFH	-	\checkmark	\checkmark	
FFF27H	Port mode register 7	PM7		R/W	\checkmark	\checkmark	-	FFH	-	-	\checkmark	

Note For μ PD78F151xA, 10-bit A/D conversion result register is applied.

Table 3-5. SFR List (2/5)

Table 3-5. SFR List (3/5)

Address	Special Function Register (SFR) Name	Symbol	R/W	Manipulable Bit Range			After Reset		促	
				1-bit	8-bit	16-bit				
FFF5CH	D/A converter mode register	DAM	R/W	\checkmark	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark
FFF64H	Timer data register 02	TDR02	R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark
FFF65H										
FFF66H	Timer data register 03	TDR03	R/W		-	\checkmark		\checkmark	\checkmark	\checkmark
FFF67H										
FFF68H	Timer data register 04	TDR04	R/W	-	-	\checkmark		\checkmark	\checkmark	\checkmark
FFF69H										
FFF6AH	Timer data register 05	TDR05	R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark
FFF6BH										
FFF6CH	Timer data register 06	TDR06	R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark
FFF6DH										
FFF6EH	Timer data register 07	TDR07	R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark
FFF6FH										
FFF70H	Timer data register 10	TDR10	R/W	-	-	\checkmark		\checkmark	\checkmark	\checkmark
FFF71H										
FFF72H	Timer data register 11	TDR11	R/W	-	-	\checkmark	$0000 \mathrm{H}$	\checkmark	\checkmark	\checkmark
FFF73H										
FFF74H	Timer data register 12	TDR12	R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	
FFF75H										
FFF76H	Timer data register 13	TDR13	R/W	-	-	\checkmark	0000H	V	\checkmark	\checkmark
FFF77 H										
FFF90H	Sub-count register	RSUBC	R	-	-	\checkmark	0000H	\downarrow	\checkmark	\checkmark
FFF91H										
FFF92H	Second count register	SEC	R/W	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark
FFF93H	Minute count register	MIN	R/W	-	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark
FFF94H	Hour count register	HOUR	R/W	-	\checkmark	-	$12 \mathrm{H}^{\text {Note }}$	\checkmark	\checkmark	\checkmark
FFF95H	Week count register	WEEK	R/W	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark
FFF96H	Day count register	DAY	R/W	-	\checkmark	-	01H	\checkmark	\checkmark	\checkmark
FFF97H	Month count register	MONTH	R/W	-	\checkmark	-	01H	\checkmark	\checkmark	\checkmark
FFF98H	Year count register	YEAR	R/W	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark
FFF99H	Watch error correction register	SUBCUD	R/W	-	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark
FFF9AH	Alarm minute register	ALARMWM	R/W	-	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark
FFF9BH	Alarm hour register	ALARMWH	R/W	-	\checkmark	-	12H	\checkmark	\checkmark	\checkmark
FFF9CH	Alarm week register	ALARMWW	R/W	-	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark

Note The value of this register is 00 H if the AMPM bit (bit 3 of the RTCCO register) is set to 1 after reset.

Table 3-5. SFR List (4/5)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipulable Bit Range			After Reset				
				1-bit	8-bit	16-bit						
FFF9DH	Real-time counter control register 0	RTCC0			R/W	\checkmark	$\sqrt{ }$	-	OOH	\checkmark	\checkmark	\checkmark
FFF9EH	Real-time counter control register 1	RTCC1		R/W	\checkmark	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark	
FFF9FH	Real-time counter control register 2	RTCC2		R/W	\checkmark	$\sqrt{ }$	-	OOH	\checkmark	\checkmark	\checkmark	
FFFAOH	Clock operation mode control register	CMC		R/W	-	$\sqrt{ }$	-	00H	\checkmark	$\sqrt{ }$	\checkmark	
FFFA1H	Clock operation status control register	CSC		R/W	\checkmark	$\sqrt{ }$	-	COH	\checkmark	\checkmark	\checkmark	
FFFA2H	Oscillation stabilization time counter status register	OSTC		R	\checkmark	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark	
FFFA3H	Oscillation stabilization time select register	OSTS		R/W	-	$\sqrt{ }$	-	07H	\checkmark	\checkmark	\checkmark	
FFFA4H	Clock control register	CKC		R/W	\checkmark	\checkmark	-	09H	\checkmark	\checkmark	\checkmark	
FFFA5H	Clock output select register 0	CKS0		R/W	$\sqrt{ }$	$\sqrt{ }$	-	00H	\checkmark	$\sqrt{ }$	\checkmark	
FFFA6H	Clock output select register 1	CKS1		R/W	\checkmark	$\sqrt{ }$	-	OOH	\checkmark	\checkmark	\checkmark	
FFFA8H	Reset control flag register	RESF		R	-	\checkmark	-	Undefined Note 1	\checkmark	\checkmark	\checkmark	
FFFA9H	Low-voltage detection register	LVIM		R/W	\checkmark	\checkmark	-	$00 \mathrm{H}^{\text {Note } 2}$	\checkmark	\checkmark	\checkmark	
FFFAAH	Low-voltage detection level select register	LVIS		R/W	\checkmark	\checkmark	-	$0 E H^{\text {Note } 3}$	\checkmark	\checkmark	\checkmark	
FFFABH	Watchdog timer enable register	WDTE		R/W	-	\checkmark	-	$1 \mathrm{~A} / 9 \mathrm{~A}^{\text {Note } 4}$	\checkmark	\checkmark	\checkmark	
FFFBOH	DMA SFR address register 0	DSA0		R/W	-	\checkmark	-	00H	\checkmark	$\sqrt{ }$	\checkmark	
FFFB1H	DMA SFR address register 1	DSA1		R/W	-	$\sqrt{ }$	-	OOH	\checkmark	\checkmark	\checkmark	
FFFB2H	DMA RAM address register OL	DRAOL	DRAO	R/W	-	\checkmark	$\sqrt{ }$	00H	\checkmark	$\sqrt{ }$	\checkmark	
FFFB3H	DMA RAM address register OH	DRAOH		R/W	-	\checkmark		00H	\checkmark	\checkmark	\checkmark	
FFFB4H	DMA RAM address register 1L	DRA1L	DRA1	R/W	-	$\sqrt{ }$	$\sqrt{ }$	00H	\checkmark	\checkmark	\checkmark	
FFFB5H	DMA RAM address register 1H	DRA1H		R/W	-	$\sqrt{ }$		00H	\checkmark	\checkmark	\checkmark	
FFFB6H	DMA byte count register OL	DBCOL	DBC0	R/W	-	\checkmark	$\sqrt{ }$	00H	\checkmark	\checkmark	\checkmark	
FFFB7H	DMA byte count register 0 H	DBCOH		R/W	-	$\sqrt{ }$		00H	\checkmark	\checkmark	\checkmark	
FFFB8H	DMA byte count register 1L	DBC1L	DBC1	R/W	-	\checkmark	$\sqrt{ }$	00H	\checkmark	\checkmark	\checkmark	
FFFB9H	DMA byte count register 1 H	DBC1H		R/W	-	$\sqrt{ }$		OOH	\checkmark	\checkmark	\checkmark	
FFFBAH	DMA mode control register 0	DMC0		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	
FFFBBH	DMA mode control register 1	DMC1		R/W	\checkmark	$\sqrt{ }$	-	00H	\checkmark	\checkmark	\checkmark	
FFFBCH	DMA operation control register 0	DRC0		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	
FFFBDH	DMA operation control register 1	DRC1		R/W	\checkmark	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark	
FFFBEH	Back ground event control register	BECTL		R/W	$\sqrt{ }$	$\sqrt{ }$	-	00H	\checkmark	\checkmark	\checkmark	
FFFCOH	-	PFCMD ${ }^{\text {Note } 5}$		-	-	-	-	Undefined	\checkmark	\checkmark	\checkmark	
FFFC2H	-	PFS ${ }^{\text {Note } 5}$		-	-	-	-	Undefined	\checkmark	\checkmark	\checkmark	
FFFC4H	-	FLPMC ${ }^{\text {Note } 5}$		-	-	-	-	Undefined	\checkmark	\checkmark	\checkmark	

Notes 1. The reset value of RESF varies depending on the reset source.
2. The reset value of LVIM varies depending on the reset source and the setting of the option byte.
3. The reset value of LVIS varies depending on the reset source.
4. The reset value of WDTE is determined by the setting of the option byte.
5. Do not directly operate this SFR, because it is to be used in the self programming library.

Table 3-5. SFR List (5/5)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipulable Bit Range			After Reset	$\begin{aligned} & \text { N } \\ & \text { D } \\ & \text { 人 } \\ & \text { D } \\ & \text { TM } \end{aligned}$	$$		
				1-bit	8-bit	16-bit						
FFFDOH	Interrupt request flag register 2	IF2L	IF2		R/W	\checkmark	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark
FFFD1H		IF2H		\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	
FFFD4H	Interrupt mask flag register 2	MK2L	MK2	R/W	\checkmark	\checkmark	\checkmark	FFFFH	\checkmark	\checkmark	\checkmark	
FFFD5H		MK2H			\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	
FFFD8H	Priority specification flag register 02	PR02L	PR02	R/W	\checkmark	\checkmark	\checkmark	FFFFH	\checkmark	\checkmark	\checkmark	
FFFD9H		$\mathrm{PR02H}$			\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	
FFFDCH	Priority specification flag register 12	PR12L	PR12	R/W	\checkmark	\checkmark	\checkmark	FFFFH	\checkmark	\checkmark	\checkmark	
FFFDDH		PR12H			\checkmark	\checkmark			$\sqrt{ }$	\checkmark	\checkmark	
FFFEOH	Interrupt request flag register OL	IFOL	IF0	R/W	\checkmark	\checkmark	\checkmark	00H	$\sqrt{ }$	\checkmark	\checkmark	
FFFE1H	Interrupt request flag register OH	IFOH		R/W	\checkmark	\checkmark		00H	\checkmark	\checkmark	\checkmark	
FFFE2H	Interrupt request flag register 1L	IF1L	IF1	R/W	\checkmark	\checkmark	\checkmark	00H	$\sqrt{ }$	$\sqrt{ }$	\checkmark	
FFFE3H	Interrupt request flag register 1H	IF1H		R/W	\checkmark	\checkmark		00H	\checkmark	\checkmark	\checkmark	
FFFE4H	Interrupt mask flag register OL	MKOL	MKO	R/W	\checkmark	\checkmark	\checkmark	FFH	\checkmark	\checkmark	\checkmark	
FFFE5H	Interrupt mask flag register OH	MKOH		R/W	\checkmark	\checkmark		FFH	\checkmark	\checkmark	\checkmark	
FFFE6H	Interrupt mask flag register 1L	MK1L	MK1	R/W	\checkmark	$\sqrt{ }$	\checkmark	FFH	$\sqrt{ }$	$\sqrt{ }$	\checkmark	
FFFE7H	Interrupt mask flag register 1H	MK1H		R/W	\checkmark	$\sqrt{ }$		FFH	\checkmark	\checkmark	\checkmark	
FFFE8H	Priority specification flag register 00L	PR00L	PR00	R/W	\checkmark	$\sqrt{ }$	\checkmark	FFH	\checkmark	\checkmark	\checkmark	
FFFE9H	Priority specification flag register 00 H	PR00H		R/W	$\sqrt{ }$	$\sqrt{ }$		FFH	$\sqrt{ }$	\checkmark	\checkmark	
FFFEAH	Priority specification flag register 01L	PR01L	PR01	R/W	\checkmark	$\sqrt{ }$	\checkmark	FFH	$\sqrt{ }$	\checkmark	\checkmark	
FFFEBH	Priority specification flag register 01 H	PR01H		R/W	\checkmark	$\sqrt{ }$		FFH	$\sqrt{ }$	$\sqrt{ }$	\checkmark	
FFFECH	Priority specification flag register 10L	PR10L	PR10	R/W	\checkmark	\checkmark	\checkmark	FFH	\checkmark	\checkmark	\checkmark	
FFFEDH	Priority specification flag register 10 H	PR10H		R/W	$\sqrt{ }$	$\sqrt{ }$		FFH	$\sqrt{ }$	\checkmark	\checkmark	
FFFEEH	Priority specification flag register 11L	PR11L	PR11	R/W	\checkmark	\checkmark	\checkmark	FFH	\checkmark	\checkmark	\checkmark	
FFFEFH	Priority specification flag register 11 H	PR11H		R/W	\checkmark	\checkmark		FFH	\checkmark	\checkmark	\checkmark	
FFFFOH	Multiplication/division data register A (L)	MDAL/MULA		R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
FFFF1H												
FFFF2H	Multiplication/division data register A (H)	MDAH/MULB		R/W	-	-	\checkmark	0000H	$\sqrt{ }$	\checkmark	$\sqrt{ }$	
FFFF3H												
FFFF4H	Multiplication/division data register B (H)	MDBH/MULOH		R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
FFFF5H												
FFFF6H	Multiplication/division data register B (L)	MDBL/MULOL		R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
FFFF7H												

[^0]
3.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers)

Unlike a general-purpose register, each extended SFR (2nd SFR) has a special function.
Extended SFRs are allocated to the F0000H to F07FFH area. SFRs other than those in the SFR area (FFF00H to FFFFFH) are allocated to this area. An instruction that accesses the extended SFR area, however, is 1 byte longer than an instruction that accesses the SFR area.

Extended SFRs can be manipulated like general-purpose registers, using operation, transfer, and bit manipulation instructions. The manipulable bit units, 1, 8, and 16, depend on the SFR type.

Each manipulation bit unit can be specified as follows.

- 1-bit manipulation

Describe the symbol reserved by the assembler for the 1-bit manipulation instruction operand (!addr16.bit). This manipulation can also be specified with an address.

- 8-bit manipulation

Describe the symbol reserved by the assembler for the 8-bit manipulation instruction operand (!addr16). This manipulation can also be specified with an address.

- 16-bit manipulation

Describe the symbol reserved by the assembler for the 16-bit manipulation instruction operand (!addr16). When specifying an address, describe an even address.

Table 3-6 gives a list of the extended SFRs. The meanings of items in the table are as follows.

- Symbol

Symbol indicating the address of an extended SFR. It is a reserved word in the RA78K0R, and is defined as an sfr variable using the \#pragma sfr directive in the CC78K0R. When using the RA78K0R, ID78K0R-QB, and SM+ for 78K0R, symbols can be written as an instruction operand.

- R/W

Indicates whether the corresponding extended SFR can be read or written.
R/W: Read/write enable
R: Read only
W: Write only

- Manipulable bit units
" $\sqrt{ }$ " indicates the manipulable bit unit (1,8 , or 16). "-" indicates a bit unit for which manipulation is not possible.
- After reset

Indicates each register status upon reset signal generation.

Caution Do not access addresses to which 2nd SFRs are not assigned.

Remark For SFRs in the SFR area, see 3.2.4 Special function registers (SFRs).

Table 3-6. Extended SFR (2nd SFR) List (1/8)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipulable Bit Range			After Reset				
				1-bit	8-bit	16-bit						
F0017H	A/D port configuration register	ADPC			R/W	-	$\sqrt{ }$	-	10 H	\checkmark	\checkmark	\checkmark
F0030H	Pull-up resistor option register 0	PU0		R/W	\checkmark	$\sqrt{ }$	-	00H	$\sqrt{ }$	\checkmark	\checkmark	
F0031H	Pull-up resistor option register 1	PU1		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	
F0033H	Pull-up resistor option register 3	PU3		R/W	\checkmark	\checkmark	-	OOH	$\sqrt{ }$	\checkmark	\checkmark	
F0034H	Pull-up resistor option register 4	PU4		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	
F0035H	Pull-up resistor option register 5	PU5		R/W	\checkmark	\checkmark	-	00H	$\sqrt{ }$	\checkmark	\checkmark	
F0037H	Pull-up resistor option register 7	PU7		R/W	\checkmark	$\sqrt{ }$	-	00H	-	-	\checkmark	
F0038H	Pull-up resistor option register 8	PU8		R/W	\checkmark	$\sqrt{ }$	-	OOH	-	\checkmark	$\sqrt{ }$	
F0039H	Pull-up resistor option register 9	PU9		R/W	$\sqrt{ }$	$\sqrt{ }$	-	OOH	$\sqrt{ }$	\checkmark	$\sqrt{ }$	
F003AH	Pull-up resistor option register 10	PU10		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	
F003CH	Pull-up resistor option register 12	PU12		R/W	\checkmark	\checkmark	-	00H	$\sqrt{ }$	\checkmark	\checkmark	
F003EH	Pull-up resistor option register 14	PU14		R/W	\checkmark	$\sqrt{ }$	-	OOH	$\sqrt{ }$	\checkmark	\checkmark	
F0041H	Port input mode register 1	PIM1		R/W	\checkmark	\checkmark	-	OOH	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	
F0047H	Port input mode register 7	PIM7		R/W	\checkmark	$\sqrt{ }$	-	OOH	-	-	$\sqrt{ }$	
F0051H	Port output mode register 1	POM1		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	$\sqrt{ }$	
F0057H	Port output mode register 7	POM7		R/W	\checkmark	\checkmark	-	00H	-	-	\checkmark	
F0058H	Port output mode register 8	POM8		R/W	\checkmark	\checkmark	-	OOH	-	\checkmark	\checkmark	
F0060H	Noise filter enable register 0	NFENO		R/W	\checkmark	$\sqrt{ }$	-	OOH	$\sqrt{ }$	\checkmark	\checkmark	
F0061H	Noise filter enable register 1	NFEN1		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	
F0062H	Noise filter enable register 2	NFEN2		R/W	\checkmark	\checkmark	-	00H	-	-	\checkmark	
F0080H	Port function register	PFALL		R/W	\checkmark	\checkmark	-	OOH	$\sqrt{ }$	\checkmark	\checkmark	
F0081H	Segment enable register	SEGEN		R/W	\checkmark	\checkmark	-	00H	$\sqrt{ }$	\checkmark	\checkmark	
FOOEOH	Multiplication/division data register C (L)	MDCL		R	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F00E1H												
F00E2H	Multiplication/division data register C (H)	MDCH		R	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F00E3H												
F00E8H	Multiplication/division control register	MDUC		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	$\sqrt{ }$	
FOOFOH	Peripheral enable register 0	PER0		R/W	\checkmark	$\sqrt{ }$	-	00H	\checkmark	\checkmark	\checkmark	
F00F3H	Operation speed mode control register	OSMC		R/W	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	
F00F4H	Regulator mode control register	RMC		R/W	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	
F00F6H	20 MHz internal high-speed oscillation control register	DSCCTL		R/W	\checkmark	\checkmark	-	00H	$\sqrt{ }$	\checkmark	\checkmark	
F00FEH	BCD adjust result register	BCDAD		R	-	\checkmark	-	Undefined	\checkmark	\checkmark	\checkmark	
F0100H	Serial status register 00	SSR00L	SSR00	R	-	\checkmark	\checkmark	0000H	-	\checkmark	$\sqrt{ }$	
F0101H		-			-	-			-	\checkmark	\checkmark	
F0102H	Serial status register 01	SSR01L	SSR01	R	-	\checkmark	$\sqrt{ }$	0000H	-	\checkmark	\checkmark	
F0103H		-			-	-			-	$\sqrt{ }$	$\sqrt{ }$	
F0104H	Serial status register 02	SSR02L	SSR02	R	-	\checkmark	$\sqrt{ }$	0000H	\checkmark	\checkmark	\checkmark	
F0105H		-			-	-			$\sqrt{ }$	\checkmark	\checkmark	
F0106H	Serial status register 03	SSR03L	SSR03	R	-	\checkmark	$\sqrt{ }$	0000H	$\sqrt{ }$	\checkmark	\checkmark	
F0107H		-			-	-			\checkmark	$\sqrt{ }$	$\sqrt{ }$	
F0108H	Serial flag clear trigger register 00	SIR00L	SIR00	R/W	-	\checkmark	\checkmark	0000H	-	\checkmark	\checkmark	
F0109H		-			-	-			-	\checkmark	\checkmark	

Table 3-6. Extended SFR (2nd SFR) List (2/8)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipulable Bit Range			After Reset				
				1-bit	8-bit	16-bit						
F010AH	Serial flag clear trigger register 01	SIR01L	SIR01		R/W	-	$\sqrt{ }$	\checkmark	0000H	-	\checkmark	\checkmark
F010BH		-		-		-	-			\checkmark	\checkmark	
F010CH	Serial flag clear trigger register 02	SIR02L	SIR02	R/W	-	\checkmark	$\sqrt{ }$	0000H	\checkmark	\checkmark	\checkmark	
F010DH		-			-	-			\checkmark	\checkmark	\checkmark	
F010EH	Serial flag clear trigger register 03	SIR03L	SIR03	R/W	-	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F010FH		-			-	-			\checkmark	\checkmark	\checkmark	
F0110H	Serial mode register 00	SMR00		R/W	-	-	\checkmark	0020H	-	\checkmark	\checkmark	
F0111H												
F0112H	Serial mode register 01	SMR01		R/W	-	-	\checkmark	0020H	-	\checkmark	\checkmark	
F0113H												
F0114H	Serial mode register 02	SMR02		R/W	-	-	\checkmark	0020H	\checkmark	\checkmark	\checkmark	
F0115H												
F0116H	Serial mode register 03	SMR03		R/W	-	-	\checkmark	0020H	\checkmark	\checkmark	\checkmark	
F0117H												
F0118H	Serial communication operation setting register 00	SCR00		R/W	-	-	\checkmark	0087H	-	\checkmark	\checkmark	
F0119H												
F011AH	Serial communication operation setting register 01	SCR01		R/W	-	-	\checkmark	0087H	-	\checkmark	\checkmark	
F011BH												
F011CH	Serial communication operation setting register 02	SCR02		R/W	-	-	$\sqrt{ }$	0087H	\checkmark	\checkmark	\checkmark	
F011DH												
F011EH	Serial communication operation setting register 03	SCR03		R/W	-	-	\checkmark	0087H	\checkmark	\checkmark	\checkmark	
F011FH												
F0120H	Serial channel enable status register 0	SE0L	SE0	R	\checkmark	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F0121H		-			-	-			\checkmark	\checkmark	\checkmark	
F0122H	Serial channel start register 0	SSOL	SSO	R/W	\checkmark	$\sqrt{ }$	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F0123H		-			-	-			\checkmark	\checkmark	\checkmark	
F0124H	Serial channel stop register 0	STOL	STO	R/W	\checkmark	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F0125H		-			-	-			\checkmark	\checkmark	\checkmark	
F0126H	Serial clock select register 0	SPSOL	SPS0	R/W	-	$\sqrt{ }$	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F0127H		-			-	-			\checkmark	\checkmark	\checkmark	
F0128H	Serial output register 0	SOO		R/W	-	-	\checkmark	0FOFH	\checkmark	$\sqrt{ }$	\checkmark	
F0129H												
F012AH	Serial output enable register 0	SOEOL	SOEO	R/W	\checkmark	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F012BH		-			-	-			\checkmark	\checkmark	\checkmark	
F0134H	Serial output level register 0	SOLOL	SOLO	R/W	-	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F0135H		-			-	-			$\sqrt{ }$	\checkmark	\checkmark	
F0140H	Serial status register 10	SSR10L	SSR10	R	-	\checkmark	$\sqrt{ }$	0000H	\checkmark	\checkmark	\checkmark	
F0141H		-			-	-			\checkmark	\checkmark	\checkmark	
F0142H	Serial status register 11	SSR11L	SSR11	R	-	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F0143H		-			-	-			\checkmark	\checkmark	\checkmark	

Table 3-6. Extended SFR (2nd SFR) List (3/8)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipulable Bit Range			After Reset				
				1-bit	8-bit	16-bit						
F0144H	Serial status register 12	SSR12L	SSR12		R	-	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark
F0145H		-			-	-	\checkmark			\checkmark	\checkmark	
F0146H	Serial status register 13	SSR13L	SSR13	R	-	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F0147H		-			-	-			\checkmark	\checkmark	\checkmark	
F0148H	Serial flag clear trigger register 10	SIR10L	SIR10	R/W	-	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F0149H		-			-	-			\checkmark	\checkmark	\checkmark	
F014AH	Serial flag clear trigger register 11	SIR11L	SIR11	R/W	-	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F014BH		-			-	-			\checkmark	\checkmark	\checkmark	
F014EH	Serial flag clear trigger register 13	SIR13L	SIR13	R/W	-	$\sqrt{ }$	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F014FH		-			-	-			\checkmark	\checkmark	\checkmark	
F0150H	Serial mode register 10	SMR10		R/W	-	-	\checkmark	0020H	$\sqrt{ }$	\checkmark	\checkmark	
F0151H												
F0152H	Serial mode register 11	SMR11		R/W	-	-	\checkmark	0020H	$\sqrt{ }$	\checkmark	\checkmark	
F0153H												
F0154H	Serial mode register 12	SMR12		R/W	-	-	\checkmark	0020H	$\sqrt{ }$	\checkmark	\checkmark	
F0155H												
F0156H	Serial mode register 13	SMR13		R/W	-	-	\checkmark	0020H	$\sqrt{ }$	\checkmark	\checkmark	
F0157H												
F0158H	Serial communication operation setting register 10	SCR10		R/W	-	-	\checkmark	0087H	\checkmark	\checkmark	\checkmark	
F0159H												
F015AH	Serial communication operation setting register 11	SCR11		R/W	-	-	\checkmark	0087H	\checkmark	\checkmark	\checkmark	
F015BH												
F015CH	Serial communication operation setting register 12	SCR12		R/W	-	-	\checkmark	0087H	\checkmark	\checkmark	$\sqrt{ }$	
F015DH												
F015EH	Serial communication operation setting register 13	SCR13		R/W	-	-	\checkmark	0087H	\checkmark	\checkmark	\checkmark	
F015FH												
F0160H	Serial channel enable status register 1	SE1L	SE1	R	$\sqrt{ }$	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F0161H		-			-	-			\checkmark	\checkmark	\checkmark	
F0162H	Serial channel start register 1	SS1L	SS1	R/W	\checkmark	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F0163H		-			-	-			\checkmark	\checkmark	\checkmark	
F0164H	Serial channel stop register 1	ST1L	ST1	R/W	\checkmark	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F0165H		-			-	-			\checkmark	\checkmark	\checkmark	
F0166H	Serial clock select register 1	SPS1L	SPS1	R/W	-	\checkmark	$\sqrt{ }$	0000H	\checkmark	\checkmark	\checkmark	
F0167H		-			-	-			\checkmark	\checkmark	\checkmark	
F0168H	Serial output register 1	SO1		R/W	-	-	\checkmark	OFOFH	\checkmark	\checkmark	\checkmark	
F0169H												
F016AH	Serial output enable register 1	SOE1L	SOE1	R/W	\checkmark	\checkmark	$\sqrt{ }$	0000H	\checkmark	\checkmark	\checkmark	
F016BH		-			-	-			\checkmark	\checkmark	\checkmark	

Table 3-6. Extended SFR (2nd SFR) List (4/8)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipulable Bit Range			After Reset		-		
				1-bit	8-bit	16-bit						
F0174H	Serial output level register 1	SOL1L	SOL1		R/W	-	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark
F0175H		-		-		-	\checkmark			\checkmark	\checkmark	
F0180H	Timer counter register 00	TCROO		R	-	-	\checkmark	FFFFH	\checkmark	\checkmark	\checkmark	
F0181H												
F0182H	Timer counter register 01	TCR01		R	-	-	\checkmark		\checkmark	\checkmark	\checkmark	
F0183H												
F0184H	Timer counter register 02	TCR02		R	-	-	\checkmark	FFFFH	\checkmark	\checkmark	\checkmark	
F0185H												
F0186H	Timer counter register 03	TCR03		R	-	-	\checkmark		\checkmark	\checkmark	\checkmark	
F0187H												
F0188H	Timer counter register 04	TCR04		R	-	-	\checkmark	FFFFH	\checkmark	\checkmark		
F0189H												
F018AH	Timer counter register 05	TCR05		R	-	-	\checkmark	FFFFH	\checkmark		\checkmark	
F018BH												
F018CH	Timer counter register 06	TCR06		R	-	-	\checkmark	FFFFH	\checkmark	\checkmark	\checkmark	
F018DH												
F018EH	Timer counter register 07	TCR07		R	-	-	\checkmark	FFFFH	\checkmark	\checkmark	\checkmark	
F018FH												
F0190H	Timer mode register 00	TMR00		R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F0191H												
F0192H	Timer mode register 01	TMR01		R/W	-	-	\checkmark	$0000 \mathrm{H}$	\checkmark	\checkmark	\checkmark	
F0193H												
F0194H	Timer mode register 02	TMR02		R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F0195H												
F0196H	Timer mode register 03	TMR03		R/W	-	-	\checkmark	$0000 \mathrm{H}$	\checkmark	\checkmark	\checkmark	
F0197H												
F0198H	Timer mode register 04	TMR04		R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F0199H												
F019AH	Timer mode register 05	TMR05		R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F019BH												
F019CH	Timer mode register 06	TMR06		R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F019DH												
F019EH	Timer mode register 07	TMR07		R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F019FH												
F01A0H	Timer status register 00	$\begin{array}{\|c\|} \hline \text { TSROOL } \\ \hline \end{array}$	TSR00	R	-	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F01A1H					-	-			\checkmark	\checkmark	\checkmark	
F01A2H	Timer status register 01	TSR01L	TSR01	R	-	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F01A3H		-			-	-			\checkmark	\checkmark	\checkmark	
F01A4H	Timer status register 02	TSR02L	TSR02	R	-	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F01A5H		-			-	-			\checkmark	\checkmark	\checkmark	

Table 3-6. Extended SFR (2nd SFR) List (5/8)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipulable Bit Range			After Reset		$\begin{aligned} & \text { D } \\ & \text { D } \\ & \text { O} \\ & \text { D} \\ & \stackrel{\Omega}{\omega} \end{aligned}$			
				1-bit	8-bit	16-bit							
F01A6H	Timer status register 03	TSR03L	TSR03		R	-	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F01A7H		-		-		-	\checkmark			\checkmark	\checkmark		
F01A8H	Timer status register 04	TSR04L	TSR04	R	-	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark		
F01A9H		-			-	-			\checkmark	\checkmark	\checkmark		
F01AAH	Timer status register 05	TSR05L	TSR05	R	-	\checkmark	$\sqrt{ }$	0000H	-	\checkmark	\checkmark		
F01ABH		-			-	-			-	\checkmark	\checkmark		
F01ACH	Timer status register 06	TSR06L	TSR06	R	-	$\sqrt{ }$	$\sqrt{ }$	0000H	-	\checkmark	\checkmark		
F01ADH		-			-	-			-	\checkmark	\checkmark		
F01AEH	Timer status register 07	TSR07L	TSR07	R	-	$\sqrt{ }$	$\sqrt{ }$	0000H	\checkmark	\checkmark	\checkmark		
F01AFH		-			-	-			\checkmark	\checkmark	\checkmark		
F01B0H	Timer channel enable status register 0	TEOL	TE0	R	\checkmark	$\sqrt{ }$	$\sqrt{ }$	0000H	$\sqrt{ }$	\checkmark	\checkmark		
F01B1H		-			-	-			\checkmark	\checkmark	\checkmark		
F01B2H	Timer channel start register 0	TSOL	TSO	R/W	\checkmark	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark		
F01B3H		-			-	-			\checkmark	\checkmark	\checkmark		
F01B4H	Timer channel stop register 0	TTOL	TT0	R/W	\checkmark	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark		
F01B5H		-			-	-			$\sqrt{ }$	\checkmark	\checkmark		
F01B6H	Timer clock select register 0	TPSOL	TPS0	R/W	-	$\sqrt{ }$	\checkmark	0000H	\checkmark	\checkmark	\checkmark		
F01B7H		-			-	-			\checkmark	\checkmark	\checkmark		
F01B8H	Timer output register 0	TOOL	TOO	R/W	-	$\sqrt{ }$	$\sqrt{ }$	0000H	\checkmark	\checkmark	\checkmark		
F01B9H		-			-	-			\checkmark	\checkmark	\checkmark		
F01BAH	Timer output enable register 0	TOEOL	TOEO	R/W	\checkmark	\checkmark	$\sqrt{ }$	0000H	\checkmark	\checkmark	\checkmark		
F01BBH		-			-	-			\checkmark	\checkmark	\checkmark		
F01BCH	Timer output level register 0	TOLOL	TOLO	R/W	-	$\sqrt{ }$	$\sqrt{ }$	0000H	\checkmark	\checkmark	\checkmark		
F01BDH		-			-	-			\checkmark	\checkmark	\checkmark		
F01BEH	Timer output mode register 0	TOMOL	TOM0	R/W	-	$\sqrt{ }$	\checkmark	0000H	\checkmark	\checkmark	\checkmark		
F01BFH		-			-	-			\checkmark	\checkmark	\checkmark		
F01C0H	Timer counter register 10	TCR10		R	-	-	$\sqrt{ }$	FFFFH	\checkmark	\checkmark	\checkmark		
F01C1H													
F01C2H	Timer counter register 11	TCR11		R	-	-	\checkmark	FFFFH	\checkmark	\checkmark	$\sqrt{ }$		
F01C3H													
F01C4H	Timer counter register 12	TCR12		R	-	-	\checkmark	FFFFH	\checkmark	\checkmark	\checkmark		
F01C5H													
F01C6H	Timer counter register 13	TCR13		R	-	-	\checkmark	FFFFH	\checkmark	\checkmark	\checkmark		
F01C7H													
F01C8H	Timer mode register 10	TMR10		R/W	-	-	\checkmark	0000H	\checkmark	$\sqrt{ }$	\checkmark		
F01C9H													
F01CAH	Timer mode register 11	TMR11		R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark		
F01CBH													
F01CCH	Timer mode register 12	TMR12		R/W	-	-	\checkmark	0000H	\checkmark	$\checkmark \sqrt{ } \sqrt{ }$			
F01CDH													

Table 3-6. Extended SFR (2nd SFR) List (6/8)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipulable Bit Range			After Reset				
				1-bit	8-bit	16-bit						
F01CEH	Timer mode register 13	TMR13			R/W	-	-	\checkmark	0000H	\checkmark	\checkmark	\checkmark
F01CFH												
F01D0H	Timer status register 10	TSR10L	TSR10	R	-	$\sqrt{ }$	\checkmark	0000H	-	-	\checkmark	
F01D1H		-			-	-			-	-	\checkmark	
F01D2H	Timer status register 11	TSR11L	TSR11	R	-	$\sqrt{ }$	$\sqrt{ }$	0000H	-	-	\checkmark	
F01D3H		-			-	-			-	-	\checkmark	
F01D4H	Timer status register 12	TSR12L	TSR12	R	-	$\sqrt{ }$	\checkmark	0000H	-	-	\checkmark	
F01D5H		-			-	-			-	-	\checkmark	
F01D6H	Timer status register 13	TSR13L	TSR13	R	-	\checkmark	\checkmark	0000H	-	-	\checkmark	
F01D7H		-			-	-			-	-	\checkmark	
F01D8H	Timer channel enable status register 1	TE1L	TE1	R	\checkmark	$\sqrt{ }$	\checkmark	0000H	$\sqrt{ }$	\checkmark	\checkmark	
F01D9H		-			-	-			$\sqrt{ }$	\checkmark	\checkmark	
F01DAH	Timer channel start register 1	TS1L	TS1	R/W	\checkmark	\checkmark	\checkmark	0000H	$\sqrt{ }$	\checkmark	\checkmark	
F01DBH		-			-	-			$\sqrt{ }$	\checkmark	\checkmark	
F01DCH	Timer channel stop register 1	TT1L	TT1	R/W	\checkmark	\checkmark	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F01DDH		-			-	-			$\sqrt{ }$	\checkmark	\checkmark	
F01DEH	Timer clock select register 1	TPS1L	TPS1	R/W	-	$\sqrt{ }$	\checkmark	0000H	\checkmark	\checkmark	\checkmark	
F01DFH		-			-	-			$\sqrt{ }$	\checkmark	\checkmark	
F01E0H	Timer output register 1	TO1L	TO1	R/W	-	\checkmark	\checkmark	0000H	-	-	\checkmark	
F01E1H		-			-	-			-	-	\checkmark	
F01E2H	Timer output enable register 1	TOE1L	TOE1	R/W	\checkmark	\checkmark	$\sqrt{ }$	0000H	-	-	\checkmark	
F01E3H		-			-	-			-	-	\checkmark	
F01E4H	Timer output level register 1	TOL1L	TOL1	R/W	-	\checkmark	\checkmark	0000H	-	-	\checkmark	
F01E5H		-			-	-			-	-	\checkmark	
F01E6H	Timer output mode register 1	TOM1L	TOM1	R/W	-	$\sqrt{ }$	$\sqrt{ }$	0000H	-	-	\checkmark	
F01E7H		-			-	-			-	-	\checkmark	
F0230H	IICA control register 0	IICCTLO		R/W	\checkmark	\checkmark	-	OOH	-	\checkmark	\checkmark	
F0231H	IICA control register 1	IICCTL1		R/W	\checkmark	\checkmark	-	00H	-	\checkmark	\checkmark	
F0232H	IICA low-level width setting register	IICWL		R/W	-	\checkmark	-	FFH	-	\checkmark	\checkmark	
F0233H	IICA high-level width setting register	IICWH		R/W	-	\checkmark	-	FFH	-	\checkmark	\checkmark	
F0234H	Slave address register	SVA		R/W	-	$\sqrt{ }$	-	OOH	-	\checkmark	\checkmark	
F0400H	LCD display data memory 0	SEG0		R/W	-	\checkmark	-	OOH	$\sqrt{ }$	\checkmark	\checkmark	
F0401H	LCD display data memory 1	SEG1		R/W	-	$\sqrt{ }$	-	00H	$\sqrt{ }$	\checkmark	\checkmark	
F0402H	LCD display data memory 2	SEG2		R/W	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	
F0403H	LCD display data memory 3	SEG3		R/W	-	\checkmark	-	00H	$\sqrt{ }$	\checkmark	\checkmark	
F0404H	LCD display data memory 4	SEG4		R/W	-	$\sqrt{ }$	-	OOH	\checkmark	\checkmark	\checkmark	
F0405H	LCD display data memory 5	SEG5		R/W	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	
F0406H	LCD display data memory 6	SEG6		R/W	-	\checkmark	-	00H	$\sqrt{ }$	\checkmark	\checkmark	
F0407H	LCD display data memory 7	SEG7		R/W	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark	
F0408H	LCD display data memory 8	SEG8		R/W	-	\checkmark	-	OOH	\checkmark	\checkmark	\checkmark	

Table 3-6. Extended SFR (2nd SFR) List (7/8)

Address	Special Function Register (SFR) Name	Symbol	R/W	Manipulable Bit Range			After Reset			
				1-bit	8-bit	16-bit				
F0409H	LCD display data memory 9	SEG9	R/W	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark
F040AH	LCD display data memory 10	SEG10	R/W	-	\checkmark	-	00H	\checkmark	$\sqrt{ }$	\checkmark
F040BH	LCD display data memory 11	SEG11	R/W	-	\checkmark	-	00H	\checkmark	$\sqrt{ }$	\checkmark
F040CH	LCD display data memory 12	SEG12	R/W	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark
F040DH	LCD display data memory 13	SEG13	R/W	-	\checkmark	-	00H	$\sqrt{ }$	$\sqrt{ }$	\checkmark
F040EH	LCD display data memory 14	SEG14	R/W	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark
F040FH	LCD display data memory 15	SEG15	R/W	-	\checkmark	-	00H	\checkmark	$\sqrt{ }$	\checkmark
F0410H	LCD display data memory 16	SEG16	R/W	-	\checkmark	-	00H	\checkmark	$\sqrt{ }$	\checkmark
F0411H	LCD display data memory 17	SEG17	R/W	-	\checkmark	-	OOH	\checkmark	$\sqrt{ }$	\checkmark
F 0412 H	LCD display data memory 18	SEG18	R/W	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark
F0413H	LCD display data memory 19	SEG19	R/W	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark
F0414H	LCD display data memory 20	SEG20	R/W	-	\checkmark	-	00H	\checkmark	$\sqrt{ }$	\checkmark
F0415H	LCD display data memory 21	SEG21	R/W	-	\checkmark	-	00H	\checkmark	$\sqrt{ }$	\checkmark
F0416H	LCD display data memory 22	SEG22	R/W	-	\checkmark	-	00H	\checkmark	$\sqrt{ }$	\checkmark
F0417H	LCD display data memory 23	SEG23	R/W	-	\checkmark	-	00H	\checkmark	$\sqrt{ }$	$\sqrt{ }$
F 0418 H	LCD display data memory 24	SEG24	R/W	-	\checkmark	-	00H	\checkmark	$\sqrt{ }$	\checkmark
F0419H	LCD display data memory 25	SEG25	R/W	-	\checkmark	-	00H	\checkmark	$\sqrt{ }$	\checkmark
F041AH	LCD display data memory 26	SEG26	R/W	-	\checkmark	-	00H	\checkmark	$\sqrt{ }$	\checkmark
F041BH	LCD display data memory 27	SEG27	R/W	-	\checkmark	-	00H	\checkmark	\checkmark	\checkmark
F041CH	LCD display data memory 28	SEG28	R/W	-	$\sqrt{ }$	-	00H	\checkmark	$\sqrt{ }$	\checkmark
F041DH	LCD display data memory 29	SEG29	R/W	-	\checkmark	-	00H	\checkmark	$\sqrt{ }$	\checkmark
F041EH	LCD display data memory 30	SEG30	R/W	-	\checkmark	-	00H	\checkmark	$\sqrt{ }$	\checkmark
F041FH	LCD display data memory 31	SEG31	R/W	-	\checkmark	-	00H	-	$\sqrt{ }$	\checkmark
F0420H	LCD display data memory 32	SEG32	R/W	-	\checkmark	-	00H	-	$\sqrt{ }$	\checkmark
F0421H	LCD display data memory 33	SEG33	R/W	-	$\sqrt{ }$	-	00H	-	$\sqrt{ }$	\checkmark
F0422H	LCD display data memory 34	SEG34	R/W	-	\checkmark	-	00H	-	$\sqrt{ }$	\checkmark
F0423H	LCD display data memory 35	SEG35	R/W	-	\checkmark	-	00H	-	$\sqrt{ }$	\checkmark
F0424H	LCD display data memory 36	SEG36	R/W	-	\checkmark	-	00H	-	$\sqrt{ }$	\checkmark
F0425H	LCD display data memory 37	SEG37	R/W	-	\checkmark	-	00H	-	$\sqrt{ }$	\checkmark
F0426H	LCD display data memory 38	SEG38	R/W	-	\checkmark	-	00H	-	$\sqrt{ }$	\checkmark
F0427H	LCD display data memory 39	SEG39	R/W	-	\checkmark	-	00H	-	$\sqrt{ }$	\checkmark
F0428H	LCD display data memory 40	SEG40	R/W	-	\checkmark	-	00H	-	-	\checkmark
F0429H	LCD display data memory 41	SEG41	R/W	-	\checkmark	-	00H	-	-	\checkmark
F042AH	LCD display data memory 42	SEG42	R/W	-	$\sqrt{ }$	-	00H	-	-	\checkmark
F042BH	LCD display data memory 43	SEG43	R/W	-	$\sqrt{ }$	-	00H	-	-	\checkmark
F042CH	LCD display data memory 44	SEG44	R/W	-	\checkmark	-	00H	-	-	\checkmark
F042DH	LCD display data memory 45	SEG45	R/W	-	\checkmark	-	00H	-	-	\checkmark
F042EH	LCD display data memory 46	SEG46	R/W	-	\checkmark	-	00H	-	-	\checkmark

Table 3-6. Extended SFR (2nd SFR) List (8/8)

Address	Special Function Register (SFR) Name	Symbol	R/W	Manipulable Bit Range			After Reset			
				1-bit	8-bit	16-bit				
F042FH	LCD display data memory 47	SEG47	R/W	-	\checkmark	-	OOH	-	-	\checkmark
F0430H	LCD display data memory 48	SEG48	R/W	-	\checkmark	-	00H	-	-	\checkmark
F0431H	LCD display data memory 49	SEG49	R/W	-	\checkmark	-	OOH	-	-	\checkmark
F0432H	LCD display data memory 50	SEG50	R/W	-	$\sqrt{ }$	-	OOH	-	-	\checkmark
F0433H	LCD display data memory 51	SEG51	R/W	-	$\sqrt{ }$	-	OOH	-	-	$\sqrt{ }$
F0434H	LCD display data memory 52	SEG52	R/W	-	\checkmark	-	OOH	-	-	\checkmark
F0435H	LCD display data memory 53	SEG53	R/W	-	\checkmark	-	00H	-	-	\checkmark

Remark For SFRs in the SFR area, see Table 3-5 SFR List.

3.3 Instruction Address Addressing

3.3.1 Relative addressing

[Function]

Relative addressing stores in the program counter (PC) the result of adding a displacement value included in the instruction word (signed complement data: -128 to +127 or -32768 to +32767) to the program counter (PC)'s value (the start address of the next instruction), and specifies the program address to be used as the branch destination. Relative addressing is applied only to branch instructions.

Figure 3-14. Outline of Relative Addressing

3.3.2 Immediate addressing

[Function]

Immediate addressing stores immediate data of the instruction word in the program counter, and specifies the program address to be used as the branch destination.
For immediate addressing, CALL !!addr20 or BR !!addr20 is used to specify 20-bit addresses and CALL !addr16 or BR !addr16 is used to specify 16 -bit addresses. 0000 is set to the higher 4 bits when specifying 16 -bit addresses.

Figure 3-15. Example of CALL !!addr20/BR !!addr20

Figure 3-16. Example of CALL !addr16/BR !addr16

PC

3.3.3 Table indirect addressing

[Function]

Table indirect addressing specifies a table address in the CALLT table area (0080 H to 00 BFH) with the 5 -bit immediate data in the instruction word, stores the contents at that table address and the next address in the program counter (PC) as 16-bit data, and specifies the program address. Table indirect addressing is applied only for CALLT instructions.
In the 78 KOR microcontrollers, branching is enabled only to the 64 KB space from 00000 H to 0 FFFFH.

Figure 3-17. Outline of Table Indirect Addressing

3.3.4 Register direct addressing

[Function]

Register direct addressing stores in the program counter (PC) the contents of a general-purpose register pair ($\mathrm{AX} / \mathrm{BC} / \mathrm{DE} / \mathrm{HL}$) and CS register of the current register bank specified with the instruction word as 20-bit data, and specifies the program address. Register direct addressing can be applied only to the CALL AX, BC, DE, HL, and BR AX instructions.

Figure 3-18. Outline of Register Direct Addressing

3.4 Addressing for Processing Data Addresses

3.4.1 Implied addressing

[Function]

Instructions for accessing registers (such as accumulators) that have special functions are directly specified with the instruction word, without using any register specification field in the instruction word.

[Operand format]

Because implied addressing can be automatically employed with an instruction, no particular operand format is necessary.
Implied addressing can be applied only to MULU X.

Figure 3-19. Outline of Implied Addressing

3.4.2 Register addressing

[Function]

Register addressing accesses a general-purpose register as an operand. The instruction word of 3-bit long is used to select an 8-bit register and the instruction word of 2-bit long is used to select a 16-bit register.

[Operand format]

Identifier	Description	
r	$\mathrm{X}, \mathrm{A}, \mathrm{C}, \mathrm{B}, \mathrm{E}, \mathrm{D}, \mathrm{L}, \mathrm{H}$	
rp	$\mathrm{AX}, \mathrm{BC}, \mathrm{DE}, \mathrm{HL}$	

Figure 3-20. Outline of Register Addressing

3.4.3 Direct addressing

[Function]

Direct addressing uses immediate data in the instruction word as an operand address to directly specify the target address.

[Operand format]

Identifier	Description
ADDR16	Label or 16-bit immediate data (only the space from F0000H to FFFFFH is specifiable)
ES: ADDR16	Label or 16-bit immediate data (higher 4-bit addresses are specified by the ES register)

Figure 3-21. Example of ADDR16

Figure 3-22. Example of ES:ADDR16

3.4.4 Short direct addressing

[Function]

Short direct addressing directly specifies the target addresses using 8-bit data in the instruction word. This type of addressing is applied only to the space from FFE20H to FFF1FH.

[Operand format]

Identifier	Description
SADDR	Label, FFE20H to FFF1FH immediate data, or 0FE20H to 0FF1FH immediate data (only the space from FFE20H to FFF1FH is specifiable)
SADDRP	Label, FFE20H to FFF1FH immediate data, or 0FE20H to 0FF1FH immediate data (even address only) (only the space from FFE20H to FFF1FH is specifiable)

Figure 3-23. Outline of Short Direct Addressing

Remark SADDR and SADDRP are used to describe the values of addresses FE20H to FF1FH with 16-bit immediate data (higher 4 bits of actual address are omitted), and the values of addresses FFE20H to FFF1FH with 20bit immediate data.
Regardless of whether SADDR or SADDRP is used, addresses within the space from FFE20H to FFF1FH are specified for the memory.

3.4.5 SFR addressing

[Function]

SFR addressing directly specifies the target SFR addresses using 8-bit data in the instruction word. This type of addressing is applied only to the space from FFFOOH to FFFFFH.

[Operand format]

Identifier	Description
SFR	SFR name
SFRP	16-bit-manipulatable SFR name (even address only)

Figure 3-24. Outline of SFR Addressing

3.4.6 Register indirect addressing

[Function]

Register indirect addressing directly specifies the target addresses using the contents of the register pair specified with the instruction word as an operand address.

[Operand format]

Identifier	Description
-	$[D E],[H L]$ (only the space from F0000H to FFFFFH is specifiable)
-	ES:[DE], ES:[HL] (higher 4-bit addresses are specified by the ES register)

Figure 3-25. Example of [DE], [HL]

Figure 3-26. Example of ES:[DE], ES:[HL]

3.4.7 Based addressing

[Function]

Based addressing uses the contents of a register pair specified with the instruction word as a base address, and 8bit immediate data or 16 -bit immediate data as offset data. The sum of these values is used to specify the target address.

[Operand format]

Identifier	
-	[HL + byte], [DE + byte], [SP + byte] (only the space from F0000H to FFFFFH is specifiable)
-	word[B], word[C] (only the space from F0000H to FFFFFFH is specifiable)
-	word[BC] (only the space from F0000H to FFFFFH is specifiable)
-	ES:[HL + byte], ES:[DE + byte] (higher 4-bit addresses are specified by the ES register)
-	ES:word[B], ES:word[C] (higher 4-bit addresses are specified by the ES register)
-	ES:word[BC] (higher 4-bit addresses are specified by the ES register)

Figure 3-27. Example of [SP+byte]

Figure 3-28. Example of [HL + byte], [DE + byte]

Figure 3-29. Example of word[B], word[C]

Figure 3-30. Example of word[BC]

Figure 3-31. Example of ES:[HL + byte], ES:[DE + byte]

Figure 3-32. Example of ES:word[B], ES:word[C]

Figure 3-33. Example of ES:word[BC]

3.4.8 Based indexed addressing

[Function]

Based indexed addressing uses the contents of a register pair specified with the instruction word as the base address, and the content of the B register or C register similarly specified with the instruction word as offset address. The sum of these values is used to specify the target address.

[Operand format]

Identifier	Description
-	$[H L+B],[H L+C]$ (only the space from F0000H to FFFFFH is specifiable)
-	ES:[HL+B], ES:[HL+C] (higher 4-bit addresses are specified by the ES register)

Figure 3-34. Example of [HL+B], [HL+C]

Figure 3-35. Example of ES:[HL+B], ES:[HL+C]

3.4.9 Stack addressing

[Function]

The stack area is indirectly addressed with the stack pointer (SP) contents. This addressing is automatically employed when the PUSH, POP, subroutine call, and return instructions are executed or the register is saved/restored upon generation of an interrupt request.
Stack addressing is applied only to the internal RAM area.

[Operand format]

Identifier	Description
	$\mathrm{PUSH} \mathrm{AX} / \mathrm{BC} / \mathrm{DE} / \mathrm{HL}$
	$\mathrm{POP} \mathrm{AX/BC/DE/HL}$
	CALL/CALLT
	RET
	BRK
	RETB
	(Interrupt request generated)
	RETI

CHAPTER 4 PORT FUNCTIONS

4.1 Port Functions

There are four types of pin I/O buffer power supplies: AVddo, AVdd, AVdd1, EVdd1, EVdd, and Vdd. The relationship between these power supplies and the pins is shown below.

Table 4-1. Pin I/O Buffer Power Supplies

Power Supply	Corresponding Pins
AVddo, AVdd	P20 to P27, P150 to P152, P157
AVdD1, EVdD1	P110, P111
EVdd	- Port pins other than P20 to P27, P110, P111, P150 to P152, P157 - $\overline{\text { RESET, }}$, FLMDO pins
VdD	Pins other than port, $\overline{\text { RESET }}$, FLMD0 pins

$78 \mathrm{KOR} / \mathrm{Lx} 3$ products are provided with digital I/O ports, which enable variety of control operations. The functions of each port are shown in Tables 4-2 to 4-4.

In addition to the function as digital I/O ports, these ports have several alternate functions. For details of the alternate functions, see CHAPTER 2 PIN FUNCTIONS.

Table 4-2. Port Functions (78K0R/LF3) (1/2)

Function Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0. 3-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	CAPH
P01				CAPL
P02				VıC3
P10	I/O	Port 1. 6-bit I/O port. Input/output can be specified in 1-bit units. Input of P10, P11, P14 and P15 can be set to TTL buffer. Output of P10 to P15 can be set to N-ch open-drain output (VDD tolerance). Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SCK20/SCL20
P11				SI20/RxD2/SDA20/ INTP6
P12				SO20/TxD2/TO02
P13				SO10/TxD1/TO04
P14				SI10/RxD1/SDA10/ INTP4
P15				$\overline{\text { SCK10/SCL10/INTP7 }}$
P20	I/O	Port 2. 7-bit I/O port. Input/output can be specified in 1-bit units.	Digital input port	ANIO/AMPO- ${ }^{\text {Note } 1}$
P21				ANI1/AMP00 ${ }^{\text {Note } 1}$
P22				ANI2/AMP0 $+{ }^{\text {Note } 1}$
P23				ANI3/AMP1- ${ }^{\text {Note } 1}$
P24				ANI4/AMP1O ${ }^{\text {Note } 1}$
P25				ANI5/AMP1+ ${ }^{\text {Note } 1}$
P26				ANI6
P30	I/O	Port 3. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TI03/TO00/RTC1HZ/ INTP1
P31				TI00/TO03/RTCDIV/ RTCCL/PCLBUZ1/ INTP2
P32				TI01/TO01/INTP5/ PCLBUZO
P33				TI07/TO07/INTP3
P40 ${ }^{\text {Note }}$	I/O	Port 4. 2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TOOLO
P41				TOOL1

Notes 1. AMPxx applies to μ PD78F150xA only.
2. If on-chip debugging is enabled by using an option byte, be sure to pull up the P40/TOOLO pin externally.

Table 4-2. Port functions (78K0R/LF3) (2/2)

Function Name	I/O	Function	After Reset	Alternate Function
P50	I/O	Port 5. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG30/RxD3
P51				SEG29/TxD3
P52				SEG28/TI02
P53				SEG27/TI04
P54 to P57				SEG26 to SEG23
P90 to P92	I/O	Port 9. 3-bit I/O port. Inputs/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG22 to SEG20
P100	I/O	Port 10. 1-bit I/O port. Inputs/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG11
P110	I/O	Port 11.	Input port	ANOO ${ }^{\text {Note }}$
P111		2-bit I/O port. Inputs/output can be specified in 1-bit units.		ANO1 ${ }^{\text {Note }}$
P120	I/O	Port 12.	Input port	INTPO/EXLVI
P121	Input	1-bit I/O port and 4-bit input port.		X1
P122		For only P120, use of an on-chip pull-up resistor can be		X2/EXCLK
P123		specified by a software setting.		XT1
P124				XT2
P130	Output	Port 13. 1-bit output port.	Output port	-
P140 to P147	I/O	Port 14. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG19 to SEG12
P157	I/O	Port 15. 1-bit I/O port. Input/output can be specified in 1-bit units.	Digital input port	ANI15/AV REFM $^{\text {Note }}$

Note ANOx and AVrefm apply to μ PD78F150xA only.

Table 4-3. Port functions (78KOR/LG3) (1/2)

	Function Name	I/O	Function	After Reset	Alternate Function
	P00	I/O	Port 0 .	Input port	CAPH
	P01		3-bit I/O port.		CAPL
	P02		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		VıC3
	P10	I/O	Port 1.	Input port	SCK20/SCL20
	P11		7-bit I/O port. Input/output can be specified in 1-bit units.		SI20/RxD2/SDA20/ INTP6
	P12		Input of P10, P11, P14 and P15 can be set to TTL buffer. Output of P10 to P15 can be set to N-ch open-drain output (Vdd		SO20/TxD2/TO02
	P13		tolerance).		SO10/TxD1/TO04
	P14		Use of an on-chip pull-up resistor can be specified by a software setting.		SI10/RxD1/SDA10/ INTP4
	P15				$\overline{\text { SCK10/SCL10/INTP7 }}$
	P16				TI05/TO05/INTP10
<R>	P20	1/O	Port 2. 8-bit I/O port. Input/output can be specified in 1-bit units.	Digital input port	ANIO/AMPO- ${ }^{\text {Note } 1}$
	P21				ANI1/AMP00 ${ }^{\text {Note } 1}$
	P22				ANI2/AMP0 $+{ }^{\text {Note } 1}$
	P23				ANI3/AMP1- Note 1
	P24				ANI4/AMP1O ${ }^{\text {Note } 1}$
	P25				ANI5/AMP1+ ${ }^{\text {Note } 1}$
	P26				ANI6/AMP2- ${ }^{\text {Note } 1}$
	P27				ANI7/AMP2O ${ }^{\text {Note } 1}$
	P30	I/O	Port 3. 5-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TI03/TO00/RTC1HZ/ INTP1
	P31				TI00/TO03/RTCDIV/ RTCCL/PCLBUZ1/ INTP2
	P32				TI01/TO01/INTP5/ PCLBUZO
	P33				T107/TO07/INTP3
	P34				TI06/TO06/INTP8
<R>	$\mathrm{P} 40^{\text {Note } 2}$	I/O	Port 4. 2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TOOLO
	P41				TOOL1

Notes 1. AMPxx applies to μ PD78F150xA only.
2. If on-chip debugging is enabled by using an option byte, be sure to pull up the P40/TOOLO pin externally.

Table 4-3. Port functions (78K0R/LG3) (2/2)

	Function Name	I/O	Function	After Reset	Alternate Function
	P50	I/O	Port 5. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG39/RxD3
	P51				SEG38/TxD3
	P52				SEG37/TI02
	P53				SEG36/TI04
	P54 to P57				SEG35 to SEG32
	P60	I/O	Port 6. 2-bit I/O port. Output is N -ch open-drain output (6 V tolerance). Input/output can be specified in 1-bit units.	Input port	SCLO
	P61				SDA0
	P80	I/O	Port 8. 3-bit I/O port. Inputs/output can be specified in 1-bit units. Output of P80 and P82 can be set to N-ch open-drain output (Vdo tolerance). Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	$\overline{\text { SCK00/INTP11 }}$
	P81				RxD0/SI00/INTP9
	P82				TxD0/SO00
	P90 to P97	I/O	Port 9. 8-bit I/O port. Inputs/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG31 to SEG24
	P100	I/O	Port 10. 1-bit I/O port. Inputs/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG15
<R>	P110	I/O	Port 11. 2-bit I/O port. Inputs/output can be specified in 1-bit units.	Input port	ANOO ${ }^{\text {Note }}$
	P111				ANO1 ${ }^{\text {Note }}$
	P120	I/O	Port 12. 1-bit I/O port and 4-bit input port. For only P120, input/output can be specified in 1-bit units. For only P120, use of an on-chip pull-up resistor can be specified by a software setting.	Input port	INTPO/EXLVI
	P121	Input			X1
	P122				X2/EXCLK
	P123				XT1
	P124				XT2
	P130	Output	Port 13. 1-bit output port.	Output port	-
	P140 to P147	I/O	Port 14. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG23 to SEG16
<R>	P150	I/O	Port 15. 4-bit I/O port. Input/output can be specified in 1-bit units.	Digital input port	ANI8/AMP2+ ${ }^{\text {Note }}$
	P151				ANI9
	P152				ANI10
<R>	P157				ANI15/AV REF $^{\text {Note }}$

$<$ R $>\quad$ Note ANOx, AMP2+, and AVREFM apply to μ PD78F150xA only.

Table 4-4. Port functions (78KOR/LH3) (1/3)

Function Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0. 3-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	CAPH
P01				CAPL
P02				VLC3
P10	I/O	Port 1. 8-bit I/O port. Input/output can be specified in 1-bit units. Input of P10, P11, P14 and P15 can be set to TTL buffer. Output of P10 to P15 can be set to N-ch open-drain output (Vdd tolerance). Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	$\overline{\text { SCK20/SCL20 }}$
P11				SI20/RxD2/SDA20/ INTP6
P12				SO20/TxD2/TO02
P13				SO10/TxD1/TO04
P14				SI10/RxD1/SDA10/ INTP4
P15				$\overline{\text { SCK10/SCL10/INTP7 }}$
P16				TI05/TO05/INTP10
P17				-
P20	I/O	Port 2. 8-bit I/O port. Input/output can be specified in 1-bit units.	Digital input port	ANIO/AMPO- ${ }^{\text {Note } 1}$
P21				ANI1/AMP00 ${ }^{\text {Note } 1}$
P22				ANI2/AMP0 $+{ }^{\text {Note } 1}$
P23				ANI3/AMP1- ${ }^{\text {Note } 1}$
P24				ANI4/AMP1O ${ }^{\text {Note }}$
P25				ANI5/AMP1+ ${ }^{\text {Note } 1}$
P26				ANI6/AMP2- ${ }^{\text {Note } 1}$
P27				ANI7/AMP2O ${ }^{\text {Note } 1}$
P30	I/O	Port 3. 5-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TI03/TO00/RTC1HZ/ INTP1
P31				TI00/TO03/RTCDIV/ RTCCL/PCLBUZ1/ INTP2
P32				TI01/TO01/INTP5/ PCLBUZO
P33				T107/TO07/INTP3
P34				TI06/TO06/INTP8
P40 ${ }^{\text {Note } 2}$	I/O	Port 4. 2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	TOOLO
P41				TOOL1

Notes 1. AMPxx applies to μ PD78F150xA only.
2. If on-chip debugging is enabled by using an option byte, be sure to pull up the P40/TOOLO pin externally.

Table 4-4. Port functions (78KOR/LH3) (2/3)

Function Name	I/O	Function	After Reset	Alternate Function
P50	I/O	Port 5. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG53/RxD3
P51				SEG52/TxD3
P52				SEG51/TIO2
P53				SEG50/TI04
P54 to P57				SEG49 to SEG46
P60	I/O	Port 6. 2-bit I/O port. Output is N -ch open-drain output (6 V tolerance). Input/output can be specified in 1-bit units.	Input port	SCLO
P61				SDAO
P70 to P74	I/O	Port 7. 8-bit I/O port. Input/output can be specified in 1-bit units. Input of P75 and P76 can be set to TTL buffer. Output of P75 and P77 can be set to N-ch open-drain output (Vdo tolerance). Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	KR0 to KR4
P75				KR5/SCK01
P76				KR6/SI01
P77				KR7/SO01
P80	I/O	Port 8. 8-bit I/O port. Inputs/output can be specified in 1-bit units. Output of P80 and P82 can be set to N-ch open-drain output (Vdo tolerance). Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	$\overline{\text { SCK00/INTP11 }}$
P81				RxD0/SI00/INTP9
P82				TxD0/SO00
P83				-
P84				TI10/TO10
P85				TI11/TO11
P86				TI12/TO12
P87				TI13/TO13
P90 to P97	I/O	Port 9. 8-bit I/O port. Inputs/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG45 to SEG38
P100 to P102	I/O	Port 10. 3-bit I/O port. Inputs/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG29 to SEG27
P110	I/O	Port 11. 2-bit I/O port. Inputs/output can be specified in 1-bit units.	Input port	$\mathrm{ANOO}^{\text {Note }}$
P111				ANO1 ${ }^{\text {Note }}$
P120	I/O	Port 12. 1-bit I/O port and 4-bit input port. For only P120, input/output can be specified in 1-bit units. For only P120, use of an on-chip pull-up resistor can be specified by a software setting.	Input port	INTPO/EXLVI
P121	Input			X1
P122				X2/EXCLK
P123				XT1
P124				XT2

<R> Note ANOx applies to μ PD78F150xA only.

Table 4-4. Port functions (78KOR/LH3) (3/3)

Function Name	I/O	Function	After Reset	Alternate Function
P130	Output	Port 13. 1-bit output port.	Output port	-
P140 to P147	I/O	Port 14. 8-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG37 to SEG30
P150	I/O	Port 15. 4-bit I/O port. Input/output can be specified in 1-bit units.	Digital input port	ANI8/AMP2+ ${ }^{\text {Note }}$
P151				ANI9
P152			ANI10	
P157				ANI15/AVREFM ${ }^{\text {Note }}$

Note AMP2+ and AVrefm apply to μ PD78F150xA only.

4.2 Port Configuration

Ports include the following hardware.

Table 4-5. Port Configuration

Item	Configuration
Control registers	- 78K0R/LF3 Port mode registers (PMxx) Port registers (Pxx) Pull-up resistor option registers (PUxx) Port input mode registers (PIM1) Port output mode registers (POM1) A/D port configuration register (ADPC) Port function register (PFALL) Input switch control register (ISC) - 78K0R/LG3 Port mode registers (PMxx) : PM0 to PM6, PM8 to PM12, PM14, PM15 Port registers (Pxx) : P0 to P6, P8 to P15 Pull-up resistor option registers (PUxx) : PU0, PU1, PU3 to PU5, PU8 to PU10, PU12, PU14 Port input mode registers (PIM1) Port output mode registers (POM1, POM8) A/D port configuration register (ADPC) Port function register (PFALL) Input switch control register (ISC) - 78K0R/LH3 Port mode registers (PMxx) : PM0 to PM12, PM14, PM15 Port registers (Pxx) : P0 to P15 Pull-up resistor option registers (PUxx) : PU0, PU1, PU3 to PU5, PU7 to PU10, PU12, PU14 Port input mode registers (PIM1, PIM7) Port output mode registers (POM1, POM7, POM8) A/D port configuration register (ADPC) Port function register (PFALL) Input switch control register (ISC)
Port	- 78KOR/LF3: Total: 51 (CMOS I/O: 46, CMOS output: 1, CMOS input: 4) - 78K0R/LG3: Total: 67 (CMOS I/O: 60, CMOS output: 1, CMOS input: 4, N-ch open drain I/O: 2) - 78K0R/LH3: Total: 83 (CMOS I/O: 76, CMOS output: 1, CMOS input: 4, N-ch open drain I/O: 2)
Pull-up resistor	- 78K0R/LF3: Total: 36 - 78K0R/LG3: Total: 46 - 78K0R/LH3: Total: 62

4.2.1 Port 0

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P00/CAPH	\checkmark		
P01/CAPL	\checkmark		
P02/VLC3	$\sqrt{ }$		

Port 0 is an I/O port with an output latch. Port 0 can be set to the input mode or output mode in 1-bit units using port mode register 0 (PM0). When the P00 to P02 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 0 (PUO).

This port can also be used for connecting a capacitor for LCD controller/driver, and power supply voltage pin for driving the LCD.

Reset signal generation sets port 0 to input mode.
Figures $4-1$ and $4-2$ show block diagrams of port 0 .

Caution To use P00/CAPH, P01/CAPL, and P02/VLC3 as a general-purpose port, set bit 5 (MDSET1) and bit 4 (MDSETO) of LCD mode register (LCDMD) to " 0 ", which is the same as their default status setting.

Figure 4-1. Block Diagram of P00 and P01

Figure 4-2. Block Diagram of P02

4.2.2 Port 1

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P10/ $\overline{\text { SCK20 }}$ /SCL20		\checkmark	
P11/SI20/RxD2/SDA20/INTP6		\checkmark	
P12/SO20/TxD2/TO02		\checkmark	
P13/SO10/TxD1/TO04		\checkmark	
P14/SI10/RxD1/SDA10/INTP4		\checkmark	
P15/SCK10/SCL10/INTP7		\checkmark	
P16/TI05/TO05/INTP10	-	\checkmark	$\sqrt{ }$
P17	-	-	\checkmark

Port 1 is an I/O port with an output latch. Port 1 can be set to the input mode or output mode in 1-bit units using port mode register 1 (PM1). When the P10 to P17 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 1 (PU1).

Input to the P10, P11, P14, and P15 pins can be specified through a normal input buffer or a TTL input buffer in 1-bit units using port input mode register 1 (PIM1).

Output from the P10 to P15 pins can be specified as N-ch open-drain output (VDD tolerance) in 1-bit units using port output mode register 1 (POM1).

This port can also be used for serial interface clock I/O, data I/O, timer I/O, and external interrupt request input,.
Reset signal generation sets port 1 to input mode.
Figures 4-3 to 4-6 show block diagrams of port 1 .

Cautions 1. To use P10/SCK20/SCL20 and P11/SI20/RxD2/SDA20/INTP6 as a general-purpose port, note the serial array unit 1 setting. For details, refer to Table 14-9 Relationship Between Register Settings and Pins (Channel 0 of unit 1: CSI20, UART2 Reception, IIC20).
2. To use P12/TO02/SO20/TxD2 as a general-purpose port, set bit 2 (TO02) of timer output register 0 (TOO) and bit 2 (TOEO2) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting. And as a general-purpose port, note the serial array unit 1 setting. For details of serial array unit 1 setting, refer to Table 14-9 Relationship Between Register Settings and Pins (Channel 0 of unit 1: CSI20, UART2 Reception, IIC20).
3. To use P13/TO04/SO10/TxD1 as a general-purpose port, set bit 4 (TO04) of timer output register 0 (TOO) and bit 4 (TOEO4) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting. And as a general-purpose port, note the serial array unit 0 setting. For details of serial array unit 0 setting, refer to Table 14-7 Relationship Between Register Settings and Pins (Channel 2 of unit 0: CSI10, UART1 Transmission, IIC10)
4. To use P14/SI10/RxD1/SDA10/INTP4 and P15/ $\overline{\operatorname{SCK} 10} /$ SCL10/INTP7 as a general-purpose port, note the serial array unit 0 setting. For details, refer to Table 14-7 Relationship Between Register Settings and Pins (Channel 2 of unit 0: CSI10, UART1 Transmission, IIC10)
5. To use P16/TO05/TI05/INTP10 as a general-purpose port, set bit 5 (TO05) of timer output register 0 (TOO) and bit 5 (TOEO5) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting.

Figure 4-3. Block Diagram of P10, P11, P14, and P15

P1: Port register 1
PU1: Pull-up resistor option register 1
PIM1: Port input mode register 1
POM1: Port output mode register 1
PM1: Port mode register 1
RD: Read signal
WR $\times x$: Write signal

Figure 4-4. Block Diagram of P12 and P13

P1: Port register 1
PU1: Pull-up resistor option register 1
POM1: Port output mode register 1
PM1: Port mode register 1
RD: Read signal
WR $\times x$: Write signal

Figure 4-5. Block Diagram of P16

P1: Port register 1
PU1: Pull-up resistor option register 1
PM1: Port mode register 1
RD: Read signal
WR $\times x$: Write signal

Figure 4-6. Block Diagram of P17

P1: Port register 1
PU1: Pull-up resistor option register 1
PM1: Port mode register 1
RD: Read signal
WR $\times x$: Write signal

4.2.3 Port 2

	μ PD78F150xA			μ PD78F151xA		
	78K0R/LF3 (80 pins)	$\begin{gathered} \text { 78K0R/LG3 } \\ \text { (100 pins) } \end{gathered}$	78K0R/LH3 (128 pins)	78K0R/LF3 (80 pins)	78K0R/LG3 (100 pins)	$\begin{gathered} \text { 78K0R/LH3 } \\ \text { (128 pins) } \end{gathered}$
P20/ANIO/AMP0-	\checkmark			P20/ANIO		
P21/ANI1/AMP00	\checkmark			P20/ANI1		
P22/ANI2/AMP0+	$\sqrt{ }$			P20/ANI2		
P23/ANI3/AMP1-	$\sqrt{ }$			P20/ANI3		
P24/ANI4/AMP1O	$\sqrt{ }$			P20/ANI4		
P25/ANI5/AMP1+	$\sqrt{ }$			P20/ANI5		
P26/ANI6/AMP2-	P26/ANI6	$\sqrt{ }$		P26/ANI6		
P27/ANI7/AMP2O	-	$\sqrt{ }$		-	P27/ANI7	

Port 2 is an I/O port with an output latch. Port 2 can be set to the input mode or output mode in 1-bit units using port mode register 2 (PM2).

This port can also be used for A/D converter analog input, and operational amplifier I/O.
To use P20/ANIO/AMP0- to P27/ANI7/AMP2O as digital input pins, set them in the digital I/O mode by using the A/D port configuration register (ADPC) and in the input mode by using PM2. Use these pins starting from the lower bit.

To use P20/ANIO/AMPO- to P27/ANI7/AMP2O as digital output pins, set them in the digital I/O mode by using ADPC and in the output mode by using PM2.

To use P20/ANIO/AMP0- to P27/ANI7/AMP2O as analog input pins, set them in the analog input mode by using the A/D port configuration register (ADPC) and in the input mode by using PM2. Use these pins starting from the upper bit.

All P20/ANIO/AMPO- to P27/ANI7/AMP2O are set in the digital input mode when the reset signal is generated.
Figures 4-7 to 4-9 show block diagrams of port 2.

Caution Make the AVddo pin the same potential as the EVdd or Vdd pin when port 2 is used as a digital port.

Table 4-6. Setting Functions of ANIO/AMP0-/P20, ANI2/AMP0+/P22, ANI3/AMP1-/P23, ANI5/AMP1+/P25, and ANI6/AMP2-/P26 Pins

ADPC register	PM2 registers	OAENn bit	ADS register	ANIO/AMPO-/P2O, ANI2/AMP0+/P22, ANI3/AMP1/P23, ANI5/AMP1+/P25, and ANI6/AMP2-/P26 Pins
Digital I/O selection	Input mode	0	-	Digital input
		1	-	Setting prohibited
	Output mode	0	-	Digital output
		1	-	Setting prohibited
Analog input selection	Input mode	0	Selects ANI.	Analog input (to be converted)
			Does not select ANI.	Analog input (not to be converted)
		1	Selects ANI.	Setting prohibited
			Does not select ANI.	Operational amplifier input
	Output mode	-	-	Setting prohibited

Table 4-7. Setting Functions of ANI1/AMP00/P21, ANI4/AMP10/P24, and ANI7/AMP2O/P27 Pins

ADPC register	PM2 register	OAENn bit	ADS register	ANI1/AMP0O/P21, ANI4/AMP1O/P24, and ANI7/AMP2O/P27 Pins
Digital I/O selection	Input mode	0	-	Digital input
		1	-	Setting prohibited
	Output mode	0	-	Digital output
		1	-	Setting prohibited
Analog input selection	Input mode	0	Selects ANI.	Analog input (to be converted)
			Does not select ANI.	Analog input (not to be converted)
		1	Selects ANI.	Operational amplifier output (to be converted)
			Does not select ANI.	Operational amplifier output (not to be converted)
	Output mode	-	-	Setting prohibited

Remark 78K0R/LF3:
$\mathrm{n}=0,1$
78K0R/LG3, 78K0R/LH3: $\mathrm{n}=0$ to 2

Figure 4-7. Block Diagram of P20, P23, and P26

P2: Port register 2
PM2: Port mode register 2
RD: Read signal
WR $\times x$: Write signal

Figure 4-8. Block Diagram of P21, P24, and P27

P2: Port register 2
PM2: Port mode register 2
RD: Read signal
WR $\times x$: Write signal

Figure 4-9. Block Diagram of P22 to P25

P2: Port register 2
PM2: Port mode register 2
RD: Read signal
WR $\times x$: Write signal

4.2.4 Port 3

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P30/TI03/TO00/RTC1HZ/ INTP1		\checkmark	
P31/TI00/TO03/RTCDIV/ RTCCL/PCLBUZ1/INTP2		\checkmark	
P32/TI01/TO01/PCLBUZ0/ INTP5		\checkmark	
P33/TI07/TO07/INTP3		\checkmark	
P34/TI06/TO06/INTP8	-		

Port 3 is an I/O port with an output latch. Port 3 can be set to the input mode or output mode in 1-bit units using port mode register 3 (PM3). When the P30 to P34 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 3 (PU3).

This port can also be used for timer I/O, real-time counter clock output, correction clock output, clock output/buzzer output, and external interrupt request input.

Reset signal generation sets port 3 to input mode.
Figure 4-10 shows a block diagram of port 3.

Cautions 1. To use P30/TO00/TIO3/RTC1HZ/INTP1 as a general-purpose port, set bit 5 (RCLOE1) of real-time counter control register 0 (RTCCO), bit 0 (TOOO) of timer output register 0 (TOO) and bit 0 (TOEOO) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting.
2. To use P31/TO03/TI00/RTCDIV/RTCCL/PCLBUZ1/INTP2 as a general-purpose port, set bit 4 (RCLOEO) of real-time counter control register 0 (RTCC0), bit 6 (RCLOE2) of real-time counter control register 2 (RTCC2), bit 3 (TO03) of timer output register 0 (TOO), bit 3 (TOE03) of timer output enable register 0 (TOE0) and bit 7 of clock output select register 1 (CKS1) to " 0 ", which is the same as their default status setting.
3. To use P32/TO01/TI01/INTP5/PCLBUZ0 as a general-purpose port, set bit 1 (TO01) of timer output register 0 (TOO), bit 1 (TOE01) of timer output enable register 0 (TOEO) and bit 7 of clock output select register 0 (CKSO) to " 0 ", which is the same as their default status setting.
4. To use P33/TO07/TIO7/INTP3 and P34/TO06/TI06/INTP8 as a general-purpose port, set bit 7, 6 (TO07, TO06) of timer output register 0 (TO0), and bit 7, 6 (TOE07, TOE06) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting.

Figure 4-10. Block Diagram of P30 to P34

P3: Port register 3
PU3: Pull-up resistor option register 3
PM3: Port mode register 3
RD: Read signal
WRxx: Write signal

4.2.5 Port 4

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P40/TOOL0	\checkmark		
P41/TOOL1		\checkmark	

Port 4 is an I/O port with an output latch. Port 4 can be set to the input mode or output mode in 1-bit units using port mode register 4 (PM4). When the P40 and P41 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 2 (PU2) ${ }^{\text {Note }}$.

This port can also be used for flash memory programmer/debugger data I/O and debugger clock output.
Reset signal generation sets port 4 to input mode.
Figure 4-11 shows a block diagram of port 4.

Note When a tool is connected, the P 40 and P 41 pins cannot be connected to a pull-up resistor.

Caution When a tool is connected, the P 40 pin cannot be used as a port pin.

When the on-chip debug function is used, P41 pin can be used as follows by the mode setting on the debugger.

- 1-line mode: can be used as a port (P41).
- 2-line mode: used as a TOOL1 pin and cannot be used as a port (P41).

Figure 4-11. Block Diagram of P40, P41

P4: Port register 4
PU4: Pull-up resistor option register 4
PM4: Port mode register 4
RD: Read signal
WR $\times x$: Write signal

4.2.6 Port 5

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P50/RxD3/SEGxx	$\sqrt{ }(x x=30)$	$\sqrt{ }(x x=39)$	$\sqrt{ }(x x=53)$
P51/TxD3/SEGxx	$\sqrt{ }(x x=29)$	$\sqrt{ }(x x=38)$	$\sqrt{ }(x x=52)$
P52/TI02/SEGxx	$\sqrt{ }(x x=28)$	$\sqrt{ }(x x=37)$	$\sqrt{ }(x x=51)$
P53/TI04/SEGxx	$\sqrt{ }(x x=27)$	$\sqrt{ }(x x=36)$	$\sqrt{ }(x x=50)$
P54/SEGxx	$\sqrt{ }(x x=26)$	$\sqrt{ }(x x=35)$	$\sqrt{ }(x x=49)$
P55/SEGxx	$\sqrt{ }(x x=25)$	$\sqrt{ }(x x=34)$	$\sqrt{ }(x x=48)$
P56/SEGxx	$\sqrt{ }(x x=24)$	$\sqrt{ }(x x=33)$	$\sqrt{ }(x x=47)$
P57/SEGxx	$\sqrt{ }(x x=23)$	$\sqrt{ }(x x=32)$	$\sqrt{ }(x x=46)$

Port 5 is an I/O port with an output latch. Port 5 can be set to the input mode or output mode in 1-bit units using port mode register 5 (PM5). When the P50 to P57 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 5 (PU5).

This port can also be used for serial interface data I/O, timer input and segment output of LCD controller/driver.
Reset signal generation sets port 5 to input mode.
Figures 4-12 to 4-14 show block diagrams of port 5 .

Figure 4-12. Block Diagram of P50, P52, and P53

P5: Port register 5
PU5: Pull-up resistor option register 5
PM5: Port mode register 5
PFALL: Port function register
ISC: Input switch control register
RD: Read signal
WRxx: Write signal

Remark 78K0R/LF3: P50/SEG30/RxD3, P52/SEG28/TI02, P53/SEG27/TI04
78K0R/LG3: P50/SEG39/RxD3, P52/SEG37/TI02, P53/SEG36/TI04
78K0R/LH3: P50/SEG53/RxD3, P52/SEG51/TI02, P53/SEG50/TI04

Figure 4-13. Block Diagram of P51

P5: Port register 5
PU5: Pull-up resistor option register 5
PM5: Port mode register 5
PFALL: Port function register
RD: Read signal
WR $\times x$: Write signal

Remark 78K0R/LF3: P51/SEG29/TxD3
78K0R/LG3: P51/SEG38/TxD3
78K0R/LH3: P51/SEG52/TxD3

Figure 4-14. Block Diagram of P54 to P57

P5: Port register 5
PU5: Pull-up resistor option register 5
PM5: Port mode register 5
PFALL: Port function register
RD: Read signal
WR××: Write signal

Remark 78K0R/LF3: P54/SEG26 to P57/SEG23
78K0R/LG3: P54/SEG35 to P57/SEG32
78K0R/LH3: P54/SEG53 to P57/SEG50

4.2.7 Port 6

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P60/SCL0	-	\checkmark	
P61/SDA0	-		

Port 6 is an I/O port with an output latch. Port 6 can be set to the input mode or output mode in 1-bit units using port mode register 6 (PM6).

The output is N -ch open-drain output (6 V tolerance).
This port can also be used for serial interface data I/O and clock I/O.
Reset signal generation sets port 6 to input mode.
Figure 4-15 shows a block diagram of port 6 .

Caution When using P60/SCL0 and P61/SDA0 as a general-purpose port, stop the operation of serial interface IICA.

Figure 4-15. Block Diagram of P60 and P61

P6: Port register 6
PM6: Port mode register 6
RD: Read signal
WR $\times x$: Write signal

4.2.8 Port 7

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P70/KR0			\checkmark
P71/KR1			\checkmark
P72/KR2			$\sqrt{ }$
P73/KR3			\checkmark
P74/KR4			\checkmark
P75/SCK01			$\sqrt{ }$
P76/KR6/SI01			$\sqrt{ }$
P77/KR7/SO01			$\sqrt{ }$

Port 7 is an I/O port with an output latch. Port 7 can be set to the input mode or output mode in 1-bit units using port mode register 7 (PM7). When the P70 to P77 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 7 (PU7).

Input to the P75 and P76 pins can be specified through a normal input buffer or a TTL input buffer in 1-bit units using port input mode register 7 (PIM7).

Output from the P75 and P77 pins can be specified as N-ch open-drain output (Vdo tolerance) in 1-bit units using port output mode register 7 (POM7).

This port can also be used for key return input, serial interface clock I/O, and data I/O.
Reset signal generation sets port 7 to input mode.
Figures 4-16 to 4-19 show block diagrams of port 7 .

Caution To use P75/SCK01/KR5, P76/SI01/KR6, and P77/SO01/KR7, as a general-purpose port, note the serial array unit 0 setting. For details, refer to Table 14-6 Relationship Between Register Settings and Pins (Channel 1 of unit 0: CSIO1, UARTO Reception).

Figure 4-16. Block Diagram of P70 to P74

P7: Port register 7
PU7: Pull-up resistor option register 7
PM7: Port mode register 7
RD: Read signal
WRxx: Write signal

Figure 4-17. Block Diagram of P75

P7: Port register 7
PU7: Pull-up resistor option register 7
PIM7: Port input mode register 7
POM7: Port output mode register 7
PM7: Port mode register 7
RD: Read signal
WR $\times x$: Write signal

Figure 4-18. Block Diagram of P76

P7: \quad Port register 7
PU7: Pull-up resistor option register 7
PIM7: Port input mode register 7
PM7: Port mode register 7
RD: Read signal
WR $\times x$: Write signal

Figure 4-19. Block Diagram of P77

P7: \quad Port register 7
PU7: Pull-up resistor option register 7
POM7: Port output mode register 7
PM7: Port mode register 7
RD: Read signal
WR $\times x$: Write signal
4.2.9 Port 8

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P80/SCK00/INTP11	-	\checkmark	\checkmark
P81/RxD0/SI00/INTP9	-	\checkmark	\checkmark
P82/TxD0/SO00	-	\checkmark	\checkmark
P83	-	-	\checkmark
P84/TO10/TI10	-	-	\checkmark
P85/TO11/TI11	-	-	\checkmark
P86/TO12/TI12	-	-	\checkmark
P87/TO13/TI13	-	-	$\sqrt{ }$

Port 8 is an I/O port with an output latch. Port 8 can be set to the input mode or output mode in 1-bit units using port mode register 8 (PM8). When the P80 to P87 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 8 (PU8).

Output from the P80 and P82 pins can be specified as N-ch open-drain output (VDD tolerance) in 1-bit units using port output mode register 8 (POM8).

This port can also be used for serial interface clock I/O, data I/O, timer I/O, and external interrupt request input.
Reset signal generation sets port 8 to input mode.
Figures 4-20 to 4-24 show block diagrams of port 8 .

Caution To use P80/SCK00/INTP11, P81/RxD0/SI00/INTP9, and P82/SO00/TxD0, as a general-purpose port, note the serial array unit 0 setting. For details, refer to Table 14-5 Relationship Between Register Settings and Pins (Channel 0 of unit 0: CSIOO, UARTO Reception).

Figure 4-20. Block Diagram of P80

P8: Port register 8
PU8: Pull-up resistor option register 8
POM8: Port output mode register 8
PM8: Port mode register 8
RD: Read signal
WRxx: Write signal

Figure 4-21. Block Diagram of P81

P8: Port register 8
PU8: Pull-up resistor option register 8
PM8: Port mode register 8
RD: Read signal
WRxx: Write signal

Figure 4-22. Block Diagram of P82

P8: Port register 8
PU8: Pull-up resistor option register 8
POM8: Port output mode register 8
PM8: Port mode register 8
RD: Read signal
WR $\times x$: Write signal

Figure 4-23. Block Diagram of P83

P8: Port register 8
PU8: Pull-up resistor option register 8
PM8: Port mode register 8
RD: Read signal
WRxx: Write signal

Figure 4-24. Block Diagram of P84 to P87

P8: Port register 8
PU8: Pull-up resistor option register 8
PM8: Port mode register 8
RD: Read signal
WR $\times x$: Write signal

4.2.10 Port 9

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P90/SEGxx	$\sqrt{ }(x x=22)$	$\sqrt{ }(x x=31)$	$\sqrt{ }(x x=45)$
P91/SEGxx	$\sqrt{ }(x x=21)$	$\sqrt{ }(x x=30)$	$\sqrt{ }(x x=44)$
P92/SEGxx	$\sqrt{ }(x x=20)$	$\sqrt{ }(x x=29)$	$\sqrt{ }(x x=43)$
P93/SEGxx	-	$\sqrt{ }(x x=28)$	$\sqrt{ }(x x=42)$
P94/SEGxx	-	$\sqrt{ }(x x=27)$	$\sqrt{ }(x x=41)$
P95/SEGxx	-	$\sqrt{ }(x x=26)$	$\sqrt{ }(x x=40)$
P96/SEGxx	-	$\sqrt{ }(x x=25)$	$\sqrt{ }(x x=39)$
P97/SEGxx	-	$\sqrt{ }(x x=24)$	$\sqrt{ }(x x=38)$

Port 9 is an I/O port with an output latch. Port 9 can be set to the input mode or output mode in 1-bit units using port mode register 9 (PM9). When the P90 to P97 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 9 (PU9).

This port can also be used for segment output.
Reset signal generation sets port 9 to input mode.
Figures 4-25 and 4-26 show block diagrams of port 9 .

Figure 4-25. Block Diagram of P90 to P93

P9: Port register 9
PU9: Pull-up resistor option register 9
PM9: Port mode register 9
PFALL: Port function register
RD: Read signal
WR××: Write signal

Remark 78K0R/LF3: P90/SEG22 to P92/SEG20
78K0R/LG3: P90/SEG31 to P93/SEG28
78K0R/LH3: P90/SEG45 to P93/SEG42

Figure 4-26. Block Diagram of P94 to P97

P9: Port register 9
PU9: Pull-up resistor option register 9
PM9: Port mode register 9
PFALL: Port function register
RD: Read signal
WR $\times x$: Write signal

Remark 78K0R/LG3: P94/SEG27 to P97/SEG24
78K0R/LH3: P94/SEG41 to P97/SEG38

4.2.11 Port 10

	78KOR/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 $(100$ pins: μ PD78F15x3A, $78 F 1504 A, 78 F 15 x 5 A)$	78K0R/LH3 $(128$ pins: μ PD78F15x6A, $78 F 1507 A, 78 F 15 x 8 A) ~$
P100/SEGxx	$\sqrt{ }(x x=11)$	$\sqrt{ }(x x=15)$	$V(x x=29)$
P101/SEGxx	-	-	$V(x x=28)$
P102/SEGxx	-	-	$V(x x=27)$

Port 10 is an I/O port with an output latch. Port 10 can be set to the input mode or output mode in 1-bit units using port mode register 10 (PM10). When the P100 to P102 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 10 (PU10).

This port can also be used for segment output.
Reset signal generation sets port 10 to input mode.
Figure 4-27 shows a block diagram of port 10.

Figure 4-27. Block Diagram of P100 to P102

P10: Port register 10
PU10: Pull-up resistor option register 10
PM10: Port mode register 10
PFALL: Port function register
RD: Read signal
WR××: Write signal

Remark 78K0R/LF3: P100/SEG11
78K0R/LG3: P100/SEG15
78K0R/LH3: P100/SEG29 to P102/SEG27

4.2.12 Port 11

<R>

	μ PD78F150xA			μ PD78F151xA		
	$\begin{gathered} \text { 78K0R/LF3 } \\ \text { (80 pins) } \end{gathered}$	$\begin{gathered} \text { 78K0R/LG3 } \\ \text { (100 pins) } \end{gathered}$	$\begin{gathered} \text { 78K0R/LH3 } \\ \text { (128 pins) } \end{gathered}$	78K0R/LF3 (80 pins)	78K0R/LG3 (100 pins)	78K0R/LH3 (128 pins)
P110/ANO0	\checkmark			P110		
P111/ANO1	$\sqrt{ }$			P111		

Port 11 is an I/O port with an output latch. Port 11 can be set to the input mode or output mode in 1-bit units using port mode register 11 (PM11).

This port can also be used for D/A converter analog output.
Reset signal generation sets port 11 to input mode.
Figure 4-28 shows a block diagram of port 11.

Caution Make the $A V_{D D 1}$ pin the same potential as the $E_{D D}$ or VDD pin when port 11 is used as a digital port.

Figure 4-28. Block Diagram of P110, P111

P11: Port register 11
PM11: Port mode register 11
DAM: D/A converter mode register
RD: Read signal
WR $\times x$: Write signal

4.2.13 Port 12

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P120/INTP0/EXLVI		\checkmark	
P121/X1		\checkmark	
P122/X2/EXCLK		\checkmark	
P123/XT1		\checkmark	
P124/XT2		\checkmark	

P120 is a 1-bit I/O port with an output latch. Port 12 can be set to the input mode or output mode in 1-bit units using port mode register 12 (PM12). When used as an input port, use of an on-chip pull-up resistor can be specified by pull-up resistor option register 12 (PU12).

P121 to P124 are 4-bit input ports.
This port can also be used for external interrupt request input, potential input for external low-voltage detection, connecting resonator for main system clock, connecting resonator for subsystem clock, and external clock input for main system clock.

Reset signal generation sets port 12 to input mode.
Figures 4-29 to 4-31 show block diagrams of port 12.

Caution The function setting on P121 to P124 is available only once after the reset release. The port once set for connection to an oscillator cannot be used as an input port unless the reset is performed.

Figure 4-29. Block Diagram of P120

P12: Port register 12
PU12: Pull-up resistor option register 12
PM12: Port mode register 12
RD: Read signal
WR $\times x$: Write signal

Figure 4-30. Block Diagram of P121 and P122

CMC: Clock operation mode control register
RD: Read signal

Figure 4-31. Block Diagram of P123 and P124

CMC: Clock operation mode control register
RD: Read signal

4.2.14 Port 13

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P130	\checkmark		

P130 is a port dedicated to 1-bit output and is provided with an output latch.
Figure 4-32 shows a block diagram of port 13.

Figure 4-32. Block Diagram of P130

P13: Port register 13
RD: Read signal
WR $\times x$: Write signal

Remark The P130 pin outputs a low level when it is used as a port function pin and a reset is effected. If P130 is set to output a high level before reset is effected, the output signal of P130 can be dummy-output as the CPU reset signal.

4.2.15 Port 14

	78K0R/LF3 (80 pins: μ PD78F15x0A, 78F1501A, 78F15x2A)	78K0R/LG3 (100 pins: μ PD78F15x3A, 78F1504A, 78F15x5A)	78K0R/LH3 (128 pins: μ PD78F15x6A, 78F1507A, 78F15x8A)
P140/SEGxx	$\sqrt{ }(x x=19)$	$\sqrt{ }(x x=23)$	$\sqrt{ }(x x=37)$
P141/SEGxx	$\sqrt{ }(x x=18)$	$\sqrt{ }(x x=22)$	$\sqrt{ }(x x=36)$
P142/SEGxx	$\sqrt{ }(x x=17)$	$\sqrt{ }(x x=21)$	$\sqrt{ }(x x=35)$
P143/SEGxx	$\sqrt{ }(x x=16)$	$\sqrt{ }(x x=20)$	$\sqrt{ }(x x=34)$
P144/SEGxx	$\sqrt{ }(x x=15)$	$\sqrt{ }(x x=19)$	$\sqrt{ }(x x=33)$
P145/SEGxx	$\sqrt{ }(x x=14)$	$\sqrt{ }(x x=18)$	$\sqrt{ }(x x=32)$
P146/SEGxx	$\sqrt{ }(x x=13)$	$\sqrt{ }(x x=17)$	$\sqrt{ }(x x=31)$
P147/SEGxx	$\sqrt{ }(x x=12)$	$\sqrt{ }(x x=16)$	$\sqrt{ }(x x=30)$

Port 14 is an I/O port with an output latch. Port 14 can be set to the input mode or output mode in 1-bit units using port mode register 14 (PM14). When the P140 to P147 pin is used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 14 (PU14).

This port can also be used for segment output.
Reset signal generation sets Port 14 to input mode.
Figures 4-33 and 4-34 show block diagrams of port 14 .

Figure 4-33. Block Diagram of P140 to P143

P14: Port register 14
PU14: Pull-up resistor option register 14
PM14: Port mode register 14
PFALL: Port function register
RD: Read signal
WR××: Write signal

Remark 78K0R/LF3: P140/SEG19 to P143/SEG16
78K0R/LG3: P140/SEG23 to P143/SEG20
78K0R/LH3: P140/SEG37 to P143/SEG34

Figure 4-34. Block Diagram of P144 to P147

P14: Port register 14
PU14: Pull-up resistor option register 14
PM14: Port mode register 14
PFALL: Port function register
RD: Read signal
WRxx: Write signal

Remark 78K0R/LF3: P144/SEG15 to P147/SEG12
78K0R/LG3: P144/SEG19 to P147/SEG16
78K0R/LH3: P144/SEG33 to P147/SEG30

4.2.16 Port 15

<R>

	μ PD78F150xA			μ PD78F151xA		
	78K0R/LF3 (80 pins)	78K0R/LG3 (100 pins)	78K0R/LH3 (128 pins)	78K0R/LF3 (80 pins)	78K0R/LG3 (100 pins)	78K0R/LH3 (128 pins)
P150/ANI8/AMP2+	-	$\sqrt{ }$		-	P150/ANI8	
P151/ANI9	-	$\sqrt{ }$		-	\checkmark	
P152/ANI10	-	$\sqrt{ }$		-	$\sqrt{ }$	
P157/ANI15/AVrefm	V			P157/ANI15		

Port 15 is an I/O port with an output latch. Port 15 can be set to the input mode or output mode in 1-bit units using port mode register 15 (PM15).

This port can also be used for A/D converter analog input, reference voltage input, and operational amplifier input.
To use P150/ANI8/AMP2+ to P152/ANI10, P157/ANI15/AVrefm as digital input pins, set them in the digital I/O mode by using the A/D port configuration register (ADPC) and in the input mode by using PM15. Use these pins starting from the lower bit.

To use P150/ANI8/AMP2+ to P152/ANI10, P157/ANI15/AVrefm as digital output pins, set them in the digital I/O mode by using ADPC and in the output mode by using PM15.

All P150/ANI8/AMP2+ to P152/ANI10, P157/ANI15/AV REFM are set in the digital input mode when the reset signal is generated.

Figures 4-35 to 4-37 show block diagrams of port 15 .

Caution Make the AVddo pin the same potential as the EVdd or Vdd pin when port 15 is used as a digital port.

Table 4-8. Setting Functions of ANI8/AMP2+/P150 Pins

ADPC register	PM2 and PM15 registers	OAENn bit	ADS register	ANI8/AMP2+/P150 Pins
Digital I/O selection	Input mode	0	-	Digital input
		1	-	Setting prohibited
	Output mode	0	-	Digital output
		1	-	Setting prohibited
Analog input selection	Input mode	0	Selects ANI.	Analog input (to be A/D converted)
			Does not select ANI.	Analog input (not to be A/D converted)
		1	Selects ANI.	Setting prohibited
			Does not select ANI.	Operational amplifier input
	Output mode	-	-	Setting prohibited

Table 4-9. Setting Functions of ANI9/P151 and ANI10/AM152 Pins

ADPC register	PM15 register	ADS register	ANI9/P151 and ANI10/AM152 Pins
Digital I/O selection	Input mode	-	Digital input
	Output mode	-	Digital output
Analog input selection	Input mode	Selects ANI.	Analog input (to be A/D converted)
		Analog input (not to be A/D converted)	
			Setting prohibited
	Output mode	-	

Table 4-10. Setting Functions of ANI15/AVrefm/P157 Pin

ADPC register	PM15 register	ADREF bit	ADS register	ANI15/AVREFM/P157 Pin
Digital I/O selection	Input mode	0	-	Digital input
		1	-	Setting prohibited
	Output mode	0	-	Digital output
		1	-	Setting prohibited
Analog input selection	Input mode	0	Selects ANI.	Analog input (to be converted)
			Does not select ANI.	Analog input (not to be converted)
		1	-	Negative reference voltage input of A/D converter
	Output mode	-	-	Setting prohibited

Figure 4-35. Block Diagram of P150

P15: Port register 15
PM15: Port mode register 15
RD: Read signal
WR $\times x$: Write signal

Figure 4-36. Block Diagram of P151, P152

P15: Port register 15
PM15: Port mode register 15
RD: Read signal
WRxx: Write signal

Figure 4-37. Block Diagram of P157

P15: Port register 15
PM15: Port mode register 15
RD: Read signal
WR $\times x$: Write signal

4.3 Registers Controlling Port Function

Port functions are controlled by the following eight types of registers.

- Port mode registers (PMxx)
- Port registers (Pxx)
- Pull-up resistor option registers (PUxx)
- Port input mode registers (PIMx)
- Port output mode registers (POMx)
- A/D port configuration register (ADPC)
- Port function register (PFALL)
- Input switch control register (ISC)
(1) Port mode registers (PMxx)

These registers specify input or output mode for the port in 1-bit units.
These registers can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets these registers to FFH.

Figure 4-38 Format of Port Mode Register (78K0R/LF3)

Symbol	7	6	5	4	3	2	1	0	Address FFF20H	After resetFFH	R/W R/W
PMO	1	1	1	1	1	PM02	PM01	PM00			
PM1	1	1	PM15	PM14	PM13	PM12	PM11	PM10	FFF21H	FFH	R/W
PM2	1	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FFF22H	FFH	R/W
PM3	1	1	1	1	PM33	PM32	PM31	PM30	FFF23H	FFH	R/W
PM4	1	1	1	1	1	1	PM41	PM40	FFF24H	FFH	R/W
PM5	PM57	PM56	PM55	PM54	PM53	PM52	PM51	PM50	FFF25H	FFH	R/W
PM9	1	1	1	1	1	PM92	PM91	PM90	FFF29H	FFH	R/W
PM10	1	1	1	1	1	1	1	PM100	FFF2AH	FFH	R/W
PM11	1	1	1	1	1	1	PM111	PM110	FFF2BH	FFH	R/W
PM12	1	1	1	1	1	1	1	PM120	FFF2CH	FFH	R/W
PM14	PM147	PM146	PM145	PM144	PM143	PM142	PM141	PM140	FFF2EH	FEH	R/W
PM15	PM157	1	1	1	1	1	1	1	FFF2FH	FFH	R/W
	PMmn	Pmn pin I/O mode selection ($m=0$ to 5,9 to $12,14,15 ; n=0$ to 7)									
	0	Output mode (output buffer on)									
	1	Input mode (output buffer off)									

Caution Be sure to set bits $\mathbf{3}$ to $\mathbf{7}$ of PMO, bits 6,7 of PM1, bit 7 of PM2, bits $\mathbf{4}$ to $\mathbf{7}$ of PM3, bits $\mathbf{2}$ to $\mathbf{7}$ of PM4, bits 3 to 7 of PM9, bits 1 to 7 of PM10, bits 2 to 7 of PM11, bits 1 to 7 of PM12, and bits 0 to 6 of PM15 to 1.

Figure 4-39 Format of Port Mode Register (78K0R/LG3)

Symbol	7	6	5	4	3	2	1	0	Address FFF20H	After resetFFH	R/W R/W
PMO	1	1	1	1	1	PM02	PM01	PM00			
PM1	1	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FFF21H	FFH	R/W
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FFF22H	FFH	R/W
PM3	1	1	1	PM34	PM33	PM32	PM31	PM30	FFF23H	FFH	R/W
PM4	1	1	1	1	1	1	PM41	PM40	FFF24H	FFH	R/W
PM5	PM57	PM56	PM55	PM54	PM53	PM52	PM51	PM50	FFF25H	FFH	R/W
PM6	1	1	1	1	1	1	PM61	PM60	FFF26H	FFH	R/W
PM8	1	1	1	1	1	PM82	PM81	PM80	FFF28H	FFH	R/W
PM9	PM97	PM96	PM95	PM94	PM93	PM92	PM91	PM90	FFF29H	FFH	R/W
PM10	1	1	1	1	1	1	1	PM100	FFF2AH	FFH	R/W
PM11	1	1	1	1	1	1	PM111	PM110	FFF2BH	FFH	R/W
PM12	1	1	1	1	1	1	1	PM120	FFF2CH	FFH	R/W
PM14	PM147	PM146	PM145	PM144	PM143	PM142	PM141	PM140	FFF2EH	FEH	R/W
PM15	PM157	1	1	1	1	PM152	PM151	PM150	FFF2FH	FFH	R/W
	PMmn	Pmn pin I/O mode selection$(m=0 \text { to } 6,8 \text { to } 12,14,15 ; n=0 \text { to } 7)$									
	0	Output mode (output buffer on)									
	1	Input mode (output buffer off)									

Caution Be sure to set bits 3 to 7 of PMO, bit 7 of PM1, bits 5 to 7 of PM3, bits 2 to 7 of PM4, bits 2 to 7 of PM6, bits 3 to $\mathbf{7}$ of PM8, bits 1 to 7 of PM10, bits 2 to 7 of PM11, bits 1 to 7 of PM12, and bits $\mathbf{3}$ to 6 of PM15 to 1.

Figure 4-40 Format of Port Mode Register (78K0R/LH3)

Symbol	7	6	5	4	3	2	1	0	Address FFF20H	After reset FFH	R/W R/W
PMO	1	1	1	1	1	PM02	PM01	PM00			
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FFF21H	FFH	R/W
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FFF22H	FFH	R/W
PM3	1	1	1	PM34	PM33	PM32	PM31	PM30	FFF23H	FFH	R/W
PM4	1	1	1	1	1	1	PM41	PM40	FFF24H	FFH	R/W
PM5	PM57	PM56	PM55	PM54	PM53	PM52	PM51	PM50	FFF25H	FFH	R/W
PM6	1	1	1	1	1	1	PM61	PM60	FFF26H	FFH	R/W
PM7	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70	FFF27H	FFH	R/W
PM8	PM87	PM86	PM85	PM84	PM83	PM82	PM81	PM80	FFF28H	FFH	R/W
PM9	PM97	PM96	PM95	PM94	PM93	PM92	PM91	PM90	FFF29H	FFH	R/W
PM10	1	1	1	1	1	PM102	PM101	PM100	FFF2AH	FFH	R/W
PM11	1	1	1	1	1	1	PM111	PM110	FFF2BH	FFH	R/W
PM12	1	1	1	1	1	1	1	PM120	FFF2CH	FFH	R/W
PM14	PM147	PM146	PM145	PM144	PM143	PM142	PM141	PM140	FFF2EH	FEH	R/W
PM15	PM157	1	1	1	1	PM152	PM151	PM150	FFF2FH	FFH	R/W
	PMmn	Pmn pin I/O mode selection$(m=0 \text { to } 12,14,15 ; n=0 \text { to } 7)$									
	0	Output mode (output buffer on)									
	1	Input mode (output buffer off)									

Caution Be sure to set bits $\mathbf{3}$ to $\mathbf{7}$ of PMO, bits 5 to $\mathbf{7}$ of PM3, bits $\mathbf{2}$ to $\mathbf{7}$ of PM4, bits $\mathbf{2}$ to $\mathbf{7}$ of PM6, bits $\mathbf{3}$ to $\mathbf{7}$ of PM10, bits $\mathbf{2}$ to $\mathbf{7}$ of PM11, bits $\mathbf{1}$ to $\mathbf{7}$ of PM12, and bits $\mathbf{3}$ to 6 of PM15 to 1.

(2) Port registers (Pxx)

These registers write the data that is output from the chip when data is output from a port.
If the data is read in the input mode, the pin level is read. If it is read in the output mode, the output latch value is read ${ }^{\text {Note }}$.

These registers can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears these registers to 00 H .

Note It is always 0 and never a pin level that is read out if a port is read during the input mode when P2 and P15 are set to function as an analog input for a A/D converter, and P11 are set to function as an analog input for a D/A converter.

Figure 4-41. Format of Port Register (78K0R/LF3)

Note P121 to P124 are read-only.

Figure 4-42. Format of Port Register (78K0R/LG3)

Symbol	7	6	5	4	3	2	1	0	Address FFFOOH	After reset 00 H (output latch)	R/W R/W
P0	0	0	0	0	0	P02	P01	P00			
P1	0	P16	P15	P14	P13	P12	P11	P10	FFF01H	00H (output latch)	R/W
P2	P27	P26	P25	P24	P23	P22	P21	P20	FFF02H	00H (output latch)	R/W
P3	0	0	0	P34	P33	P32	P31	P30	FFF03H	00H (output latch)	R/W
P4	0	0	0	0	0	0	P41	P40	FFF04H	OOH (output latch)	R/W
P5	P57	P56	P55	P54	P53	P52	P51	P50	FFF05H	OOH (output latch)	R/W
P6	0	0	0	0	0	0	P61	P60	FFF06H	00H (output latch)	R/W
P8	0	0	0	0	0	P82	P81	P80	FFF08H	OOH (output latch)	R/W
P9	P97	P96	P95	P94	P93	P92	P91	P90	FFF09H	OOH (output latch)	R/W
P10	0	0	0	0	0	0	0	P100	FFFOAH	OOH (output latch)	R/W
P11	0	0	0	0	0	0	P111	P110	FFFOBH	OOH (output latch)	R/W
P12	0	0	0	P124	P123	P122	P121	P120	FFFOCH	Undefined	$\mathrm{R} / \mathrm{W}^{\text {Note }}$
P13	0	0	0	0	0	0	0	P130	FFFODH	OOH (output latch)	R/W
P14	P147	P146	P145	P144	P143	P142	P141	P140	FFFOEH	00H (output latch)	R/W
P15	P157	0	0	0	0	P152	P151	P150	FFFOFH	00H (output latch)	R/W
	Pmn	$\mathrm{m}=0$ to 6,8 to $15 ; \mathrm{n}=0$ to 7									
		Output data control (in output mode)					Input data read (in input mode)				
	0	Output 0					Input low level				
	1	Output 1					Input high level				

Note P121 to P124 are read-only.

Figure 4-43. Format of Port Register (78K0R/LH3)

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
P0	0	0	0	0	0	P02	P01	P00	FFFOOH	00 H (output latch)	R/W
P1	P17	P16	P15	P14	P13	P12	P11	P10	FFF01H	00H (output latch)	R/W
P2	P27	P26	P25	P24	P23	P22	P21	P20	FFF02H	OOH (output latch)	R/W
P3	0	0	0	P34	P33	P32	P31	P30	FFF03H	OOH (output latch)	R/W
P4	0	0	0	0	0	0	P41	P40	FFF04H	00H (output latch)	R/W
P5	P57	P56	P55	P54	P53	P52	P51	P50	FFF05H	OOH (output latch)	R/W
P6	0	0	0	0	0	0	P61	P60	FFF06H	OOH (output latch)	R/W
P7	P77	P76	P75	P74	P73	P72	P71	P70	FFF07H	OOH (output latch)	R/W
P8	P87	P86	P85	P84	P83	P82	P81	P80	FFF08H	00H (output latch)	R/W
P9	P97	P96	P95	P94	P93	P92	P91	P90	FFF09H	00H (output latch)	R/W
P10	0	0	0	0	0	P102	P101	P100	FFFOAH	00H (output latch)	R/W
P11	0	0	0	0	0	0	P111	P110	FFFOBH	OOH (output latch)	R/W
P12	0	0	0	P124	P123	P122	P121	P120	FFFOCH	Undefined	$R / W^{\text {Note }}$
P13	0	0	0	0	0	0	0	P130	FFFODH	00H (output latch)	R/W
P14	P147	P146	P145	P144	P143	P142	P141	P140	FFFOEH	OOH (output latch)	R/W
P15	P157	0	0	0	0	P152	P151	P150	FFF0FH	OOH (output latch)	R/W
	Pmn	$\mathrm{m}=0$ to $15 ; \mathrm{n}=0$ to 7									
		Output data control (in output mode)					Input data read (in input mode)				
	0	Output 0					Input low level				
	1	Output 1					Input high level				

Note P121 to P124 are read-only.

(3) Pull-up resistor option registers (PUxx)

These registers specify whether the on-chip pull-up resistors are to be used or not. On-chip pull-up resistors can be used in 1-bit units only for the bits set to input mode of the pins to which the use of an on-chip pull-up resistor has been specified in these registers. On-chip pull-up resistors cannot be connected to bits set to output mode and bits used as alternate-function output pins, regardless of the settings of these registers.
These registers can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation clears these registers to 00 H .

Figure 4-44. Format of Pull-up Resistor Option Register (78K0R/LF3)

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PU0	0	0	0	0	0	PU02	PU01	PU00	F0030H	00 H	R/W
PU1	0	0	PU15	PU14	PU13	PU12	PU11	PU10	F0031H	00H	R/W
PU3	0	0	0	0	PU33	PU32	PU31	PU30	F0033H	00H	R/W
PU4	0	0	0	0	0	0	PU41	PU40	F0034H	00 H	R/W
PU5	PU57	PU56	PU55	PU54	PU53	PU52	PU51	PU50	F0035H	OOH	R/W
PU9	0	0	0	0	0	PU92	PU91	PU90	F0039H	OOH	R/W
PU10	0	0	0	0	0	0	0	PU100	F003AH	OOH	R/W
PU12	0	0	0	0	0	0	0	PU120	F 003 CH	00H	R/W
PU14	PU147	PU146	PU145	PU144	PU143	PU142	PU141	PU140	F003EH	OOH	R/W

PUmn	Pmn pin on-chip pull-up resistor selection $(m=0,1,3$ to $5,9,10,12,14 ; n=0$ to 7$)$
0	On-chip pull-up resistor not connected
1	On-chip pull-up resistor connected

Figure 4-45. Format of Pull-up Resistor Option Register (78K0R/LG3)

Symbol	7	6	5	4	3	2	1	0	Address$\mathrm{FOO3OH}$	After resetOOH	$\begin{aligned} & \text { R/W } \\ & \text { R/W } \end{aligned}$
PU0	0	0	0	0	0	PU02	PU01	PU00			
PU1	0	PU16	PU15	PU14	PU13	PU12	PU11	PU10	F0031H	00H	R/W
PU3	0	0	0	PU34	PU33	PU32	PU31	PU30	F0033H	00H	R/W
PU4	0	0	0	0	0	0	PU41	PU40	F0034H	00H	R/W
PU5	PU57	PU56	PU55	PU54	PU53	PU52	PU51	PU50	F0035H	OOH	R/W
PU8	0	0	0	0	0	PU82	PU81	PU80	F0038H	00H	R/W
PU9	PU97	PU96	PU95	PU94	PU93	PU92	PU91	PU90	F0039H	OOH	R/W
PU10	0	0	0	0	0	0	0	PU100	F003AH	00H	R/W
PU12	0	0	0	0	0	0	0	PU120	F 003 CH	OOH	R/W
PU14	PU147	PU146	PU145	PU144	PU143	PU142	PU141	PU140	F003EH	OOH	R/W
	PUmn	Pmn pin on-chip pull-up resistor selection ($m=0,1,3$ to 5,8 to $10,12,14 ; n=0$ to 7)									
	0	On-chip pull-up resistor not connected									
	1	On-chip pull-up resistor connected									

Figure 4-46. Format of Pull-up Resistor Option Register (78K0R/LH3)

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PU0	0	0	0	0	0	PU02	PU01	PU00	F0030H	00 H	R/W
PU1	PU17	PU16	PU15	PU14	PU13	PU12	PU11	PU10	F0031H	00H	R/W
PU3	0	0	0	PU34	PU33	PU32	PU31	PU30	F0033H	00H	R/W
PU4	0	0	0	0	0	0	PU41	PU40	F0034H	00H	R/W
PU5	PU57	PU56	PU55	PU54	PU53	PU52	PU51	PU50	F0035H	00H	R/W
PU7	PU77	PU76	PU75	PU74	PU73	PU72	PU71	PU70	F0037H	00H	R/W
PU8	PU87	PU86	PU85	PU84	PU83	PU82	PU81	PU80	F 0038 H	00H	R/W
PU9	PU97	PU96	PU95	PU94	PU93	PU92	PU91	PU90	F0039H	OOH	R/W
PU10	0	0	0	0	0	PU102	PU101	PU100	F003AH	OOH	R/W
PU12	0	0	0	0	0	0	0	PU120	F 003 CH	00H	R/W
PU14	PU147	PU146	PU145	PU144	PU143	PU142	PU141	PU140	F003EH	00H	R/W

PUmn	Pmn pin on-chip pull-up resistor selection $(m=0,1,3$ to 5,7 to $10,12,14 ; n=0$ to 7$)$
0	On-chip pull-up resistor not connected
1	On-chip pull-up resistor connected

(4) Port input mode registers (PIMx)

PIM1 and PIM7 registers set the input buffer of P10, P11, P14, P15, P75, or P76 in 1-bit units.
TTL input buffer can be selected during serial communication with an external device of the different potential.
These registers can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears these registers to 00 H .

Figure 4-47. Format of Port Input Mode Register

- 78K0R/LF3

- 78K0R/LG3

- 78K0R/LH3

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PIM1	0	0	PIM15	PIM14	0	0	PIM11	PIM10	F0041H	OOH	R/W
PIM7	0	PIM76	PIM75	0	0	0	0	0	F0047H	OOH	R/W

PIMmn	Pmn pin input buffer selection $(m=1$ and $7 ; n=0,1,4$ to 6$)$	
0	Normal input buffer	
1	TTL input buffer	

(5) Port output mode registers (POMx)

These registers set the output mode of P10 to P15, P75, P77, P80, or P82 in 1-bit units.
N -ch open drain output (Vod tolerance) mode can be selected during serial communication with an external device of the different potential, and for the SDA10, SDA20 pin during simplified $I^{2} C$ communication with an external device of the same potential.

These registers can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears these registers to 00 H .

Figure 4-48. Format of Port Output Mode Register

- 78K0R/LF3

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
POM1	0	0	POM15	POM14	POM13	POM12	POM11	POM10	F0051H	00H	R/W

- 78K0R/LG3

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
POM1	0	0	POM15	POM14	POM13	POM12	POM11	POM10	F0051H	00H	R/W
POM8	0	0	0	0	0	POM82	0	POM80	F0058H	OOH	R/W

- 78KOR/LH3

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
POM1	0	0	POM15	POM14	POM13	POM12	POM11	POM10	F0051H	OOH	R/W
POM7	POM77	0	POM75	0	0	0	0	0	F0057H	00H	R/W
POM8	0	0	0	0	0	POM82	0	POM80	F0058H	OOH	R/W

POMmn	Pmn pin output mode selection $(m=1,7$, and $8 ; n=0$ to 5 and 7$)$
0	Normal output mode
1	N-ch open-drain output (VDD tolerance) mode

(6) A/D port configuration register (ADPC)

This register switches the ANIO/AMPO-/P20 to ANI7/AMP2O/P27, ANI8/AMP2+/P150 to ANI10/P152, ANI15/AV REFM/P157 pins to analog input or digital I/O of port.
ADPC can be set by an 8-bit memory manipulation instruction.
Reset signal generation sets this register to 10 H .

Figure 4-49. Format of A/D Port Configuration Register (ADPC)

Note This setting is prohibited for 78K0R/LF3.

Cautions 1. Set a channel to be used for A/D conversion in the input mode by using port mode registers

 2 and 15 (PM2, PM15).2. Do not set the pin that is set by ADPC as digital I/O by analog input channel specification register (ADS).

(7) Port function register (PFALL)

This register sets whether to use pins P50 to P57, P90 to P97, P100 to P102, and P140 to P147 as port pins (other than segment output pins) or segment output pins.
PFALL is set using a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets PFALL to 00 H .

Remark The port pins to be used alternatively with the segment output pins vary, depending on the product.

- 78K0R/LF3: P50 to P57, P90 to P92, P100, P140 to P147
- 78K0R/LG3: P50 to P57, P90 to P97, P100, P140 to P147
- 78K0R/LH3: P50 to P57, P90 to P97, P100 to P102, P140 to P147

Figure 4-50. Format of Port Function Register (PFALL) (1/2)

Address: F0080H		After reset: 00 H R/W						
Symbol	7	6	5	4	3	2	1	0
PFALL	0	PF14H	PF14L	PF10	PF9H ${ }^{\text {Note }}$	PF9L	PF5H	PF5L

PF14H	Port/segment outputs specification of the P144 to P147 pins
0	Used the P144 to P147 pins as port (other than segment output)
1	Used the P144 to P147 pins as segment output

PF14L	Port/segment outputs specification of the P140 to P143 pins
0	Used the P140 to P143 pins as port (other than segment output)
1	Used the P140 to P143 pins as segment output

PF10	Port/segment outputs specification of the P100 to P102 pins
0	Used the P100 to P102 pins as port (other than segment output)
1	Used the P100 to P102 pins as segment output

PF9H	Port/segment outputs specification of the P94 to P97 pins
0	Used the P94 to P97 pins as port (other than segment output)
1	Used the P94 to P97 pins as segment output

PF9L	Port/segment outputs specification of P90 to P93 pins
0	Used the P90 to P93 pins as port (other than segment output)
1	Used the P90 to P93 pins as segment output

Note 78K0R/LG3, 78K0R/LH3 only

Figure 4-50. Format of Port Function Register (PFALL) (2/2)

PF5H	Port/segment outputs specification of the P54 to P57 pins
0	Used the P54 to P57 pins as port (other than segment output)
1	Used the P54 to P57 pins as segment output

PF5L	Port/segment outputs specification of P50 to P53 pins
0	Used the P50 to P53 pins as port (other than segment output)
1	Used the P50 to P53 pins as segment output

Caution For $78 \mathrm{KOR} / \mathrm{LF} 3$, bits 3 and 7 must be set to 0 . For $78 \mathrm{KOR} / \mathrm{LG} 3$ and $78 \mathrm{KOR} / \mathrm{LH} 3$, bit 7 must be set to 0 .

(8) Input switch control register (ISC)

Bits 0 and 1 of ISC are used for linking with an external interrupt or a timer array unit when performing a LIN-bus communication operation with UART3.
When bit 0 is set to 1 , the input signal of the serial data input ($\mathrm{R} \times \mathrm{D} 3$) pin is selected as an external interrupt (INTPO) that can be used to detect a wakeup signal.
When bit 1 is set to 1 , the input signal of the serial data input ($R \times D 3$) pin is selected as a timer input, so that the pulse widths of a sync break field and a sync field can be measured by the timer.
Bits 2 to 4 of ISC are used to prevent through current from entering when using the TIO4/SEGxx/P53, TIO2/SEGxx/P52, and RxD3/SEGxx/P50 pins as segment outputs or port outputs.
The segment output pins to be used alternatively with the TIO4, TIO2, and RxD3 pins are internally connected with a Schmitt trigger buffer. When using these pins as segment outputs or port outputs, bits 2 to 4 of ISC must be set to 0 (prohibiting input to Schmitt trigger buffers) in order to prevent through current from entering.
ISC can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Remark The segment output pins to be used alternatively with the TIO2, TIO4, and RxD3 pins vary, depending on the product.

- 78K0R/LF3: TI04/SEG27/P53, TI02/SEG28/P52, RxD3/SEG30/P50
- 78K0R/LG3: TI04/SEG36/P53, TI02/SEG37/P52, RxD3/SEG39/P50
- 78K0R/LH3: TI04/SEG50/P53, TI02/SEG51/P52, RxD3/SEG53/P50

Figure 4-51. Format of Input Switch Control Register (ISC)
Address: FFF3CH
Symbol
After reset: 00 H
S R/W
7

ISC4		TI04/SEGxx/P53 schmitt trigger buffer control
0	Disables input	
1	Enables input	

ISC3	
0	Disables input
1	Enables input

ISC2		RxD3/SEGxx/P50 schmitt trigger buffer control
0	Disables input	
1	Enables input	

ISC1	Switching channel 7 input of timer array unit
0	Uses the input signal of the TIO7 pin as a timer input (normal operation).
1	Input signal of RxD3 pin is used as timer input (wakeup signal detection).

ISC0	Switching external interrupt (INTP0) input
0	Uses the input signal of the INTP0 pin as an external interrupt (normal operation).
1	Uses the input signal of the RxD3 pin as an external interrupt (to measure the pulse widths of the sync break field and sync field).

Caution Be sure to clear bits 5 to 7 to "0".

To use the TI04/SEGxx/P53, TIO2/SEGxx/P52, and RxD3/SEGxx/P50 pins, set the PF5L and ISCn ($\mathrm{n}=2$ to 4) bits as follows, according to the function to be used.

PF5L	ISCn	
0	0	Port output (default)
0	1	Port input, timer input, or serial data input
1	0	Segment output
1	1	Setting prohibited

4.4 Port Function Operations

Port operations differ depending on whether the input or output mode is set, as shown below.

4.4.1 Writing to I/O port

(1) Output mode

A value is written to the output latch by a transfer instruction, and the output latch contents are output from the pin.
Once data is written to the output latch, it is retained until data is written to the output latch again.
The data of the output latch is cleared when a reset signal is generated.
(2) Input mode

A value is written to the output latch by a transfer instruction, but since the output buffer is off, the pin status does not change.
Once data is written to the output latch, it is retained until data is written to the output latch again.
The data of the output latch is cleared when a reset signal is generated.

4.4.2 Reading from I/O port

(1) Output mode

The output latch contents are read by a transfer instruction. The output latch contents do not change.
(2) Input mode

The pin status is read by a transfer instruction. The output latch contents do not change.

4.4.3 Operations on I/O port

(1) Output mode

An operation is performed on the output latch contents, and the result is written to the output latch. The output latch contents are output from the pins.
Once data is written to the output latch, it is retained until data is written to the output latch again.
The data of the output latch is cleared when a reset signal is generated.

(2) Input mode

The pin level is read and an operation is performed on its contents. The result of the operation is written to the output latch, but since the output buffer is off, the pin status does not change.

The data of the output latch is cleared when a reset signal is generated.

4.4.4 Connecting to external device with different power potential (2.5 V, 3 V)

When parts of ports 1,7 , and 8 operate with $\mathrm{VDD}=4.0 \mathrm{~V}$ to 5.5 V , I/O connections with an external device that operates on a 2.5 V or 3 V power supply voltage are possible.

Regarding inputs, CMOS/TTL switching is possible on a bit-by-bit basis by port input mode registers (PIM1 and PIM7).
Moreover, regarding outputs, different power potentials can be supported by switching the output buffer to the N-ch open drain (VDD withstand voltage) by the port output mode registers (POM1, POM7 and POM8).
(1) Setting procedure when using I/O pins of UART1, UART2 CSI00, CSIO1, CSI10, and CSI20 functions
(a) Use as 2.5 V or 3 V input port
$<1>$ After reset release, the port mode is the input mode ($\mathrm{Hi}-\mathrm{Z}$).
<2> If pull-up is needed, externally pull up the pin to be used (on-chip pull-up resistor cannot be used).

In case of UART1: P14
In case of UART2: P11
In case of CSI01: P75, P76
In case of CSI10: P15, P14
In case of CSI20: P10, P11
<3> Set the corresponding bit of the PIMn register to 1 to switch to the TTL input buffer.
$<4>\mathrm{VIH} / \mathrm{VIL}$ operates on a 2.5 V or 3 V operating voltage.

Remark $n=1,7$
(b) Use as 2.5 V or 3 V output port
<1> After reset release, the port mode changes to the input mode ($\mathrm{Hi}-\mathrm{Z}$).
<2> Pull up externally the pin to be used (on-chip pull-up resistor cannot be used).

In case of UART1:	P 13
In case of UART2:	P 12
In case of CSI00:	$\mathrm{P} 80, \mathrm{P} 82$
In case of CSI01:	$\mathrm{P} 75, \mathrm{P} 77$
In case of CSI10:	$\mathrm{P} 15, \mathrm{P} 13$
In case of CSI20:	$\mathrm{P} 10, \mathrm{P} 12$

$<3>$ Set the output latch of the corresponding port to 1 .
$<4>$ Set the corresponding bit of the POMn register to 1 to set the N-ch open drain output (Vdd withstand voltage) mode.
$<5>$ Set the output mode by manipulating the PMn register.
At this time, the output data is high level, so the pin is in the Hi-Z state.
$<6>$ Operation is done only in the low level according to the operating status of the serial array unit.

Remark $\mathrm{n}=1,7,8$

(2) Setting procedure when using I/O pins of simplified IIC10, IIC20 functions

<1> After reset release, the port mode is the input mode (Hi-Z).
<2> Externally pull up the pin to be used (on-chip pull-up resistor cannot be used).

In case of simplified IIC10: P14, P15
In case of simplified IIC20: P11, P10
<3> Set the output latch of the corresponding port to 1.
$<4>$ Set the corresponding bit of the POM1 register to 1 to set the N-ch open drain output (Vdd withstand voltage) mode.
$<5>$ Set the corresponding bit of the PM1 register to the output mode (data I/O is possible in the output mode). At this time, the output data is high level, so the pin is in the Hi-Z state.
$<6>$ Enable the operation of the serial array unit and set the mode to the simplified $I^{2} \mathrm{C}$ mode.

4.5 Settings of Port Mode Register and Output Latch When Using Alternate Function

To use the alternate function of a port pin, set the port mode register and output latch as shown in Table 4-11.

Table 4-11. Settings of Port Mode Register and Output Latch When Using Alternate Function (1/5)

$\stackrel{\Gamma}{\omega}$		$\stackrel{\text { 「 }}{\bar{\omega}}$		Pin Name	Alternate Function		$\begin{aligned} & \text { PFALL } \\ & \text { (PFxxx) } \end{aligned}$	$\begin{aligned} & \text { ISC } \\ & \text { (ISCx) } \end{aligned}$	$\mathrm{PM} \times \times$	P×x	
				Function Name	I/O						
\checkmark	\checkmark	\checkmark			P00	CAPH	Output	-	-	\times	\times
\checkmark	\checkmark	\checkmark		P01	CAPL	Output	-	-	\times	\times	
\checkmark	\checkmark	\checkmark		P02	VLC3	I/O	-	-	\times	\times	
\checkmark	\checkmark	\checkmark		P10	SCK20	Input	-	-	1	\times	
				Output		-	-	0	1		
				SCL20	I/O	-	-	0	1		
\checkmark	\checkmark	\checkmark			P11	SI20	Input	-	-	1	\times
				RxD2		Input	-	-	1	\times	
				SDA20		I/O	-	-	0	1	
				INTP6		Input	-	-	1	\times	
\checkmark	\checkmark	\checkmark			P12	SO20	Output	-	-	0	1
				TxD2		Output	-	-	0	1	
				TO02		Output	-	-	0	0	
\checkmark	\checkmark	\checkmark		P13	SO10	Output	-	-	0	1	
				TxD1	Output	-	-	0	1		
				TO04	Output	-	-	0	0		
\checkmark	\checkmark	\checkmark			P14	SI10	Input	-	-	1	\times
						RxD1	Input	-	-	1	\times
				SDA10		I/O	-	-	0	1	
				INTP4		Input	-	-	1	\times	
\checkmark	\checkmark	\checkmark	\checkmark	P15	$\overline{\text { SCK10 }}$	Input	-	-	1	\times	
						Output	-	-	0	1	
					SCL10	I/O	-	-	0	1	
					INTP7	Input	-	-	1	\times	
-	\checkmark	\checkmark		P16	T105	Input	-	-	1	\times	
				TO05	Output	-	-	0	0		
				INTP10	Input	-	-	1	\times		

Remark \times : don't care
-: \quad Not applicable
PFALL: Port function register
ISC: Input switch control register
PM $\times x$: Port mode register
P×x: Port output latch

Table 4-11. Settings of Port Mode Register and Output Latch When Using Alternate Function (2/5)

$\underset{\omega}{\Gamma}$	$\stackrel{\Omega}{\mathrm{Q}}$	$\frac{\stackrel{\Gamma}{\omega}}{\underline{\omega}}$	Pin Name	Alternate Function		PFALL(PFxxx)	$\begin{aligned} & \text { ISC } \\ & \text { (ISCx) } \end{aligned}$	PM $\times \times$	$\mathrm{P}_{\times x}$
				Function Name	I/O				
\checkmark	\checkmark	$\sqrt{ }$	P 20 to $25^{\text {Note }}$	ANIO-ANI5	Input	-	-	1	\times
				AMP0-, AMP0+, AMP1-, AMP1+	Input	-	-	1	\times
				AMP00, AMP1O	Output	-	-	1	\times
\checkmark	\checkmark	$\sqrt{ }$	P26 ${ }^{\text {Note }}$	ANI6	Input	-	-	1	\times
-				AMP2-	Input	-	-	1	\times
-	\checkmark	$\sqrt{ }$	P27 ${ }^{\text {Note }}$	ANI7	Input	-	-	1	\times
				AMP2O	Output	-	-	1	\times
\checkmark	\checkmark	$\sqrt{ }$	P30	TIO3	Input	-	-	1	\times
				TO00	Output	-	-	0	0
				RTC1HZ	Output	-	-	0	0
				INTP1	Input	-	-	1	\times
$\sqrt{ }$	\checkmark	$\sqrt{ }$	P31	TIOO	Input	-	-	1	\times
				TO03	Output	-	-	0	0
				RTCDIV	Output	-	-	0	0
				RTCCL	Output	-	-	0	0
				PCLBUZ1	Output	-	-	0	0
				INTP2	Input	-	-	1	\times
\checkmark	\checkmark	$\sqrt{ }$	P32	TI01	Input	-	-	1	\times
				TO01	Output	-	-	0	0
				INTP5	Input	-	-	1	\times
				PCLBUZO	Output	-	-	0	0
$\sqrt{ }$	\checkmark	\checkmark	P33	T107	Input	-	ISC1=0	1	\times
				TO07	Output	-	-	0	0
				INTP3	Input	-	-	1	\times
-	\checkmark	\checkmark	P34	TI06	Input	-	-	1	\times
				TO06	Output	-	-	0	0
				INTP8	Input	-	-	1	\times

Note The function of the P20/ANIO/AMP0-, P21/ANI1/AMP0O, P22/ANI2/AMP0+, P23/ANI3/AMP1-, P24/ANI4/AMP1O, P25/ANI5/AMP1+, P26/ANI6 pins can be selected by using the A/D port configuration register (ADPC), port mode register 2 (PM2), analog input channel specification register (ADS), and operational amplifier control register (OAC). Refer to 4.2.3 Port 2.

Remark \times : don't care
-: \quad Not applicable
PFALL: Port function register
ISC: Input switch control register
PM $\times \times$: Port mode register
Pxx: Port output latch

Table 4-11. Settings of Port Mode Register and Output Latch When Using Alternate Function (3/5)

$\stackrel{\Gamma}{\top}$	$\stackrel{\varnothing}{\infty}$	$\frac{\Gamma}{\bar{\omega}}$	Pin Name	Alternate Function		PFALL (PFxxx)	$\begin{aligned} & \text { ISC } \\ & \text { (ISCx) } \end{aligned}$	PM $\times \times$	$\mathrm{P} \times \times$
				Function Name	I/O				
\checkmark	$\sqrt{ }$	\checkmark	P40	TOOLO	1/O	-	-	\times	\times
\checkmark	$\sqrt{ }$	\checkmark	P41	TOOL1	Output	-	-	\times	\times
\checkmark	\checkmark	\checkmark	P50 ${ }^{\text {Note } 1}$	RxD3	Input	PF5L=0	ISC2 $=1{ }^{\text {Note } 2}$	1	\times
\checkmark	\checkmark	\checkmark	P51 ${ }^{\text {Note } 1}$	TxD3	Output		-	0	1
\checkmark	\checkmark	\checkmark	P52 ${ }^{\text {Note } 1}$	TIO2	Input		ISC3=1	1	\times
\checkmark	$\sqrt{ }$	\checkmark	P53 ${ }^{\text {Note } 1}$	TI04	Input		ISC4=1	1	\times
-	$\sqrt{ }$	\checkmark	P60	SCLO	I/O	-	-	0	0
-	\checkmark	\checkmark	P61	SDAO	I/O	-	-	0	0
-	-	\checkmark	P70 to P74	KR0 to KR4	Input	-	-	1	\times
-	-	\checkmark	P75	KR5	Input	-	-	1	\times
				$\overline{\text { SCK01 }}$	Input	-	-	1	\times
					Output	-	-	0	1
-	-	\checkmark	P76	KR6	Input	-	-	1	\times
				SI01	Input	-	-	1	\times
-	-	\checkmark	P77	KR7	Input	-	-	1	\times
				SO01	Output	-	-	0	1
-	\checkmark	\checkmark	P80	$\overline{\text { SCK00 }}$	Input	-	-	1	\times
					Output	-	-	0	1
				INTP11	Input	-	-	1	\times
-	\checkmark	\checkmark	P81	RxD0	Input	-	-	1	\times
				SIOO	Input	-	-	1	\times
				INTP9	Input	-	-	1	\times
-	\checkmark	\checkmark	P82	TxD0	Output	-	-	0	1
				SO00	Output	-	-	0	1
-	-	\checkmark	P84	TI10	Input	-	-	1	\times
				TO10	Output	-	-	0	0
-	-	\checkmark	P85	Tl11	Input	-	-	1	\times
				TO11	Output	-	-	0	0

Notes 1. Refer to Table 4-11 Settings of Port Mode Register and Output Latch When Using Alternate Function (5/5) about the segment output (SEGxx).
2. The RxD3 input can be set as the input source of an external interrupt input (INTPO) by setting ISCO $=1$. The RxD3 input can be set as the input source of a timer input (TIO7) by setting ISC1 $=1$.

Remark \times : don't care
 -: \quad Not applicable

PFALL: Port function register
ISC: Input switch control register
PM $\times x$: Port mode register
Pxx: Port output latch

Table 4-11. Settings of Port Mode Register and Output Latch When Using Alternate Function (4/5)

$\stackrel{\Gamma}{\omega}$	$\stackrel{\otimes}{\infty}$	$\frac{\Gamma}{\mathbf{T}}$	Pin Name	Alternate Function		PFALL (PFxxx)	$\begin{aligned} & \text { ISC } \\ & \text { (ISCx) } \end{aligned}$	PM××	Pxx
				Function Name	I/O				
-	-	\checkmark	P86	TI12	Input	-	-	1	\times
				TO12	Output	-	-	0	0
-	-	\checkmark	P87	TI13	Input	-	-	1	\times
				TO13	Output	-	-	0	0
\checkmark	\checkmark	\checkmark	P110, P111	ANO0, ANO1	Output	-	-	0	\times
\checkmark	$\sqrt{ }$	\checkmark	P120	INTPO ${ }^{\text {Note } 1}$	Input	-	ISC0 $=0$	1	\times
				EXLVI ${ }^{\text {Note } 1}$	Input	-	-	1	\times
\checkmark	$\sqrt{ }$	\checkmark	P121	X1 ${ }^{\text {Note } 1}$	-	-	-	\times	\times
\checkmark	\checkmark	$\sqrt{ }$	P122	X2 ${ }^{\text {Note } 1}$	-	-	-	\times	\times
				EXCLK ${ }^{\text {Note } 1}$	Input	-	-	\times	\times
\checkmark	$\sqrt{ }$	\checkmark	P123	XT $1^{\text {Note } 1}$	-	-	-	\times	\times
\checkmark	$\sqrt{ }$	\checkmark	P124	XT2 ${ }^{\text {Note } 1}$	-	-	-	\times	\times
-	\checkmark	\checkmark	$\mathrm{P} 150{ }^{\text {Note } 2}$	ANI8	Input	-	-	1	\times
				AMP2+	Input	-	-	1	\times
-	$\sqrt{ }$	$\sqrt{ }$	P151, P152 ${ }^{\text {Note } 2}$	ANI9, ANI10	Input	-	-	1	\times
$\sqrt{ }$	\checkmark	\checkmark	$\mathrm{P} 157{ }^{\text {Note } 2}$	ANI15	Input	-	-	1	\times
				AVrefm	Input	-	-	1	\times

Notes 1. To use the P121 to P124 pins for main system clock resonator connection (X1, X2), subsystem clock resonator connection (XT1, XT2), or main system clock external clock input (EXCLK), the X1 oscillation mode, XT1 oscillation mode, or external clock input mode must be set, respectively, by using the clock operation mode control register (CMC). CMC can be written only once after reset release (for details, refer to 5.3 (1) Clock operation mode control register (CMC)). The reset value of CMC is 00 H (both P121 to P 124 are input port pins).
2. The P150/ANI8/AMP2+, P151/ANI9, P152/ANI10, P157/ANI15/AVrefm pins are as shown below depending on the settings of the A/D port configuration register (ADPC), port mode register 2 (PM2), analog input channel specification register (ADS), operational amplifier control register (OAC), and analog reference voltage control register (ADVRC). Refer to 4.2.16 Port 15.

[^1]Table 4-11. Settings of Port Mode Register and Output Latch When Using Alternate Function (5/5)

$\stackrel{\Gamma}{\omega}$	ఠిద	$\frac{\Gamma}{\bar{\omega}}$	Pin Name	Alternate Function		PFALL(PFxxx)	$\begin{aligned} & \text { ISC } \\ & \text { (ISCx) } \end{aligned}$	PM $\times \times$	P×x
				Function Name	I/O				
\checkmark	-	-	P50 ${ }^{\text {Note }}$	SEG30	Output	PF5L=1	ISC2 $=0$	\times	\times
			P51 ${ }^{\text {Note }}$	SEG29	Output	PF5L=1	-	\times	\times
			P52 ${ }^{\text {Note }}$	SEG28	Output	PF5L=1	ISC3 $=0$	\times	\times
			P53 ${ }^{\text {Note }}$	SEG27	Output	PF5L=1	ISC4 = 0	\times	\times
			P54 to 57	SEG26 to SEG23	Output	PF5H=1	-	\times	\times
			P90 to 92	SEG22 to SEG20	Output	PF9L=1	-	\times	\times
			P140 to 143	SEG19 to SEG16	Output	PF14L=1	-	\times	\times
			P144 to 147	SEG15 to SEG12	Output	PF14H=1	-	\times	\times
			P100	SEG11	Output	PF10=1	-	\times	\times
-	$\sqrt{ }$	-	P50 ${ }^{\text {Note }}$	SEG39	Output	PF5L=1	ISC2 = 0	\times	\times
			P51 ${ }^{\text {Note }}$	SEG38	Output	PF5L=1	-	\times	\times
			P52 ${ }^{\text {Note }}$	SEG37	Output	PF5L=1	ISC3 $=0$	\times	\times
			P53 ${ }^{\text {Note }}$	SEG36	Output	PF5L=1	ISC4 $=0$	\times	\times
			P54 to 57	SEG35 to SEG32	Output	PF5H=1	-	\times	\times
			P90 to 93	SEG31 to SEG28	Output	PF9L=1	-	\times	\times
			P94 to 97	SEG27 to SEG24	Output	PF9H=1	-	\times	\times
			P140 to 143	SEG23 to SEG20	Output	PF14L=1	-	\times	\times
			P144 to 147	SEG19 to SEG16	Output	PF14H=1	-	\times	\times
			P100	SEG15	Output	PF10=1	-	\times	\times
-	-	\checkmark	P50 ${ }^{\text {Note }}$	SEG53	Output	PF5L=1	ISC2 $=0$	\times	\times
			P51 ${ }^{\text {Note }}$	SEG52	Output	PF5L=1	-	\times	\times
			P52 ${ }^{\text {Note }}$	SEG51	Output	PF5L=1	ISC3 = 0	\times	\times
			P53 ${ }^{\text {Note }}$	SEG50	Output	PF5L=1	ISC4 = 0	\times	\times
			P54 to 57	SEG49 to SEG46	Output	PF5H=1	-	\times	\times
			P90 to 93	SEG45 to SEG42	Output	PF9L=1	-	\times	\times
			P94 to 97	SEG41 to SEG38	Output	PF9H=1	-	\times	\times
			P140 to 143	SEG37 to SEG34	Output	PF14L=1	-	\times	\times
			P144 to 147	SEG33 to SEG30	Output	PF14H=1	-	\times	\times
			P100 to 102	SEG29 to SEG27	Output	PF10=1	-	\times	\times

Note For alternate function other than the segment output (SEGxx), refer to Table 4-11 Settings of Port Mode Register and Output Latch When Using Alternate Function (3/5).

Remark \times : don't care
-: \quad Not applicable
PFALL: Port function register
ISC: Input switch control register
PM $\times x$: Port mode register
Pxx: Port output latch

4.6 Cautions on 1-bit Manipulation Instruction for Port Register n (Pn)

When a 1-bit manipulation instruction is executed on a port that provides both input and output functions, the output latch value of an input port that is not subject to manipulation may be written in addition to the targeted bit.

Therefore, it is recommended to rewrite the output latch when switching a port from input mode to output mode.
<Example> When P10 is an output port, P11 to P17 are input ports (all pin statuses are high level), and the port latch value of port 1 is 00 H , if the output of output port P 10 is changed from low level to high level via a 1-bit manipulation instruction, the output latch value of port 1 is FFH.
Explanation: The targets of writing to and reading from the Pn register of a port whose PMnm bit is 1 are the output latch and pin status, respectively.
A 1-bit manipulation instruction is executed in the following order in the 78K0R/Lx3 Microcontrollers.
<1> The Pn register is read in 8 -bit units.
$<2>$ The targeted one bit is manipulated.
$<3>$ The Pn register is written in 8 -bit units.

In step <1>, the output latch value (0) of P 10 , which is an output port, is read, while the pin statuses of P 11 to P 17 , which are input ports, are read. If the pin statuses of P 11 to P 17 are high level at this time, the read value is FEH.

The value is changed to FFH by the manipulation in <2>.
FFH is written to the output latch by the manipulation in <3>.

Figure 4-52. Bit Manipulation Instruction (P10)

CHAPTER 5 CLOCK GENERATOR

5.1 Functions of Clock Generator

The clock generator generates the clock to be supplied to the CPU and peripheral hardware.
The following three kinds of system clocks and clock oscillators are selectable.
(1) Main system clock
<1> X1 oscillator
This circuit oscillates a clock of $\mathrm{fx}=2$ to 20 MHz by connecting a resonator to X 1 and X 2 .
Oscillation can be stopped by executing the STOP instruction or setting of MSTOP (bit 7 of the clock operation status control register (CSC)).
<2> Internal high-speed oscillator ${ }^{\text {Note }}$
This circuit oscillates clocks of $f \mathbb{I H}=1 \mathrm{MHz}$ (TYP.) or $f i H=8 \mathrm{MHz}$ (TYP.). After a reset release, the CPU always starts operating with this internal high-speed oscillation clock. Oscillation can be stopped by executing the STOP instruction or setting HIOSTOP (bit 0 of CSC).
<3> $20 \mathbf{M H z}$ internal high-speed oscillation clock oscillator ${ }^{\text {Note }}$
This circuit oscillates a clock of $\mathrm{fiHz}^{20}=20 \mathrm{MHz}$ (TYP.). Oscillation can be started by setting bit 0 (DSCON) of the 20 MHz internal high-speed oscillation control register (DSCCTL) to 1 with $\mathrm{VDD} \geq 2.7 \mathrm{~V}$. Oscillation can be stopped by setting DSCON to 0 .

Note To use the internal high-speed oscillation clock, use the option byte to set the frequency ($1 \mathrm{MHz}, 8$ MHz , or 20 MHz) in advance (for details, see CHAPTER 26 OPTION BYTE). Also, the internal highspeed oscillator automatically starts oscillating after reset release. To use the 20 MHz internal highspeed oscillator to operate the microcontroller, oscillation is started by setting bit 0 (DSCON) of the 20 MHz internal high-speed oscillation control register (DSCCTL) to 1.

An external main system clock (fEx = 2 to 20 MHz) can also be supplied from the EXCLK/X2/P122 pin. An external main system clock input can be disabled by executing the STOP instruction or setting of MSTOP.
As the main system clock, a high-speed system clock (X1 clock or external main system clock) or internal highspeed oscillation clock can be selected by setting of MCMO (bit 4 of the system clock control register (CKC)).

Remark fx: X1 clock oscillation frequency
f_{H} : Internal high-speed oscillation clock frequency
fінго: 20 MHz internal high-speed oscillation clock frequency
fex: External main system clock frequency

(2) Subsystem clock

- XT1 clock oscillator

This circuit oscillates a clock of fsub $=32.768 \mathrm{kHz}$ by connecting a 32.768 kHz resonator to XT 1 and XT2. Oscillation can be stopped by setting XTSTOP (bit 6 of CSC).
(3) Internal low-speed oscillation clock (clock for watchdog timer)

- Internal low-speed oscillator

This circuit oscillates a clock of fil $=30 \mathrm{kHz}$ (TYP.).
The internal low-speed oscillation clock cannot be used as the CPU clock. The only hardware that operates with the internal low-speed oscillation clock is the watchdog timer.

Oscillation is stopped when the watchdog timer stops.

Remarks 1. fsub: Subsystem clock frequency
fll: Internal low-speed oscillation clock frequency
2. The watchdog timer stops in the following cases.

- When bit 4 (WDTON) of an option byte $(000 \mathrm{COH})=0$
- If the HALT or STOP instruction is executed when bit 4 (WDTON) of an option byte $(000 \mathrm{COH})=1$ and bit $0($ WDSTBYON $)=0$

5.2 Configuration of Clock Generator

The clock generator includes the following hardware

Table 5-1. Configuration of Clock Generator

Item	
Control registers	Clock operation mode control register (CMC) Clock operation status control register (CSC) Oscillation stabilization time counter status register (OSTC) Oscillation stabilization time select register (OSTS) System clock control register (CKC) 20 MHz internal high-speed oscillation control register (DSCCTL) Peripheral enable registers 0 (PER0) Operation speed mode control register (OSMC)
Oscillators	X1 oscillator XT1 oscillator Internal high-speed oscillator Internal low-speed oscillator


```
Remark fx: X1 clock oscillation frequency
    fiн: Internal high-speed oscillation clock frequency
    fIH1: }1\textrm{MHz}\mathrm{ internal high-speed oscillation clock frequency
    fiH8: }8\textrm{MHz}\mathrm{ internal high-speed oscillation clock frequency
    fiнzo: 20 MHz internal high-speed oscillation clock frequency
    fex: External main system clock frequency
    fmx: High-speed system clock frequency
    fmain: Main system clock frequency
    fmainc:Main system selection clock frequency
    fxT: XT1 clock oscillation frequency
    fsub: Subsystem clock frequency
    fsubc: Subsystem selection clock frequency
    fcLk: CPU/peripheral hardware clock frequency
    fl:: Internal low-speed oscillation clock frequency
```


5.3 Registers Controlling Clock Generator

The following eight registers are used to control the clock generator.

- Clock operation mode control register (CMC)
- Clock operation status control register (CSC)
- Oscillation stabilization time counter status register (OSTC)
- Oscillation stabilization time select register (OSTS)
- System clock control register (CKC)
- 20 MHz internal high-speed oscillation control register (DSCCTL)
- Peripheral enable register 0 (PERO)
- Operation speed mode control register (OSMC)
(1) Clock operation mode control register (CMC)

This register is used to set the operation mode of the X1/P121, X2/EXCLK/P122, XT1/P123, and XT2/P124 pins, and to select a gain of the oscillator.
CMC can be written only once by an 8-bit memory manipulation instruction after reset release. This register can be read by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 5-2. Format of Clock Operation Mode Control Register (CMC)

Remark fmx: High-speed system clock frequency
Cautions 1. CMC can be written only once after reset release, by an 8-bit memory manipulation instruction.
2. After reset release, set CMC before X1 or XT1 oscillation is started as set by the clock operation status control register (CSC).
3. Be sure to set AMPH to 1 if the X1 clock oscillation frequency exceeds $10 \mathbf{M H z}$.
4. To use CMC with its initial value $(\mathbf{O O H})$, be sure to set it to 00 H after releasing reset in order to prevent malfunction when a program loop occurs.
5. The XT1 oscillator is designed as a low-gain circuit for achieving low-power consumption. Note the following points when designing the XT1 oscillator.

- The pins and circuit board include parasitic capacitance. Therefore, confirm that there are no problems by performing oscillation evaluation on the circuit board to be actually used.
- When low-consumption oscillation or super-low-consumption oscillation is selected, lower power consumption than when selecting normal oscillation can be achieved. However, in this case, the XT1 oscillation margin is reduced, so perform sufficient oscillation evaluation of the resonator to be used for XT1 oscillation before using the resonator.
(Cautions are continued on the next page.)
- Keep the wiring length between the XT1 and XT2 pins and resonator as short as possible and parasitic capacitance and wire resistance as small as possible. This is particularly important when super-low-consumption oscillation (AMPHS1 =1) is selected.
- Configure the circuit board by using material with little parasitic capacitance and wire resistance.
- Place a ground pattern that has the same potential as Vss (if possible) around the XT1 oscillator.
- Do not cross the signal lines between the XT1 and XT2 pins and the resonator with other signal lines. Do not route the signal lines near a signal line through which a high fluctuating current flows.
- Moisture absorption by the circuit board and condensation on the board in a highly humid environment may cause the impedance between the XT1 and XT2 pins to drop and disable oscillation. When using the circuit board in such an environment, prevent the circuit board from absorbing moisture by taking measures such as coating the circuit board.
- Coat the surface of the circuit board by using material that does not generate capacitance or leakage between the XT1 and XT2 pins.
(2) Clock operation status control register (CSC)

This register is used to control the operations of the high-speed system clock, internal high-speed oscillation clock, and subsystem clock (except the 20 MHz internal high-speed oscillation clock and internal low-speed oscillation clock). CSC can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation sets this register to COH .
Figure 5-3. Format of Clock Operation Status Control Register (CSC)

Address:	A1H Af	eset: COH						
Symbol	<7>	<6>	5	4	3	2	1	<0>
CSC	MSTOP	XTSTOP	0	0	0	0	0	HIOSTOP

MSTOP	High-speed system clock operation control			
	X1 oscillation mode	External clock input mode	Input port mode	
0	X1 oscillator operating	External clock from EXCLK pin is valid	-	
1	X1 oscillator stopped	External clock from EXCLK pin is invalid		

XTSTOP	Subsystem clock operation control	
	XT1 oscillation mode	Input port mode
0	XT1 oscillator operating	-
1	XT1 oscillator stopped	

HIOSTOP	Internal high-speed oscillation clock operation control
0	Internal high-speed oscillator operating
1	Internal high-speed oscillator stopped

Caution 1. After reset release, set the clock operation mode control register (CMC) before starting X1 oscillation as set by MSTOP or XT1 oscillation as set by XTSTOP.

Cautions 2. To start X1 oscillation as set by MSTOP, check the oscillation stabilization time of the X1 clock by using the oscillation stabilization time counter status register (OSTC).
3. Do not stop the clock selected for the CPU peripheral hardware clock (fcLk) with the OSC register.
4. The setting of the flags of the register to stop clock oscillation (invalidate the external clock input) and the condition before clock oscillation is to be stopped are as follows.

Table 5-2. Condition Before Stopping Clock Oscillation and Flag Setting

Clock	Condition Before Stopping Clock (Invalidating External Clock Input)	Setting of CSC Register Flags
X1 clock	CPU and peripheral hardware clocks operate with a clock	
other than the high-speed system clock.		
External main system		
clock\bullet CLS $=0$ and MCS $=0$ \bullet CLS $=1$	MSTOP $=1$	
Subsystem clock	CPU and peripheral hardware clocks operate with a clock other than the subsystem clock. (CLS $=0$)	XTSTOP =1
Internal high-speed oscillation clock	CPU and peripheral hardware clocks operate with a clock other than the internal high-speed oscillator clock and 20 MHz internal high-speed oscillation clock. (CLS $=0$ and MCS $=1$ \bullet CLS $=1$	HIOSTOP =1

(3) Oscillation stabilization time counter status register (OSTC)

This is the register that indicates the count status of the X 1 clock oscillation stabilization time counter.
The X1 clock oscillation stabilization time can be checked in the following case,

- If the X 1 clock starts oscillation while the internal high-speed oscillation clock or subsystem clock is being used as the CPU clock.
- If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock with the X1 clock oscillating.

OSTC can be read by a 1 -bit or 8 -bit memory manipulation instruction.
When reset signal is generated, the STOP instruction and MSTOP (bit 7 of CSC register) $=1$ clear OSTC to 00 H .
Remark The oscillation stabilization time counter starts counting in the following cases.

- When oscillation of the X1 clock starts (EXCLK, OSCSEL $=0,1 \rightarrow$ MSTOP $=0$)
- When the STOP mode is released

Figure 5-4. Format of Oscillation Stabilization Time Counter Status Register (OSTC)

Address: FFFA2H	After reset: 00 H								R
Symbol	7	6	5	4	3	2	1	0	
OSTC	MOST								
	8	9	10	11	13	15	17	18	

MOST	Oscillation stabilization time status									
8	9	10	11	13	15	17	18		$\mathrm{fx}=10 \mathrm{MHz}$	$\mathrm{fx}=20 \mathrm{MHz}$
0	0	0	0	0	0	0	0	$2^{8} / \mathrm{fx}$ max.	25.6μ s max.	12.8μ s max.
1	0	0	0	0	0	0	0	$2^{8} / \mathrm{fx} \times \mathrm{min}$.	25.6μ s min.	$12.8 \mu \mathrm{~s} \mathrm{~min}$.
1	1	0	0	0	0	0	0	$2^{9} / \mathrm{fx} \times \mathrm{min}$.	$51.2 \mu \mathrm{~s}$ min.	$25.6 \mu \mathrm{~s} \mathrm{~min}$.
1	1	1	0	0	0	0	0	$2^{10} / \mathrm{fx}$ min.	$102.4 \mu \mathrm{~s} \mathrm{~min}$.	$51.2 \mu \mathrm{~s}$ min.
1	1	1	1	0	0	0	0	$2^{11 / f x} \mathrm{~min}$.	$204.8 \mu \mathrm{~s} \mathrm{~min}$.	$102.4 \mu \mathrm{~s} \mathrm{~min}$.
1	1	1	1	1	0	0	0	$2^{13} / \mathrm{fx}$ min.	$819.2 \mu \mathrm{~s} \mathrm{~min}$.	$409.6 \mu \mathrm{~s} \mathrm{~min}$.
1	1	1	1	1	1	0	0	$2^{15} / \mathrm{fx}$ min.	3.27 ms min .	1.64 ms min .
1	1	1	1	1	1	1	0	$2^{17} / \mathrm{fx}$ min.	13.11 ms min .	6.55 ms min .
1	1	1	1	1	1	1	1	$2^{18} / \mathrm{fx}$ min.	26.21 ms min .	13.11 ms min .

Cautions 1. After the above time has elapsed, the bits are set to 1 in order from MOST8 and remain 1.
2. The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS.
In the following cases, set the oscillation stabilization time of OSTS to the value greater than the count value which is to be checked by the OSTC register after the oscillation starts.

- If the X1 clock starts oscillation while the internal high-speed oscillation clock or subsystem clock is being used as the CPU clock.
- If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock with the X1 clock oscillating.
(Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after the STOP mode is released.)

3. The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).

Remark fx: X1 clock oscillation frequency

(4) Oscillation stabilization time select register (OSTS)

This register is used to select the X1 clock oscillation stabilization wait time when the STOP mode is released.
When the X1 clock is selected as the CPU clock, the operation automatically waits for the time set using OSTS after the STOP mode is released.
When the internal high-speed oscillation clock is selected as the CPU clock, confirm with OSTC that the desired oscillation stabilization time has elapsed after the STOP mode is released. The oscillation stabilization time can be checked up to the time set using OSTC.
OSTS can be set by an 8-bit memory manipulation instruction.
Reset signal generation sets OSTS to 07H.

Figure 5-5. Format of Oscillation Stabilization Time Select Register (OSTS)

Address:	3 Af	eset: 07H	R/W				
Symbol	7	6	5	4	3	2	10
OSTS	0	0	0	0	0	OSTS2	OSTS1
	OSTS2	OSTS1	OSTS0		ill	ion stabilization tim	selection
						$\mathrm{fx}_{\mathrm{x}}=10 \mathrm{MHz}$	$\mathrm{fx}=20 \mathrm{MHz}$
	0	0	0	$2^{8} / \mathrm{fx}$		$25.6 \mu \mathrm{~s}$	Setting prohibited
	0	0	1	$2^{9} / \mathrm{fx}$		$51.2 \mu \mathrm{~s}$	$25.6 \mu \mathrm{~s}$
	0	1	0	$2^{10} / \mathrm{fx}$		$102.4 \mu \mathrm{~s}$	$51.2 \mu \mathrm{~s}$
	0	1	1	$2^{11} / \mathrm{fx}$		$204.8 \mu \mathrm{~s}$	$102.4 \mu \mathrm{~s}$
	1	0	0	$2^{13} / \mathrm{fx}$		$819.2 \mu \mathrm{~s}$	$409.6 \mu \mathrm{~s}$
	1	0	1	$2^{15 / f x}$		3.27 ms	1.64 ms
	1	1	0	$2^{17} / \mathrm{fx}$		13.11 ms	6.55 ms
	1	1	1	$2^{18} / \mathrm{fx}$		26.21 ms	13.11 ms

Cautions 1. To set the STOP mode when the X1 clock is used as the CPU clock, set the OSTS register before executing the STOP instruction.
2. Setting the oscillation stabilization time to 20μ s or less is prohibited.
3. To change the setting of the OSTS register, be sure to confirm that the counting operation of the OSTC register has been completed.
4. Do not change the value of the OSTS register during the X1 clock oscillation stabilization time.
5. The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS.
In the following cases, set the oscillation stabilization time of OSTS to the value greater than the count value which is to be checked by the OSTC register after the oscillation starts.

- If the X1 clock starts oscillation while the internal high-speed oscillation clock or subsystem clock is being used as the CPU clock.
- If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock with the X1 clock oscillating. (Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after the STOP mode is released.)

6. The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).

Remark fx: X1 clock oscillation frequency

(5) System clock control register (CKC)

This register is used to select a CPU/peripheral hardware clock and a division ratio.
CKC can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets this register to 09H.

Figure 5-6. Format of System Clock Control Register (CKC)

MCS	Status of Main system clock (fmain)
0	Internal high-speed oscillation clock (fiH) or 20 MHz internal high-speed oscillation clock (firzo)
1	High-speed system clock (fnx)

CSS	мСмо	SDIV	MDIV2	MDIV1	MDIVo	Selection of CPU/peripheral hardware clock (fcck)
0	0	\times	0	0	0	f_{H}
		\times	0	0	1	$\mathrm{fiH}_{\mathbf{H} / 2}$ (default)
		\times	0	1	0	$\mathrm{fiH}^{1} / 2^{2}$
		\times	0	1	1	$\mathrm{fiH}^{1} / 2^{3}$
		\times	1	0	0	$\mathrm{fiH}^{(1 / 2} 2^{\text {Nate } 2}$
		\times	1	0	1	$\mathrm{fiH}_{\mathrm{H}} 2^{\text {SNote } 2}$
0	1	\times	0	0	0	fmx
		\times	0	0	1	fux/2
		\times	0	1	0	$\mathrm{fmx} / 2^{2}$
		\times	0	1	1	$\mathrm{fmx} / 2^{3}$
		\times	1	0	0	$\mathrm{fmx} / 2^{4}$
		\times	1	0	1	$\mathrm{frux}^{2} / 2^{\text {5 Noee }} 3$
$1^{\text {Note } 4}$	$\times^{\text {Note } 4}$	0	\times	\times	\times	fsub
		1	\times	\times	\times	fsub/2
Other than above						Setting prohibited

Notes 1. Bits 7 and 5 are read-only.
2. Setting is prohibited when $\mathrm{fIH}=1 \mathrm{MHz}$.
3. Setting is prohibited when $f m x<4 \mathrm{MHz}$.
4. Changing the value of the MCMO bit is prohibited while CSS is set to 1 .
(Remarks and Cautions are listed on the next page.)

Remarks 1. fiн: Internal high-speed oscillation clock frequency
fiнzo: 20 MHz Internal high-speed oscillation clock frequency
fmx: High-speed system clock frequency
fsub Subsystem clock frequency
2. \times : don't care

Cautions 1. The clock set by CSS, MCMO, SDIV, and MDIV2 to MDIV0 is supplied to the CPU and peripheral hardware. If the CPU clock is changed, therefore, the clock supplied to peripheral hardware (except the real-time counter, timer array unit (when fsub/2, fsub/4, the valid edge of TIOmn input, or the valid edge of INTRTCI is selected as the count clock), clock output/buzzer output, and watchdog timer) is also changed at the same time. Consequently, stop each peripheral function when changing the CPU/peripheral operating hardware clock.
2. If the peripheral hardware clock is used as the subsystem clock, the operations of the A/D converter and IICA are not guaranteed. For the operating characteristics of the peripheral hardware, refer to the chapters describing the various peripheral hardware as well as CHAPTER 31 ELECTRICAL SPECIFICATIONS.

The fastest instruction can be executed in 1 clock of the CPU clock in the 78K0R/Lx3 microcontrollers. Therefore, the relationship between the CPU clock (fcLk) and the minimum instruction execution time is as shown in Table 5-3.

Table 5-3. Relationship Between CPU Clock and Minimum Instruction Execution Time

CPU Clock (Value set by the SDIV, and MDIV2 to MDIVO bits)	Minimum Instruction Execution Time: 1/fclk				
	Main System Clock (CSS = 0)				Subsystem Clock (CSS = 1)
	High-Speed System Clock ($\mathrm{MCMO}=1$)		Internal High-Speed Oscillation Clock (MCMO = 0)		
	At 10 MHz Operation	At 20 MHz Operation	At 8 MHz (TYP.) Operation	At 20 MHz (TYP.) Operation	At 32.768 kHz Operation
fmain	$0.1 \mu \mathrm{~s}$	$0.05 \mu \mathrm{~s}$	$0.125 \mu \mathrm{~s}$ (TYP.)	0.05μ (TYP.)	-
$\mathrm{fmain} / 2$	$0.2 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$	$0.25 \mu \mathrm{~s}$ (TYP.) (default)	$0.1 \mu \mathrm{~s}$ (TYP.)	-
$\mathrm{fmain}^{\text {/ }} 2^{2}$	$0.4 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$ (TYP.)	0.2μ (TYP.)	-
$\mathrm{fmain}^{\text {/ }}{ }^{3}$	$0.8 \mu \mathrm{~s}$	$0.4 \mu \mathrm{~s}$	$1.0 \mu \mathrm{~s}$ (TYP.)	$0.4 \mu \mathrm{~s}$ (TYP.)	-
${\mathrm{fmain} / 2^{4}}^{4}$	$1.6 \mu \mathrm{~s}$	$0.8 \mu \mathrm{~s}$	$2.0 \mu \mathrm{~s}$ (TYP.)	0.8μ (TYP.)	-
$\mathrm{fmain}^{\text {/ }}{ }^{5}$	$3.2 \mu \mathrm{~s}$	$1.6 \mu \mathrm{~s}$	$4.0 \mu \mathrm{~s}$ (TYP.)	$1.6 \mu \mathrm{~s}$ (TYP.)	-
fsub	-		-		$30.5 \mu \mathrm{~s}$
fsub/2	-		-		$61 \mu \mathrm{~s}$

[^2]
(6) $\mathbf{2 0 ~ M H z}$ internal high-speed oscillation control register (DSCCTL)

This register controls the 20 MHz internal high-speed oscillation clock (DSC) function.
It can be used to select whether to use the 20 MHz internal high-speed oscillation clock ($\mathrm{f} \mathbf{\mathrm { I } H 2 \mathrm { O } \text {) as a peripheral }}$ hardware clock that supports 20 MHz .
DSCCTL can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 5-7. Format of 20 MHz Internal High-Speed Oscillation Control Register (DSCCTL)

DSCS	20 MHz internal high-speed oscillation supply status flag
0	Not supplied
1	Supplied

SELDSC	Selection of 20 MHz internal high-speed oscillation for CPU/peripheral hardware clock (fcck)
0	Does not select 20 MHz internal high-speed oscillation (clock selected by CKC register is supplied to fcLк)
1	Selects 20 MHz internal high-speed oscillation (20 MHz internal high-speed oscillation is supplied to fcLк)

DSCON	20 MHz internal high-speed oscillation clock (fiHzo) operation enable/disable
0	Disables operation.
1	Enables operation.

Note Bit 3 is read-only.

Cautions 1. 20 MHz internal oscillation can only be used if VdD $\geq 2.7 \mathrm{~V}$.
2. Set SELDSC when 100μ s have elapsed after having set DSCON with VDD $\geq 2.7 \mathrm{~V}$.
3. The internal high-speed oscillator must be operated (HIOSTOP $=0$) when DSCON $=1$.

(7) Peripheral enable register 0 (PERO)

This register is used to enable or disable use of each peripheral hardware macro. Clock supply to the hardware that is not used is also stopped so as to decrease the power consumption and noise.
PERO can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation clears theses registers to 00 H .

Figure 5-8. Format of Peripheral Enable Register 0 (PERO) (1/2)

Address:	H Aft	et: OOH	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PERO	RTCEN	DACEN	ADCEN	IICAEN ${ }^{\text {Note } 1}$	SAU1EN	SAU0EN	TAU1EN	TAU0EN

RTCEN	Control of real-time counter (RTC) input clock ${ }^{\text {Note 2 }}$
0	Stops input clock supply. - SFR used by the real-time counter (RTC) cannot be written. - The real-time counter (RTC) is in the reset status.
1	Supplies input clock. - SFR used by the real-time counter (RTC) can be read and written.

DACEN	\quad Control of D/A converter input clock
0	Stops input clock supply. - SFR used by the D/A converter cannot be written. - The D/A converter is in the reset status.
1	Supplies input clock. - SFR used by the D/A converter can be read and written.

ADCEN	Control of A/D converter, operational amplifier, and voltage reference input clock
0	Stops input clock supply. - SFR used by the A/D converter, operational amplifier, and voltage reference cannot be written. - The A/D converter, operational amplifier, and voltage reference is in the reset status.
1	Supplies input clock. - SFR used by the A/D converter, operational amplifier, and voltage reference can be read and written.

IICAEN	Control of serial interface IICA input clock
0	Stops input clock supply. - SFR used by the serial interface IICA cannot be written. - The serial interface IICA is in the reset status.
1	Supplies input clock. - SFR used by the serial interface IICA can be read and written.

Notes 1. 78K0R/LG3, 78K0R/LH3 only
2. By using RTCEN, can supply and stop the clock that is used when accessing the real-time counter (RTC) from the CPU. RTCEN cannot control supply of the operating clock (fsub) to RTC.

Figure 5-8. Format of Peripheral Enable Register 0 (PERO) (2/2)

SAU1EN	Control of serial array unit 1 input clock
0	Stops input clock supply. - SFR used by the serial array unit 1 cannot be written. - The serial array unit is in the reset status.
1	Supplies input clock. - SFR used by the serial array unit 1 can be read and written.

SAUOEN	Control of serial array unit 0 input clock
0	Stops input clock supply. - SFR used by the serial array unit 0 cannot be written. - The serial array unit 0 is in the reset status.
1	Supplies input clock. - SFR used by the serial array unit 0 can be read and written.

TAU1EN	Control of timer array unit 1 input clock
0	Stops input clock supply. - SFR used by timer array unit 1 cannot be written. - Timer array unit 1 is in the reset status.
1	Supplies input clock. - SFR used by timer array unit 1 can be read and written.

TAUOEN	Control of timer array unit 0 input clock
0	Stops input clock supply. - SFR used by timer array unit 0 cannot be written. - Timer array unit 0 is in the reset status.
1	Supplies input clock. - SFR used by timer array unit 0 can be read and written.

(8) Operation speed mode control register (OSMC)

This register is used to control the step-up circuit of the flash memory for high-speed operation.
If the microcontroller operates at a low speed with a system clock of 10 MHz or less, the power consumption can be lowered by setting this register to the default value, 00 H .
OSMC can be set by an 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 5-9. Format of Operation Speed Mode Control Register (OSMC)

Address:	F3H Aft	After reset: 00 H	R/W					
Symbol	7	6	5	4	3	2	1	0
OSMC	RTCLPC	0	0	0	0	0	FLPC	FSEL

RTCLPC	Setting in subsystem clock HALT mode
0	Enables subsystem clock supply to peripheral functions. (See Table 21-1 Operating Statuses in HALT Mode (2/3) for the peripheral functions whose operations are enabled.)
1	Stops subsystem clock supply to peripheral functions except real-time counter, clock output/buzzer output, and LCD controller/driver.

FLPC	FSEL	fcLk frequency selection
0	0	Operates at a frequency of 10 MHz or less (default).
0	1	Operates at a frequency higher than 10 MHz.
1	0	Operates at a frequency of 1 MHz.
1	1	Setting prohibited

Cautions 1. Write " 1 " to FSEL before the following two operations.

- Changing the clock prior to dividing fclk to a clock other than fir.
- Operating the DMA controller.

2. The CPU waits (140.5 clock (fclk)) when " 1 " is written to the FSEL bit. Interrupt requests issued during a wait will be suspended.
However, counting the oscillation stabilization time of $f x$ can continue even while the CPU is waiting.
3. To increase fcLk to 10 MHz or higher, set FSEL to " 1 ", then change fclk after two or more clocks have elapsed.
4. Confirm that the clock is operating at 10 MHz or less before setting FSEL $=0$.
5. To shift to STOP mode while Vod $\leq 2.7 \mathrm{~V}$, set FSEL $=0$ after setting fcLk to 10 MHz or less.
6. The HALT mode current when operating on the subsystem clock can be reduced by setting RTCLPC to 1 . However, the clock cannot be supplied to peripheral functions except the real-time counter in the subsystem clock HALT mode. Set bit 7 (RTCEN) of PERO to 1 and bits 0 to 6 of PERO to 0 before setting the subsystem clock HALT mode.
7. Once FLPC has been set from 0 to 1 , setting it back to 0 from 1 other than by reset is prohibited.
8. When setting FSEL to " 1 ", do so while RMC $=00 \mathrm{H}$.

When setting FLPC to " 1 ", do so while RMC $=5 A \mathrm{H}$.

5.4 System Clock Oscillator

5.4.1 X1 oscillator

The X1 oscillator oscillates with a crystal resonator or ceramic resonator (2 to 20 MHz) connected to the X 1 and X 2 pins.

An external clock can also be input. In this case, input the clock signal to the EXCLK pin.
To use the X1 oscillator, set bits 7 and 6 (EXCLK, OSCSEL) of the clock operation mode control register (CMC) as follows.

- Crystal or ceramic oscillation: EXCLK, OSCSEL = 0, 1
- External clock input: EXCLK, OSCSEL = 1, 1

When the X 1 oscillator is not used, set the input port mode (EXCLK, OSCSEL $=0,0$).
When the pins are not used as input port pins, either, see Table 2-2 to 2-4 Connection of Unused Pins.
Figure 5-10 shows an example of the external circuit of the X1 oscillator.

Figure 5-10. Example of External Circuit of X1 Oscillator
(a) Crystal or ceramic oscillation

(b) External clock

Cautions are listed on the next page.

5.4.2 XT1 oscillator

The XT1 oscillator oscillates with a crystal resonator (standard: 32.768 kHz) connected to the XT1 and XT2 pins.
To use the XT1 oscillator, set bit 4 (OSCSELS) of the clock operation mode control register (CMC) to 1.
When the XT1 oscillator is not used, set the input port mode (OSCSELS = 0).
When the pins are not used as input port pins, either, see Table 2-2 to 2-4 Connection of Unused Pins.
Figure $5-11$ shows an example of the external circuit of the XT1 oscillator.

Figure 5-11. Example of External Circuit of XT1 Oscillator (Crystal Oscillation)

Cautions are listed on the next page.

Caution 1. When using the X1 oscillator and XT1 oscillator, wire as follows in the area enclosed by the broken lines in the Figures 5-10 and 5-11 to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

Note that the XT1 oscillator is designed as a low-gain circuit for achieving low-power consumption. Note the following points when designing the XT1 oscillator.

- The pins and circuit board include parasitic capacitance. Therefore, confirm that there are no problems by performing oscillation evaluation on the circuit board to be actually used.
- When low-consumption oscillation or super-low-consumption oscillation is selected, lower power consumption than when selecting normal oscillation can be achieved. However, in this case, the XT1 oscillation margin is reduced, so perform sufficient oscillation evaluation of the resonator to be used for XT1 oscillation before using the resonator.
- Keep the wiring length between the XT1 and XT2 pins and resonator as short as possible and parasitic capacitance and wire resistance as small as possible. This is particularly important when super-low-consumption oscillation (AMPHS1 =1) is selected.
- Configure the circuit board by using material with little parasitic capacitance and wire resistance.
- Place a ground pattern that has the same potential as Vss (if possible) around the XT1 oscillator.
- Do not cross the signal lines between the XT1 and XT2 pins and the resonator with other signal lines. Do not route the signal lines near a signal line through which a high fluctuating current flows.
- Moisture absorption by the circuit board and condensation on the board in a highly humid environment may cause the impedance between the XT1 and XT2 pins to drop and disable oscillation. When using the circuit board in such an environment, prevent the circuit board from absorbing moisture by taking measures such as coating the circuit board.
- Coat the surface of the circuit board by using material that does not generate capacitance or leakage between the XT1 and XT2 pins.

Figure 5-12 shows examples of incorrect resonator connection.

Figure 5-12. Examples of Incorrect Resonator Connection (1/2)
(a) Too long wiring
(b) Crossed signal line

(c) Signal lines of $X 1$ and $X 2$ cross
(d) Power supply/GND pattern exists underneath X1 and X2 wiring

Note Do not place a power supply/GND pattern underneath the wiring section (in broken lines above) of the X1 and X2 pins and resonator in the multilayer board and double-sided board.
Do not configure a layout that may cause capacitance elements and affect the oscillation characteristics.

Remark When using the subsystem clock, replace X1 and X2 with XT1 and XT2, respectively. Also, insert resistors in series on the XT2 side.

Figure 5-12. Examples of Incorrect Resonator Connection (2/2)
(e) Wiring near high alternating current

(f) Current flowing through ground line of oscillator (potential at points A, B, and C fluctuates)

(g) Signals are fetched

5.4.3 Internal high-speed oscillator

The internal high-speed oscillator is incorporated in the $78 \mathrm{KOR} / \mathrm{Lx} 3$ (1,8 and 20 MHz (TYP.)). Oscillation can be controlled by bit 0 (HIOSTOP) of the clock operation status control register (CSC) and bit 0 (DSCON) of the 20 MHz internal high-speed oscillation control register (DSCCTL).

Caution To use the 1, 8, or 20 MHz internal high-speed oscillation clock, use the option byte to set the frequency in advance (for details, see CHAPTER 26 OPTION BYTE). Also, the internal high-speed oscillator automatically starts oscillating after reset release. (If 8 MHz or 20 MHz is selected by using the option byte, the microcontroller operates using the $8 \mathbf{M H z}$ internal high-speed oscillator.) To use the $\mathbf{2 0} \mathbf{M H z}$ internal high-speed oscillator to operate the microcontroller, oscillation is started by setting bit 0 (DSCON) of the DSCCTL register to 1 with $\mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$.

5.4.4 Internal low-speed oscillator

The internal low-speed oscillator is incorporated in the 78K0R/Lx3 microcontrollers.
The internal low-speed oscillation clock is used only as the watchdog timer clock. The internal low-speed oscillation clock cannot be used as the CPU clock.

After a reset release, the internal low-speed oscillator automatically starts oscillation, and the watchdog timer is driven (30 kHz (TYP.)) if the watchdog timer operation is enabled by the option byte.

The internal low-speed oscillator continues oscillation except when the watchdog timer stops. When the watchdog timer operates, the internal low-speed oscillation clock does not stop, even in case of a program loop.

5.4.5 Prescaler

The prescaler generates a CPU/peripheral hardware clock by dividing the main system clock and subsystem clock.

5.5 Clock Generator Operation

The clock generator generates the following clocks and controls the operation modes of the CPU, such as standby mode (see Figure 5-1).

- Main system clock fmain
- High-speed system clock fmx

X1 clock fx
External main system clock fex

- Internal high-speed oscillation clock fiH

1 MHz internal high-speed oscillation clock $\mathrm{f}_{\mathrm{H}-1}$
8 MHz internal high-speed oscillation clock fiнв

- 20 MHz internal high-speed oscillation clock fiH2O
- Subsystem clock fsub
- Subsystem selection clock fsubc
- Internal low-speed oscillation clock fil
- CPU/peripheral hardware clock fcLk

The CPU starts operation when the internal high-speed oscillator starts outputting after a reset release in the 78K0R/Lx3 microcontrollers, thus enabling the following.

(1) Enhancement of security function

When the X 1 clock is set as the CPU clock by the default setting, the device cannot operate if the X 1 clock is damaged or badly connected and therefore does not operate after reset is released. However, the start clock of the CPU is the internal high-speed oscillation clock, so the device can be started by the internal high-speed oscillation clock after a reset release. As a result, reset sources can be detected by software and the minimum amount of safety processing can be done during anomalies to ensure that the system terminates safely.
(2) Improvement of performance

Because the CPU can be started without waiting for the X1 clock oscillation stabilization time, the total performance can be improved.

When the power supply voltage is turned on, the clock generator operation is shown in Figure 5-13 and Figure 5-14.

Figure 5-13. Clock Generator Operation When Power Supply Voltage Is Turned On (When LVI Default Start Function Stopped Is Set (Option Byte: LVIOFF = 1))

<1> When the power is turned on, an internal reset signal is generated by the power-on-clear (POC) circuit.
<2> When the power supply voltage exceeds 1.61 V (TYP.), the reset is released and the internal high-speed oscillator automatically starts oscillation.
$<3>$ The CPU starts operation on the internal high-speed oscillation clock ${ }^{\text {Note } 3}$ after a reset processing such as waiting for the voltage of the power supply or regulator to stabilize has been performed after reset release.
$<4>$ Set the start of oscillation of the X1 or XT1 clock via software (see (1) in 5.6.1 Example of controlling highspeed system clock and (1) in 5.6.3 Example of controlling subsystem clock).
$<5>$ When switching the CPU clock to the X1 or XT1 clock, wait for the clock oscillation to stabilize, and then set switching via software (see (3) in 5.6.1 Example of controlling high-speed system clock and (2) in 5.6.3 Example of controlling subsystem clock).

Switch to the 20 MHz internal high-speed oscillation clock by setting the DSCON bit (bit 0 of the 20 MHz internal high-speed oscillation control register (DSCCTL)), waiting for $100 \mu \mathrm{~s}$, and then setting the SELDSC bit to 1 by using software ${ }^{\text {Note } 4}$.
(Notes and Cautions are listed on the next page.)

Notes 1. The internal reset processing time includes the oscillation accuracy stabilization time of the internal highspeed oscillation clock.
2. When releasing a reset, confirm the oscillation stabilization time for the X 1 clock using the oscillation stabilization time counter status register (OSTC).
3. The microcontroller operates on the 8 MHz internal high-speed oscillation clock if 8 MHz or 20 MHz is selected for the internal high-speed oscillator by using the option byte or on the 1 MHz internal high-speed oscillation clock if 1 MHz is selected.
4. If the internal high-speed oscillator is set to 1 MHz by using the option byte, the 20 MHz internal high-speed oscillation clock cannot be used.

Cautions 1. If the voltage rises with a slope of less than $0.5 \mathrm{~V} / \mathrm{ms}$ (MIN.) from power application until the voltage reaches 1.8 V , input a low level to the RESET pin from power application until the voltage reaches 1.8 V , or set the LVI default start function stopped by using the option byte (LVIOFF = 0) (see Figure 5-14). By doing so, the CPU operates with the same timing as <2> and thereafter in Figure 5-13 after reset release by the RESET pin.
2. It is not necessary to wait for the oscillation stabilization time when an external clock input from the EXCLK pin is used.

Figure 5-14. Clock Generator Operation When Power Supply Voltage Is Turned On (When LVI Default Start Function Enabled Is Set (Option Byte: LVIOFF = 0))

<1> When the power is turned on, an internal reset signal is generated by the low-voltage detector (LVI) circuit.
<2> When the power supply voltage exceeds 2.07 V (TYP.), the reset is released and the internal high-speed oscillator ${ }^{\text {Note } 3}$ automatically starts oscillation.
$<3>$ After the reset is released and reset processing is performed, the CPU starts operation on the internal high-speed oscillation clock ${ }^{\text {Note } 3}$.
$<4>$ Set the start of oscillation of the X1 or XT1 clock via software (see (1) in 5.6.1 Example of controlling highspeed system clock and (1) in 5.6.3 Example of controlling subsystem clock).
Switch to oscillation using the 20 MHz internal high-speed oscillation clock after setting the DSCON bit to 1 by using software.
$<5>$ When switching the CPU clock to the X1 or XT1 clock, wait for the clock oscillation to stabilize, and then set switching via software (see (3) in 5.6.1 Example of controlling high-speed system clock and (2) in 5.6.3 Example of controlling subsystem clock).
Switch to the 20 MHz internal high-speed oscillation clock after confirming that the power supply voltage is at least 2.7 V , setting the DSCON bit (bit 0 of the 20 MHz internal high-speed oscillation control register (DSCCTL)), waiting for $100 \mu \mathrm{~s}$, and then setting the SELDSC bit to 1 by using software ${ }^{\text {Note } 4 .}$
(Notes and Cautions are listed on the next page.)

Notes 1. The internal reset processing time includes the oscillation accuracy stabilization time of the internal highspeed oscillation clock.
2. When releasing a reset, confirm the oscillation stabilization time for the X 1 clock using the oscillation stabilization time counter status register (OSTC).
3. The microcontroller operates on the 8 MHz internal high-speed oscillation clock if 8 MHz or 20 MHz is selected for the internal high-speed oscillator by using the option byte or on the 1 MHz internal high-speed oscillation clock if 1 MHz is selected.
4. If the internal high-speed oscillator is set to 1 MHz by using the option byte, the 20 MHz internal high-speed oscillation clock cannot be used.

Cautions 1. A voltage stabilization time (about 2.12 to 5.84 ms) is required after the supply voltage reaches 1.61 V (TYP.). If the time for the supply voltage to rise from 1.61 V (TYP.) to 2.07 V (TYP.) is shorter than the voltage stabilization time, reset processing is entered after the voltage stabilization time elapses.
2. It is not necessary to wait for the oscillation stabilization time when an external clock input from the EXCLK pin is used.

5.6 Controlling Clock

5.6.1 Example of controlling high-speed system clock

The following two types of high-speed system clocks are available.

- X1 clock: Crystal/ceramic resonator is connected to the X1 and X2 pins.
- External main system clock: External clock is input to the EXCLK pin.

When the high-speed system clock is not used, the X1/P121 and X2/EXCLK/P122 pins can be used as input port pins.

Caution The X1/P121 and X2/EXCLK/P122 pins are in the input port mode after a reset release.

The following describes examples of setting procedures for the following cases.
(1) When oscillating X1 clock
(2) When using external main system clock
(3) When using high-speed system clock as CPU/peripheral hardware clock
(4) When stopping high-speed system clock
(1) Example of setting procedure when oscillating the X 1 clock
<1> Setting P121/X1 and P122/X2/EXCLK pins and setting oscillation frequency (CMC register)

- $2 \mathrm{MHz} \leq \mathrm{fx} \leq 10 \mathrm{MHz}$

EXCLK	OSCSEL	0	OSCSELS	0	AMPHS1	AMPHS0	AMPH
0	1	0	$0 / 1$	0	$0 / 1$	$0 / 1$	0

- $10 \mathrm{MHz}<\mathrm{fx} \leq 20 \mathrm{MHz}$

EXCLK	OSCSEL	0	OSCSELS	0	AMPHS1	AMPHSO	AMPH
0	1	0	$0 / 1$	0	$0 / 1$	$0 / 1$	1

Remarks 1. fx : X1 clock oscillation frequency
2. For setting of the P123/XT1 and P124/XT2 pins, see 5.6.3 Example of controlling subsystem clock.
<2> Controlling oscillation of X1 clock (CSC register)
If MSTOP is cleared to 0 , the X 1 oscillator starts oscillating.
<3> Waiting for the stabilization of the oscillation of X1 clock
Check the OSTC register and wait for the necessary time.
During the wait time, other software processing can be executed with the internal high-speed oscillation clock.

Cautions 1. The CMC register can be written only once after reset release, by an 8-bit memory manipulation instruction.
Therefore, it is necessary to also set the value of the OSCSELS bit at the same time. For OSCSELS bit, see 5.6.3 Example of controlling subsystem clock.
2. Set the X 1 clock after the supply voltage has reached the operable voltage of the clock to be used (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).
(2) Example of setting procedure when using the external main system clock
<1> Setting P121/X1 and P122/X2/EXCLK pins (CMC register)

EXCLK	OSCSEL	0	OSCSELS	0	AMPHS1	AMPHS0	AMPH
1	1	0	$0 / 1$	0	$0 / 1$	$0 / 1$	$0 / 1$

Remark For setting of the P123/XT1 and P124/XT2 pins, see 5.6.3 (1) Example of setting procedure when oscillating the subsystem clock.
<2>
Controlling external main system clock input (CSC register)
When MSTOP is cleared to 0 , the input of the external main system clock is enabled.

Cautions 1. The CMC register can be written only once after reset release, by an 8 -bit memory manipulation instruction.
Therefore, it is necessary to also set the value of the OSCSELS bits at the same time. For OSCSELS bits, see 5.6.3 Example of controlling subsystem clock.
2. Set the external main system clock after the supply voltage has reached the operable voltage of the clock to be used (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).
(3) Example of setting procedure when using high-speed system clock as CPU/peripheral hardware clock
<1> Setting high-speed system clock oscillation ${ }^{\text {Note }}$
(See 5.6.1 (1) Example of setting procedure when oscillating the X1 clock and (2) Example of setting procedure when using the external main system clock.)

Note The setting of $<1>$ is not necessary when high-speed system clock is already operating.

Setting the high-speed system clock as the source clock of the CPU/peripheral hardware clock and setting the division ratio of the set clock (CKC register)

мСМо	MDIV2	MDIV1	MDIVO	Selection of CPU/Peripheral Hardware Clock (fclk)
1	0	0	0	fux
	0	0	1	$f_{m \times 12}$
	0	1	0	fmx $/ 2^{2}$
	0	1	1	$\mathrm{fmx} / 2^{3}$
	1	0	0	$\mathrm{fmx} / 2^{4}$
	1	0	1	$\mathrm{fmx} / 2^{\text {5Note }}$

Note Setting is prohibited when $\mathrm{fmx}^{\boldsymbol{c}}<4 \mathrm{MHz}$.

If some peripheral hardware macros are not used, supply of the input clock to each hardware macro can be stopped.
(PERO register)

| RTCEN | DACEN | ADCEN | IICAEN | SAU1EN | SAUOEN | TAU1EN | TAUOEN |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | xxxEN | Input clock control | | | | | |
| :---: | :--- | :--- | :--- | :--- | :---: | :---: |
| 0 | Stops input clock supply. | | | | | |
| 1 | Supplies input clock. | | | | | |

Remark RTCEN: Control of the real-time counter input clock
DACEN: Control of the D/A converter input clock
ADCEN: Control of the A/D converter and operational amplifier input clock
IICAEN: Control of the serial interface IICA input clock
SAU1EN: Control of the serial array unit 1 unit input clock
SAUOEN: Control of the serial array unit 0 unit input clock
TAU1EN: Control of the timer array unit 1 input clock
TAUOEN: Control of the timer array unit 0 input clock
(4) Example of setting procedure when stopping the high-speed system clock

The high-speed system clock can be stopped (disabling clock input if the external clock is used) in the following two ways.

- Executing the STOP instruction
- Setting MSTOP to 1
(a) To execute a STOP instruction
<1> Setting to stop peripheral hardware
Stop peripheral hardware that cannot be used in the STOP mode (for peripheral hardware that cannot be used in STOP mode, see CHAPTER 21 STANDBY FUNCTION).
<2> Setting the X1 clock oscillation stabilization time after STOP mode is released
If the X 1 clock oscillates before the STOP mode is entered, set the value of the OSTS register before executing the STOP instruction.
<3> Executing the STOP instruction
When the STOP instruction is executed, the system is placed in the STOP mode and X 1 oscillation is stopped (the input of the external clock is disabled).
(b) To stop X1 oscillation (disabling external clock input) by setting MSTOP to 1
<1> Confirming the CPU clock status (CKC register)
Confirm with CLS and MCS that the CPU is operating on a clock other than the high-speed system clock. When CLS = 0 and MCS = 1 , the high-speed system clock is supplied to the CPU, so change the CPU clock to the subsystem clock or internal high-speed oscillation clock.

CLS	MCS	CPU Clock Status
0	0	Internal high-speed oscillation clock or 20 MHz internal high-speed oscillation clock
0	1	High-speed system clock
1	\times	Subsystem clock

<2> Setting of X1 clock oscillation stabilization time after restart of X1 clock oscillation ${ }^{\text {Note }}$
Prior to setting "1" to MSTOP, set the OSTS register to a value greater than the count value to be confirmed with the OSTS register after X1 clock oscillation is restarted.
$<3>$ Stopping the high-speed system clock (CSC register)
When MSTOP is set to 1 , X 1 oscillation is stopped (the input of the external clock is disabled).

Note This setting is required to resume the X 1 clock oscillation when the high-speed system clock is in the X 1 oscillation mode.
This setting is not required in the external clock input mode.

Caution Be sure to confirm that MCS = 0 or CLS $=1$ when setting MSTOP to 1 . In addition, stop peripheral hardware that is operating on the high-speed system clock.

5.6.2 Example of controlling internal high-speed oscillation clock

The following describes examples of clock setting procedures for the following cases.
(1) When restarting oscillation of the internal high-speed oscillation clock
(2) When using internal high-speed oscillation clock as CPU/peripheral hardware clock
(3) When stopping the internal high-speed oscillation clock
(1) Example of setting procedure when restarting oscillation of the internal high-speed oscillation clock ${ }^{\text {Note }}$
<1> Setting restart of oscillation of the internal high-speed oscillation clock (CSC register)
When HIOSTOP is cleared to 0 , the internal high-speed oscillation clock restarts oscillation.

Note After a reset release, the internal high-speed oscillator automatically starts oscillating and the internal highspeed oscillation clock is selected as the CPU/peripheral hardware clock.
(2) Example of setting procedure when using internal high-speed oscillation clock as CPU/peripheral hardware clock
<1> Restarting oscillation of the internal high-speed oscillation clock ${ }^{\text {Note }}$
(See 5.6.2 (1) Example of setting procedure when restarting internal high-speed oscillation clock).

Note The setting of <1> is not necessary when the internal high-speed oscillation clock is operating.
<2> Setting the internal high-speed oscillation clock as the source clock of the CPU/peripheral hardware clock and setting the division ratio of the set clock (CKC register)

мСМо	MDIV2	MDIV1	MDIVO	Selection of CPU/Peripheral Hardware Clock (fcLk)
0	0	0	0	$\mathrm{fiH}^{\text {H }}$
	0	0	1	$\mathrm{fiH}^{\prime} / 2$
	0	1	0	$\mathrm{fi/} / 2^{2}$
	0	1	1	$\mathrm{fiH}^{1} / 2^{3}$
	1	0	0	${\mathrm{fiH} / 2 /{ }^{\text {4 Note }} \text { (}}^{\text {a }}$
	1	0	1	$\mathrm{fiH} / 2^{2}$ 5 ${ }^{\text {Note }}$

Note Setting is prohibited when $\mathrm{fIH}=1 \mathrm{MHz}$.

Caution If switching the CPU/peripheral hardware clock from the high-speed system clock to the internal high-speed oscillation clock after restarting the internal high-speed oscillation clock, do so after 10μ s or more have elapsed.
If the switching is made immediately after the internal high-speed oscillation clock is restarted, the accuracy of the internal high-speed oscillation cannot be guaranteed for $10 \mu \mathrm{~s}$.
(3) Example of setting procedure when stopping the internal high-speed oscillation clock

The internal high-speed oscillation clock can be stopped in the following two ways.

- Executing the STOP instruction
- Setting HIOSTOP to 1
(a) To execute a STOP instruction
<1> Setting of peripheral hardware
Stop peripheral hardware that cannot be used in the STOP mode (for peripheral hardware that cannot be used in STOP mode, see CHAPTER 21 STANDBY FUNCTION).
<2> Setting the X1 clock oscillation stabilization time after STOP mode is released If the X1 clock oscillates before the STOP mode is entered, set the value of the OSTS register before executing the STOP instruction.
$<3>$ Executing the STOP instruction
When the STOP instruction is executed, the system is placed in the STOP mode and internal high-speed oscillation clock is stopped.
(b) To stop internal high-speed oscillation clock by setting HIOSTOP to 1
<1> Confirming the CPU clock status (CKC register)
Confirm with CLS and MCS that the CPU is operating on a clock other than the internal high-speed oscillation clock.
When CLS $=0$ and MCS $=0$, the internal high-speed oscillation clock is supplied to the CPU, so change the CPU clock to the high-speed system clock or subsystem clock.

CLS	MCS	CPU Clock Status
0	0	Internal high-speed oscillation clock or 20 MHz internal high-speed oscillation clock
0	1	High-speed system clock
1	\times	Subsystem clock

<2> Stopping the internal high-speed oscillation clock (CSC register)
When HIOSTOP is set to 1 , internal high-speed oscillation clock is stopped.

Caution Be sure to confirm that MCS $=1$ or CLS $=1$ when setting HIOSTOP to 1 . In addition, stop peripheral hardware that is operating on the internal high-speed oscillation clock.

5.6.3 Example of controlling subsystem clock

The subsystem clock can be oscillated by connecting a crystal resonator to the XT1 and XT2 pins.
When the subsystem clock is not used, the XT1/P123 and XT2/P124 pins can be used as input port pins.
Caution The XT1/P123 and XT2/P124 pins are in the input port mode after a reset release.
The following describes examples of setting procedures for the following cases.
(1) When oscillating subsystem clock
(2) When using subsystem clock as CPU clock
(3) When stopping subsystem clock

Caution When the subsystem clock is used as the CPU clock, the subsystem clock is also supplied to the peripheral hardware (except the real-time counter, timer array unit (when fsus/2, fsub/4, the valid edge of TIOmn input, or the valid edge of INTRTCI is selected as the count clock), clock output/buzzer output, and watchdog timer). At this time, the operations of the A/D converter and IICA are not guaranteed. For the operating characteristics of the peripheral hardware, refer to the chapters describing the various peripheral hardware as well as CHAPTER 31 ELECTRICAL SPECIFICATIONS.
(1) Example of setting procedure when oscillating the subsystem clock
<1> Setting P123/XT1 and P124/XT2 pins (CMC register)

EXCLK	OSCSEL	0	OSCSELS	0	AMPHS1	AMPHS0	AMPH
$0 / 1$	$0 / 1$	0	1	0	$0 / 1$	$0 / 1$	$0 / 1$

Remark For setting of the P121/X1 and P122/X2 pins, see 5.6.1 Example of controlling high-speed system clock.
<2> Controlling oscillation of subsystem clock (CSC register)
If XTSTOP is cleared to 0 , the XT1 oscillator starts oscillating.
<3> Waiting for the stabilization of the subsystem clock oscillation
Wait for the oscillation stabilization time of the subsystem clock by software, using a timer function.
Caution The CMC register can be written only once after reset release, by an 8-bit memory manipulation instruction.

Therefore, it is necessary to also set the value of the EXCLK and OSCSEL bits at the same time. For EXCLK and OSCSEL bits, see 5.6.1 (1) Example of setting procedure when oscillating the X1 clock or 5.6.1 (2) Example of setting procedure when using the external main system clock.
(2) Example of setting procedure when using the subsystem clock as the CPU clock
<1> Setting subsystem clock oscillation ${ }^{\text {Note }}$
(See 5.6.3 (1) Example of setting procedure when oscillating the subsystem clock.)
Note The setting of $\langle 1\rangle$ is not necessary when while the subsystem clock is operating.
<2> Setting the subsystem clock as the source clock of the CPU/peripheral hardware clock and setting the division ratio of the set clock (CKC register)

CSS	SDIV	Selection of CPU/Peripheral Hardware Clock (fcLK)
1	0	fsub
	1	fsue/2

Caution When the subsystem clock is used as the CPU clock, the subsystem clock is also supplied to the peripheral hardware (except the real-time counter, timer array unit (when fsub/2, fsub/4, the valid edge of TIOmn input, or the valid edge of INTRTCI is selected as the count clock), clock output/buzzer output, and watchdog timer). At this time, the operations of the A/D converter and IICA are not guaranteed. For the operating characteristics of the peripheral hardware, refer to the chapters describing the various peripheral hardware as well as CHAPTER 31 ELECTRICAL SPECIFICATIONS.
(3) Example of setting procedure when stopping the subsystem clock
<1> Confirming the CPU clock status (CKC register)
Confirm with CLS and MCS that the CPU is operating on a clock other than the subsystem clock.
When CLS $=1$, the subsystem clock is supplied to the CPU, so change the CPU clock to the internal highspeed oscillation clock or high-speed system clock.

CLS	MCS	CPU Clock Status
0	0	Internal high-speed oscillation clock or 20 MHz internal high-speed oscillation clock
0	1	High-speed system clock
1	\times	Subsystem clock

<2> Stopping the subsystem clock (CSC register)
When XTSTOP is set to 1 , subsystem clock is stopped.

Cautions 1. Be sure to confirm that CLS = 0 when setting XTSTOP to 1. In addition, stop the peripheral hardware if it is operating on the subsystem clock.
2. The subsystem clock oscillation cannot be stopped using the STOP instruction.

5.6.4 Example of controlling internal low-speed oscillation clock

The internal low-speed oscillation clock cannot be used as the CPU clock. Used only as the watchdog timer clock.
The internal low-speed oscillator automatically starts oscillation after a reset release, and the watchdog timer is driven (30 kHz (TYP.)) if the watchdog timer operation is enabled by the option byte.

The internal low-speed oscillator continues oscillation except when the watchdog timer stops. When the watchdog timer operates, the internal low-speed oscillation clock does not stop even in case of a program loop.

(1) Example of setting procedure when stopping the internal low-speed oscillation clock

The internal low-speed oscillation clock can be stopped in the following two ways.

- Stop the watchdog timer in the HALT/STOP mode by the option byte (bit 0 (WDSTBYON) of $000 \mathrm{COH}=0$), and execute the HALT or STOP instruction.
- Stop the watchdog timer by the option byte (bit 4 (WDTON) of $000 \mathrm{COH}=0$).
(2) Example of setting procedure when restarting oscillation of the internal low-speed oscillation clock

The internal low-speed oscillation clock can be restarted as follows.

- Release the HALT or STOP mode
(only when the watchdog timer is stopped in the HALT/STOP mode by the option byte (bit 0 (WDSTBYON) of $000 \mathrm{COH})=0$) and when the watchdog timer is stopped as a result of execution of the HALT or STOP instruction).

5.6.5 CPU clock status transition diagram

Figure 5-15 shows the CPU clock status transition diagram of this product.

Figure 5-15. CPU Clock Status Transition Diagram

Notes 1. After reset release, an operation at one of the following operating frequencies is started, because fcLk $=\mathrm{fin} / 2$ has been selected by setting the system clock control register (CKC) to 09H.

- When 1 MHz has been selected by using the option byte: $500 \mathrm{kHz}(1 \mathrm{MHz} / 2)$
- When 8 MHz or 20 MHz has been selected by using the option byte: $4 \mathrm{MHz}(8 \mathrm{MHz} / 2)$

2. Specify 20 MHz internal oscillation after checking that V_{DD} is at least 2.7 V .
3. 20 MHz internal oscillation cannot be used if 1 MHz internal oscillation is selected by using the option byte.

Remarks 1. If the low-power-supply detector (LVI) is set to ON by default by the option bytes, the reset will not be released until the power supply voltage (VdD) exceeds $2.07 \mathrm{~V} \pm 0.2 \mathrm{~V}$.
After the reset operation, the status will shift to (B) in the above figure.
2. DSC: 20 MHz internal high-speed oscillation clock

Table 5-4 shows transition of the CPU clock and examples of setting the SFR registers.

Table 5-4. CPU Clock Transition and SFR Register Setting Examples (1/6)
(1) CPU operating with internal high-speed oscillation clock (B) after reset release (A)

Status Transition	
$(\mathrm{A}) \rightarrow(\mathrm{B})$	SFR Register Setting

(2) CPU operating with high-speed system clock (C) after reset release (A)
(The CPU operates with the internal high-speed oscillation clock immediately after a reset release (B).)

Status Transition	CMC Register ${ }^{\text {Note } 1}$			CSC	OSMC	$\begin{aligned} & \text { OSTC } \\ & \text { Register } \end{aligned}$	CKC
	EXCLK	OSCSEL	AMPH	MSTOP	FSEL		мСмо
$\begin{aligned} & (A) \rightarrow(B) \rightarrow(C) \\ & (X 1 \text { clock: } 2 M H z \leq f x \leq 10 M H z) \end{aligned}$	0	1	0	0	0	Must be checked	1
$\begin{aligned} & (\mathrm{A}) \rightarrow(\mathrm{B}) \rightarrow(\mathrm{C}) \\ & \left(\mathrm{X} 1 \text { clock: } 10 \mathrm{MHz}<\mathrm{fx}_{\mathrm{x}} \leq 20 \mathrm{MHz}\right) \end{aligned}$	0	1	1	0	$1^{\text {Note } 2}$	Must be checked	1
$\begin{aligned} & (\mathrm{A}) \rightarrow(\mathrm{B}) \rightarrow(\mathrm{C}) \\ & \text { (external main clock) } \end{aligned}$	1	1	\times	0	$0 / 1^{\text {Nole } 2}$	Must not be checked	1

Notes 1. The clock operation mode control register (CMC) can be written only once by an 8 -bit memory manipulation instruction after reset release.
2. FSEL $=1$ when fcLk $>10 \mathrm{MHz}$

If a divided clock is selected and fcLk $\leq 10 \mathrm{MHz}$, use with FSEL $=0$ is possible even if $\mathrm{f} x>10 \mathrm{MHz}$.

Caution Set the clock after the supply voltage has reached the operable voltage of the clock to be set (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).
(3) CPU operating with subsystem clock (D) after reset release (A)
(The CPU operates with the internal high-speed oscillation clock immediately after a reset release (B).)

Note The CMC register can be written only once by an 8-bit memory manipulation instruction after reset release.

Remark (A) to (K) in Table 5-4 correspond to (A) to (K) in Figure 5-15.

Table 5-4. CPU Clock Transition and SFR Register Setting Examples (2/6)
(4) CPU operating with 20 MHz internal high-speed oscillation clock (J) after reset release (A)
(The CPU operates with the internal high-speed oscillation clock immediately after a reset release (B).)

Setting Flag of SFR Register Status Transition	DSCCTL Register ${ }^{\text {Note }}$	Waiting for Oscillation Stabilization	DSCCTL Register
	DSCON		SELDSC
$(\mathrm{A}) \rightarrow(\mathrm{B}) \rightarrow(\mathrm{J})$	1	Necessary $(100 \mu \mathrm{~s})$	1

Note Check that $V_{D D} \geq 2.7 \mathrm{~V}$ and set $\mathrm{DSCON}=1$.
(5) CPU clock changing from internal high-speed oscillation clock (B) to high-speed system clock (C)

Setting Flag of SFR Register Status Transition	CMC Register ${ }^{\text {Note } 1}$			$\begin{aligned} & \text { OSTS } \\ & \text { Register } \end{aligned}$	CSC	OSMC	OSTC Register	CKC Regi ster MCMO
	EXCLK	OSCSEL	AMPH		MSTOP	FSEL		
(B) \rightarrow (C) (X1 clock: $2 \mathrm{MHz} \leq \mathrm{fX} \leq 10 \mathrm{MHz}$)	0	1	0	Note 2	0	0	Must be checked	1
(B) \rightarrow (C) (X1 clock: $10 \mathrm{MHz}<\mathrm{fX} \leq 20 \mathrm{MHz}$)	0	1	1	Note 2	0	$1^{\text {Note } 3}$	Must be checked	1
$\text { (B) } \rightarrow \text { (C) }$ (external main clock)	1	1	\times	Note 2	0	0/1	Must not be checked	1
	Unnecessary if these registers Unnecessary if the CPU is operating with are already set the high-speed system clock							

Notes 1. The CMC register can be changed only once after reset release. This setting is not necessary if it has already been set.
2. Set the oscillation stabilization time as follows.

- Desired OSTC oscillation stabilization time \leq Oscillation stabilization time set by OSTS

3. $\operatorname{FSEL}=1$ when fclk $>10 \mathrm{MHz}$

If a divided clock is selected and fcLk $\leq 10 \mathrm{MHz}$, use with $\operatorname{FSEL}=0$ is possible even if $\mathrm{fx}>10 \mathrm{MHz}$.

Caution Set the clock after the supply voltage has reached the operable voltage of the clock to be set (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).

Remarks 1. x : don't care
2. (A) to (K) in Table 5-4 correspond to (A) to (K) in Figure 5-15.

Table 5-4. CPU Clock Transition and SFR Register Setting Examples (3/6)
(6) CPU clock changing from internal high-speed oscillation clock (B) to subsystem clock (D)

Unnecessary if the CPU is operating
with the subsystem clock

Note The CMC register can be written only once by an 8-bit memory manipulation instruction after reset release.
(7) CPU clock changing from internal high-speed oscillation clock (B) to $\mathbf{2 0} \mathbf{~ M H z}$ internal high-speed oscillation clock (J)

Setting Flag of SFR Register Status Transition	DSCCTL Register ${ }^{\text {Note }}$	Waiting for Oscillation Stabilization	DSCCTL Register
	DSCON		SELDSC
$(\mathrm{B}) \rightarrow(\mathrm{J})$	1	Necessary (100 $\mu \mathrm{s}$)	1
	nnecessary if the CPU internal high-sp	perating with the 20 MH oscillation clock	

Note Check that $V_{D D} \geq 2.7 \mathrm{~V}$ and set $\mathrm{DSCON}=1$.
(8) CPU clock changing from high-speed system clock (C) to internal high-speed oscillation clock (B)

Remark (A) to (K) in Table 5-4 correspond to (A) to (K) in Figure 5-15.

Table 5-4. CPU Clock Transition and SFR Register Setting Examples (4/6)
(9) CPU clock changing from high-speed system clock (C) to subsystem clock (D)

(10) CPU clock changing from subsystem clock (D) to internal high-speed oscillation clock (B)

| (Setting sequence of SFR registers) \quad Setting Flag of SFR Register | CSC Register | CKC Register | |
| :--- | :---: | :---: | :---: | :---: |
| | HIOSTOP | MCMO | CSS |
| | 0 | 0 | 0 |

Remark (A) to (K) in Table 5-4 correspond to (A) to (K) in Figure 5-15.

Table 5-4. CPU Clock Transition and SFR Register Setting Examples (5/6)
(11) CPU clock changing from subsystem clock (D) to high-speed system clock (C)

Notes 1. Set the oscillation stabilization time as follows.

- Desired OSTC oscillation stabilization time \leq Oscillation stabilization time set by OSTS

2. $\operatorname{FSEL}=1$ when fcLk $>10 \mathrm{MHz}$

If a divided clock is selected and fcLk $\leq 10 \mathrm{MHz}$, use with $\operatorname{FSEL}=0$ is possible even if $\mathrm{fx}>10 \mathrm{MHz}$.
Caution Set the clock after the supply voltage has reached the operable voltage of the clock to be set (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).
(12) CPU clock changing from 20 MHz internal high-speed oscillation clock (J) to internal high-speed oscillation clock (B)

(Setting sequence of SFR registers)		DSCCTL Register	
Setting Flag of SFR Register			
		SELDSC	
Status Transition	0	DSCON	
$(J) \rightarrow(B)$		0	

Remark (A) to (K) in Table 5-4 correspond to (A) to (K) in Figure 5-15.

Table 5-4. CPU Clock Transition and SFR Register Setting Examples (6/6)
(13) • HALT mode (E) set while CPU is operating with internal high-speed oscillation clock (B)

- HALT mode (F) set while CPU is operating with high-speed system clock (C)
- HALT mode (G) set while CPU is operating with subsystem clock (D)
- HALT mode (K) set while CPU is operating with 20 MHz internal high-speed oscillation clock (J)

Status Transition	
$(\mathrm{B}) \rightarrow(\mathrm{E})$	Executing HALT instruction
$(\mathrm{C}) \rightarrow(\mathrm{F})$	
$(\mathrm{D}) \rightarrow(\mathrm{G})$	
$(\mathrm{J}) \rightarrow(\mathrm{K})$	

(14) • STOP mode (H) set while CPU is operating with internal high-speed oscillation clock (B)

- STOP mode (I) set while CPU is operating with high-speed system clock (C)

Status Transition		Setting		
$(\mathrm{B}) \rightarrow(\mathrm{H})$		Stopping peripheral functions that cannot operate in STOP mode	-	Executing STOP
$(\mathrm{C}) \rightarrow$ (I)	In X1 oscillation		Sets the OSTS register	instruction
	External main system clock		-	

Remark (A) to (K) in Table 5-4 correspond to (A) to (K) in Figure 5-15.

5.6.6 Condition before changing CPU clock and processing after changing CPU clock

Condition before changing the CPU clock and processing after changing the CPU clock are shown below.

Table 5-5. Changing CPU Clock (1/2)

CPU Clock		Condition Before Change	Processing After Change
Before Change	After Change		
Internal highspeed oscillation clock	X1 clock	Stabilization of X1 oscillation - $\operatorname{OSCSEL}=1$, EXCLK $=0, \mathrm{MSTOP}=0$ - After elapse of oscillation stabilization time	Operating current can be reduced by stopping internal high-speed oscillator ($\mathrm{HIOSTOP}=1$).
	External main system clock	Enabling input of external clock from EXCLK pin - $\operatorname{OSCSEL}=1$, EXCLK $=1, \mathrm{MSTOP}=0$	
	Subsystem clock	Stabilization of X1 oscillation - OSCSELS $=1$, XTSTOP $=0$ - After elapse of oscillation stabilization time	-
	20 MHz internal high-speed oscillation clock	Stabilization of DSC oscillation with 20 MHz set by using the option byte - $\mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$ - After elapse of oscillation stabilization time $(100 \mu \mathrm{~s})$ after setting to DSCON $=1$ - $\operatorname{SELDSC}=1$	-
X1 clock	Internal highspeed oscillation clock	Oscillation of internal high-speed oscillator - $\mathrm{HIOSTOP}=0$	X1 oscillation can be stopped (MSTOP $=$ 1).
	External main system clock	Transition not possible (To change the clock, set it again after executing reset once.)	-
	Subsystem clock	Stabilization of XT1 oscillation - OSCSELS = 1, XTSTOP = 0 - After elapse of oscillation stabilization time	X1 oscillation can be stopped (MSTOP $=$ 1).
	20 MHz internal high-speed oscillation clock	Transition cannot be performed unless the clock is changed to the internal high-speed oscillation clock once.	-
External main system clock	Internal highspeed oscillation clock	Oscillation of internal high-speed oscillator - $\mathrm{HIOSTOP}=0$	External main system clock input can be disabled $($ MSTOP $=1)$.
	X1 clock	Transition not possible (To change the clock, set it again after executing reset once.)	-
	Subsystem clock	Stabilization of XT1 oscillation - OSCSELS $=1$, XTSTOP $=0$ - After elapse of oscillation stabilization time	External main system clock input can be disabled $($ MSTOP $=1)$.
	20 MHz internal high-speed oscillation clock	Transition cannot be performed unless the clock is changed to the internal high-speed oscillation clock once.	-

Table 5-5. Changing CPU Clock (2/2)

CPU Clock		Condition Before Change	Processing After Change
Before Change	After Change		
Subsystem clock	Internal highspeed oscillation clock	Oscillation of internal high-speed oscillator and selection of internal high-speed oscillation clock as main system clock - $\mathrm{HIOSTOP}=0, \mathrm{MCS}=0$	XT1 oscillation can be stopped (XTSTOP $=1$)
	X1 clock	Stabilization of X1 oscillation and selection of high-speed system clock as main system clock - $\operatorname{OSCSEL}=1$, EXCLK $=0, \mathrm{MSTOP}=0$ - After elapse of oscillation stabilization time - MCS = 1	
	External main system clock	Enabling input of external clock from EXCLK pin and selection of high-speed system clock as main system clock - $\operatorname{OSCSEL}=1, \operatorname{EXCLK}=1, \mathrm{MSTOP}=0$ - $M C S=1$	
	20 MHz internal high-speed oscillation clock	Transition cannot be performed unless the clock is changed to the internal high-speed oscillation clock once.	-
20 MHz internal high-speed oscillation clock	Internal highspeed oscillation clock	- SELDSC = 0 (Set when changing the clock.)	20 MHz internal high-speed oscillation clock can be stopped ($\mathrm{DSCON}=0$)
	X1 clock	Transition cannot be performed unless the clock is changed to the internal high-speed oscillation clock once.	-
	External main system clock	Transition cannot be performed unless the clock is changed to the internal high-speed oscillation clock once.	-
	Subsystem clock	Transition cannot be performed unless the clock is changed to the internal high-speed oscillation clock once.	-

5.6.7 Time required for switchover of CPU clock and main system clock

By setting bits 0 to 2, 4, and 6 (MDIVO to MDIV2, SDIV, MCMO, CSS) of the system clock control register (CKC), the CPU clock can be switched (between the main system clock and the subsystem clock), main system clock can be switched (between the internal high-speed oscillation clock and the high-speed system clock), and the division ratio of the main system clock can be changed.

The actual switchover operation is not performed immediately after rewriting to CKC; operation continues on the preswitchover clock for several clocks (see Table 5-6 to Table 5-9).

Whether the CPU is operating on the main system clock or the subsystem clock can be ascertained using bit 7 (CLS) of CKC. Whether the main system clock is operating on the high-speed system clock or internal high-speed oscillation clock can be ascertained using bit 5 (MCS) of CKC.

When the CPU clock is switched, the peripheral hardware clock is also switched.

Internal high-speed oscillation clock

Table 5-6. Maximum Time Required for Main System Clock Switchover

Clock A	Switching directions	Clock B	Remark
fmainc	(changing the division ratio)	$\mathrm{fmainc}^{\text {c }}$	see Table 5-7
fsubc		fsubc	
fiH	\rightarrow	fmx	see Table 5-8
$f_{\text {mainc }}$	\rightarrow	fsubc	see Table 5-9

Table 5-7. Maximum Number of Clocks Required in fmainc \leftrightarrow fmainc (changing the division ratio), fsubc $\leftrightarrow f$ fsubc (changing the division ratio)

Set Value Before Switchover	Set Value After Switchover	
	Clock A	Clock B
Clock A		$1+\mathrm{f}_{\mathrm{A}} / \mathrm{f}_{\mathrm{B}}$ clock
Clock B	$1+\mathrm{f}_{\mathrm{B}} / \mathrm{f}_{\mathrm{A}}$ clock	

Table 5-8. Maximum Number of Clocks Required in $\mathrm{fiH} \leftrightarrow \mathrm{fmx}$

Set Value Before Switchover		Set Value After Switchover	
MCMO		MCMO	
		$\begin{gathered} 0 \\ \left(f_{\text {MAIN }}=f_{I H}\right) \end{gathered}$	$\begin{gathered} 1 \\ \left(f_{\text {MAIN }}=f_{M X}\right) \end{gathered}$
$\begin{gathered} 0 \\ (\mathrm{f} \text { MAIN }=\mathrm{fIH}) \end{gathered}$	$\mathrm{fm}_{\mathrm{m}} \times \mathrm{fIH}$	-	$1+\mathrm{fiH}_{\text {/ }} / \mathrm{f}_{\mathrm{mx}}$ clock
	$\mathrm{f}_{\mathrm{MX}}<\mathrm{fl}_{\text {IH }}$		2fin/fmx clock
$\begin{gathered} 1 \\ \left(f_{\text {MAIN }}=f_{M x}\right) \end{gathered}$	$\mathrm{fm}_{\mathrm{M}} \geq \mathrm{ffiH}$	2fmx/fı clock	
	$\mathrm{f}_{\mathrm{MX}}<\mathrm{ffiH}^{\text {l }}$	$1+\mathrm{fmx}_{\mathrm{M}} / \mathrm{fiH}_{\text {clock }}$	

(Remarks are listed on the next page.)

Table 5-9. Maximum Number of Clocks Required in fmainc \leftrightarrow fsubc

Set Value Before Switchover		Set Value After Switchover	
CSS		CSS	
		$\begin{gathered} 0 \\ \left(\mathrm{fCLK}=\mathrm{f}_{\mathrm{MAINC}}\right) \end{gathered}$	$\begin{gathered} 1 \\ (\mathrm{fclk}=\mathrm{fsubc}) \end{gathered}$
$\begin{gathered} 0 \\ \left(\mathrm{fCLK}=\mathrm{f}_{\text {MAINC }}\right) \end{gathered}$	$\mathrm{fmainc}^{\text {P }}$ fsubc		$1+2 \mathrm{fmainc}_{\text {/fsubc clock }}$
$\begin{gathered} 1 \\ (\mathrm{fcLk}=\mathrm{fsubc}) \end{gathered}$	fmainc $>$ fsubc	$2+$ fsubc/fmainc clock	

Remarks 1. The number of clocks listed in Table 5-7 to Table 5-9 is the number of CPU clocks before switchover.
2. Calculate the number of clocks in Table 5-7 to Table 5-9 by removing the decimal portion.

Example When switching the main system clock from the internal high-speed oscillation clock to the high-speed system clock ($@$ oscillation with $f \mathrm{fi}=8 \mathrm{MHz}$, fmx $=10 \mathrm{MHz}$)
$1+f_{1 /} / f_{m x}=1+8 / 10=1+0.8=1.8 \rightarrow 2$ clocks

5.6.8 Conditions before clock oscillation is stopped

The following lists the register flag settings for stopping the clock oscillation (disabling external clock input) and conditions before the clock oscillation is stopped.

Table 5-10. Conditions Before the Clock Oscillation Is Stopped and Flag Settings

Clock	Conditions Before Clock Oscillation Is Stopped (External Clock Input Disabled)	Flag Settings of SFR Register
Internal high-speed oscillation clock	$\text { MCS }=1 \text { or CLS = } 1$ (The CPU is operating on a clock other than the internal high-speed oscillation clock)	HIOSTOP = 1
X1 clock	$\text { MCS }=0 \text { or CLS = } 1$ (The CPU is operating on a clock other than the high-speed system clock)	MSTOP = 1
External main system clock		
Subsystem clock	$C L S=0$ (The CPU is operating on a clock other than the subsystem clock)	XTSTOP = 1
20 MHz internal high-speed oscillation clock	$\text { SELDSC }=0$ (The main system clock is operating on a clock other than the 20 MHz internal high-speed oscillation clock.)	DSCON $=0$

CHAPTER 6 TIMER ARRAY UNIT

Item		78K0R/LF3	78K0R/LG3	78K0R/LH3
		80 pins	100 pins	128 pins
Timer array unit	0	8 ch (PWM output: 5)	8 ch (PWM output: 7)	8 ch (PWM output: 7)
	1	4 ch (PWM output: 0)	4 ch (PWM output: 0)	4 ch (PWM output: 3)

The $78 K 0 R / L x 3$ is provided with two timer array units. Time array unit 0 is provided with eight 16 -bit timers and timer array unit 1 is provided with four 16 -bit timers. Each 16 -bit timer is called a channel and can be used as an independent timer. In addition, two or more "channels" can be used to create a high-accuracy timer.

Independent Operation Function	Combination Operation Function
- Interval timer	• PWM output
- Square wave output	- One-shot pulse output
- External event counter	• Multiple PWM output
- Divider function	
- Input pulse interval measurement	
- Measurement of high-/low-level width of input signal	

Channel 7 of timer array unit 0 can be used to realize LIN-bus reception processing in combination with UART3 of serial array unit 1 .

Cautions 1. Channel 5 of timer array unit 0 of the $78 \mathrm{KOR} / \mathrm{LF} 3$ can be used only as an interval timer.
2. Channel 6 of timer array unit 0 of the $78 \mathrm{KOR} / \mathrm{LF} 3$ can be used only as an interval timer, for PWM output (master channel), and for one-shot pulse output (master channel when software trigger start is selected).
3. Channels 0 to 3 of timer array unit 1 of the $78 \mathrm{KOR} / \mathrm{LF} 3$ and 78KOR/LG3 can be used only as interval timers.
4. Channels 1,5 to 7 of timer array unit 0 and channels 0 to 3 of timer array unit 1 cannot be used as frequency dividers.

Whether each channel of the timer array unit is provided with timer I/O pins differs depending on the product.

Timer array unit n	Channel m	Input (TIpq) / output (TOpq)	Timer I/O Pins of Each Product		
			78K0R/LF3 (80 pins)	78K0R/LG3 (100 pins)	78K0R/LH3 (128 pins)
0	0	Input	TI00/TO03/P31/RTCDIV/RTCCL/PCLBUZ1/INTP2		
		Output	TO00/TI03/P30RTC1HZ/INTP1		
	1	I/O	TI01/TO01/P32/PCLBUZ0/INTP5		
	2	Input	TI02/P52/SEGxx (78K0R/LF3: $x x=28,78 K 0 R / L G 3: ~ x x=37,78 K 0 R / L H 3: ~ x x=51)$		
		Output	TO02/P12/SO02/TxD2		
	3	Input	TI03/TO00/P30RTC1HZ/INTP1		
		Output	TO03/T100/P31/RTCDIV/RTCCL/PCLBUZ1/INTP2		
	4	Input	TI04/P53/SEGxx (78K0R/LF3: $x x=27,78 K 0 R / L G 3: ~ x x=36,78 K 0 R / L H 3: ~ x x=50)$		
		Output	TO04/P13/SO10/TxD1		
	5	I/O	-	TI05/TO05/P16/INTP10	
	6	I/O		TI06/TO06/P34/NTP8	
	7	I/O	TI07/TO07/P33/INTP3		
1	0	I/O	-		TI10/TO10/P84
	1	I/O			TI11/TO11/P85
	2	I/O			TI12/TO12/P86
	3	I/O			TI13/TO13/P87

6.1 Functions of Timer Array Unit

The timer array unit has the following functions.

6.1.1 Functions of each channel when it operates independently

Independent operation functions are those functions that can be used for any channel regardless of the operation mode of the other channel (for details, refer to 6.6.1 Overview of single-operation function and combination operation function).
(1) Interval timer

Each timer of a unit can be used as a reference timer that generates an interrupt (INTTMmn) at fixed intervals.
(2) Square wave output

A toggle operation is performed each time INTTMpq is generated and a square wave with a duty factor of 50% is output from a timer output pin (TOpq).
(3) External event counter

Each timer of a unit can be used as an event counter that generates an interrupt when the number of the valid edges of a signal input to the timer input pin (TIpq) has reached a specific value.
(4) Divider function

A clock input from a timer input pin (Tlpq) is divided and output from an output pin (TOpq).
(5) Input pulse interval measurement

Counting is started by the valid edge of a pulse signal input to a timer input pin (Tlpq). The count value of the timer is captured at the valid edge of the next pulse. In this way, the interval of the input pulse can be measured.
(6) Measurement of high-/low-level width of input signal

Counting is started by a single edge of the signal input to the timer input pin (Tlpq), and the count value is captured at the other edge. In this way, the high-level or low-level width of the input signal can be measured.

Remark mn: Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $\quad \mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=00$ to 04,07
78K0R/LG3: $\quad \mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=00$ to 07
78K0R/LH3: $\quad \mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=00$ to 07,10 to 13

6.1.2 Functions of each channel when it operates with another channel

Combination operation functions are those functions that are attained by using the master channel (mostly the reference timer that controls cycles) and the slave channels (timers that operate following the master channel) in combination (for details, refer to 6.6.1 Overview of single-operation function and combination operation function).
(1) PWM (Pulse Width Modulator) output

Two channels are used as a set to generate a pulse with a specified period and a specified duty factor.
(2) One-shot pulse output

Two channels are used as a set to generate a one-shot pulse with a specified delay time and a specified pulse width.
(3) Multiple PWM (Pulse Width Modulator) output

By extending the PWM function and using one master channel and two or more slave channels, up to seven types of PWM signals that have a specific period and a specified duty factor can be generated.

6.1.3 LIN-bus supporting function (channel 7 of timer array unit 0 only)

(1) Detection of wakeup signal

The timer starts counting at the falling edge of a signal input to the serial data input pin (RxD3) of UART3 and the count value of the timer is captured at the rising edge. In this way, a low-level width can be measured. If the lowlevel width is greater than a specific value, it is recognized as a wakeup signal.

(2) Detection of sync break field

The timer starts counting at the falling edge of a signal input to the serial data input pin (RxD3) of UART3 after a wakeup signal is detected, and the count value of the timer is captured at the rising edge. In this way, a low-level width is measured. If the low-level width is greater than a specific value, it is recognized as a sync break field.
(3) Measurement of pulse width of sync field

After a sync break field is detected, the low-level width and high-level width of the signal input to the serial data input pin (RxD3) of UART3 are measured. From the bit interval of the sync field measured in this way, a baud rate is calculated.

6.2 Configuration of Timer Array Unit

The timer array unit includes the following hardware.
Table 6-1. Configuration of Timer Array Unit

Item	Configuration
Timer/counter	Timer counter register mn (TCRmn)
Register	Timer data register mn (TDRmn)
Timer input	Tlpq pin, RxD3 pin (for LIN-bus)
Timer output	TOpq pins, output controller
Control registers	<Registers of unit setting block> - Peripheral enable register 0 (PERO) - Timer clock select register m (TPSm) - Timer channel enable status register m (TEm) - Timer channel start register m (TSm) - Timer channel stop register m (TTm) - Timer input select registers 0, 1 (TIS0, TIS1) - Timer output enable register p (TOEp) - Timer output register p (TOp) - Timer output level register p (TOLp) - Timer output mode register p (TOMp)
	<Registers of each channel> - Timer mode register mn (TMRmn) - Timer status register pq (TSRpq) - Input switch control register (ISC) (channel 7 of timer array unit 0 only) - Noise filter enable registers 1, 2 (NFEN1, NFEN2) - Port mode registers 1, 3, 5, 8 (PM1, PM3, PM5, PM8) - Port registers 1, 3, 5, 8 (P1, P3, P5, P8)

Remark mn: Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $\quad m=0,1, m n=00$ to 07,10 to $13, p q=0, p q=00$ to 04,07
78K0R/LG3: $\quad \mathrm{m}=0,1, \mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=0, \mathrm{pq}=00$ to 07
$78 \mathrm{KOR} / \mathrm{LH} 3: \quad \mathrm{m}=0,1, \mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=0,1, \mathrm{pq}=00$ to 07,10 to 13

Figures 6-1 and 6-2 show block diagrams.

Figure 6-1. Block Diagram of Timer Array Unit 0

Remark Channels 5 and 6 of the 78K0R/LF3 are not provided with timer I/O pins (TI05/TO05, TI06/TO06).

Figure 6-2. Block Diagram of Timer Array Unit 1

Remark For the channels 0 to 3 of 78K0R/LF3 and 78K0R/LG3, the timer I/O pins (TI10/TO10 to TI13/TO13) are not mounted.

(1) Timer/counter register mn (TCRmn)

TCRmn is a 16-bit read-only register and is used to count clocks.
The value of this counter is incremented or decremented in synchronization with the rising edge of a count clock. Whether the counter is incremented or decremented depends on the operation mode that is selected by the MDmn3 to MDmn0 bits of TMRmn.

Figure 6-3. Format of Timer/Counter Register mn (TCRmn)

Address: F0180H, F0181H (TCR00) to F018EH, F018FH (TCR07) After reset: FFFFH R
F01C0H, F01C1H (TCR10) to F01C6H, F01C7H (TCR13)

The count value can be read by reading TCRmn.
The count value is set to FFFFH in the following cases.

- When the reset signal is generated
- When the TAUOEN bit (TAU0) and TAU1EN bit (TAU1) of peripheral enable register 0 (PERO) is cleared

The count value is cleared to 0000 H in the following cases.

- When the start trigger is input in the capture mode
- When capturing has been completed in the capture mode
- When counting of the slave channel has been completed in the PWM output mode
- When counting of the master/slave channel has been completed in the one-shot pulse output mode
- When counting of the slave channel has been completed in the multiple PWM output mode

Caution The count value is not captured to TDRmn even when TCRmn is read.

Remark mn: Unit number + Channel number $\mathrm{mn}=00$ to 07,10 to 13

The TCRmn register read value differs as follows according to operation mode changes and the operating status.

Table 6-2. TCRmn Register Read Value in Various Operation Modes

Operation Mode	Count Mode	TCRmn Register Read Value Note			
		Operation mode change after reset	Operation mode change after count operation paused (TTmn $=1)$	Operation restart after count operation paused (TTmn =1)	During start trigger wait status after one count
Interval timer mode	Count down	FFFFH	Undefined	Stop value	
Capture mode	Count up	$0000 H$	Undefined	Stop value	-
Event counter mode	Count down	FFFFH	Undefined	Stop value	-
One-count mode	Count down	FFFFH	Undefined	Stop value	FFFFH
Capture \& one- count mode	Count up	$0000 H$	Undefined	Stop value	Capture value of TDRm register +1

Note The read values of the TCRmn register when TSmn has been set to " 1 " while TEmn $=0$ are shown. The read value is held in the TCRmn register until the count operation starts.

Remark mn: Unit number + Channel number

$$
\mathrm{mn}=00 \text { to } 07,10 \text { to } 13
$$

(2) Timer data register mn (TDRmn)

This is a 16-bit register from which a capture function and a compare function can be selected.
The capture or compare function can be switched by selecting an operation mode by using the MDmn3 to MDmn0 bits of TMRmn.

The value of TDRmn can be changed at any time.
This register can be read or written in 16 -bit units.
Reset signal generation clears this register to 0000 H .

Figure 6-4. Format of Timer Data Register mn (TDRmn)

(i) When TDRmn is used as compare register

Counting down is started from the value set to TDRmn. When the count value reaches 0000 H , an interrupt signal (INTTMmn) is generated. TDRmn holds its value until it is rewritten.

Caution TDRmn does not perform a capture operation even if a capture trigger is input, when it is set to the compare function.
(ii) When TDRpq is used as capture register

The count value of TCRpq is captured to TDRpq when the capture trigger is input.
A valid edge of the Tlpq pin can be selected as the capture trigger. This selection is made by TMRpq.

Remark mn: Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78KOR/LF3: $m n=00$ to 07,10 to $13, \mathrm{pq}=00$ to 04,07
78K0R/LG3: $\mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=00$ to 07
78K0R/LH3: $\mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=00$ to 07,10 to 13

6.3 Registers Controlling Timer Array Unit

Timer array unit is controlled by the following registers.

- Peripheral enable register 0 (PERO)
- Timer clock select register m (TPSm)
- Timer mode register mn (TMRmn)
- Timer status register pq (TSRpq)
- Timer channel enable status register m (TEm)
- Timer channel start register m (TSm)
- Timer channel stop register m (TTm)
- Timer input select registers 0, 1 (TIS0, TIS1)
- Timer output enable register p (TOEp)
- Timer output register p (TOp)
- Timer output level register p (TOLp)
- Timer output mode register p (TOMp)
- Input switch control register (ISC)
- Noise filter enable registers 1, 2 (NFEN1, NFEN2)
- Port mode registers 1, 3, 5, 8 (PM1, PM3, PM5, PM8)
- Port registers1, 3, 5, 8 (P1, P3, P5, P8)

Remark mn: Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins)

$$
\begin{array}{ll}
\text { 78K0R/LF3: } & \mathrm{m}=0,1, \mathrm{mn}=00 \text { to } 07,10 \text { to } 13, \mathrm{p}=0, \mathrm{pq}=00 \text { to } 04,07 \\
\text { 78K0R/LG3: } & \mathrm{m}=0,1, \mathrm{mn}=00 \text { to } 07,10 \text { to } 13, \mathrm{p}=0, \mathrm{pq}=00 \text { to } 07 \\
\text { 78K0R/LH3: } & \mathrm{m}=0,1, \mathrm{mn}=00 \text { to } 07,10 \text { to } 13, \mathrm{p}=0,1, \mathrm{pq}=00 \text { to } 07,10 \text { to } 13
\end{array}
$$

(1) Peripheral enable register 0 (PERO)

PERO is used to enable or disable use of each peripheral hardware macro. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.
When the timer array unit 0 is used, be sure to set bit 0 (TAUOEN) of this register to 1 .
When the timer array unit 1 is used, be sure to set bit 1 (TAU1EN) of this register to 1 .
PERO can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Caution When setting the timer array unit, be sure to set TAUmEN to 1 first. If TAUmEN $=0$, writing to a control register of the timer array unit is ignored, and all read values are default values.

Figure 6-5. Format of Peripheral Enable Register 0 (PERO)

Address: F00FOH After reset: 00 H R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PERO	RTCEN	DACEN	ADCEN	IICAEN ${ }^{\text {Note }}$	SAU1EN	SAU0EN	TAU1EN	TAU0EN

TAUmEN	Control of timer array unit minput clock
0	Stops supply of input clock. - SFR used by the timer array unit m cannot be written. - The timer array unit m is in the reset status.
1	Supplies input clock. - SFR used by the timer array unit m can be read/written.

Note 78K0R/LG3, 78K0R/LH3 only
(2) Timer clock select register m (TPSm)

TPSm is a 16-bit register that is used to select two types of operation clocks (CKm0, CKm1) that are commonly supplied to each channel. CKm1 is selected by bits 7 to 4 of TPSm, and CKm0 is selected by bits 3 to 0 .
Rewriting of TPSm during timer operation is possible only in the following cases.

Rewriting of PRSm00 to PRSm03 bits: Possible only when all the channels set to CKSmn = 0 are in the operation stopped state $($ TEmn $=0)$
Rewriting of PRSm10 to PRSm13 bits: Possible only when all the channels set to CKSmn = 1 are in the operation stopped state $(\mathrm{TEmn}=0)$

TPSm can be set by a 16-bit memory manipulation instruction.
The lower 8 bits of TPSm can be set with an 8-bit memory manipulation instruction with TPSmL.
Reset signal generation clears this register to 0000 H .

Remark mn: Unit number + Channel number

$$
m=0,1, m n=00 \text { to } 07,10 \text { to } 13
$$

Figure 6-6. Format of Timer Clock Select Register m (TPSm)

Address: F01B6H, F01B7H (TPS0) After reset: 0000H R/W
F01DEH, F01DFH (TPS1)
Symbol

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	$\begin{aligned} & \text { PRS } \\ & \text { m13 } \end{aligned}$	$\begin{aligned} & \text { PRS } \\ & \text { m12 } \end{aligned}$	$\begin{aligned} & \text { PRS } \\ & \text { m11 } \end{aligned}$	$\begin{aligned} & \text { PRS } \\ & \text { m10 } \end{aligned}$	$\begin{aligned} & \text { PRS } \\ & \text { m03 } \end{aligned}$	$\begin{aligned} & \text { PRS } \\ & \text { m02 } \end{aligned}$	$\begin{aligned} & \text { PRS } \\ & \text { m01 } \end{aligned}$	$\begin{aligned} & \text { PRS } \\ & \text { m00 } \end{aligned}$

PRS mk3	PRS mk2	PRS mk1	PRS mk0	Selection of operation clock (CKmk) ${ }^{\text {Notes 1,2 }}$				
					$\mathrm{fcLk}=2 \mathrm{MHz}$	$\mathrm{fcLk}=5 \mathrm{MHz}$	fclk $=10 \mathrm{MHz}$	$\mathrm{fcLk}=20 \mathrm{MHz}$
0	0	0	0	fclk	2 MHz	5 MHz	10 MHz	20 MHz
0	0	0	1	fclk/2	1 MHz	2.5 MHz	5 MHz	10 MHz
0	0	1	0	$\mathrm{fCLK} / 2^{2}$	500 kHz	1.25 MHz	2.5 MHz	5 MHz
0	0	1	1	fclk $/ 2{ }^{3}$	250 kHz	625 kHz	1.25 MHz	2.5 MHz
0	1	0	0	$\mathrm{fCLK} / 2{ }^{4}$	125 kHz	312.5 kHz	625 kHz	1.25 MHz
0	1	0	1	fCLK/2 ${ }^{5}$	62.5 kHz	156.2 kHz	312.5 kHz	625 kHz
0	1	1	0	fCLK/2 ${ }^{6}$	31.25 kHz	78.1 kHz	156.2 kHz	312.5 kHz
0	1	1	1	$\mathrm{fcLk} / 2^{7}$	15.62 kHz	39.1 kHz	78.1 kHz	156.2 kHz
1	0	0	0	fclk $/ 2{ }^{8}$	7.81 kHz	19.5 kHz	39.1 kHz	78.1 kHz
1	0	0	1	fCLK/2 ${ }^{9}$	3.91 kHz	9.76 kHz	19.5 kHz	39.1 kHz
1	0	1	0	fclk/2 ${ }^{10}$	1.95 kHz	4.88 kHz	9.76 kHz	19.5 kHz
1	0	1	1	fcık/2 ${ }^{11}$	976 Hz	2.44 kHz	4.88 kHz	9.76 kHz
1	1	0	0	fcık/2 ${ }^{12}$	488 Hz	1.22 kHz	2.44 kHz	4.88 kHz
1	1	0	1	fclk $/ 2{ }^{13}$	244 Hz	610 Hz	1.22 kHz	2.44 kHz
1	1	1	0	$\mathrm{fcLk} / 2{ }^{14}$	122 Hz	305 Hz	610 Hz	1.22 kHz
1	1	1	1	fcık $/ 2{ }^{15}$	61 Hz	153 Hz	305 Hz	610 Hz

Notes 1. When changing the clock selected for fclk (by changing the system clock control register (CKC) value), stop the timer array unit (TT0 $=00 \mathrm{FFH}, \mathrm{TT} 1=000 \mathrm{FH}$).
2. Only in the case of SDIV=0, CCSmn=1 and TISmn=1, continuously use of TAUm is allowed, even when changing CPU clock. However, the following limitation is existing.

- When changing CPU clock, source clock decrease/increase occurs as follows.

$$
\begin{aligned}
& \text { Main clock } \rightarrow \text { Subsystem clock }(C S S=0 \rightarrow 1):-1 \text { clock } \\
& \text { Subsystem clock } \rightarrow \text { Main clock }(\text { CSS }=1 \rightarrow 0):+1 \text { clock }
\end{aligned}
$$

Caution Be sure to clear bits 15 to 8 to " 0 ".

Remarks 1. fclk: CPU/peripheral hardware clock frequency
2. $k=0,1$
3. mn : Unit number + Channel number

$$
m=0,1, m n=00 \text { to } 07,10 \text { to } 13
$$

(3) Timer mode register mn (TMRmn)

TMRmn sets an operation mode of channel n of timer array unit m. It is used to select an operation clock (MCK), a count clock, whether the timer operates as the master or a slave, a start trigger and a capture trigger, the valid edge of the timer input, and an operation mode (interval, capture, event counter, one-count, or capture \& onecount).
Rewriting TMRmn is prohibited when the register is in operation (when TEm = 1). However, bits 7 and 6 (CISmn1, CISmn0) can be rewritten even while the register is operating with some functions (when TEm =1) (for details, see
6.7 Operation of Timer Array Unit as Independent Channel and 6.8 Operation of Plural Channels of Timer Array Unit).
TMRmn can be set by a 16-bit memory manipulation instruction.
Reset signal generation clears this register to 0000 H .

Figure 6-7. Format of Timer Mode Register mn (TMRmn) (1/4)

Address: $\mathrm{F0190H}$, F0191H (TMR00) to F019EH, F019FH (TMR07) After reset: 0000H R/W
F01C8H, F01C9H (TMR10) to F01CEH, F01CFH (TMR13)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS mn	0	0	$\begin{gathered} \mathrm{CCS} \\ \mathrm{mn} \end{gathered}$	$\begin{aligned} & \text { MAST } \\ & \text { ERmn } \end{aligned}$	$\begin{aligned} & \text { STS } \\ & \text { mn2 } \end{aligned}$	STS mn1	$\begin{aligned} & \text { STS } \\ & \text { mnO } \end{aligned}$	$\begin{aligned} & \text { CIS } \\ & \mathrm{mn} 1 \end{aligned}$	$\begin{aligned} & \mathrm{CIS} \\ & \mathrm{mnO} \end{aligned}$	0	0	MD mn3	$\begin{aligned} & \mathrm{MD} \\ & \mathrm{mn} 2 \end{aligned}$	MD mn1	$\begin{aligned} & \mathrm{MD} \\ & \mathrm{mnO} \end{aligned}$

CKS $m n$	Selection of operation clock (MCK) of channel n
0	Operation clock CKm0 set by TPSm register
1	Operation clock CKm1 set by TPSm register
Operation clock MCK is used by the edge detector. A count clock (TCLK) and a sampling clock are generated depending on the setting of the CCSmn bit.	

CCS mn	Selection of count clock (TCLK) of channel n
0	Operation clock MCK specified by CKSmn bit
1	Valid edge of input signal input from Tlpq pin, fsuB/2, fsub/4, or INTRTC1 (the timer input used with channel x is selected by using TISm register).
Count clock TCLK is used for the timer/counter, output controller, and interrupt controller. If CCSmn $=1$, use the count clock under the following condition. - The frequency of the operating clock selected by using CKSmn \geq The frequency of the clock selected by using TISmn $\times 2$	

Caution Be sure to clear bits 14, 13, 5, and 4 to "0".

Remark mn: Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $m=0,1, m n=00$ to 07,10 to $13, p q=00$ to 04,07
78K0R/LG3: $m=0,1, m n=00$ to 07,10 to $13, p q=00$ to 07
$78 \mathrm{KOR} / \mathrm{LH} 3: ~ m=0,1, \mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=00$ to 07,10 to 13

Figure 6-7. Format of Timer Mode Register mn (TMRmn) (2/4)

Address:	H,	11	R00	to F0	EH,	9FH	MR) A	res	0000						
	8H,			to	CEH	1 C	(TM									
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS mn	0	0	$\begin{gathered} \mathrm{CCS} \\ \mathrm{mn} \end{gathered}$	$\begin{aligned} & \text { MAST } \\ & \text { ERmn } \end{aligned}$	$\begin{aligned} & \text { STS } \\ & \text { mn2 } \end{aligned}$	STS mn1	$\begin{aligned} & \text { STS } \\ & \text { mn0 } \end{aligned}$	CIS mn1	$\begin{aligned} & \mathrm{CIS} \\ & \mathrm{mnO} \end{aligned}$	0	0	MD mn3	MD $\mathrm{mn} 2$	MD mn1	$\begin{aligned} & \mathrm{MD} \\ & \mathrm{mnO} \end{aligned}$

MAS TER mn	Selection of slave/master of channel n
0	Operates as slave channel with combination operation function.
1	Operates as master channel with combination operation function.
Only the even channel can be set as a master channel (MASTERmn $=1)$. Be sure to use the odd channel as a slave channel (MASTERmn $=0)$. Clear MASTERmn to 0 for a channel that is used with the independent operation function.	

STS mn2	STS mn1	STS mn0	Setting of start trigger or capture trigger of channel n
0	0	0	Only software trigger start is valid (other trigger sources are unselected).
0	0	1	Valid edge of Tlpq pin input signal, fsub/2, fsub/4, or INTRTC1 is used as both the start trigger and capture trigger.

CIS mn1	CIS mn0	Selection of valid edge of TIpq pin input signal, fsuB/2, fsub/4, or INTRTC1 (the timer input used with channel x is selected by using TISm register).
0	0	Falling edge
0	1	Rising edge
1	0	Both edges (when low-level width is measured) Start trigger: Falling edge, Capture trigger: Rising edge
1	1	Both edges (when high-level width is measured) Start trigger: Rising edge, Capture trigger: Falling edge
If both the edges are specified when the value of the STSmn2 to STSmn0 bits is other than 010B, set the CISmn1 to CISmn0 bits to 10B.		

Caution Be sure to clear bits $14,13,5$, and 4 to " 0 ".

Remark mn: Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $\mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=00$ to 04,07
78K0R/LG3: $m n=00$ to 07,10 to $13, \mathrm{pq}=00$ to 07
78KOR/LH3: $\mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=00$ to 07,10 to 13

Figure 6-7. Format of Timer Mode Register mn (TMRmn) (3/4)

```
Address: F0190H, F0191H (TMR00) to F019EH, F019FH (TMR07) After reset: 0000H R/W
```

F01C8H, F01C9H (TMR10) to F01CEH, F01CFH (TMR13)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS mn	0	0	$\begin{gathered} \mathrm{CCS} \\ \mathrm{mn} \end{gathered}$	$\begin{aligned} & \text { MAST } \\ & \text { ERmn } \end{aligned}$	$\begin{aligned} & \text { STS } \\ & \text { mn2 } \end{aligned}$	STS mn1	$\begin{aligned} & \text { STS } \\ & \text { mn0 } \end{aligned}$	$\begin{aligned} & \text { CIS } \\ & \mathrm{mn} 1 \end{aligned}$	$\begin{aligned} & \mathrm{CIS} \\ & \mathrm{mnO} \end{aligned}$	0	0	$\begin{aligned} & \text { MD } \\ & \text { mn3 } \end{aligned}$	MD mn2	MD $\mathrm{mn} 1$	MD mn0

MD $m n 3$	MD mn2	MD mn1	MD mn0	Operation mode of channel n	Count operation of TCR	Independent operation
0	0	0	$1 / 0$	Interval timer mode	Counting down	Possible
0	1	0	$1 / 0$	Capture mode	Counting up	Possible
0	1	1	0	Event counter mode	Counting down	Possible
1	0	0	$1 / 0$	One-count mode	Counting down	Impossible
1	1	0	0	Capture \& one-count mode	Counting up	Possible
Other than above						
Setting prohibited						

Cautions 1. Be sure to clear bits $14,13,5$, and 4 to " 0 ".
2. Channel 5 of timer array unit 0 and channels 0 to 3 of timer array unit 1 of the $78 \mathrm{KOR} / \mathrm{LF} 3$ can be set only to the interval mode.
3. Channel 6 of timer array unit 0 of the $78 \mathrm{KOR} / \mathrm{LF} 3$ can be set only to the interval mode and one-count mode (when using as master).
4. Channels 0 to 3 of timer array unit 1 of the $78 \mathrm{KOR} / \mathrm{LG} 3$ can be set only to the interval mode.

Remark mn: Unit number + Channel number
$\mathrm{mn}=00$ to 07,10 to 13

Figure 6-7. Format of Timer Mode Register mn (TMRmn) (4/4)

Operation mode (Value set by the MDmn3 to MDmn1 bits (see table above))	$\begin{aligned} & \mathrm{MD} \\ & \mathrm{mnO} \end{aligned}$	Setting of starting counting and interrupt
- Interval timer mode $(0,0,0)$	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
- Capture mode $(0,1,0)$	1	Timer interrupt is generated when counting is started (timer output also changes).
- Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
- One-count mode $(1,0,0)$	0	Start trigger is invalid during counting operation. At that time, interrupt is not generated, either.
	1	Start trigger is valid during counting operation ${ }^{\text {Note }}$. At that time, interrupt is also generated.
- Capture \& one-count mode $(1,1,0)$	0	Timer interrupt is not generated when counting is started (timer output does not change, either). Start trigger is invalid during counting operation. At that time interrupt is not generated, either.
Other than above		Setting prohibited

Note If the start trigger (TSmn = 1) is issued during operation, the counter is cleared, an interrupt is generated, and recounting is started.

Remark mn: Unit number + Channel number $\mathrm{mn}=00$ to 07,10 to 13
(4) Timer status register pq (TSRpq)

TSRpq indicates the overflow status of the counter of channel n.
TSRpq is valid only in the capture mode (MDpq3 to MDpq1 = 010B) and capture \& one-count mode (MDpq3 to MDpq1 $=110 B$). It will not be set in any other mode. See Table 6-3 for the operation of the OVFpq bit in each operation mode and set/clear conditions.

TSRpq can be read by a 16-bit memory manipulation instruction.
The lower 8 bits of TSRpq can be set with an 8-bit memory manipulation instruction with TSRpqL.
Reset signal generation clears this register to 0000 H .

Figure 6-8. Format of Timer Status Register pq (TSRpq)
Address: F01A0H, F01A1H (TSR00) to F01AEH, F01AFH (TSR07) After reset: 0000H R

F01D0H, F01D1H (TSR10) to F01D6H, F01D7H (TSR13)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TSRpq	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	OVF
																pq

OVF $p q$	Counter overflow status of channel q
0	Overflow does not occur.
1	Overflow occurs.
When OVFpq = 1, this flag is cleared $($ OVFpq $=0)$ when the next value is captured without overflow.	

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $\mathrm{pq}=00$ to 04,07
78K0R/LG3: $\mathrm{pq}=00$ to 07
78K0R/LH3: $\mathrm{pq}=00$ to 07,10 to 13

Table 6-3. OVFpq Bit Operation and Set/Clear Conditions in Each Operation Mode

Timer operation mode	OVFpq	Set/clear conditions
- Capture mode	clear	When no overflow has occurred upon capturing
- Capture \& one-count mode	set	When an overflow has occurred upon capturing
- Interval timer mode	clear	-
- Event counter mode - One-count mode	set	

Remark The OVFpq bit does not change immediately after the counter has overflowed, but changes upon the subsequent capture.

(5) Timer channel enable status register m (TEm)

TEm is used to enable or stop the timer operation of each channel.
When a bit of timer channel start register $\mathrm{m}(\mathrm{TSm})$ is set to 1 , the corresponding bit of this register is set to 1 . When a bit of timer channel stop register m (TTm) is set to 1 , the corresponding bit of this register is cleared to 0 . TEm can be read by a 16 -bit memory manipulation instruction.

The lower 8 bits of TEm can be set with a 1-bit or 8-bit memory manipulation instruction with TEmL.
Reset signal generation clears this register to 0000 H .

Figure 6-9. Format of Timer Channel Enable Status Register m (TEm)

Address: F01	OH,	1B1H	After	set:	OOH	R										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TEO	0	0	0	0	0	0	0	0	TE07	TE06	TE05	TE04	TE03	TE02	TE01	TE00
Address: F0	8H,	1D9H	After	eset:	OOH	R										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TE1	0	0	0	0	0	0	0	0	0	0	0	0	TE13	TE12	TE11	TE10
	$\begin{aligned} & \text { TE } \\ & \text { mn } \end{aligned}$					dicati	o	tion	nable/s	stop sta	us of ch	hannel				
	0	Opera	on is	ppe												
	1	Opera	on is	abled												

Remark mn: Unit number + Channel number

$$
m=0,1, m n=00 \text { to } 07,10 \text { to } 13
$$

(6) Timer channel start register \mathbf{m} (TSm)

TSm is a trigger register that is used to clear a timer counter (TCRmn) and start the counting operation of each channel.
When a bit (TSmn) of this register is set to 1 , the corresponding bit (TEmn) of timer channel enable status register $\mathrm{m}(\mathrm{TEm})$ is set to 1 . TSmn is a trigger bit and cleared immediately when TEmn = 1 .

TSm can be set by a 16-bit memory manipulation instruction.
The lower 8 bits of TSm can be set with a 1-bit or 8-bit memory manipulation instruction with TSmL.
Reset signal generation clears this register to 0000 H .

Figure 6-10. Format of Timer Channel Start Register m (TSm)

Address: F01B2H, F01B3H			After reset: 0000 H			R/W				6	5	4	3	2	1	0
Symbol	15	14	13	12	11	10	9	8	7							
TSO	0	0	0	0	0	0	0	0	TS07	TS06	TS05	TS04	TS03	TS02	TS01	TS00
Address: F01DAH, F01DBH			After reset: 0000 H			R/W										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TS1	0	0	0	0	0	0	0	0	0	0	0	0	TS13	TS12	TS11	TS10
	TSmn	Operation enable (start) trigger of channel n														
	0	No trigger operation														
	1	TEmn is set to 1 and the count operation becomes enabled. The TCRmn count operation start in the count operation enabled state varies depending on each operation mode (see Table 6-4).														

Caution Be sure to clear bits 15 to 8 of TS0 and bits 15 to 4 of TS1 to " 0 ".

Remarks 1. When the TSm register is read, 0 is always read.
2. mn : Unit number + Channel number
$m=0,1, m n=00$ to 07,10 to 13

Table 6-4. Operations from Count Operation Enabled State to TCRmn Count Start

Timer operation mode	\quad Operation when TSmn $=1$ is set
- Interval timer mode	No operation is carried out from start trigger detection (TSmn=1) until count clock generation. The first count clock loads the value of TDRmn to TCRmn and the subsequent count clock performs count down operation (see 6.3 (6) (a) Start timing in interval timer mode).
- Event counter mode	Writing 1 to TSmn bit loads the value of TDRmn to TCRmn. The subsequent count clock performs count down operation.
The external trigger detection selected by STSmn2 to STSmno bits in the	
TMRmn register does not start count operation (see 6.3 (6) (b) Start timing in	
event counter mode).	

Cautions 1. Channel 5 of timer array unit 0 and channels 0 to 3 of timer array unit 1 of the $78 \mathrm{KOR} / \mathrm{LF} 3$ can be set only to the interval mode.
2. Channel 6 of timer array unit 0 of the $78 \mathrm{KOR} / \mathrm{LF} 3$ can be set only to the interval mode and one-count mode (when using as master).
3. Channels 0 to 3 of timer array unit 1 of the $78 \mathrm{KOR} / \mathrm{LG} 3$ can be set only to the interval mode.
(a) Start timing in interval timer mode
$<1>$ Writing 1 to TSmn sets TEmn = 1
<2> The write data to TSmn is held until count clock generation.
$<3>$ TCRmn holds the initial value until count clock generation.
$<4>$ On generation of count clock, the "TDRmn value" is loaded to TCRmn and count starts.

Remark mn: Unit number + Channel number $\mathrm{mn}=00$ to 07,10 to 13

Figure 6-11. Start Timing (In Interval Timer Mode)

Caution In the first cycle operation of count clock after writing TSmn, an error at a maximum of one clock is generated since count start delays until count clock has been generated. When the information on count start timing is necessary, an interrupt can be generated at count start by setting MDmn0 $=1$.

Remark mn: Unit number + Channel number $\mathrm{mn}=00$ to 07,10 to 13
(b) Start timing in event counter mode
$<1>$ While TEpq is set to 0 , TCRpq holds the initial value.
$<2>$ Writing 1 to TSpq sets 1 to TEpq.
$<3>$ As soon as 1 has been written to TSpq and 1 has been set to TEpq, the "TDRpq value" is loaded to TCRpq to start counting.
<4> After that, the TCRpq value is counted down according to the count clock.

Figure 6-12. Start Timing (In Event Counter Mode)

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $\mathrm{pq}=00$ to 04, 07
78K0R/LG3: $\mathrm{pq}=00$ to 07
78K0R/LH3: $p q=00$ to 07,10 to 13
(c) Start timing in capture mode
$<1>$ Writing 1 to TSpq sets TEpq $=1$
<2> The write data to TSpq is held until count clock generation.
$<3>$ TCRpq holds the initial value until count clock generation.
$<4>$ On generation of count clock, 0000 H is loaded to TCRpq and count starts.

Figure 6-13. Start Timing (In Capture Mode)

Caution In the first cycle operation of count clock after writing TSpq, an error at a maximum of one clock is generated since count start delays until count clock has been generated. When the information on count start timing is necessary, an interrupt can be generated at count start by setting MDpq0 $=1$.

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $\mathrm{pq}=00$ to 04,07
78K0R/LG3: $\mathrm{pq}=00$ to 07
78K0R/LH3: $\mathrm{pq}=00$ to 07,10 to 13

(d) Start timing in one-count mode

$<1>$ Writing 1 to TSpq sets TEpq = 1
<2> Enters the start trigger input wait status, and TCRpq holds the initial value.
$<3>$ On start trigger detection, the "TDRpq value" is loaded to TCRpq and count starts.

Figure 6-14. Start Timing (In One-count Mode)

Note When the one-count mode is set, the operation clock (MCK) is selected as count clock (CCSpq = 0).

Caution An input signal sampling error is generated since operation starts upon start trigger detection (The error is one count clock when TIpq is used).

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $p q=00$ to 04, 07, 06 (only when used as the master)
78K0R/LG3: pq $=00$ to 07
78KOR/LH3: pq $=00$ to 07,10 to 13
(e) Start timing in capture \& one-count mode

```
<1> Writing 1 to TSpq sets TEpq=1
<2> Enters the start trigger input wait status, and TCRpq holds the initial value.
<3> On start trigger detection, 0000H is loaded to TCRpq and count starts.
```

Figure 6-15. Start Timing (In Capture \& One-count Mode)

Note When the capture \& one-count mode is set, the operation clock (MCK) is selected as count clock (CCSpq = $0)$.

Caution An input signal sampling error is generated since operation starts upon start trigger detection (The error is one count clock when Tlpq is used).

(7) Timer channel stop register m (TTm)

TTm is a trigger register that is used to clear a timer counter (TCRmn) and start the counting operation of each channel.
When a bit (TTmn) of this register is set to 1 , the corresponding bit (TEmn) of timer channel enable status register 0 (TEm) is cleared to 0 . TTmn is a trigger bit and cleared to 0 immediately when TEmn $=0$.
TTm can be set by a 16 -bit memory manipulation instruction.
The lower 8 bits of TTm can be set with a 1-bit or 8-bit memory manipulation instruction with TTmL.
Reset signal generation clears this register to 0000H.

Remark mn: Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $m=0,1, m n=00$ to 07,10 to $13, p q=00$ to 04,07
78K0R/LG3: $m=0,1, m n=00$ to 07,10 to $13, \mathrm{pq}=00$ to 07
78KOR/LH3: $m=0,1, m n=00$ to 07,10 to $13, p q=00$ to 07,10 to 13

Figure 6-16. Format of Timer Channel Stop Register m (TTm)

Caution Be sure to clear bits 15 to 8 of TTO and bits 15 to 4 of TT1 to " 0 ".

Remarks 1. When the TTm register is read, 0 is always read.
2. mn : Unit number + Channel number
$m=0,1, m n=00$ to 07,10 to 13
(8) Timer input select registers 0,1 (TIS0, TIS1)

TIS0 and TIS1 use can be set to the input signal of a timer input pin (TIpq), half the frequency of the subsystem clock (fSUB/2), one fourth the frequency of the subsystem clock (fsub/4), or an RTC interval interrupt (INTRTCI) as the timer input. The timer input can be selected for each channel.
TIS0 and TIS1 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears these registers to 00 H .
Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $p q=00$ to 04,07
78K0R/LG3: $\mathrm{pq}=00$ to 07
78K0R/LH3: $\mathrm{pq}=00$ to 07,10 to 13

Figure 6-17. Format of Timer Input Select Registers 0,1 (TIS0, TIS1) (1/2)

- 78K0R/LF3

Address: FFF3EH After reset: 00H			R/W					
Symbol	7	6	5	4	3	2	1	0
TISO	TIS07	0	0	TIS04	TIS03	TIS02	TIS01	TIS00

Address: FFF4EH After reset: 00 H R/W
Symbol
TIS1

7	6	5	4	3	2	1	0
0	0	RTCIS04	RTCIS00	0	0	0	0

Figure 6-17. Format of Timer Input Select Registers $\mathbf{0 , 1}$ (TIS0, TIS1) (2/2)

- 78K0R/LG3

Address: FFF4EH After reset: 00 H R/W

Symbol	7	6	5	4	3	2	1	0
TIS1	0	0	RTCIS04	RTCIS00	0	0	0	0

- 78K0R/LH3

Address: FFF3EH After reset: 00 H R/W

Symbol	7	6	5	4	3	2	1	0
TISO	TIS07	TIS06	TIS05	TIS04	TIS03	TIS02	TIS01	TIS00

Address: FFF4EH After reset: 00 H R/W

| Symbol | 7 | 6 | 5 | 4 | 3 | 1 | 0 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TIS1 | 0 | 0 | RTCIS04 | RTCIS00 | TIS13 | TIS12 | TIS11 | TIS10 |
| | | | | | | | | |

- Channels 1 to 3 and 5 to 7 of timer array unit 0 and channels 0 to 3 of timer array unit 1

TISpq	SDIV	Selection of Timer input used with channel $(\mathrm{pq}=01,02,03,05,06,07,10,11,12,13)$
0	\times	Input signal of timer input pin (Tlpq)
1	0	fsub/2
	1	fsub/4

- Channels 0 and 4 of timer array unit 0

TISpq	RTCISpq	SDIV	Selection of Timer input used with channel (pq =00,04)
0	\times	\times	Input signal of timer input pin (TIpq)
1	0	0	fsub/2
		1	fsub/4
	1	0	RTC Interval interrupt (INTRTCI)
		1	Setting prohibited

Caution When the LIN-bus communication function is used, select the input signal of the RxD3 pin by setting ISC1 to 1 and TIS07 $=0$.

Remarks 1. pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $\quad \mathrm{pq}=00$ to 04,07
78K0R/LG3: $\quad \mathrm{pq}=00$ to 07
78K0R/LH3: $\mathrm{pq}=00$ to 07,10 to 13
2. \times : don't care
3. fsub: Subsystem select clock
4. SDIV: Bit 3 of the system clock control register (CKC)

(9) Timer output enable register p (TOEp)

TOEp is used to enable or disable timer output of each channel.
Channel q for which timer output has been enabled becomes unable to rewrite the value of the TOpq bit of the timer output register (TOp) described later by software, and the value reflecting the setting of the timer output function through the count operation is output from the timer output pin (TOpq).
TOEp can be set by a 16-bit memory manipulation instruction.
The lower 8 bits of TOEp can be set with a 1-bit or 8-bit memory manipulation instruction with TOEpL.
Reset signal generation clears this register to 0000 H .

Figure 6-18. Format of Timer Output Enable Register p (TOEp)

- 78K0R/LF3

Address: F01BAH, F01BBH After reset: 0000H R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOEO	0	0	0	0	0	0	0	0	$\begin{gathered} \text { TOE } \\ 07 \end{gathered}$	0	0	$\begin{gathered} \text { TOE } \\ 04 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 03 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 02 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 01 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 00 \end{gathered}$

- 78K0R/LG3

Address: F01BAH, F01BBH After reset: 0000 H R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOEO	0	0	0	0	0	0	0	0	$\begin{gathered} \text { TOE } \\ 07 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 06 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 05 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 04 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 03 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 02 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 01 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 00 \end{gathered}$

- 78KOR/LH3

Address: F01BAH, F01BBH After reset: 0000 H R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOEO	0	0	0	0	0	0	0	0	$\begin{gathered} \text { TOE } \\ 07 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 06 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 05 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 04 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 03 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 02 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 01 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 00 \end{gathered}$

Address: F01E2H, F01E3H After reset: 0000 H R/W
Symbol

0	0	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \text { TOE } \\ 13 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 12 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 11 \end{gathered}$	$\begin{gathered} \text { TOE } \\ 10 \end{gathered}$

TOE pq	Timer output enable/disable of channel q
0	The TOpq operation stopped by count operation (timer channel output bit). Writing to the TOpq bit is enabled. The TOpq pin functions as data output, and it outputs the level set to the TOpq bit. The output level of the TOpq pin can be manipulated by software.
1	The TOpq operation enabled by count operation (timer channel output bit). Writing to the TOpq bit is disabled (writing is ignored). The TOpq pin functions as timer output, and the TOEq is set or reset depending on the timer operation. The TOpq pin outputs the square-wave or PWM depending on the timer operation.

(Caution and Remark are given on the next page.)

Cautions 1. For 78KOR/LF3, be sure to clear bits 15 to 8,6 and 5 of TOE 0 to " 0 ".
 2. For $78 \mathrm{KOR} / \mathrm{LG} 3$, be sure to clear bits 15 to 8 of TOEO to " 0 ".
 3. For $78 \mathrm{KOR} / \mathrm{LH} 3$, be sure to clear bit 15 to 8 of TOEO, bits 15 to 4 of TOE1 to " 0 ".
 Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
 78K0R/LF3: $p=0, p q=00$ to 04,07
 78K0R/LG3: $p=0, p q=00$ to 07
 78K0R/LH3: $p=0,1, p q=00$ to 07,10 to 13

(10) Timer output register p (TOp)

TOp is a buffer register of timer output of each channel.
The value of each bit in this register is output from the timer output pin (TOpq) of each channel.
This register can be rewritten by software only when timer output is disabled (TOEpq $=0$). When timer output is enabled (TOEpq $=1$), rewriting this register by software is ignored, and the value is changed only by the timer operation.
To use the P30/TO00, P32/TO01, P12/TO02, P31/TO03, P13/TO04, P16/TO05, P34/TO06, P33/TO07, P84/TO10, $\mathrm{P} 85 / \mathrm{TO} 11, \mathrm{P} 86 / \mathrm{TO} 12$, or P87/TO13 pin as a port function pin, set the corresponding TOpq bit to " 0 ".

TOp can be set by a 16-bit memory manipulation instruction.
The lower 8 bits of TOp can be set with an 8-bit memory manipulation instruction with TOpL.
Reset signal generation clears this register to 0000 H .

Figure 6-19. Format of Timer Output Register p(TOp)

- 78K0R/L																
Address: F01B8H, F01B9H			After reset: 0000 H			R/W		8	7	6	5	4	3	2	1	0
Symbol	15	14	13	12	11	10	9									
TOO	0	0	0	0	0	0	0	0	$\begin{gathered} \text { TOO } \\ 7 \end{gathered}$	0	0	$\begin{gathered} \text { TOO } \\ 4 \end{gathered}$	TOO 3	TOO 2	TOO	TOO 0

- 78K0R/LG3

Address: F01B8H, F01B9H After reset: 0000H R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOO	0	0	0	0	0	0	0	0	TOO							
									7	6	5	4	3	2	1	0

- 78K0R/LH3

Address: F01B8H, F01B9H After reset: 0000H R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOO	0	0	0	0	0	0	0	0	TOO	TOO	TOO	TOO	TO0	TOO	TOO	TOO
									7	6	5	4	3	2	1	0

Address: F01E0H, F01E1H After reset: 0000H R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TO1	0	0	0	0	0	0	0	0	0	0	0	0	TO1	TO1	TO1	TO1
													3	2	1	0

TO pq		Timer output of channel q
0	Timer output value is " 0 ".	
1	Timer output value is " 1 ".	

Cautions 1. For 78K0R/LF3, be sure to clear bits 15 to 8,6 and 5 of TOO to " 0 ".
2. For $78 \mathrm{KOR} / \mathrm{LG} 3$, be sure to clear bits 15 to 8 of TOO to " 0 ".
3. For $78 \mathrm{KOR} / \mathrm{LH} 3$, be sure to clear bit 15 to 8 of TOO, bits 15 to 4 of TO1 to " 0 ".

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $p=0, p q=00$ to 04, 07
78K0R/LG3: $p=0, p q=00$ to 07
78K0R/LH3: $p=0,1, p q=00$ to 07,10 to 13

(11) Timer output level register p (TOLp)

TOLp is a register that controls the timer output level of each channel.
The setting of the inverted output of channel q by this register is reflected at the timing of set or reset of the timer output signal while the timer output is enabled (TOEpq = 1) in the combination operation mode (TOMpq = 1). In the toggle mode ($\mathrm{TOMpq}=0$), this register setting is invalid.
TOLp can be set by a 16-bit memory manipulation instruction.
The lower 8 bits of TOLp can be set with an 8-bit memory manipulation instruction with TOLpL.
Reset signal generation clears this register to 0000 H .

Figure 6-20. Format of Timer Output Level Register \mathbf{p} (TOLp)

- 78K0R/LF3																
Address: F01BCH, F01BDH			After reset: 0000 H			R/W		8	7	6	5	4	3	2	1	0
Symbol	15	14	13	12	11	10	9									
TOLO	0	0	0	0	0	0	0	0	TOL	0	0	$\begin{gathered} \text { TOL } \\ 04 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 03 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 02 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 01 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 00 \end{gathered}$

- 78K0R/LG3

Address: F01BCH, F01BDH After reset: 0000 H R/W
Symbol
TOLO

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	$\begin{gathered} \text { TOL } \\ 07 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 06 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 05 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 04 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 03 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 02 \end{gathered}$	TOL	$\begin{gathered} \text { TOL } \\ 00 \end{gathered}$

- 78K0R/LH3

Address: F01BCH, F01BDH After reset: 0000 H R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOLO	0	0	0	0	0	0	0	0	$\begin{gathered} \text { TOL } \\ 07 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 06 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 05 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 04 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 03 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 02 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 01 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 00 \end{gathered}$

Address: F01E4H, F01E5H After reset: 0000 H R/W
Symbol

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \text { TOL } \\ 13 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 12 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 11 \end{gathered}$	$\begin{gathered} \text { TOL } \\ 10 \end{gathered}$

TOLpq	Control of timer output level of channel q
0	Positive logic output (active-high)
1	Inverted output (active-low)

Cautions 1. For 78KOR/LF3, be sure to clear bits 15 to 8,6 and 5 of TOLO to " 0 ".
2. For $78 \mathrm{KOR} / \mathrm{LG} 3$, be sure to clear bits 15 to 8 of TOLO to " 0 ".
3. For $78 K 0 R / L H 3$, be sure to clear bit 15 to 8 of TOL0, bits 15 to 4 of TOL1 to " 0 ".

Remarks 1. If the value of this register is rewritten during timer operation, the timer output is inverted when the timer output signal changes next, instead of immediately after the register value is rewritten.
2. pq : Unit number + Channel number (only for channels provided with timer I/O pins)

$$
\begin{array}{ll}
\text { 78K0R/LF3: } & p=0, p q=00 \text { to } 04,07 \\
\text { 78K0R/LG3: } & p=0, p q=00 \text { to } 07 \\
\text { 78K0R/LH3: } & p=0,1, p q=00 \text { to } 07,10 \text { to } 13
\end{array}
$$

(12) Timer output mode register p (TOMp)

TOMp is used to control the timer output mode of each channel.
When a channel is used for the combination operation function (PWM output, one-shot pulse output, or multiple PWM output), set the corresponding bit of the slave channel to 1 .
The setting of each channel q by this register is reflected at the timing when the timer output signal is set or reset while the timer output is enabled (TOEpq $=1$).
TOMp can be set by a 16-bit memory manipulation instruction.
The lower 8 bits of TOMp can be set with an 8-bit memory manipulation instruction with TOMpL.
Reset signal generation clears this register to 0000 H .

Figure 6-21. Format of Timer Output Mode Register p (TOMp)

- 78K0R/LF3

Address: F01BEH, F01BFH After reset: 0000H R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
томо	0	0	0	0	0	0	0	0	$\begin{gathered} \text { TOM } \\ 07 \end{gathered}$	0	0	$\begin{gathered} \text { TOM } \\ 04 \end{gathered}$	$\begin{gathered} \text { том } \\ 03 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 02 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 01 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 00 \end{gathered}$

- 78K0R/LG3

Address: F01BEH, F01BFH After reset: 0000 H R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
томо	0	0	0	0	0	0	0	0	$\begin{gathered} \text { TOM } \\ 07 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 06 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 05 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 04 \end{gathered}$	$\begin{gathered} \text { том } \\ 03 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 02 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 01 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 00 \end{gathered}$

- 78K0R/LH3

Address: F01BEH, F01BFH After reset: 0000H R/W
Symbol

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	$\begin{gathered} \text { TOM } \\ 07 \end{gathered}$	$\begin{gathered} \text { том } \\ 06 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 05 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 04 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 03 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 02 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 01 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 00 \end{gathered}$

Address: F01E6H, F01E7H After reset: 0000 H R/W
Symbol
тоM1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \text { TOM } \\ 13 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 12 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 11 \end{gathered}$	$\begin{gathered} \text { TOM } \\ 10 \end{gathered}$

TOM pq	Control of timer output mode of channel q
0	Toggle mode (to produce toggle output by timer interrupt request signal (INTTMpq))
1	Combination operation mode (set by the timer interrupt request signal (INITTMpq) of the master channel, and reset by the timer interrupt request signal (INITTMpr) of the slave channel)

Cautions 1. For $78 \mathrm{KOR} / \mathrm{LF} 3$, be sure to clear bits 15 to 8,6 and 5 of TOMO to " 0 ".
2. For $78 \mathrm{KOR} / \mathrm{LG} 3$, be sure to clear bits 15 to 8 of TOMO to " 0 ".
3. For $78 \mathrm{KOR} / \mathrm{LH} 3$, be sure to clear bit 15 to 8 of TOMO, bits 15 to 4 of TOM1 to " 0 ".
(Remark is listed on the next page.)

```
Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
    <1> 78K0R/LF3:
    - \(p=0, q=0\) to 4,7 ( \(q=0,2,4\) for master channel)
        \(q<r \leq 7\) (where \(r\) is a consecutive integer greater than \(q\) )
    <2> 78KOR/LG3:
    - \(p=0, q=0\) to 7 ( \(q=0,2,4,6\) for master channel)
        \(q<r \leq 7\) (where \(r\) is a consecutive integer greater than \(q\) )
    <3> 78KOR/LH3:
    - \(p=0, q=0\) to 7 ( \(q=0,2,4,6\) for master channel)
        \(q<r \leq 7\) (where \(r\) is a consecutive integer greater than \(q\) )
    - \(p=1, q=0\) to 3 ( \(q=0,2\) for master channel)
        \(\mathrm{q}<\mathrm{r} \leq 3\) (where r is a consecutive integer greater than q )
```


(13) Input switch control register (ISC)

ISC is used to implement LIN-bus communication operation with channel 7 of timer array unit 0 in association with serial array unit 1.
When bit 1 of this register is set to 1 , the input signal of the serial data input pin (RxD3) is selected as a timer input signal.
ISC can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 6-22. Format of Input Switch Control Register (ISC)

Address: FFF3CH After reset: 00 H R/W								
Symbol	7	6	5	4	3	2	1	0
ISC	0	0	0	ISC4	ISC3	ISC2	ISC1	ISC0
	ISC1	Switching channel 7 input of timer array unit						
	0	Uses the input signal of the T107 pin as a timer input (normal operation).						
	1	Input signal of RxD3 pin is used as timer input (wakeup signal detection).						

Caution Be sure to clear bits 5 to 7 to " 0 ".

Remarks 1. When the LIN-bus communication function is used, select the input signal of the RxD3 pin by setting ISC1 to 1.
2. Bits 0 and 2 to 4 of ISC are not used with TAUO.
(14) Noise filter enable registers 1, 2 (NFEN1, NFEN2)

NFEN1 and NFEN2 are used to set whether the noise filter can be used for the timer input signal to each channel.

Enable the noise filter by setting the corresponding bits to 1 on the pins in need of noise removal.
When the noise filter is ON, match detection and synchronization of the 2 clocks is performed with the CPU/peripheral hardware clock (fclk). When the noise filter is OFF, only synchronization is performed with the CPU/peripheral hardware clock (fcLk).
NFEN1, NFEN2 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears these registers to 00 H .

Figure 6-23. Format of Noise Filter Enable Register 1 (NFEN1) (1/2)

- 78K0R/LG3, 78K0R/LH3

Address: F0061H After reset: 00 H R/W

| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NFEN1 | TNFEN07 | TNFEN06 | TNFEN05 | TNFEN04 | TNFEN03 | TNFEN02 | TNFEN01 | TNFEN00 |
| | | | | | | | | |

TNFEN07	Enable/disable using noise filter of TI07/TO07/P33/INTP3 pin or RxD3/P50/SEGz pin input signal
0	Noise filter OFF
1	Noise filter ON

TNFEN06	Enable/disable using noise filter of T106/TO06/P34/INTP8 pin input signal
0	Noise filter OFF
1	Noise filter ON

TNFEN05	Enable/disable using noise filter of TI05/TO05/P16/INTP10 pin input signal
0	Noise filter OFF
1	Noise filter ON

TNFEN04	Enable/disable using noise filter of TIO4/P53/SEGz pin input signal (78KOR/LF3: $z=27,78 K 0 R / L G 3: ~ z=36,78 K 0 R / L H 3: ~ z=50$)
0	Noise filter OFF
1	Noise filter ON

TNFEN03	Enable/disable using noise filter of TIO3/TO03/P30/RTC1HZ/INTP1 pin input signal
0	Noise filter OFF
1	Noise filter ON

TNFEN02	Enable/disable using noise filter of TIO2/P52/SEGz pin input signal (78K0R/LF3: $z=28,78 K 0 R / L G 3: ~ z=37,78 K 0 R / L H 3: ~ z=51)$
0	Noise filter OFF
1	Noise filter ON

Note The applicable pin can be switched by setting ISC1 of the ISC register.

ISC1 = 0: Whether or not to use the noise filter of TIO7 pin can be selected.
ISC1 = 1: Whether or not to use the noise filter of RxD3 pin can be selected.

Figure 6-23. Format of Noise Filter Enable Register 1 (NFEN1) (2/2)

TNFEN01	Enable/disable using noise filter of T101/TO01/P32/INTP5/PCLBUZ0 pin input signal
0	Noise filter OFF
1	Noise filter ON

TNFEN00	Enable/disable using noise filter of TI00/TO03/P31/RTCDIV/RTCCL/PCLBUZ1/INTP2 pin input signal
0	Noise filter OFF
1	Noise filter ON

Figure 6-24. Format of Noise Filter Enable Register 2 (NFEN2)

Address: F0061H	After reset: 00H		R/W					
Symbol	7	6	5	4	3	2	1	0
NFEN1	0	0	0	0	TNFEN13	TNFEN12	TNFEN11	TNFEN10

TNFEN13	Enable/disable using noise filter of TI13/TO13/P87 pin input signal
0	Noise filter OFF
1	Noise filter ON

TNFEN12	Enable/disable using noise filter of TI12/TO12/P86 pin input signal
0	Noise filter OFF
1	Noise filter ON

TNFEN11	Enable/disable using noise filter of TI11/TO11/P85 pin input signal
0	Noise filter OFF
1	Noise filter ON

TNFEN10	Enable/disable using noise filter of TI10/TO10/P84 pin input signal
0	Noise filter OFF
1	Noise filter ON

(15) Port mode registers 1, 3, 5, 8 (PM1, PM3, PM5, PM8)

These registers set input/output of ports 1, 3,5, and 8 in 1-bit units.
When using the P30/TO00/TI03/RTC1HZ/INTP1, P32/TO01/TI01/INTP5/PCLBUZ0, P12/TO02/SO02/TxD2, P31/TO03/TI00/RTCDIV/RTCCL/PCLBUZ1/INTP2, P13/TO04/SO10/TxD1, P16/TO05/TI05/INTP10, P34/TO06/TI06/INTP8, P33/TO07/TI07/INTP3, P84/TO10/TI10, P85/TO11/TI11, P86/TO12/TI12, and P87/TO13/TI13 pins for timer output, set PM30, PM32, PM12, PM31, PM13, PM16, PM34, PM33, and PM84 to PM87 and the output latches of P30, P32, P12, P31, P13, P16, P34, P33, and P84 to P87 to 0.
When using the P31/TI00/TO03/RTCDIV/RTCCL/PCLBUZ1/INTP2, P32/TI01/TO01/INTP5/PCLBUZ0, P52/TI02/SEGz (78K0R/LF3: $z=28,78 K 0 R / L G 3: ~ z=37,78 K 0 R / L H 3: ~ z=51), ~ P 30 / T I 03 / T O 00 / R T C 1 H Z / I N T P 1$, P53/TI04/SEGz (78K0R/LF3: $z=27,78 K 0 R / L G 3: ~ z=36,78 K 0 R / L H 3: ~ z=50), ~ P 16 / T I 05 / T O 05 / I N T P 10$, P34/TI06/TO06/INTP8, P33/TI07/TO07/INTP3, P84/TI10/TO10, P85/TI11/TO11, P86/TI12/TO12, and P87/TI13/TO13 pins for timer input, set PM31, PM32, PM52, PM30, PM53, PM16, PM34 PM33, and PM84 to PM87 to 1. At this time, the output latches of P31, P32, P52, P30, P53, P16, P34, P33, and P84 to P87 may be 0 or 1.

PM1, PM3, PM5, and PM8 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets these registers to FFH.

Figure 6-25. Format of Port Mode Registers 1, 3, 5, 8 (PM1, PM3, PM5, PM8)
-78K0R/LF3

Address: FFF23H After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
PM3	1	1	1	1	PM33	PM32	PM31	PM30

Address: FFF25H After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
PM5	PM57	PM56	PM55	PM54	PM53	PM52	PM51	PM50

- 78K0R/LG3

Address: FFF21H	After reset: FFH		R/W					
Symbol	7	6	5	4	3	2	1	0
PM1	1	PM16	PM15	PM14	PM13	PM12	PM11	PM10

Address: FFF23H After reset: FFH R/W

Symbol								
Sy	7	6	5	4	3	2	1	0
	7	1	1	PM34	PM33	PM32	PM31	PM30

Address: FFF25H After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
PM5	PM57	PM56	PM55	PM54	PM53	PM52	PM51	PM50

- 78K0R/LH3

Address: FFF21H After reset: FFH R/W
Symbol
PM1

7	6	5	4	3	2	1	0
PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10

Address: FFF23H After reset: FFH R/W

Symbol								
PM3	7	6	5	4	3	2	1	0
	1	1	1	PM34	PM33	PM32	PM31	PM30

Address: FFF28H After reset: FEH R/W
Symbol
PM8

7	6	5	4	3	2	1	0
PM87	PM86	PM85	PM84	PM83	PM82	PM81	PM80

PMmn	Pmn pin I/O mode selection ($m=1,3,5,8 ; n=0$ to 7)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

6.4 Channel Output (TOpq pin) Control

6.4.1 TOpq pin output circuit configuration

Figure 6-26. Output Circuit Configuration

The following describes the TOpq pin output circuit.
<1> When TOMpq = 0 (toggle mode), the set value of the TOLp register is ignored and only INTTMpr (slave channel timer interrupt) is transmitted to the TOp register.
<2> When TOMpq = 1 (combination operation mode), both INTTMpq (master channel timer interrupt) and INTTMpr (slave channel timer interrupt) are transmitted to the TOp register.
At this time, the TOLp register becomes valid and the signals are controlled as follows:

When TOLpq $=0: \quad$ Forward operation (INTTMpq \rightarrow set, INTTMpr \rightarrow reset)
When TOLpq = 1: Reverse operation (INTTMpq \rightarrow reset, INTTMpr \rightarrow set)

When INTTMpq and INTTMpr are simultaneously generated, (0% output of PWM), INTTMpr (reset signal) takes priority, and INTTMpq (set signal) is masked.
<3> When TOEpq = 1, INTTMpq (master channel timer interrupt) and INTTMpr (slave channel timer interrupt) are transmitted to the TOpq register. Writing to the TOp register (TOpq write signal) becomes invalid. When TOEpq $=1$, the TOpq pin output never changes with signals other than interrupt signals. To initialize the TOpq pin output level, it is necessary to set TOEpq $=0$ and to write a value to TOpq.
$<4>$ When TOEpq $=0$, writing to TOpq bit to the target channel (TOpq signal) becomes valid. When TOEpq $=0$, neither INTTMpq (master channel timer interrupt) nor INTTMpr (slave channel timer interrupt) is transmitted to TOpq register.
$<5>$ The TOp register can always be read, and the TOpq pin output level can be checked.

```
Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
    <1> 78K0R/LF3:
    - \(p=0, q=0\) to 4,7 ( \(q=0,2,4\) for master channel)
            \(q<r \leq 7\) (where \(r\) is a consecutive integer greater than \(q\) )
    <2> 78K0R/LG3:
            - \(p=0, q=0\) to 7 ( \(q=0,2,4,6\) for master channel)
            \(q<r \leq 7\) (where \(r\) is a consecutive integer greater than \(q\) )
    <3> 78KOR/LH3:
    - \(p=0, q=0\) to 7 ( \(q=0,2,4,6\) for master channel)
        \(q<r \leq 7\) (where \(r\) is a consecutive integer greater than \(q\) )
        - \(p=1, q=0\) to 3 ( \(q=0,2\) for master channel)
        \(q<r \leq 3\) (where \(r\) is a consecutive integer greater than \(q\) )
```


6.4.2 TOpq Pin Output Setting

The following figure shows the procedure and status transition of TOpq out put pin from initial setting to timer operation start.

Figure 6-27. Status Transition from Timer Output Setting to Operation Start

<1> The operation mode of timer output is set.

- TOMpq bit (0: Toggle mode, 1: Combination operation mode)
- TOLpq bit (0: Forward output, 1: Reverse output)
<2> The timer output signal is set to the initial status by setting TOpq.
$<3>$ The timer output operation is enabled by writing 1 to TOEpq (writing to TOpq is disabled).
<4> The port I/O setting is set to output (see 6.3 (15) Port mode registers 1, 3, 5, 8).
$<5>$ The timer operation is enabled ($\mathrm{TSpq}=1$).

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $p q=00$ to 04,07
78K0R/LG3: $\mathrm{pq}=00$ to 07
78K0R/LH3: $p q=00$ to 07,10 to 13

6.4.3 Cautions on Channel Output Operation

(1) Changing values set in registers TOp,TOEp,TOLp, and TOMp during timer operation

Since the timer operations (operations of TCRpq and TDRpq) are independent of the TOpq output circuit and changing the values set in TOp, TOEp, TOLp, and TOMp does not affect the timer operation, the values can be changed during timer operation. To output an expected waveform from the TOpq pin by timer operation, however, set TOp, TOEp, TOLp, and TOMp to the values stated in the register setting example of each operation.
When the values set in TOEp, TOLp, and TOMp (except for TOp) are changed close to the timer interrupt (INTTMpq), the waveform output to the TOpq pin may be different depending on whether the values are changed immediately before or immediately after the timer interrupt (INTTMpq) signal generation timing.
(2) Default level of TOpq pin and output level after timer operation start

The following figure shows the TOpq pin output level transition when writing has been done in the state of TOEpq = 0 before port output is enabled and TOEpq $=1$ is set after changing the default level.
(a) When operation starts with $\mathrm{TOMpq}=\mathbf{0}$ setting (toggle output)

The setting of TOLpq is invalid when TOMpq $=0$. When the timer operation starts after setting the default level, the toggle signal is generated and the output level of TOpq pin is reversed.

Figure 6-28. TOpq Pin Output Status at Toggle Output (TOMpq = 0)

Remarks 1. Toggle: Reverse TOpq pin output status
2. pq: Unit number + Channel number (only for channels provided with timer I/O pins)

78KOR/LF3: $p=0, p q=00$ to 04,07
78K0R/LG3: $p=0, p q=00$ to 07
78K0R/LH3: $p=0,1, p q=00$ to 07,10 to 13
(b) When operation starts with TOMpq $=1$ setting (Combination operation mode (PWM output))

When TOMpq $=1$, the active level is determined by TOLpq setting.

Figure 6-29. TOpq Pin Output Status at PWM Output (TOMpq = 1)

(3) Operation of TOpq pin in combination operation mode (TOMpq = 1)

(a) When TOLpq setting has been changed during timer operation

When the TOLpq setting has been changed during timer operation, the setting becomes valid at the generation timing of TOpq change condition. Rewriting TOLpq does not change the output level of TOpq.
The following figure shows the operation when the value of TOLpq has been changed during timer operation ($\mathrm{TOMpq}=1$).

Figure 6-30. Operation when TOLpq Has Been Changed during Timer Operation

Remarks 1. Set: The output signal of TOpq pin changes from inactive level to active level.
Reset: The output signal of TOpq pin changes from active level to inactive level.
2. pq: Unit number + Channel number (only for channels provided with timer I/O pins)

78K0R/LF3: $\mathrm{pq}=00$ to 04, 07
78K0R/LG3: $\mathrm{pq}=00$ to 07
78KOR/LH3: pq = 00 to 07,10 to 13

(b) Set/reset timing

To realize $0 \% / 100 \%$ output at PWM output, the TOpq pin/TOpq set timing at master channel timer interrupt (INTTMpq) generation is delayed by 1 count clock by the slave channel timer interrupt (INTTMqr).
If the set condition and reset condition are generated at the same time, a higher priority is given to the latter.
Figure 6-31 shows the set/reset operating statuses where the master/slave channels are set as follows.

- Master channel: TOEpq $=1$, TOMpq $=0$, TOLpq $=0$
- Slave channel: $\mathrm{TOEpr}=1, \mathrm{TOMpr}=1, \mathrm{TOLpr}=0$

Figure 6-31. Set/Reset Timing Operating Statuses

Remarks 1. to_reset: TOpq pin reset/toggle signal
to_set: TOpq pin set signal
2. pq: Unit number + Channel number (only for channels provided with timer I/O pins)
<1> 78K0R/LF3:

- $p=0, q=0$ to $4,7(q=0,2,4$ for master channel)
$q<r \leq 7$ (where r is a consecutive integer greater than q)
<2> 78K0R/LG3:
- $p=0, q=0$ to 7 ($q=0,2,4,6$ for master channel)
$q<r \leq 7$ (where r is a consecutive integer greater than q)
<3> 78KOR/LH3:
- $p=0, q=0$ to 7 ($q=0,2,4,6$ for master channel)
$q<r \leq 7$ (where r is a consecutive integer greater than q)
- $p=1, q=0$ to 3 ($q=0,2$ for master channel)
$q<r \leq 3$ (where r is a consecutive integer greater than q)

6.4.4 Collective manipulation of TOpq bits

In the TOp register, the setting bits for all the channels are located in one register in the same way as the TSp register (channel start trigger). Therefore, TOpq of all the channels can be manipulated collectively. Only specific bits can also be manipulated by setting the corresponding TOEpq $=0$ to a target TOpq (channel output).

Figure 6-32. Example of TOOq Bits Collective Manipulation

Before writing

TOO	0	0	0	0	0	0	0	0	$\begin{array}{\|c\|} \hline \text { TOO7 } \\ 0 \end{array}$	$\begin{array}{\|c\|} \hline \text { TOO6 } \\ 0 \end{array}$	$\begin{array}{\|c\|} \hline \text { TOO5 } \\ 1 \end{array}$	$\begin{array}{\|c} \hline \text { TOO4 } \\ 0 \end{array}$	$\begin{array}{\|c\|} \hline \text { TOO3 } \\ 0 \end{array}$	$\begin{array}{\|c} \hline \text { TOO2 } \\ 0 \end{array}$	$\begin{array}{\|c} \hline \text { TO01 } \\ 1 \end{array}$	$\begin{array}{\|c\|} \hline \text { TOOO } \\ 0 \end{array}$
toeo	0	0	0	0	0	0	0	0	$\begin{array}{\|c} \text { TOEO7 } \\ 0 \end{array}$	$\begin{array}{\|c\|} \text { TOEO6 } \\ 0 \end{array}$	$\begin{gathered} \text { TOEO5 } \\ 1 \end{gathered}$	$\left\|\begin{array}{c} \text { TOEO4 } \\ 0 \end{array}\right\|$	$\begin{array}{\|c} \text { TOEO } \\ 1 \end{array}$	$\begin{gathered} \text { TOEO2 } \\ 1 \end{gathered}$	$\begin{array}{\|c} \hline \text { TOE01 } \\ 1 \\ \hline \end{array}$	$\begin{array}{\|c} \text { TOEOO } \\ 1 \end{array}$

Data to be written

Writing is done only to TOpq bits with TOEpq $=0$, and writing to TOpq bits with TOEpq $=1$ is ignored.
TOpq (channel output) to which TOEpq $=1$ is set is not affected by the write operation. Even if the write operation is done to TOpq, it is ignored and the output change by timer operation is normally done.

Figure 6-33. TOpq Pin Statuses by Collective Manipulation of TOpq Bits

(Caution and Remark are given on the next page.)

Caution When TOEpq = 1, even if the output by timer interrupt of each timer (INTTMpq) contends with

 writing to TOpq, output is normally done to TOpq pin.Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $p q=00$ to 04,07
78K0R/LG3: $\mathrm{pq}=00$ to 07
78K0R/LH3: $p q=00$ to 07, 10 to 13

6.4.5 Timer Interrupt and TOpq Pin Output at Operation Start

In the interval timer mode or capture mode, the MDmn0 bit in the TMRmn register sets whether or not to generate a timer interrupt at count start.

When MDmn0 is set to 1 , the count operation start timing can be known by the timer interrupt (INTTMmn) generation.
In the other modes, neither timer interrupt at count operation start nor TOpq output is controlled.
Figures 6-34 and 6-35 show operation examples when the interval timer mode (TOEmn $=1, \mathrm{TOMmn}=0)$ is set.

Figure 6-34. When MDmn0 is set to 1

When MDmn0 is set to 1, a timer interrupt (INTTMmn) is output at count operation start, and TOpq performs a toggle operation.

Figure 6-35. When MDmn0 is set to 0

When MDmn0 is set to 0 , a timer interrupt (INTTMmn) is not output at count operation start, and TOpq does not change either. After counting one cycle, INTTMmn is output and TOpq performs a toggle operation.

Remark mn: Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $\quad \mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=00$ to 04,07
78K0R/LG3: $\quad \mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=00$ to 07
78KOR/LH3: $\quad \mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=00$ to 07,10 to 13

6.5 Channel Input Control

6.5.1 Edge detection circuit

(1) Edge detection basic operation timing

Edge detection circuit sampling is done in accordance with the operation clock (MCK).

Figure 6-36. Edge Detection Basic Operation Timing

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $\mathrm{pq}=00$ to 04, 07
78K0R/LG3: $\mathrm{pq}=00$ to 07
78K0R/LH3: $\mathrm{pq}=00$ to 07,10 to 13

6.6 Basic Function of Timer Array Unit

6.6.1 Overview of single-operation function and combination operation function

The timer array unit consists of several channels and has a single-operation function that allows each channel to operate independently, and a combination operation function that uses two or more channels in combination.

The single-operation function can be used for any channel, regardless of the operation mode of the other channels.
The combination operation function is realized by combining a master channel (reference timer that mainly counts periods) and a slave channel (timer that operates in accordance with the master channel), and several rules must be observed when using this function.

6.6.2 Basic rules of combination operation function

The basic rules of using the combination operation function are as follows.
(1) Only an even channel (channel 0, 2, 4, etc.) can be set as a master channel.
(2) Any channel, except channel 0 , can be set as a slave channel.
(3) The slave channel must be lower than the master channel.

Example: If channel 2 of TAUO is set as a master channel, channel 3 or those that follow (channels 3, 4, etc. 5) can be set as a slave channel.
If channel 2 of TAU1 is set as a master channel, channel 3 (because TAU1 is provided only with channels up to channel 3) can be set as a slave channel.
(4) Two or more slave channels can be set for one master channel.
(5) When two or more master channels are to be used, slave channels with a master channel between them may not be set.
Example: If channels 0 and 4 of TAUO are set as master channels, channels 1 to 3 can be set as the slave channels of master channel 0 . Channels 5 to 7 cannot be set as the slave channels of master channel 0.
(6) The operating clock for a slave channel in combination with a master channel must be the same as that of the master channel. The CKS bit (bit 15 of the TMRmn register) of the slave channel that operates in combination with the master channel must be the same value as that of the master channel.
(7) A master channel can transmit INTTMmn (interrupt), start software trigger, and count clock to the lower channels.
(8) A slave channel can use the INTTMmn (interrupt), start software trigger, and count clock of the master channel, but it cannot transmit its own INTTMmn (interrupt), start software trigger, and count clock to the lower channel.
(9) A master channel cannot use the INTTMmn (interrupt), start software trigger, and count clock from the higher master channel.
(10) To simultaneously start channels that operate in combination, the TSmn bit of the channels in combination must be set at the same time.
(11) During a counting operation, the TSmn bit of all channels that operate in combination or only the master channel can be set. TSmn of only a slave channel cannot be set.
(12) To stop the channels in combination simultaneously, the TTmn bit of the channels in combination must be set at the same time.

Remark mn: Unit number + Channel number

$$
\mathrm{mn}=00 \text { to } 07,10 \text { to } 13
$$

6.6.3 Applicable range of basic rules of combination operation function

The rules of the combination operation function are applied in a channel group (a master channel and slave channels forming one combination operation function).

If two or more channel groups that do not operate in combination are specified, the basic rules of the combination operation function in 6.6.2 Basic rules of combination operation function do not apply to the channel groups

Example

6.7 Operation of Timer Array Unit as Independent Channel

6.7.1 Operation as interval timer/square wave output

(1) Interval timer

The timer array unit can be used as a reference timer that generates INTTMmn (timer interrupt) at fixed intervals.
The interrupt generation period can be calculated by the following expression.

$$
\text { Generation period of INTTMmn (timer interrupt) }=\text { Period of count clock } \times(\text { Set value of TDRmn }+1 \text {) }
$$

(2) Operation as square wave output

TOpq performs a toggle operation as soon as INTTMpq has been generated, and outputs a square wave with a duty factor of 50%.
The period and frequency for outputting a square wave from TOpq can be calculated by the following expressions.

- Period of square wave output from TOpq = Period of count clock $\times($ Set value of TDRpq +1$) \times 2$
- Frequency of square wave output from TOpq = Frequency of count clock/\{(Set value of TDRpq +1) $\times 2\}$

The valid edge of Tlpq pin input signal, the valid edge of fsub/2, the valid edge of fsub 4 , or the valid edge of INTRTC1 can be selected as the count clock, in addition to CKm0 and CKm1. Consequently, the interval timer can be operated, regardless of the fclk frequency (main system clock, subsystem clock).
When changing the clock selected as fcLk (changing the value of the system clock control register (CKC)), stop the timer array units 0 and 1 (TAUS0, TAUS1) (TT0 $=00 \mathrm{FFH}, \mathrm{TT} 1=000 \mathrm{FH}$) first.
Only in the case of SDIV=0, CCSmn=1 and TISmn=1, continuously use of TAUm is allowed, even when changing CPU clock. However, the following limitation is existing.

- When changing CPU clock, source clock decrease/increase occurs as follows.

$$
\begin{aligned}
& \text { Main clock } \rightarrow \text { Subsystem clock }(C S S=0 \rightarrow 1):-1 \text { clock } \\
& \text { Subsystem clock } \rightarrow \text { Main clock }(C S S=1 \rightarrow 0):+1 \text { clock }
\end{aligned}
$$

TCRmn operates as a down counter in the interval timer mode.
TCRmn loads the value of TDRmn at the first count clock after the channel start trigger bit (TSmn) is set to 1 . If MDmnO of TMRmn $=0$ at this time, INTTMmn is not output and TOpq is not toggled. If MDmnO of TMRmn $=1$, INTTMmn is output and TOpq is toggled.
After that, TCRmn count down in synchronization with the count clock.
When TCRmn $=0000 \mathrm{H}$, INTTMmn is output and TOpq is toggled at the next count clock. At the same time, TCRmn loads the value of TDRmn again. After that, the same operation is repeated.
TDRmn can be rewritten at any time. The new value of TDRmn becomes valid from the next period.

Figure 6-37. Block Diagram of Operation as Interval Timer/Square Wave Output

Note Channels 0 and 4 of timer array unit 0 only

Remark mn: Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $m=0,1, m n=00$ to 07,10 to $13, p q=00$ to 04,07
78K0R/LG3: $m=0,1, m n=00$ to 07,10 to $13, p q=00$ to 07
78K0R/LH3: $m=0,1, m n=00$ to 07,10 to $13, p q=00$ to 07,10 to 13

Figure 6-38. Example of Basic Timing of Operation as Interval Timer/Square Wave Output (MDmn0 = 1)

Remark mn: Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $\mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=00$ to 04,07
78K0R/LG3: $\mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=00$ to 07
78K0R/LH3: $\mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=00$ to 07,10 to 13

Figure 6-39. Example of Set Contents of Registers During Operation as Interval Timer/Square Wave Output (1/3)
(1) When CKm0 or CKm1 is selected as count clock
(a) Timer mode register mn (TMRmn)

Setting of operation when counting is started
0 : Neither generates INTTMmn nor inverts timer output when counting is started.
1: Generates INTTMmn and inverts timer output when counting is started.

Selection of edge of timer input
OOB: Sets OOB because these are not used.

Start trigger selection
000B: Selects only software start.

Slave/master selection
0 : Cleared to 0 when independent function is selected.

Count clock selection
0 : Selects operation clock.

Operation clock selection

0 : Selects CKm0 as operation clock of channel n .
1: Selects CKm1 as operation clock of channel n.
(b) Timer output register p (TOp)
TOp

Bit q
TOpq
$1 / 0$

0 : Outputs 0 from TOpq
1: Outputs 1 from TOpq
(c) Timer output enable register p (TOEp)

TOEp

Bit q
TOEpq
$1 / 0$

0 : Stops the TOpq output operation by counting operation.
1: Enables the TOpq output operation by counting operation.
(d) Timer output level register p (TOLp)

	Bit q
TOLp	TOLpq 0

0: Cleared to 0 when TOMpq $=0$ (toggle mode)
(e) Timer output mode register p (TOMp)
TOMp

Bit q
TOMpq
0

Remark mn: Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins) 78K0R/LF3: $m=0,1, m n=00$ to 07,10 to $13, p q=00$ to 04,07
78KOR/LG3: $m=0,1, m n=00$ to 07,10 to $13, p q=00$ to 07
78K0R/LH3: $m=0,1, m n=00$ to 07,10 to $13, p q=00$ to 07,10 to 13

Figure 6-39. Example of Set Contents of Registers During Operation as Interval Timer/Square Wave Output (2/3)
(2) When the timer input (TIpq pin input, fsub/4, fsub/2 or INTRTCI) is selected as count clock ${ }^{\text {Note }}$ (1/2)

Note The timer input is selected by using TISpq bit, SDIV bit, and RTCISpq bit. For details, refer to
Figure 6-17 Format of Timer Input Select Registers 0, 1 (TIS0, TIS1).
(a) Timer mode register mn (TMRmn)

TMRmn

Setting of operation when counting is started
0 : Neither generates INTTMmn nor inverts timer output when counting is started.
1: Generates INTTMmn and inverts timer output when counting is started.

Selection of edge of timer input
00B: detects falling edge.
01B: detects rising edge.
10B: detects both edges.
11B: Setting prohibited

Start trigger selection
000B: Selects only software start.

Slave/master selection
0 : Cleared to 0 when independent function is selected.

Count clock selection
1: Selects timer input valid edge.

Operation clock selection
0: Selects CKm0 as operation clock of channel n.
1: Selects CKm1 as operation clock of channel n.
fclk (no division) is selected as selected operation clock by TPSm register.
(b) Timer clock select register \mathbf{m} (TPSm)

TPSm
Bits 7 to 4,3 to 0
\square 0000B: Selects fclk (no division) as operation clock selected by CKSmn of TMRmn register.
$\mathrm{k}=0$ (bits 0 to 3) when CKm0 is selected and $\mathrm{k}=1$ (bits 4 to 7) when CKm1 is selected
(c) Timer output register p (TOp)

Bit q
TOpq
$1 / 0$
:---
1: Outputs 1 from TOpq.

Remark mn : Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins) 78K0R/LF3: $m=0,1, m n=00$ to 07,10 to $13, p q=00$ to 04,07
78K0R/LG3: $m=0,1, m n=00$ to 07,10 to $13, p q=00$ to 07
$78 \mathrm{KOR} / \mathrm{LH} 3: m=0,1, \mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=00$ to 07,10 to 13

Figure 6-39. Example of Set Contents of Registers During Operation as Interval Timer/Square Wave Output (3/3)
(2) When the timer input (TIpq pin input, fsub/4, fsub/2 or INTRTCI) is selected as count clock (2/2)
(e) Timer output enable register p (TOEp)

TOEp
Bit q

0 : Stops the TOpq output operation by counting operation.
1/0
1: Enables the TOpq output operation by counting operation.
(f) Timer output level register p (TOLp)
$\begin{array}{cc} & \text { Bit q } \\ \text { TOLp } & \text { TOLpq } \\ 0\end{array}$
0: Cleared to 0 when TOMpq $=0$ (toggle mode)
(g) Timer output mode register p (TOMp)

TOMp

Bit q
TOMpq
0

0 : Sets toggle mode.

Remark mn: Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins)

$$
\begin{aligned}
& \text { 78K0R/LF3: } m=0,1, m n=00 \text { to } 07,10 \text { to } 13, p q=00 \text { to } 04,07 \\
& \text { 78K0R/LG3: } m=0,1, m n=00 \text { to } 07,10 \text { to } 13, p q=00 \text { to } 07 \\
& \text { 78K0R/LH3: } m=0,1, m n=00 \text { to } 07,10 \text { to } 13, p q=00 \text { to } 07,10 \text { to } 13
\end{aligned}
$$

Figure 6-40. Operation Procedure of Interval Timer/Square Wave Output Function (1/2)

Remark mn: Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $m=0,1, m n=00$ to 07,10 to $13, p q=00$ to 04,07
78KOR/LG3: $m=0,1, m n=00$ to 07,10 to $13, \mathrm{pq}=00$ to 07
78KOR/LH3: $m=0,1, m n=00$ to 07,10 to $13, p q=00$ to 07,10 to 13

Figure 6-40. Operation Procedure of Interval Timer/Square Wave Output Function (2/2)

	Software Operation	Hardware Status
TAU stop	To hold the TOpq pin output level Clears TOpq bit to 0 after the value to be held is set to the port register. When holding the TOpq pin output level is not necessary Switches the port mode register to input mode. \qquad The TAU0EN or TAU1EN bits of the PER0 register is cleared to 0 .	The TOpq pin output level is held by port function. The TOpq pin output level goes into $\mathrm{Hi}-\mathrm{Z}$ output state. Power-off status All circuits are initialized and SFR of each channel is also initialized. (The TOpq bit is cleared to 0 and the TOpq pin is set to port mode.)

Remark mn: Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $m n=00$ to 07,10 to $13, p q=00$ to 04,07
78K0R/LG3: $\mathrm{mn}=00$ to 07,10 to $13, \mathrm{pq}=00$ to 07
78K0R/LH3: $m n=00$ to 07,10 to $13, p q=00$ to 07,10 to 13

6.7.2 Operation as external event counter

The timer array unit can be used as an external event counter that counts the number of times the valid input edge (external event) is detected in the Tlpq pin. When a specified count value is reached, the event counter generates an interrupt. The specified number of counts can be calculated by the following expression.

Specified number of counts $=$ Set value of TDRpq + 1

TCRpq operates as a down counter in the event counter mode.
When the channel start trigger bit (TSpq) is set to 1, TCRpq loads the value of TDRpq.
TCRpq counts down each time the valid input edge of the TIpq pin has been detected. When TCRpq $=0000 \mathrm{H}, \mathrm{TCRpq}$ loads the value of TDRpq again, and outputs INTTMpq.

After that, the above operation is repeated.
TOpq must not be used because its waveform depends on the external event and irregular.
TDRpq can be rewritten at any time. The new value of TDRpq becomes valid during the next count period.
Figure 6-41. Block Diagram of Operation as External Event Counter

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $\mathrm{pq}=00$ to 04,07
78K0R/LG3: pq $=00$ to 07
78KOR/LH3: $p q=00$ to 07,10 to 13

Figure 6-42. Example of Basic Timing of Operation as External Event Counter

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $p q=00$ to 04,07
78K0R/LG3: pq $=00$ to 07
78K0R/LH3: $\mathrm{pq}=00$ to 07,10 to 13

Figure 6-43. Example of Set Contents of Registers in External Event Counter Mode
(a) Timer mode register pq (TMRpq)

Setting of operation when counting is started 0 : Neither generates INTTMpq nor inverts timer output when counting is started.

Selection of Tlpq pin input edge
OOB: Detects falling edge.
01B: Detects rising edge.
10B: Detects both edges.
11B: Setting prohibited
Start trigger selection
000B: Selects only software start.

Slave/master selection
0 : Cleared to 0 when independent function is selected.

Count clock selection
1: Selects the TIpq pin input valid edge.
Operation clock selection 0 : Selects CKp0 as operation clock of channel q.
1: Selects CKp1 as operation clock of channel q.
(b) Timer output register p (TOp)

TOp

Bit q
TOpq
0

(c) Timer output enable register p (TOEp)

	Bit q
TOEp	TOEpq 0
	0: Stops the TOpq output operation by counting operation.

(d) Timer output level register p (TOLp)

TOL

Bit q TOLpq 0
$0:$ Cleared to 0 when TOMpq $=0$ (toggle mode).

(e) Timer output mode register p (TOMp)

TOMp

Bit q
TOMpq
0

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $p=0, p q=00$ to 04,07
78K0R/LG3: $p=0, p q=00$ to 07
78KOR/LH3: $p=0,1, p q=00$ to 07,10 to 13

Figure 6-44. Operation Procedure When External Event Counter Function Is Used

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $p=0, p q=00$ to 04,07
78K0R/LG3: $p=0, p q=00$ to 07
78KOR/LH3: $p=0,1, p q=00$ to 07,10 to 13

6.7.3 Operation as frequency divider

The timer array unit can be used as a frequency divider that divides a clock input to the Tlpq pin and outputs the result from TOpq.

The divided clock frequency output from TOpq can be calculated by the following expression.

- When rising edge/falling edge is selected:

Divided clock frequency $=$ Input clock frequency $/\{($ Set value of TDRpq +1$) \times 2\}$

- When both edges are selected:

Divided clock frequency \cong Input clock frequency/(Set value of TDRpq + 1)

TCRpq operates as a down counter in the interval timer mode.
After the channel start trigger bit (TSpq) is set to 1, TCRpq loads the value of TDRpq when the Tlpq valid edge is detected. If MDpq0 of TMRpq $=0$ at this time, INTTMpq is not output and TOpq is not toggled. If MDpq0 of TMRpq $=1$, INTTMpq is output and TOpq is toggled.

After that, TCRpq counts down at the valid edge of Tlpq. When TCRpq $=0000 \mathrm{H}$, it toggles TOpq. At the same time, TCRpq loads the value of TDRpq again, and continues counting.

If detection of both the edges of TIpq is selected, the duty factor error of the input clock affects the divided clock period of the TOpq output.

The period of the TOpq output clock includes a sampling error of one period of the operation clock.

Clock period of TOpq output $=$ Ideal TOpq output clock period \pm Operation clock period (error)

TDRpq can be rewritten at any time. The new value of TDRpq becomes valid during the next count period.

Figure 6-45. Block Diagram of Operation as Frequency Divider

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
$p q=00,02$ to 04

Figure 6-46. Example of Basic Timing of Operation as Frequency Divider (MDpq0 = 1)

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins) $p q=00,02$ to 04

Figure 6-47. Example of Set Contents of Registers When Frequency Divider Is Used
(a) Timer mode register pq (TMRpq)

TMRpq

0 : Neither generates INTTMpq nor inverts timer output when counting is started.
1: Generates INTTMpq and inverts timer output when counting is started.

Selection of TIpq pin input edge
00B: Detects falling edge.
01B: Detects rising edge.
10B: Detects both edges.
11B: Setting prohibited

Start trigger selection
000B: Selects only software start.

Slave/master selection
0 : Cleared to 0 when independent function is selected.

Count clock selection
1: Selects the TIpq pin input valid edge.
Operation clock selection 0 : Selects CKp0 as operation clock of channel q.
1: Selects CKp1 as operation clock of channel q.
(b) Timer output register \mathbf{p} (TOp)

TOp

Bit q
TOpq
$1 / 0$

0 : Outputs 0 from TOpq.
1: Outputs 1 from TOpq.
(c) Timer output enable register p (TOEp)

	Bit q	
TOEp	TOEpq $1 / 0$	0: Stops the TOpq output operation by counting operation. 1: Enables the TOpq output operation by counting operation.

(d) Timer output level register p (TOLp)

TOL

Bit q
TOLpq
0

0 : Cleared to 0 when TOMpq $=0$ (toggle mode)
(e) Timer output mode register p (TOMp)

	Bit q
TOMp	TOMpq 0
	0 : Sets toggle mode.

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins) $p q=00,02$ to 04

Figure 6-48. Operation Procedure When Frequency Divider Function Is Used (1/2)

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
$p q=00,02$ to 04

Figure 6-48. Operation Procedure When Frequency Divider Function Is Used (2/2)

	Software Operation	Hardware Status
TAU stop	To hold the TOpq pin output level Clears TOpq bit to 0 after the value to \qquad be held is set to the port register. When holding the TOpq pin output level is not necessary Switches the port mode register to input mode. The TAU0EN or TAU1EN bits of the PER0 register is cleared to 0.	he TOpq pin output level is held by port function. TOpq pin output level goes into $\mathrm{Hi}-\mathrm{Z}$ output state. ower-off status All circuits are initialized and SFR of each channel is also initialized. (The TOpq bit is cleared to 0 and the TOpq pin is set to port mode).

Remark pq: Unit number + Channel number (only for channels provided with timer l/O pins)
$p q=00,02$ to 04

6.7.4 Operation as input pulse interval measurement

The count value can be captured at the TIpq valid edge and the interval of the pulse input to Tlpq can be measured. The pulse interval can be calculated by the following expression.

$$
\text { TIpq input pulse interval }=\text { Period of count clock } \times((10000 \mathrm{H} \times \text { TSRpq: OVF })+(\text { Capture value of TDRpq }+1))
$$

Caution The Tlpq pin input is sampled using the operating clock selected with the CKSpq bit of the TMRpq register, so an error equal to the number of operating clocks occurs.

TCRpq operates as an up counter in the capture mode.
When the channel start trigger (TSpq) is set to 1, TCRpq counts up from 0000 H in synchronization with the count clock.
When the Tlpq pin input valid edge is detected, the count value is transferred (captured) to TDRpq and, at the same time, the counter (TCRpq) is cleared to 0000 H , and the INTTMpq is output. If the counter overflows at this time, the OVFpq bit of the TSRpq register is set to 1 . If the counter does not overflow, the OVFpq bit is cleared. After that, the above operation is repeated.

As soon as the count value has been captured to the TDRpq register, the OVFpq bit of the TSRpq register is updated depending on whether the counter overflows during the measurement period. Therefore, the overflow status of the captured value can be checked.

If the counter reaches a full count for two or more periods, it is judged to be an overflow occurrence, and the OVFpq bit of the TSRpq register is set to 1 . However, the OVFpq bit is configured as a cumulative flag, the correct interval value cannot be measured if an overflow occurs more than once.

Set STSpq2 to STSpq0 of the TMRpq register to 001B to use the valid edges of Tlpq as a start trigger and a capture trigger.

When TEpq $=1$, instead of the Tlpq pin input, a software operation $(T S p q=1)$ can be used as a capture trigger.

Figure 6-49. Block Diagram of Operation as Input Pulse Interval Measurement

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $p=0, p q=00$ to 04,07
78K0R/LG3: $p=0, p q=00$ to 07
78K0R/LH3: $p=0,1, p q=00$ to 07,10 to 13

Figure 6-50. Example of Basic Timing of Operation as Input Pulse Interval Measurement (MDpq0 = 0)

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $\quad \mathrm{pq}=00$ to 04,07
78K0R/LG3: pq $=00$ to 07
78K0R/LH3: $\quad \mathrm{pq}=00$ to 07,10 to 13

Figure 6-51. Example of Set Contents of Registers to Measure Input Pulse Interval
(a) Timer mode register pq (TMRpq)

(b) Timer output register p (TOp)

TOp

Bit q
TOpq
0

0 : Outputs 0 from TOpq.
(c) Timer output enable register p (TOEp)
TOEp

Bit q
TOEpq
0

0: Stops TOpq output operation by counting operation.
(d) Timer output level register p (TOLp)
$\begin{array}{cc} & \text { Bit q } \\ & \begin{array}{c}\text { TOLpq } \\ 0\end{array} \\ & \end{array}$
0 : Cleared to 0 when TOMpq $=0$ (toggle mode).
(e) Timer output mode register p (TOMp)

TOMp

Bit q
TOMpq
0

0 : Sets toggle mode.

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $p=0, p q=00$ to 04,07
78K0R/LG3: $p=0, p q=00$ to 07
78KOR/LH3: $p=0,1, p q=00$ to 07,10 to 13

Figure 6-52. Operation Procedure When Input Pulse Interval Measurement Function Is Used

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $\quad p=0, p q=00$ to 04,07
78K0R/LG3: $\quad \mathrm{p}=0, \mathrm{pq}=00$ to 07
78K0R/LH3: $p=0,1, p q=00$ to 07,10 to 13

6.7.5 Operation as input signal high-/low-level width measurement

By starting counting at one edge of TIpq and capturing the number of counts at another edge, the signal width (highlevel width/low-level width) of TIpq can be measured. The signal width of Tlpq can be calculated by the following expression.

```
Signal width of TIpq input = Period of count clock }\times((10000H\timesTSRpq: OVF) + (Capture value of TDRpq + 1))
```


Caution The Tlpq pin input is sampled using the operating clock selected with the CKSpq bit of the TMRpq register, so an error equal to the number of operating clocks occurs.

TCRpq operates as an up counter in the capture \& one-count mode.
When the channel start trigger (TSpq) is set to 1, TEpq is set to 1 and the Tlpq pin start edge detection wait status is set.

When the Tlpq start valid edge (rising edge of Tlpq when the high-level width is to be measured) is detected, the counter counts up in synchronization with the count clock. When the valid capture edge (falling edge of Tlpq when the high-level width is to be measured) is detected later, the count value is transferred to TDRpq and, at the same time, INTTMpq is output. If the counter overflows at this time, the OVFpq bit of the TSRpq register is set to 1 . If the counter does not overflow, the OVFpq bit is cleared. TCRpq stops at the value "value transferred to TDRpq +1 ", and the Tlpq pin start edge detection wait status is set. After that, the above operation is repeated.

As soon as the count value has been captured to the TDRpq register, the OVFpq bit of the TSRpq register is updated depending on whether the counter overflows during the measurement period. Therefore, the overflow status of the captured value can be checked.

If the counter reaches a full count for two or more periods, it is judged to be an overflow occurrence, and the OVFpq bit of the TSRpq register is set to 1 . However, the OVFpq bit is configured as an integral flag, and the correct interval value cannot be measured if an overflow occurs more than once.

Whether the high-level width or low-level width of the Tlpq pin is to be measured can be selected by using the CISpq1 and CISpq0 bits of the TMRpq register.

Because this function is used to measure the signal width of the Tlpq pin input, TSpq cannot be set to 1 while TEpq is 1 .

CISpq1, CISpq0 of TMRpq = 10B: Low-level width is measured.
CISpq1, CISpq0 of TMRpq $=11 \mathrm{~B}$: High-level width is measured.

Remark pq: Unit number + Channel number (only for channels provided with timer l/O pins)
78K0R/LF3: $\mathrm{pq}=00$ to 04, 07
78K0R/LG3: $\mathrm{pq}=00$ to 07
78K0R/LH3: pq = 00 to 07,10 to 13

Figure 6-53. Block Diagram of Operation as Input Signal High-/Low-Level Width Measurement

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $p=0, p q=00$ to 04, 07
78K0R/LG3: $\mathrm{p}=0, \mathrm{pq}=00$ to 07
78KOR/LH3: $p=0,1, p q=00$ to 07,10 to 13

Figure 6-54. Example of Basic Timing of Operation as Input Signal High-/Low-Level Width Measurement

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $p q=00$ to 04,07
78K0R/LG3: pq $=00$ to 07
78K0R/LH3: $p q=00$ to 07, 10 to 13

Figure 6-55. Example of Set Contents of Registers to Measure Input Signal High-/Low-Level Width
(a) Timer mode register pq (TMRpq)

TMRpq

Setting of operation when counting is started
0 : Does not generate INTTMpq when counting is started.

Selection of TIpq pin input edge
10B: Both edges (to measure low-level width)
11B: Both edges (to measure high-level width)

Start trigger selection 010B: Selects the Tlpq pin input valid edge.

Slave/master selection
0 : Cleared to 0 when independent function is selected.

Count clock selection
0: Selects operation clock.

Operation clock selection
0: Selects CKpO as operation clock of channel q.
1: Selects CKp1 as operation clock of channel q
(b) Timer output register \mathbf{p} (TOp)

TOp

Bit q
TOpq
0

0 : Outputs 0 from TOpq
(c) Timer output enable register p (TOEp)
$\begin{array}{cc} & \text { Bit q } \\ \text { TOEp } & \begin{array}{c}\text { TOEpq } \\ 0\end{array} \\ & \text { 0: Stops the TOpq output operation by counting operation. }\end{array}$
(d) Timer output level register p (TOLp)

TOLp

Bit q
TOLpq
0

0 : Cleared to 0 when TOMpq $=0$ (toggle mode).
(e) Timer output mode register p (TOMp)

	Bit q
	TOMpq 0

0 : Sets toggle mode.

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $p=0, p q=00$ to 04,07
78K0R/LG3: $p=0, p q=00$ to 07
78K0R/LH3: $p=0,1, p q=00$ to 07,10 to 13

Figure 6-56. Operation Procedure When Input Signal High-/Low-Level Width Measurement Function Is Used

		Software Operation	Hardware Status
	TAU default setting		Power-off status (Clock supply is stopped and writing to each register is disabled.)
		Sets the TAU0EN or TAU1EN bits of the PER0 register to 1. \qquad Sets the TPSp register. Determines clock frequencies of CKp0 and CKp1.	Power-on status. Each channel stops operating. (Clock supply is started and writing to each register is enabled.)
	Channel default setting	Sets the TMRpq register (determines operation mode of channel). Clears TOEpq to 0 and stops operation of TOpq.	Channel stops operating. (Clock is supplied and some power is consumed.)
	Operation start	Sets the TSpq bit to 1 . The TSpq bit automatically returns to 0 because it is a trigger bit.	TEpq = 1, and the Tlpq pin start edge detection wait status is set.
		Detects Tlpq pin input count start valid edge.	Clears TCRpq to 0000 H and starts counting up.
	During operation	Set value of the TDRpq register can be changed. The TCRpq register can always be read. The TSRpq register is not used. Set values of TMRpq, TOMp, TOLp, TOp, and TOEp registers cannot be changed.	When the Tlpq pin start edge is detected, the counter (TCRpq) counts up from 0000 H . If a capture edge of the Tlpq pin is detected, the count value is transferred to TDRpq and INTTMpq is generated. If an overflow occurs at this time, the OVFpq bit of the TSRpq register is set; if an overflow does not occur, the OVFpq bit is cleared. TCRpq stops the count operation until the next Tlpq pin start edge is detected.
	Operation stop	The TTpq bit is set to 1 . TTpq bit automatically returns to 0 because it is a trigger bit.	TEpq $=0$, and count operation stops. TCRpq holds count value and stops. The OVFpq bit of the TSRpq register is also held.
	TAU stop	The TAU0EN or TAU1EN bits of PER0 register is cleared to 0 . \qquad	Power-off status All circuits are initialized and SFR of each channel is also initialized.

Remark pq: Unit number + Channel number (only for channels provided with timer I/O pins)
78K0R/LF3: $p=0, p q=00$ to 04, 07
78K0R/LG3: $p=0, p q=00$ to 07
78K0R/LH3: $p=0,1, p q=00$ to 07,10 to 13

6.8 Operation of Plural Channels of Timer Array Unit

6.8.1 Operation as PWM function

Two channels can be used as a set to generate a pulse of any period and duty factor.
The period and duty factor of the output pulse can be calculated by the following expressions.

Pulse period $=\{$ Set value of TDRmn (master) +1$\} \times$ Count clock period
Duty factor [\%] = \{Set value of TDRmp (slave) $\} /\{$ Set value of TDRmn (master) +1$\} \times 100$
0% output: \quad Set value of TDRmp (slave) $=0000 \mathrm{H}$
100% output: Set value of TDRmp (slave) $\geq\{$ Set value of TDRmn (master) +1$\}$

Remark The duty factor exceeds 100% if the set value of TDRmp (slave) > (set value of TDRmn (master) +1), it summarizes to 100% output.

The master channel operates in the interval timer mode and counts the periods. When the channel start trigger (TSmn) is set to 1 , INTTMmn is output. TCRmn counts down starting from the loaded value of TDRmn, in synchronization with the count clock. When TCRmn $=0000 \mathrm{H}$, INTTMmn is output. TCRmn loads the value of TDRmn again. After that, it continues the similar operation.

TCRmp of a slave channel operates in one-count mode, counts the duty factor, and outputs a PWM waveform from the TOmp pin. TCRmp of the slave channel loads the value of TDRmp, using INTTMmn of the master channel as a start trigger, and stops counting until the next start trigger (INTTMmn of the master channel) is input.

The output level of TOmp becomes active one count clock after generation of INTTMmn from the master channel, and inactive when TCRmp $=0000 \mathrm{H}$.

Caution To rewrite both TDRmn of the master channel and TDRmp of the slave channel, a write access is necessary two times. The timing at which the values of TDRmn and TDRmp are loaded to TCRmn and TCRmp is upon occurrence of INTTMmn of the master channel. Thus, when rewriting is performed split before and after occurrence of INTTMmn of the master channel, the TOmp pin cannot output the expected waveform. To rewrite both TDRmn of the master and TDRmp of the slave, therefore, be sure to rewrite both the registers immediately after INTTMmn is generated from the master channel.

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2,6, p=n+1$, TO00 to TO04, and TOO7 pins

2. $78 \mathrm{KOR} / \mathrm{LG3}$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07 pins
- $m=1, n=0,2, p=n+1$, TO10 to TO13 pins

Figure 6-57. Block Diagram of Operation as PWM Function

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2,6, p=n+1$, TO00 to TO04, and TO07 pins

2. $78 \mathrm{KOR} / \mathrm{LG} 3$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $m=0, n=0,2,4,6, p=n+1$, TOOO to TO07 pins
- $m=1, n=0,2, p=n+1$, TO10 to TO13 pins

Figure 6-58. Example of Basic Timing of Operation as PWM Function

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2,6, p=n+1$, TO00 to TO04, and TO07 pins

2. $78 \mathrm{KOR} / \mathrm{LG3}$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07 pins
- $m=1, n=0,2, p=n+1$, TO10 to TO13 pins

Figure 6-59. Example of Set Contents of Registers When PWM Function (Master Channel) Is Used
(a) Timer mode register mn (TMRmn)

TMRmn

Setting of operation when counting is started
1: Generates INTTMmn when counting is started.

Selection of Tlmn pin input edge
00B: Sets 00B because these are not used.

Start trigger selection
000B: Selects only software start.
(b) Timer output register m (TOm)

TOm

Bit n
TOmn
0

0 : Outputs 0 from TOmn.
(c) Timer output enable register m (TOEm)

TOEm \square 0: Stops the TOmn output operation by counting operation.
(d) Timer output level register m (TOLm)

TOLm

Bit n
TOLmn
0

0 : Cleared to 0 when TOMmn $=0$ (toggle mode).
(e) Timer output mode register m (TOMm)

TOMm

Bit n
TOMmn
0

0 : Sets toggle mode.

Remarks 1. 78K0R/LF3:

- $\mathrm{m}=0, \mathrm{n}=0,2,6, \mathrm{p}=\mathrm{n}+1$, TOOO to TO04, TO07, TIOO to TIO4, and TIO7 pins

2. $78 \mathrm{KOR} / \mathrm{LG} 3:$

- $m=0, n=0,2,4,6, p=n+1$, TOOO to TO07, TIOO to TIO7 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07, TIOO to TlO7 pins
- $m=1, n=0,2, p=n+1$, TO10 to TO13, Tl10 to TI13 pins

Figure 6-60. Example of Set Contents of Registers When PWM Function (Slave Channel) Is Used
(a) Timer mode register mp (TMRmp)

TMRmp

1: Trigger input is valid.

Selection of TImp pin input edge
00B: Sets 00B because these are not used.

Start trigger selection
100B: Selects INTTMmn of master channel.

Slave/master selection
0 : Channel 0 is set as slave channel.

Count clock selection
0 : Selects operation clock.
__Operation clock selection
0 : Selects CKm0 as operation clock of channel p.
1: Selects CKm1 as operation clock of channel p.

* Make the same setting as master channel
(b) Timer output register m (TOm)

TOm

Bit p
TOmp
$1 / 0$

0 : Outputs 0 from TOmp.
1: Outputs 1 from TOmp.
(c) Timer output enable register m (TOEm)
\qquad
TOEm
0 : Stops the TOmp output operation by counting operation.
$1 / 0$
1: Enables the TOmp output operation by counting operation.
(d) Timer output level register m (TOLm)

TOLm

Bit p
TOLmp
$1 / 0$

0: Positive logic output (active-high)
1: Inverted output (active-low)
(e) Timer output mode register m (TOMm)

TOMm \square 1: Sets the combination operation mode

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2,6, p=n+1$, TOOO to TO04, TO07, TIOO to TIO4, and TIO7 pins

2. $78 \mathrm{KOR} / \mathrm{LG} 3$:

- $\mathrm{m}=0, \mathrm{n}=0,2,4,6, \mathrm{p}=\mathrm{n}+1$, TO00 to TO07, TIOO to TIO7 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3:$

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07, TIOO to TIO7 pins
- $m=1, n=0,2, p=n+1$, TO10 to TO13, Tl10 to Tl13 pins

Figure 6-61. Operation Procedure When PWM Function Is Used (1/2)

	Software Operation	Hardware Status
TAU default setting		Power-off status (Clock supply is stopped and writing to each register is disabled.)
	Sets the TAU0EN or TAU1EN bits of the PER0 register to 1. \qquad	Power-on status. Each channel stops operating. (Clock supply is started and writing to each register is enabled.)
	Sets the TPSm register. Determines clock frequencies of CKm0 and CKm1.	
Channel default setting	Sets the TMRmn and TMRmp registers of two channels to be used (determines operation mode of channels). An interval (period) value is set to the TDRmn register of the master channel, and a duty factor is set to the TDRmp register of the slave channel.	Channel stops operating. (Clock is supplied and some power is consumed.)
	Sets slave channel. The TOMmp bit of the TOMn register is set to 1 (combination operation mode). Sets the TOLmp bit. Sets the TOmp bit and determines default level of the TOmp output. Sets TOEmp to 1 and enables operation of TOmp. Clears the port register and port mode register to 0 .	The TOmn pin goes into $\mathrm{Hi}-\mathrm{Z}$ output state. The TOmn default setting level is output when the port mode register is in output mode and the port register is 0 . TOmp does not change because channel stops operating. The TOmp pin outputs the TOmp set level.

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2,6, p=n+1$, TO00 to TO04, and TOO7 pins

2. $78 \mathrm{KOR} / \mathrm{LG3}$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TOO7 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TOO7 pins
- $m=1, n=0,2, p=n+1$, TO10 to TO13 pins

Figure 6-61. Operation Procedure When PWM Function Is Used (2/2)

		Software Operation	Hardware Status
-	Operation start	Sets TOEmp (slave) to 1 (only when operation is resumed). The TSmn (master) and TSmp (slave) bits of the TSm register are set to 1 at the same time. \qquad The TSmn and TSmp bits automatically return to 0 because they are trigger bits.	TEmn $=1$, TEmp $=1$ When the master channel starts counting, INTTMmn is generated. Triggered by this interrupt, the slave channel also starts counting.
	During operation	Set values of the TMRmn and TMRmp registers and TOMmn, TOMmp, TOLmn, and TOLmp bits cannot be changed. Set values of the TDRmn and TDRmp registers can be changed after INTTMmn of the master channel is generated. The TCRmn and TCRmp registers can always be read. The TSRmn and TSRmp registers are not used. Set values of the TOm and TOEm registers cannot be changed.	The counter of the master channel loads the TDRmn value to TCRmn, and counts down. When the count value reaches TCRmn $=0000 \mathrm{H}$, INTTMmn output is generated. At the same time, the value of the TDRmn register is loaded to TCRmn, and the counter starts counting down again. At the slave channel, the value of TDRmp is loaded to TCRmp, triggered by INTTMmn of the master channel, and the counter starts counting down. The output level of TOmp becomes active one count clock after generation of the INTTMmn output from the master channel. It becomes inactive when TCRmp $=0000 \mathrm{H}$, and the counting operation is stopped. After that, the above operation is repeated.
	Operation stop	The TTmn (master) and TTmp (slave) bits are set to 1 at the same time. The TTmn and TTmp bits automatically return to 0 because they are trigger bits. TOEmp of slave channel is cleared to 0 and value is set to the TOmp register.	TEmn, TEmp $=0$, and count operation stops. TCRmn and TCRmp hold count value and stops. The TOmp output is not initialized but holds current status. The TOmp pin outputs the TOmp set level.
	TAU stop	To hold the TOmp pin output levels Clears TOmp bit to 0 after the value to \qquad be held is set to the port register. When holding the TOmp pin output levels is not necessary Switches the port mode register to input mode. The TAU0EN or TAU1EN bits of the PER0 register is cleared to 0 . \qquad	The TOmp pin output levels is held by port function. The TOmp pin output levels go are into Hi-Z output state. Power-off status All circuits are initialized and SFR of each channel is also initialized. (The TOmp bit is cleared to 0 and the TOmp pin is set to port mode.)

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2,6, p=n+1$, TO00 to TO04, and TOO7 pins

2. $78 \mathrm{KOR} / \mathrm{LG} 3$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $m=0, n=0,2,4,6, p=n+1$, TOOO to TO07 pins
- $m=1, n=0,2, p=n+1$, TO10 to TO13 pins

6.8.2 Operation as one-shot pulse output function

A one-shot pulse with any delay pulse width can be generated by using two channels in combination and TImn pin input or software manipulation ($\mathrm{TSmn}=1$).

The delay time and pulse width can be calculated by the following expressions.

> Delay time $=\{$ Set value of TDRmn $($ master $)+2\} \times$ Count clock period
> Pulse width $=\{$ Set value of TDRmp $($ slave $)\} \times$ Count clock period

The Master channel operates in the one-count mode and counts the delays. TCRmn of the master channel starts operating upon start trigger detection and TCRmn loads the value of TDRmn. TCRmn counts down from the value of TDRmn it has loaded, in synchronization with the count clock. When TCRmn $=0000 \mathrm{H}$, it outputs INTTMmn and stops counting until the next start trigger is detected.

The slave channel operates in the one-count mode and counts the pulse width. TCRmp of the slave channel starts operation using INTTMmn of the master channel as a start trigger, and loads the TDRmp value. TCRmp counts down from the value of TDRmp it has loaded, in synchronization with the count value. When TCRmp $=0000 \mathrm{H}$, it outputs INTTMmp and stops counting until the next start trigger (INTTMmn of the master channel) is detected. The output level of TOmp becomes active one count clock after generation of INTTMmn from the master channel, and inactive when TCRmp $=0000 \mathrm{H}$.

Instead of using the TImn pin input, a one-shot pulse can also be output using the software operation (TSmn =1) as a start trigger.

Caution The timing of loading of TDRmn of the master channel is different from that of TDRmp of the slave channel. If TDRmn and TDRmp are rewritten during operation, therefore, an illegal waveform is output. Be sure to rewrite TDRmn and TDRmp after INTTMmn of the channel to be rewritten is generated.

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2,6, p=n+1$, TOOO to TO04, TO07, TIOO to TIO4, and TIO7 pins
- Channel 6 of timer array unit 0 can output a one-shot pulse only when software trigger start is selected and it is used as the master channel (because the TIO6 pin is not provided).

2. $78 \mathrm{KOR} / \mathrm{LG3}$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07, TIOO to TIO7 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07, TIOO to TIO7 pins
- $m=1, n=0,2, p=n+1$, TO10 to TO13, TI10 to Tl13 pins

Figure 6-62. Block Diagram of Operation as One-Shot Pulse Output Function

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2,6, p=n+1$, TOOO to TO04, TO07, TIOO to TIO4, and TIO7 pins
- Channel 6 of timer array unit 0 can output a one-shot pulse only when software trigger start is selected and it is used as the master channel (because the TIO6 pin is not provided).

2. $78 \mathrm{KOR} / \mathrm{LG3}$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07, TIOO to TIO7 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07, TIOO to TIO7 pins
- $m=1, n=0,2, p=n+1$, TO10 to TO13, Tl10 to TI13 pins

Figure 6-63. Example of Basic Timing of Operation as One-Shot Pulse Output Function (Start Trigger TImn Input Valid Edge)

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2,6, p=n+1$, TO00 to TO04, and TO07 pins

2. $78 \mathrm{KOR} / \mathrm{LG} 3$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07 pins
- $m=1, n=0,2, p=n+1$, TO10 to TO13 pins

Figure 6-64. Example of Set Contents of Registers When One-Shot Pulse Output Function Is Used (Master Channel)
(a) Timer mode register mn (TMRmn)

0: Selects CKm0 as operation clock of channels n.
1: Selects CKm1 as operation clock of channels n.
(b) Timer output register m (TOm)

TOm

Bit n
TOmn
0

0: Outputs 0 from TOmn.
(c) Timer output enable register m (TOEm)

TOEm \square 0 : Stops the TOmn output operation by counting operation.
(d) Timer output level register m (TOLm)

TOLm

Bit n
TOLmn
0

0 : Cleared to 0 when $\mathrm{TOMmn}=0$ (toggle mode).
(e) Timer output mode register m (TOMm)

TOMm

Bit n
TOMmn
0

0 : Sets toggle mode.

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2,6, p=n+1$, TO00 to TO04, TO07, Tl00 to Tl04, and TlO7 pins

2. $78 \mathrm{KOR} / \mathrm{LG3}$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07, TIOO to TIO7 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07, TIOO to TIO7 pins
- $m=1, n=0,2, p=n+1$, TO10 to TO13, Tl10 to Tl13 pins

Figure 6-65. Example of Set Contents of Registers When One-Shot Pulse Output Function Is Used (Slave Channel)
(a) Timer mode register mp (TMRmp)

(b) Timer output register m (TOm)

TOm

Bit p
TOmp
$1 / 0$

0: Outputs 0 from TOmp.
1: Outputs 1 from TOmp.
(c) Timer output enable register \mathbf{m} (TOEm)

TOEm

Bit p
TOEmp
$1 / 0$

0 : Stops the TOmp output operation by counting operation.
1: Enables the TOmp output operation by counting operation.
(d) Timer output level register m (TOLm)

TOIm
Bit p

0 : Positive logic output (active-high)
1/0
1: Inverted output (active-low)
(e) Timer output mode register m (TOMm)

TOMm $\begin{gathered}\text { Bit p } \\ \begin{array}{c}\text { TOMmp } \\ 1\end{array} \\ \text { 1: Sets the combination operation mode. }\end{gathered}$
Remarks 1. 78K0R/LF3:

- $m=0, n=0,2,6, p=n+1$, TO00 to TO04, TO07, TIO0 to TIO4, and TIO7 pins

2. $78 \mathrm{KOR} / \mathrm{LG} 3$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07, TIOO to TIO7 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3:$

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07, TIOO to TIO7 pins
- $m=1, n=0,2, p=n+1$, TO10 to TO13, Tl10 to Tl13 pins

Figure 6-66. Operation Procedure of One-Shot Pulse Output Function (1/2)

	Software Operation	Hardware Status
TAU default setting		Power-off status (Clock supply is stopped and writing to each register is disabled.)
	Sets the TAU0EN or TAU1EN bits of the PER0 register to 1 . \qquad	Power-on status. Each channel stops operating. (Clock supply is started and writing to each register is enabled.)
	Sets the TPSm register. Determines clock frequencies of CKm0 and CKm1.	
Channel default setting	Sets the TMRmn and TMRmp registers of two channels to be used (determines operation mode of channels). An output delay is set to the TDRmn register of the master channel, and a pulse width is set to the TDRmp register of the slave channel.	Channel stops operating. (Clock is supplied and some power is consumed.)
	Sets slave channel. The TOMmp bit of the TOMm register is set to 1 (combination operation mode). Sets the TOLmp bit. Sets the TOmp bit and determines default level of the TOmp output. \qquad Sets TOEmp to 1 and enables operation of TOmp. Clears the port register and port mode register to 0 .	The TOmn pin goes into $\mathrm{Hi}-\mathrm{Z}$ output state. The TOmn default setting level is output when the port mode register is in output mode and the port register is 0 . TOmp does not change because channel stops operating. The TOmp pin outputs the TOmp set level.

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2,6, p=n+1$, TO00 to TO04, and TO07 pins
- Channel 6 of timer array unit 0 can output a one-shot pulse only when software trigger start is selected and it is used as the master channel (because the TIO6 pin is not provided).

2. $78 \mathrm{KOR} / \mathrm{LG} 3$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TOO7 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07 pins
- $m=1, n=0,2, p=n+1$, TO10 to TO13 pins

Figure 6-66. Operation Procedure of One-Shot Pulse Output Function (2/2)

		Software Operation	Hardware Status
	Operation start	Sets TOEmp (slave) to 1 (only when operation is resumed). The TSmn (master) and TSmp (slave) bits of the TSm register are set to 1 at the same time. \qquad The TSmn and TSmp bits automatically return to 0 because they are trigger bits. Detects the start trigger of master channel. (The valid edge of the TImn pin input is detected or the TSmn bit is set to 1.)	TEmn and TEmp are set to 1 and the master channel enters the TImn input edge detection wait status. Counter stops operating. Master channel starts counting.
	During operation	Set values of only the CISmn1 and CISmn0 bits of the TMRmn register can be changed. Set values of the TMRmp, TDRmn, and TDRmp registers and TOMmn, TOMmp, TOLmn, and TOLmp bits cannot be changed. The TCRmn and TCRmp registers can always be read. The TSRmn and TSRmp registers are not used. Set values of the TOm and TOEm registers can be changed.	Master channel loads the value of TDRmn to TCRmn when the start trigger is detected, and the counter starts counting down. When the count value reaches TCRmn = 0000 H , the INTTMmn output is generated, and the counter stops until the next valid edge is input to the TImn pin. The slave channel, triggered by INTTMmn of the master channel, loads the value of TDRmp to TCRmp, and the counter starts counting down. The output level of TOmp becomes active one count clock after generation of INTTMmn from the master channel. It becomes inactive when TCRmp $=0000 \mathrm{H}$, and the counting operation is stopped. After that, the above operation is repeated.
	Operation stop	The TTmn (master) and TTmp (slave) bits are set to 1 at the same time. The TTmn and TTmp bits automatically return to 0 because they are trigger bits. TOEmp of slave channel is cleared to 0 and value is set to the TOm register.	TEmn, TEmp $=0$, and count operation stops. TCRmn and TCRmp hold count value and stops. The TOmp output is not initialized but holds current status. The TOmp pin outputs the TOmn set level.
	TAU stop	To hold the TOmp pin output levels Clears TOmp bit to 0 after the value to be held is set to the port register. When holding the TOmp pin output levels is not necessary Switches the port mode register to input mode. \qquad The TAU0EN or TAU1EN bits of the PER0 register is cleared to 0 . \qquad	The TOmp pin output levels is held by port function. The TOmp pin output levels go are into $\mathrm{Hi}-\mathrm{Z}$ output state. Power-off status All circuits are initialized and SFR of each channel is also initialized. (The TOmp bit is cleared to 0 and the TOmp pin is set to port mode.)

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2,6, p=n+1$, TO00 to TO04, and TOO7 pins
- Channel 6 of timer array unit 0 can output a one-shot pulse only when software trigger start is selected and it is used as the master channel (because the TIO6 pin is not provided).

2. $78 \mathrm{KOR} / \mathrm{LG3}:$

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TOO7 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $m=0, n=0,2,4,6, p=n+1$, TO00 to TO07 pins
- $m=1, n=0,2, p=n+1$, TO10 to TO13 pins

6.8.3 Operation as multiple PWM output function

By extending the PWM function and using two or more slave channels, many PWM output signals can be produced.
For example, when using two slave channels, the period and duty factor of an output pulse can be calculated by the following expressions.

```
Pulse period = {Set value of TDRmn (master) + 1} }\times\mathrm{ Count clock period
Duty factor 1[%] = {Set value of TDRmp (slave 1)}/{Set value of TDRmn (master) + 1} }\times10
Duty factor 2[%] = {Set value of TDRmp (slave 2)}{Set value of TDRmn (master) + 1} }\times10
```

Remark Although the duty factor exceeds 100% if the set value of TDRmp (slave 1) > \{set value of TDRmn (master) +1$\}$ or if the $\{$ set value of TDRmq (slave 2) $\}>$ \{set value of TDRmn (master) +1$\}$, it is summarized into 100% output.

TCRmn of the master channel operates in the interval timer mode and counts the periods.
TCRmp of the slave channel 1 operates in one-count mode, counts the duty factor, and outputs a PWM waveform from the TOmp pin. TCRmp loads the value of TDRmp to TCRmp, using INTTMmn of the master channel as a start trigger, and start counting down. When TCRmp $=0000 \mathrm{H}$, TCRmp outputs INTTMmp and stops counting until the next start trigger (INTTMmn of the master channel) has been input. The output level of TOmp becomes active one count clock after generation of INTTMmn from the master channel, and inactive when TCRmp $=0000 \mathrm{H}$.

In the same way as TCRmp of the slave channel 1, TCRmq of the slave channel 2 operates in one-count mode, counts the duty factor, and outputs a PWM waveform from the TOmq pin. TCRmq loads the value of TDRmq to TCRmq, using INTTMmn of the master channel as a start trigger, and starts counting down. When TCRmq $=0000 \mathrm{H}, \mathrm{TCRmq}$ outputs INTTMmq and stops counting until the next start trigger (INTTMmn of the master channel) has been input. The output level of TOmq becomes active one count clock after generation of INTTMmn from the master channel, and inactive when TCRmq $=0000 \mathrm{H}$.

When channel 0 is used as the master channel as described above, up to seven types of PWM signals can be output at the same time with timer array unit 0 and up to three types with timer array unit 1.

Caution To rewrite both TDRmn of the master channel and TDRmp of the slave channel 1, write access is necessary at least twice. Since the values of TDRmn and TDRmp are loaded to TCRmn and TCRmp after INTTMmn is generated from the master channel, if rewriting is performed separately before and after generation of INTTMmn from the master channel, the TOmp pin cannot output the expected waveform. To rewrite both TDRmn of the master and TDRmp of the slave, be sure to rewrite both the registers immediately after INTTMmn is generated from the master channel (This applies also to TDRmq of the slave channel 2).

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2, p=n+1, q=n+2$, TO00 to TO04, and TOO7 pins

2. $78 \mathrm{KOR} / \mathrm{LG} 3$:

- $m=0, n=0,2,4, p=n+1, q=n+2$, TO00 to TO07 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $m=0, n=0,2,4, p=n+1, q=n+2$, TOOO to TOO7 pins
- $m=1, n=0, p=1, q=2$, TO10 to TO13 pins

Figure 6-67. Block Diagram of Operation as Multiple PWM Output Function (output two types of PWMs)

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2, p=n+1, q=n+2$, TO00 to TO04, and TOO7 pins

2. $78 \mathrm{KOR} / \mathrm{LG3}$:

- $m=0, n=0,2,4, p=n+1, q=n+2$, TOOO to TOO7 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $m=0, n=0,2,4, p=n+1, q=n+2$, TO00 to TO07 pins
- $m=1, n=0, p=1, q=2$, TO10 to TO13 pins

Figure 6-68. Example of Basic Timing of Operation as Multiple PWM Output Function (output two types of PWMs)

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2, p=n+1, q=n+2$, TO00 to TO04, and TO07 pins

2. $78 \mathrm{KOR} / \mathrm{LG} 3:$

- $m=0, n=0,2,4, p=n+1, q=n+2$, TO00 to TO07 pins

3. 78KOR/LH3:

- $m=0, n=0,2,4, p=n+1, q=n+2$, TO00 to TOO7 pins
- $m=1, n=0, p=1, q=2$, TO10 to TO13 pins

Figure 6-69. Example of Set Contents of Registers When Multiple PWM Output Function (Master Channel) Is Used
(a) Timer mode register mn (TMRmn)

TMRmn
 Setting of operation when counting is started

1: Generates INTTMmn when counting is started.

Selection of TImn pin input edge 00B: Sets 00B because these are not used.

Start trigger selection 000B: Selects only software start.
(b) Timer output register m (TOm)

TOm

Bit n
TOmn
0

0 : Outputs 0 from TOmn.
(c) Timer output enable register m (TOEm)
TOEm

Bit n
TOEmn
0

0 : Stops the TOmn output operation by counting operation.
(d) Timer output level register m (TOLm)

TOLm \square 0 : Cleared to 0 when TOMmn $=0$ (toggle mode).
(e) Timer output mode register m (TOMm)

TOMm \square 0 : Sets toggle mode.

Remarks 1. 78K0R/LF3:

- $\mathrm{m}=0, \mathrm{n}=0,2, \mathrm{TOOO}$ to TO04, TO07, TI00 to TIO4, and TIO7 pins

2. $78 \mathrm{KOR} / \mathrm{LG3}$:

- m = 0, n = 0, 2, 4, TO00 to TO07, and TIOO to TIO7 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $\mathrm{m}=0, \mathrm{n}=0,2,4$, TO00 to TO07, and TIOO to TIO7 pins
- $\mathrm{m}=1, \mathrm{n}=0$, TO10 to TO13 , and TI10 to TI13 pins

Figure 6-70. Example of Set Contents of Registers When Multiple PWM Output Function (Slave Channel) Is Used (output two types of PWMs)
(a) Timer mode register mp, mq (TMRmp, TMRmq)

0: Selects CKm0 as operation clock of channel p, q.
1: Selects CKm1 as operation clock of channel p, q.

* Make the same setting as master channel.
(b) Timer output register m (TOm)

TOm

Bit q	Bit p
TOmq	TOmp
$1 / 0$	$1 / 0$

0 : Outputs 0 from TOmp or TOmq.
1: Outputs 1 from TOmp or TOmq.
(c) Timer output enable register m (TOEm)

TOEm

Bit q	Bit p
TOEmq	TOEmp
$1 / 0$	$1 / 0$

0: Stops the TOmp or TOmq output operation by counting operation.
1: Enables the TOmp or TOmq output operation by counting operation.
(d) Timer output level register m (TOLm)

TOLm

Bit q	Bit p
TOLmq	TOLmp
$1 / 0$	$1 / 0$

0: Positive logic output (active-high)
1: Inverted output (active-low)
(e) Timer output mode register $\mathrm{m}(\mathrm{TOMm})$

TOMm

Bit q	Bit p
TOMmq	TOMmp
1	1

1: Sets the combination operation mode.

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2, p=n+1, q=n+2$, TOOO to TO04, and TOO7 pins

2. $78 \mathrm{KOR} / \mathrm{LG3}$:

- $m=0, n=0,2,4, p=n+1, q=n+2$, TO00 to TO07 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $m=0, n=0,2,4, p=n+1, q=n+2$, TOOO to TO07 pins
- $m=1, n=0, p=1, q=2$, TO10 to TO13 pins

Figure 6-71. Operation Procedure When Multiple PWM Output Function Is Used (1/2)

	Software Operation	Hardware Status
TAU default setting		Power-off status (Clock supply is stopped and writing to each register is disabled.)
	Sets the TAU0EN or TAU1EN bits of the PER0 register to 1. \qquad	Power-on status. Each channel stops operating. (Clock supply is started and writing to each register is enabled.)
	Sets the TPSm register. Determines clock frequencies of CKm0 and CKm1.	
Channel default setting	Sets the TMRmn, TMRmp, and TMRmq registers of each channel to be used (determines operation mode of channels). An interval (period) value is set to the TDRmn register of the master channel, and a duty factor is set to the TDRmp and TDRmq register of the slave channel.	Channel stops operating. (Clock is supplied and some power is consumed.)
	Sets slave channel. The TOMmp and TOMmq bits of the TOMm register are set to 1 (combination operation mode). Clears the TOLmp and TOLmq bits to 0 . Sets the TOmp and TOmq bits and determines default level of the TOmp and TOmq outputs. Sets TOEmp or TOEmq to 1 and enables operation of TOmp and TOmq. Clears the port register and port mode register to 0 .	The TOmn pin goes into $\mathrm{Hi}-\mathrm{Z}$ output state. The TOmp and TOmq default setting levels are output when the port mode register is in output mode and the port register is 0 . TOmp or TOmq does not change because channel stops operating. The TOmp and TOmq pins output the TOmp and TOmq set levels.

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2, p=n+1, q=n+2$, TOOO to TO04, and TOO7 pins

2. $78 \mathrm{KOR} / \mathrm{LG} 3$:

- $m=0, n=0,2,4, p=n+1, q=n+2$, TO00 to TO07 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $m=0, n=0,2,4, p=n+1, q=n+2$, TOOO to TOO7 pins
- $m=1, n=0, p=1, q=2$, TO10 to TO13 pins

Figure 6-71. Operation Procedure When Multiple PWM Output Function Is Used (2/2)

Remarks 1. 78K0R/LF3:

- $m=0, n=0,2, p=n+1, q=n+2$, TOOO to TO04, and TOO7 pins

2. $78 \mathrm{KOR} / \mathrm{LG} 3$:

- $m=0, n=0,2,4, p=n+1, q=n+2$, TO00 to TO07 pins

3. $78 \mathrm{KOR} / \mathrm{LH} 3$:

- $m=0, n=0,2,4, p=n+1, q=n+2$, TOOO to TO07 pins
- $m=1, n=0, p=1, q=2$, TO10 to TO13 pins

CHAPTER 7 REAL-TIME COUNTER

7.1 Functions of Real-Time Counter

The real-time counter is mounted onto all 78K0R/Lx3 microcontroller products.
The real-time counter has the following features.

- Having counters of year, month, week, day, hour, minute, and second, and can count up to 99 years.
- Constant-period interrupt function (period: 1 month to 0.5 seconds)
- Alarm interrupt function (alarm: week, hour, minute)
- Interval interrupt function
- Pin output function of 1 Hz
- Pin output function of 512 Hz or 16.384 kHz or 32.768 kHz

7.2 Configuration of Real-Time Counter

The real-time counter includes the following hardware.
Table 7-1. Configuration of Real-Time Counter

Item	Configuration
Control registers	Peripheral enable register 0 (PERO)
	Real-time counter control register 0 (RTCC0)
	Real-time counter control register 1 (RTCC1)
	Real-time counter control register 2 (RTCC2)
	Sub-count register (RSUBC)
	Second count register (SEC)
	Minute count register (MIN)
	Hour count register (HOUR)
	Day count register (DAY)
	Week count register (WEEK)
	Month count register (MONTH)
	Year count register (YEAR)
	Watch error correction register (SUBCUD)
	Alarm minute register (ALARMWM)
	Alarm hour register (ALARMWH)
	Alarm week register (ALARMWW)
	Port mode register 3
	Port register 3

Figure 7-1. Block Diagram of Real-Time Counter

7.3 Registers Controlling Real-Time Counter

Timer real-time counter is controlled by the following 18 registers.

- Peripheral enable register 0 (PERO)
- Real-time counter control register 0 (RTCCO)
- Real-time counter control register 1 (RTCC1)
- Real-time counter control register 2 (RTCC2)
- Sub-count register (RSUBC)
- Second count register (SEC)
- Minute count register (MIN)
- Hour count register (HOUR)
- Day count register (DAY)
- Week count register (WEEK)
- Month count register (MONTH)
- Year count register (YEAR)
- Watch error correction register (SUBCUD)
- Alarm minute register (ALARMWM)
- Alarm hour register (ALARMWH)
- Alarm week register (ALARMWW)
- Port mode register 3 (PM3)
- Port register 3 (P3)
(1) Peripheral enable register 0 (PERO)

PERO is used to enable or disable use of each peripheral hardware macro. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.
When the real-time counter is used, be sure to set bit 7 (RTCEN) of this register to 1 .
PERO can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 7-2. Format of Peripheral Enable Register 0 (PERO)

Notes 1. 78K0R/LG3, 78K0R/LH3 only
2. By using RTCEN, can supply and stop the clock that is used when accessing the real-time counter (RTC) from the CPU. RTCEN cannot control supply of the operating clock (fsub) to RTC.

Cautions 1. When using the real-time counter, first set RTCEN to 1 , while oscillation of the subsystem clock (fsub) is stable. If RTCEN $=0$, writing to a control register of the real-time counter is ignored, and, even if the register is read, only the default value is read.
2. Clock supply to peripheral functions except the real-time counter can be stopped in the HALT mode when operating on the subsystem clock by setting RTCLPC of the operation speed mode control register (OSMC) to 1 . In this case, set RTCEN to 1 and bits 0 to 6 of PERO to 0 .
(2) Real-time counter control register 0 (RTCCO)

The RTCCO register is an 8-bit register that is used to start or stop the real-time counter operation, control the RTCCL and RTC1HZ pins, and set a 12- or 24 -hour system and the constant-period interrupt function.

RTCC0 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 7-3. Format of Real-Time Counter Control Register 0 (RTCCO)

RTCE		Real-time counter operation control
0	Stops counter operation.	
1	Starts counter operation.	

RCLOE1	RTC1HZ pin output control
0	Disables output of RTC1HZ pin $(1 \mathrm{~Hz})$.
1	Enables output of RTC1HZ pin $(1 \mathrm{~Hz})$.

RCLOEO $^{\text {Note }}$	RTCCL pin output control
0	Disables output of RTCCL pin $(32 \mathrm{kHz})$.
1	Enables output of RTCCL pin $(32 \mathrm{kHz})$.

AMPM	Selection of 12-/24-hour system
0	12-hour system (a.m. and p.m. are displayed.)
1	24-hour system

- To change the value of AMPM, set RWAIT (bit 0 of RTCC1) to 1 , and re-set the hour count register (HOUR).
- Table 7-2 shows the displayed time digits that are displayed.

CT2	CT1	CT0	Constant-period interrupt (INTRTC) selection
0	0	0	Does not use constant-period interrupt function.
0	0	1	Once per 0.5 s (synchronized with second count up)
0	1	0	Once per 1 s (same time as second count up)
0	1	1	Once per 1 m (second 00 of every minute)
1	0	0	Once per 1 hour (minute 00 and second 00 of every hour)
1	0	1	Once per 1 day (hour 00, minute 00, and second 00 of every day)
1	1	\times	Once per 1 month (Day 1, hour 00 a.m., minute 00, and second 00 of every month)

When changing the values of CT2 to CT0 while the counter operates (RTCE $=1$), rewrite the values of CT2 to CT0 after disabling interrupt servicing INTRTC by using the interrupt mask flag register. Furthermore, after rewriting the values of CT2 to CTO, enable interrupt servicing after clearing the RIFG and RTCIF flags.

Note RCLOE0 and RCLOE2 must not be enabled at the same time.

Caution If RCLOEO and RCLOE1 are changed when RTCE $=\mathbf{1}$, the last waveform of the 32.768 kHz and 1 Hz output signals may become short.

Remark \times : don't care

(3) Real-time counter control register 1 (RTCC1)

The RTCC1 register is an 8-bit register that is used to control the alarm interrupt function and the wait time of the counter.
RTCC1 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 7-4. Format of Real-Time Counter Control Register 1 (RTCC1) (1/2)

WALIE	Control of alarm interrupt (INTRTC) function operation
0	Does not generate interrupt on matching of alarm.
1	Generates interrupt on matching of alarm.

WAFG	Alarm detection status flag
0	Alarm mismatch
1	Detection of matching of alarm
This is a status flag that indicates detection of matching with the alarm. It is valid only when WALE $=1$ and is set to " 1 " one clock (32.768 kHz) after matching of the alarm is detected. This flag is cleared when " 0 " is written to it. Writing " 1 " to it is invalid.	

Figure 7-4. Format of Real-Time Counter Control Register 1 (RTCC1) (2/2)

RIFG	Constant-period interrupt status flag
0	Constant-period interrupt is not generated.
1	Constant-period interrupt is generated.
This flag indicates the status of generation of the constant-period interrupt. When the constant-period interrupt is generated, it is set to " 1 ". This flag is cleared when " 0 " is written to it. Writing " 1 " to it is invalid.	

RWST	Wait status flag of real-time counter
0	Counter is operating.
1	Mode to read or write counter value
This status flag indicates whether the setting of RWAIT is valid. Before reading or writing the counter value, confirm that the value of this flag is 1.	

RWAIT	Wait control of real-time counter
0	Sets counter operation.
1	Stops SEC to YEAR counters. Mode to read or write counter value
This bit controls the operation of the counter. Be sure to write "1" to it to read or write the counter value. Because RSUBC continues operation, complete reading or writing of it in 1 second, and clear this bit back to 0. When RWAIT $=1$, it takes up to 1 clock (32.768 kHz) until the counter value can be read or written. If RSUBC overflows when RWAIT $=1$, it counts up after RWAIT $=0$. If the second count register is written, however, it does not count up because RSUBC is cleared.	

Caution If writing is performed to the RTCC1 register with a 1-bit manipulation instruction, the RIFG and WAFG flags may be cleared. Therefore, to perform writing to the RIFG and WAFG flags, be sure to use an 8-bit manipulation instruction. At this time, set 1 to the RIFG and WAFG flags to invalidate writing and not to clear the RIFG and WAFG flags during writing. When the value may be rewritten because the RIFG and WAFG flags are not being used, the RTCC1 register may be written by using a 1-bit manipulation instruction.

Remark Fixed-cycle interrupts and alarm match interrupts use the same interrupt source (INTRTC). When using these two types of interrupts at the same time, which interrupt occurred can be judged by checking the fixed-cycle interrupt status flag (RIFG) and the alarm detection status flag (WAFG) upon INTRTC occurrence.

(4) Real-time counter control register 2 (RTCC2)

The RTCC2 register is an 8-bit register that is used to control the interval interrupt function and the RTCDIV pin. RTCC2 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 7-5. Format of Real-Time Counter Control Register 2 (RTCC2)

Address: F	After reset: 00 H		R/W					
Symbol	<7>	<6>	<5>	4	3	2	1	0
RTCC2	RINTE	RCLOE2	RCKDIV	0	0	ICT2	ICT1	ICTO

RINTE	ICT2	ICT1	ICTO	Interval interrupt (INTRTCI) selection
0	\times	\times	\times	Interval interrupt is not generated.
1	0	0	0	$2^{6} /$ fsub (1.953125 ms)
1	0	0	1	$2^{7} /$ /sub (3.90625 ms)
1	0	1	0	$2^{8} /$ fsub (7.8125 ms)
1	0	1	1	$2^{9} /$ fsub (15.625 ms)
1	1	0	0	$2^{10} / \mathrm{fsub}$ (31.25 ms)
1	1	0	1	$2^{11} / \mathrm{fsub}$ (62.5 ms)
1	1	1	\times	$2^{12} / \mathrm{fsub}$ (125 ms)

RCLOE2 $^{\text {Note }}$		RTCDIV pin output control
0	Disables output of RTCDIV pin	
1	Enables output of RTCDIV pin	

RCKDIV	Selection of RTCDIV pin output frequency
0	RTCDIV pin outputs $512 \mathrm{~Hz}(1.95 \mathrm{~ms})$.
1	RTCDIV pin outputs $16.384 \mathrm{kHz}(0.061 \mathrm{~ms})$.

Note RCLOE0 and RCLOE2 must not be enabled at the same time.

Cautions 1. Change ICT2, ICT1, and ICTO when RINTE $=0$.
2. When the output from RTCDIV pin is stopped, the output continues after a maximum of two clocks of fxt and enters the low level. While 512 Hz is output, and when the output is stopped immediately after entering the high level, a pulse of at least one clock width of fsub may be generated.
3. After the real-time counter starts operating, the output width of the RTCDIV pin may be shorter than as set during the first interval period.

Remark fsub: Subsystem clock frequency
(5) Sub-count register (RSUBC)

The RSUBC register is a 16-bit register that counts the reference time of 1 second of the real-time counter. It takes a value of 0000 H to 7 FFFFH and counts 1 second with a clock of 32.768 kHz .
RSUBC can be set by a 16-bit memory manipulation instruction.
Reset signal generation clears this register to 0000 H .

Cautions 1. When a correction is made by using the SUBCUD register, the value may become $\mathbf{8 0 0 0 \mathrm { H }}$ or more.
2. This register is also cleared by reset effected by writing the second count register.
3. The value read from this register is not guaranteed if it is read during operation, because a value that is changing is read.

Figure 7-6. Format of Sub-Count Register (RSUBC)

Address: FFF90H After reset: 0000H R

| Symbol | 7 | 6 | 5 | 4 | 3 | | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSUBC | SUBC7 | SUBC6 | SUBC5 | SUBC4 | SUBC3 | SUBC2 | SUBC1 | SUBC0 | |
| | | | | | | | | | |

Address: FFF91H After reset: 0000H R

| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RSUBC | SUBC15 | SUBC14 | SUBC13 | SUBC12 | SUBC11 | SUBC10 | SUBC9 | SUBC8 |
| | | | | | | | | |

(6) Second count register (SEC)

The SEC register is an 8 -bit register that takes a value of 0 to 59 (decimal) and indicates the count value of seconds.

It counts up when the sub-counter overflows.
When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (32.768 kHz) later. Set a decimal value of 00 to 59 to this register in BCD code.
SEC can be set by an 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 7-7. Format of Second Count Register (SEC)

Address: FFF92H	After reset: 00 H		R/W					
Symbol	7	6	5	4	3	2	1	0
SEC	0	SEC40	SEC20	SEC10	SEC8	SEC4	SEC2	SEC1

(7) Minute count register (MIN)

The MIN register is an 8-bit register that takes a value of 0 to 59 (decimal) and indicates the count value of minutes. It counts up when the second counter overflows.

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (32.768 kHz) later. Even if the second count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 00 to 59 to this register in BCD code.
MIN can be set by an 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 7-8. Format of Minute Count Register (MIN)

Address: FFF93H	After reset: 00H		R/W					
Symbol	7	6	5	4	3	2	1	0
MIN	0	MIN40	MIN20	MIN10	MIN8	MIN4	MIN2	MIN1

(8) Hour count register (HOUR)

The HOUR register is an 8 -bit register that takes a value of 00 to 23 , or 01 to 12 and 21 to 32 (decimal) and indicates the count value of hours.
It counts up when the minute counter overflows.
When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (32.768 kHz) later. Even if the minute count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 00 to 23 , or 01 to 12 and 21 to 32 to this register in BCD code. HOUR can be set by an 8-bit memory manipulation instruction.
Reset signal generation clears this register to 12 H .
However, the value of this register is 00 H if the AMPM bit (bit 3 of the RTCCO register) is set to 1 after reset.

Figure 7-9. Format of Hour Count Register (HOUR)

Address: FFF94H	After reset: 12 H		R/W					
Symbol	7	6	5	4	3	2	1	0
HOUR	0	0	HOUR20	HOUR10	HOUR8	HOUR4	HOUR2	HOUR1

Caution Bit 5 (HOUR20) of HOUR indicates AM(0)/PM(1) if AMPM =0 (if the 12-hour system is selected).

Table 7-2. Displayed Time Digits

24-Hour Display (AMPM bit = 1)		12-Hour Display (AMPM bit $=0$)	
Time	HOUR Register	Time	HOUR Register
0	00H	0 a.m.	12 H
1	01H	1 a.m.	01H
2	02H	2 a.m.	02H
3	03H	3 a.m.	03H
4	04H	4 a.m.	04H
5	05H	5 a.m.	05H
6	06H	6 a.m.	06H
7	07H	7 a.m.	07H
8	08H	8 a.m.	08H
9	09H	9 a.m.	09H
10	10 H	10 a.m.	10 H
11	11 H	11 a.m.	11H
12	12 H	0 p.m.	32H
13	13H	1 p.m.	21H
14	14H	2 p.m.	22 H
15	15H	3 p.m.	23H
16	16H	4 p.m.	24H
17	17H	5 p.m.	25H
18	18H	6 p.m.	26H
19	19H	7 p.m.	27H
20	20H	8 p.m.	28H
21	21H	9 p.m.	29 H
22	22 H	10 p.m.	30 H
23	23H	11 p.m.	31H

The HOUR register value is set to 12 -hour display when the AMPM bit is " 0 " and to 24 -hour display when the AMPM bit is " 1 ".

In 12-hour display, the fifth bit of the HOUR register displays 0 for AM and 1 for PM.
(9) Day count register (DAY)

The DAY register is an 8-bit register that takes a value of 1 to 31 (decimal) and indicates the count value of days. It counts up when the hour counter overflows.
This counter counts as follows.

- 01 to 31 (January, March, May, July, August, October, December)
- 01 to 30 (April, June, September, November)
- 01 to 29 (February, leap year)
- 01 to 28 (February, normal year)

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (32.768 kHz) later. Even if the hour count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 01 to 31 to this register in BCD code.
DAY can be set by an 8-bit memory manipulation instruction.
Reset signal generation clears this register to 01 H .

Figure 7-10. Format of Day Count Register (DAY)

Address: FFF96H	After reset: 01 H		R/W					
Symbol	7	6	5	4	3	2	1	0
DAY	0	0	DAY20	DAY10	DAY8	DAY4	DAY2	DAY1

(10) Week count register (WEEK)

The WEEK register is an 8 -bit register that takes a value of 0 to 6 (decimal) and indicates the count value of weekdays.
It counts up in synchronization with the day counter.
When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (32.768 kHz) later. Set a decimal value of 00 to 06 to this register in BCD code.
WEEK can be set by an 8 -bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 7-11. Format of Week Count Register (WEEK)

Address: FFF95H	After reset: 00H		R/W					
Symbol	7	6	5	4	3	2	1	0
WEEK	0	0	0	0	0	WEEK4	WEEK2	WEEK1

Caution The value corresponding to the month count register or the day count register is not stored in the week count register automatically. After reset release, set the week count register as follow.

Day	WEEK
Sunday	00 H
Monday	01 H
Tuesday	02 H
Wednesday	03 H
Thursday	04 H
Friday	05 H
Saturday	06 H

(11) Month count register (MONTH)

The MONTH register is an 8 -bit register that takes a value of 1 to 12 (decimal) and indicates the count value of months.
It counts up when the day counter overflows.
When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (32.768 kHz) later. Even if the day count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 01 to 12 to this register in BCD code. Set a decimal value of 01 to 12 to this register in BCD code.
MONTH can be set by an 8-bit memory manipulation instruction.
Reset signal generation clears this register to 01 H .

Figure 7-12. Format of Month Count Register (MONTH)

Address: FFF97H	After reset: 01 H		R/W					
Symbol	7	6	5	4	3	2	1	0
MONTH	0	0	0	MONTH10	MONTH8	MONTH4	MONTH2	MONTH1

(12) Year count register (YEAR)

The YEAR register is an 8-bit register that takes a value of 0 to 99 (decimal) and indicates the count value of years. It counts up when the month counter overflows.
Values $00,04,08, \ldots, 92$, and 96 indicate a leap year.
When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (32.768 kHz) later. Even if the month count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 00 to 99 to this register in BCD code. Set a decimal value of 00 to 99 to this register in BCD code.
YEAR can be set by an 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 7-13. Format of Year Count Register (YEAR)

Address: FF	After reset: 00 H		R/W					
Symbol	7	6	5	4	3	2	1	0
YEAR	YEAR80	YEAR40	YEAR20	YEAR10	YEAR8	YEAR4	YEAR2	YEAR1

(13) Watch error correction register (SUBCUD)

This register is used to correct the watch with high accuracy when it is slow or fast by changing the value (reference value: 7FFFH) that overflows from the sub-count register (RSUBC) to the second count register.
Rewrite the SUBCUD register after disabling interrupt servicing INTRTC by using the interrupt mask flag register. Furthermore, after rewriting the SUBCUD register, enable interrupt servicing after clearing the interrupt request flag (RTCIF) and constant-period interrupt status flag (RIFG). SUBCUD can be set by an 8-bit memory manipulation instruction. Reset signal generation clears this register to 00 H .

Figure 7-14. Format of Watch Error Correction Register (SUBCUD)

Address: FFF99H After reset: 00 H R/W								
Symbol	7	6	5	4	3	2	1	0
SUBCUD	DEV	F6	F5	F4	F3	F2	F1	F0
	DEV	Setting of watch error correction timing						
	0	Corrects watch error when the second digits are at 00,20 , or 40 (every 20 seconds).						
	1	Corrects watch error only when the second digits are at 00 (every 60 seconds).						
	Writing to the SUBCUD register at the following timing is prohibited. - When DEV $=0$ is set: For a period of $\mathrm{SEC}=00 \mathrm{H}, 20 \mathrm{H}, 40 \mathrm{H}$ - When DEV $=1$ is set: For a period of SEC $=00 \mathrm{H}$							

F6	Setting of watch error correction value
0	Increases by $\{(\mathrm{F} 5, \mathrm{~F} 4, \mathrm{~F} 3, \mathrm{~F} 2, \mathrm{~F} 1, \mathrm{~F} 0)-1\} \times 2$.
1	Decreases by $\{(/ F 5, / F 4, / F 3, / F 2, / F 1, / F 0)+1\} \times 2$.
When (F6, F5, F4, F3, F2, F1, F0) $=\left({ }^{*}, 0,0,0,0,0, *\right)$, the watch error is not corrected. * is 0 or 1 . /F5 to /F0 are the inverted values of the corresponding bits (000011 when 111100). Range of correction value: (when $\mathrm{F} 6=0$) $2,4,6,8, \ldots, 120,122,124$ (when F6 = 1) $-2,-4,-6,-8, \ldots,-120,-122,-124$	

The range of value that can be corrected by using the watch error correction register (SUBCUD) is shown below.

	DEV $=0$ (correction every 20 seconds)	DEV $=1$ (correction every 60 seconds)
Correctable range	-189.2 ppm to 189.2 ppm	-63.1 ppm to 63.1 ppm
Maximum excludes quantization error	$\pm 1.53 \mathrm{ppm}$	$\pm 0.51 \mathrm{ppm}$
Minimum resolution	$\pm 3.05 \mathrm{ppm}$	$\pm 1.02 \mathrm{ppm}$

Remark If a correctable range is $\mathbf{- 6 3 . 1} \mathbf{~ p p m}$ or lower and $\mathbf{6 3 . 1} \mathbf{~ p p m}$ or higher, set $\mathbf{0}$ to DEV.
(14) Alarm minute register (ALARMWM)

This register is used to set minutes of alarm.
ALARMWM can be set by an 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Caution Set a decimal value of 00 to 59 to this register in BCD code. If a value outside the range is set, the alarm is not detected.

Figure 7-15. Format of Alarm Minute Register (ALARMWM)

Address: FFF	After reset: 00 H		R/W					
Symbol	7	6	5	4	3	2	1	0
ALARMWM	0	WM40	WM20	WM10	WM8	WM4	WM2	WM1

(15) Alarm hour register (ALARMWH)

This register is used to set hours of alarm.
ALARMWH can be set by an 8-bit memory manipulation instruction.
Reset signal generation clears this register to 12 H .
However, the value of this register is 00 H if the AMPM bit (bit 3 of the RTCCO register) is set to 1 after reset.

Caution Set a decimal value of 00 to 23 , or 01 to 12 and 21 to 32 to this register in BCD code. If a value outside the range is set, the alarm is not detected.

Figure 7-16. Format of Alarm Hour Register (ALARMWH)

Address: FFF9BH	After reset: 12 H		R/W					
Symbol	7	6	5	4	3	2	1	0
ALARMWH	0	0	WH20	WH10	WH8	WH4	WH2	WH1

Caution Bit 5 (WH20) of ALARMWH indicates AM(0)/PM(1) if AMPM $=\mathbf{0}$ (if the 12-hour system is selected).

(16) Alarm week register (ALARMWW)

This register is used to set date of alarm.
ALARMWW can be set by an 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 7-17. Format of Alarm Week Register (ALARMWW)

Address: FFF9CH After reset: 00H R/W

Symbol ALARMWW$\quad 7$	6	5	4	3	2		1	0
	0	WW6	WW5	WW4	WW3	WW2	WW1	WW0

Here is an example of setting the alarm.

Time of Alarm	Day							12-Hour Display				24-Hour Display			
	Sunday W W 0	Monday W W 1	Tuesday W W 2	Wednesda w W 3	Thursday W W 4	$\begin{gathered} \text { Friday } \\ \\ \mathrm{W} \\ \mathrm{~W} \\ 5 \end{gathered}$	Saturday w W 6	$\begin{array}{\|c} \text { Hour } \\ 10 \end{array}$	Hour 1	$\begin{gathered} \text { Minute } \\ 10 \end{gathered}$	$\begin{gathered} \text { Minute } \\ 1 \end{gathered}$	$\begin{gathered} \text { Hour } \\ 10 \end{gathered}$	Hour 1	$\begin{gathered} \text { Minute } \\ 10 \end{gathered}$	Minute 1
Every day, 0:00 a.m.	1	1	1	1	1	1	1	1	2	0	0	0	0	0	0
Every day, 1:30 a.m.	1	1	1	1	1	1	1	0	1	3	0	0	1	3	0
Every day, 11:59 a.m.	1	1	1	1	1	1	1	1	1	5	9	1	1	5	9
Monday through Friday, 0:00 p.m.	0	1	1	1	1	1	0	3	2	0	0	1	2	0	0
Sunday, 1:30 p.m.	1	0	0	0	0	0	0	2	1	3	0	1	3	3	0
Monday, Wednesday, Friday, 11:59 p.m.	0	1	0	1	0	1	0	3	1	5	9	2	3	5	9

(17) Port mode register 3 (PM3)

This register sets port 3 input/output in 1-bit units.
When using the P30/RTC1HZ/TO00/TIO3/INTP1 pin for real-time counter correction clock output, the P31/RTCDIV/RTCCL/TI00/TO03/PCLBUZ1/INTP2 pin for real-time counter clock output, set PM30, PM31 and the output latches of P30, P31 to 0 .
PM3 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets PM3 to FFH.

Figure 7-18. Format of Port Mode Register 3 (PM3)

- 78K0R/LF3

Address: FFF23H	After reset: FFH								R/W
Symbol	7	6	5	4	3	2	1	0	
PM3	1	1	1	1	PM33	PM32	PM31	PM30	

- 78K0R/LG3, 78K0R/LH3

Address: FFF23H	After reset: FFH	R/W						
Symbol	7	6	5	4	3	2	1	0
PM3	1	1	1	PM34	PM33	PM32	PM31	PM30

PM3n	P3n pin I/O mode selection ($\mathrm{n}=0$ to 4)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

7.4 Real-Time Counter Operation

7.4.1 Starting operation of real-time counter

Figure 7-19. Procedure for Starting Operation of Real-Time Counter

Notes 1. First set RTCEN to 1 , while oscillation of the subsystem clock (fsub) is stable.
2. Confirm the procedure described in 7.4.2 Shifting to STOP mode after starting operation when shifting to STOP mode without waiting for INTRTC $=1$ after RTCE $=1$.

7.4.2 Shifting to STOP mode after starting operation

Perform one of the following processing when shifting to STOP mode immediately after setting RTCE to 1 .
However, after setting RTCE to 1 , this processing is not required when shifting to STOP mode after the first INTRTC interrupt has occurred.

- Shifting to STOP mode when at least two subsystem clocks (fsub) (about $62 \mu \mathrm{~s}$) have elapsed after setting RTCE to 1 (see Figure 7-20, Example 1).
- Checking by polling RWST to become 1, after setting RTCE to 1 and then setting RWAIT to 1 . Afterward, setting RWAIT to 0 and shifting to STOP mode after checking again by polling that RWST has become 0 (see Figure 7-20, Example 2).

Figure 7-20. Procedure for Shifting to STOP Mode After Setting RTCE to 1

Example 1

7.4.3 Reading/writing real-time counter

Read or write the counter after setting 1 to RWAIT first.

Figure 7-21. Procedure for Reading Real-Time Counter

Note Be sure to confirm that RWST $=0$ before setting STOP mode.

Caution Complete the series of operations of setting RWAIT to 1 to clearing RWAIT to 0 within 1 second.

Remark SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR may be read in any sequence.
All the registers do not have to be set and only some registers may be read

Figure 7-22. Procedure for Writing Real-Time Counter

Note Be sure to confirm that RWST $=0$ before setting STOP mode.

Caution Complete the series of operations of setting RWAIT to 1 to clearing RWAIT to 0 within 1 second.

Remark SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR may be written in any sequence.
All the registers do not have to be set and only some registers may be written.

7.4.4 Setting alarm of real-time counter

Set time of alarm after setting 0 to WALE first.

Figure 7-23. Alarm Setting Procedure

Remarks 1. ALARMWM, ALARMWH, and ALARMWW may be written in any sequence.
2. Fixed-cycle interrupts and alarm match interrupts use the same interrupt source (INTRTC). When using these two types of interrupts at the same time, which interrupt occurred can be judged by checking the fixed-cycle interrupt status flag (RIFG) and the alarm detection status flag (WAFG) upon INTRTC occurrence.

7.4.5 1 Hz output of real-time counter

Figure 7-24. 1 Hz Output Setting Procedure

7.4.6 $32.768 \mathbf{k H z}$ output of real-time counter

Figure 7-25. 32.768 kHz Output Setting Procedure

7.4.7 512 Hz or 16.384 kHz output of real-time counter

Figure 7-26. $\mathbf{5 1 2 ~ H z ~ o r ~} \mathbf{1 6 . 3 8 4 ~ k H z}$ Output Setting Procedure

7.4.8 Example of watch error correction of real-time counter

The watch can be corrected with high accuracy when it is slow or fast, by setting a value to the watch error correction register.

Example of calculating the correction value

The correction value used when correcting the count value of the sub-count register (RSUBC) is calculated by using the following expression.
Set DEV to 0 when the correction range is -63.1 ppm or less, or 63.1 ppm or more.
(When DEV = 0)
Correction value ${ }^{\text {Note }}=$ Number of correction counts in 1 minute $\div 3=$ (Oscillation frequency \div Target frequency -1)

$$
\times 32768 \times 60 \div 3
$$

(When DEV = 1)
Correction value ${ }^{\text {Note }}=$ Number of correction counts in 1 minute $=($ Oscillation frequency \div Target frequency -1$) \times$ 32768×60

Note The correction value is the watch error correction value calculated by using bits 6 to 0 of the watch error correction register (SUBCUD).
$($ When F6 $=0)$ Correction value $=\{(F 5, F 4, F 3, F 2, F 1, F 0)-1\} \times 2$
$($ When F6 = 1) Correction value $=-\{(/ F 5, / F 4, / F 3, / F 2, / F 1, / F 0)+1\} \times 2$

When (F6, F5, F4, F3, F2, F1, F0) is $\left({ }^{*}, 0,0,0,0,0, *\right)$, watch error correction is not performed. "*" is 0 or 1 . /F5 to /F0 are bit-inverted values (000011 when 111100).

Remarks 1. The correction value is $2,4,6,8, \ldots 120,122,124$ or $-2,-4,-6,-8, \ldots-120,-122,-124$.
2. The oscillation frequency is the subsystem clock (fsub).

It can be calculated from the 32.768 kHz output frequency of the RTCCL pin or the output frequency of the RTC1HZ pin $\times 32768$ when the watch error correction register is set to its initial value $(00 \mathrm{H})$.
3. The target frequency is the frequency resulting after correction performed by using the watch error correction register.

Correction example <1>

Example of correcting from 32772.3 Hz to 32768 Hz ($32772.3 \mathrm{~Hz}-131.2 \mathrm{ppm}$)
[Measuring the oscillation frequency]
The oscillation frequency ${ }^{\text {Note }}$ of each product is measured by outputting about 32 kHz from the RTCCL pin or outputting about 1 Hz from the RTC1HZ pin when the watch error correction register is set to its initial value $(00 \mathrm{H})$.

Note See 7.4.5 1 Hz output of real-time counter for the setting procedure of outputting about 1 Hz from the RTC1HZ pin, and 7.4.6 $32.768 \mathbf{~ k H z}$ output of real-time counter for the setting procedure of outputting about 32 kHz from the RTCCL pin.
[Calculating the correction value]
(When the output frequency from the RTCCL pin is 32772.3 Hz)
If the target frequency is assumed to be $32768 \mathrm{~Hz}(32772.3 \mathrm{~Hz}-131.2 \mathrm{ppm})$, the correction range for -131.2 ppm is -63.1 ppm or less, so assume DEV to be 0 .

The expression for calculating the correction value when DEV is 0 is applied.

$$
\begin{aligned}
\text { Correction value } & =\text { Number of correction counts in } 1 \text { minute } \div 3 \\
& =(\text { Oscillation frequency } \div \text { Target frequency }-1) \times 32768 \times 60 \div 3 \\
& =(32772.3 \div 32768-1) \times 32768 \times 60 \div 3 \\
& =86
\end{aligned}
$$

[Calculating the values to be set to (F6 to F0)]
(When the correction value is 86)
If the correction value is 0 or more (when delaying), assume F 6 to be 0 .
Calculate (F5, F4, F3, F2, F1, F0) from the correction value.

$\{(F 5$, F4, F3, F2, F1, F0) -1$\} \times 2$	$=86$
$($ F5 F4, F3, F2, F1, F0)	$=44$
$($ F5, F4, F3, F2, F1, F0)	$=(1,0,1,1,0,0)$

Consequently, when correcting from 32772.3 Hz to $32768 \mathrm{~Hz}(32772.3 \mathrm{~Hz}-131.2 \mathrm{ppm})$, setting the correction register such that DEV is 0 and the correction value is 86 (bits 6 to 0 of SUBCUD: 0101100) results in 32768 Hz (0 ppm).

Figure 7-27 shows the operation when (DEV, F6, F5, F4, F3, F2, F1, F0) is ($0,0,1,0,1,1,0,0$).

Figure 7-27. Operation When (DEV, F6, F5, F4, F3, F2, F1, F0) $=(\mathbf{0}, \mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{0})$

Correction example <2>

Example of correcting from 32767.4 Hz to $32768 \mathrm{~Hz}(32767.4 \mathrm{~Hz}+18.3 \mathrm{ppm})$
[Measuring the oscillation frequency]
The oscillation frequency ${ }^{\text {Note }}$ of each product is measured by outputting about 32 kHz from the RTCCL pin or outputting about 1 Hz from the RTC1HZ pin when the watch error correction register is set to its initial value $(00 \mathrm{H})$.

Note See 7.4.5 1 Hz output of real-time counter for the setting procedure of outputting about 1 Hz from the RTC1HZ pin, and 7.4.6 $32.768 \mathbf{~ k H z}$ output of real-time counter for the setting procedure of outputting about 32 kHz from the RTCCL pin.
[Calculating the correction value]
(When the output frequency from the RTC1Hz pin is 0.9999817 Hz)
Oscillation frequency $=32768 \times 0.9999817 \approx 32767.4 \mathrm{~Hz}$
Assume the target frequency to be $32768 \mathrm{~Hz}(32767.4 \mathrm{~Hz}+18.3 \mathrm{ppm})$ and DEV to be 1 .
The expression for calculating the correction value when DEV is 1 is applied.

$$
\begin{aligned}
\text { Correction value } & =\text { Number of correction counts in } 1 \text { minute } \\
& =(\text { Oscillation frequency } \div \text { Target frequency }-1) \times 32768 \times 60 \\
& =(32767.4 \div 32768-1) \times 32768 \times 60 \\
& =-36
\end{aligned}
$$

[Calculating the values to be set to (F6 to F0)]
(When the correction value is -36)
If the correction value is 0 or less (when speeding up), assume F6 to be 1.
Calculate (F5, F4, F3, F2, F1, F0) from the correction value.

$$
\begin{array}{ll}
-\{(/ F 5, / F 4, / F 3, / F 2, / F 1, / F 0)+1\} \times 2 & =-36 \\
(/ F 5, / F 4, / F 3, / F 2, / F 1, / F 0) & =17 \\
(/ F 55, / F 4, / F 3, / F 2, / F 1, / F 0) & =(0,1,0,0,0,1) \\
(\text { F5, F4, F3, F2, F1, F0) } & =(1,0,1,1,1,0)
\end{array}
$$

Consequently, when correcting from 32767.4 Hz to $32768 \mathrm{~Hz}(32767.4 \mathrm{~Hz}+18.3 \mathrm{ppm})$, setting the correction register such that DEV is 1 and the correction value is -36 (bits 6 to 0 of SUBCUD: 1101110) results in 32768 Hz (0 ppm).

Figure 7-28 shows the operation when (DEV, F6, F5, F4, F3, F2, F1, F0) is ($1,1,1,0,1,1,1,0$).

Figure 7-28. Operation When (DEV, F6, F5, F4, F3, F2, F1, F0) $=(1,1,1,0,1,1,1,0)$

7FFFH - 24H (36)

CHAPTER 8 WATCHDOG TIMER

8.1 Functions of Watchdog Timer

The watchdog timer is mounted onto all 78K0R/Lx3 microcontroller products.
The watchdog timer operates on the internal low-speed oscillation clock.
The watchdog timer is used to detect an inadvertent program loop. If a program loop is detected, an internal reset signal is generated.

Program loop is detected in the following cases.

- If the watchdog timer counter overflows
- If a 1-bit manipulation instruction is executed on the watchdog timer enable register (WDTE)
- If data other than "ACH" is written to WDTE
- If data is written to WDTE during a window close period

When a reset occurs due to the watchdog timer, bit 4 (WDRF) of the reset control flag register (RESF) is set to 1 . For details of RESF, see CHAPTER 22 RESET FUNCTION.

When 75% of the overflow time is reached, an interval interrupt can be generated.

8.2 Configuration of Watchdog Timer

The watchdog timer includes the following hardware.

Table 8-1. Configuration of Watchdog Timer

Item	Configuration
Control register	Watchdog timer enable register (WDTE)

How the counter operation is controlled, overflow time, window open period, and interval interrupt are set by the option byte.

Table 8-2. Setting of Option Bytes and Watchdog Timer

Setting of Watchdog Timer	Option Byte (000COH)
Watchdog timer interval interrupt	Bit 7 (WDTINT)
Window open period	Bits 6 and 5 (WINDOW1, WINDOW0)
Controlling counter operation of watchdog timer	Bit 4 (WDTON)
Overflow time of watchdog timer	Bits 3 to 1 (WDCS2 to WDCS0)
Controlling counter operation of watchdog timer (in HALT/STOP mode)	Bit 0 (WDSTBYON)

Remark For the option byte, see CHAPTER 26 OPTION BYTE.

Figure 8-1. Block Diagram of Watchdog Timer

8.3 Register Controlling Watchdog Timer

The watchdog timer is controlled by the watchdog timer enable register (WDTE).
(1) Watchdog timer enable register (WDTE)

Writing "ACH" to WDTE clears the watchdog timer counter and starts counting again.
This register can be set by an 8-bit memory manipulation instruction.
Reset signal generation sets this register to 9 AH or $1 \mathrm{AH}^{\text {Note }}$.

Figure 8-2. Format of Watchdog Timer Enable Register (WDTE)

Address:	BH	After reset: $9 \mathrm{AH} / 1 \mathrm{AH}^{\text {Note }}$		R/W				
Symbol	7	6	5	4	3	2	1	0
WDTE								

Note The WDTE reset value differs depending on the WDTON setting value of the option byte (000COH). To operate watchdog timer, set WDTON to 1.

WDTON Setting Value	
WDTE Reset Value	
0 (watchdog timer count operation disabled)	1 AH
1 (watchdog timer count operation enabled)	9 AH

Cautions 1. If a value other than "ACH" is written to WDTE, an internal reset signal is generated.
2. If a 1-bit memory manipulation instruction is executed for WDTE, an internal reset signal is generated.
3. The value read from WDTE is $9 \mathrm{AH} / 1 \mathrm{AH}$ (this differs from the written value (ACH)).

8.4 Operation of Watchdog Timer

8.4.1 Controlling operation of watchdog timer

1. When the watchdog timer is used, its operation is specified by the option byte $(000 \mathrm{COH})$.

- Enable counting operation of the watchdog timer by setting bit 4 (WDTON) of the option byte $(000 \mathrm{COH})$ to 1 (the counter starts operating after a reset release) (for details, see CHAPTER 26).

WDTON	Watchdog Timer Counter
0	Counter operation disabled (counting stopped after reset)
1	Counter operation enabled (counting started after reset)

- Set an overflow time by using bits 3 to 1 (WDCS2 to WDCSO) of the option byte (000 COH) (for details, see 8.4.2 and CHAPTER 26).
- Set a window open period by using bits 6 and 5 (WINDOW1 and WINDOW0) of the option byte (000 COH) (for details, see 8.4.3 and CHAPTER 26).

2. After a reset release, the watchdog timer starts counting.
3. By writing "ACH" to WDTE after the watchdog timer starts counting and before the overflow time set by the option byte, the watchdog timer is cleared and starts counting again.
4. After that, write WDTE the second time or later after a reset release during the window open period. If WDTE is written during a window close period, an internal reset signal is generated.
5. If the overflow time expires without "ACH" written to WDTE, an internal reset signal is generated.

An internal reset signal is generated in the following cases.

- If a 1-bit manipulation instruction is executed on the watchdog timer enable register (WDTE)
- If data other than "ACH" is written to WDTE

Cautions 1. When data is written to WDTE for the first time after reset release, the watchdog timer is cleared in any timing regardless of the window open time, as long as the register is written before the overflow time, and the watchdog timer starts counting again.
2. If the watchdog timer is cleared by writing "ACH" to WDTE, the actual overflow time may be different from the overflow time set by the option byte by up to $2 / f \mathrm{fiL}$ seconds.
3. The watchdog timer can be cleared immediately before the count value overflows.
<Example> When the overflow time is set to $2^{10} /$ fill, writing "ACH" is valid up to count value 3FH.

Cautions 4. The operation of the watchdog timer in the HALT and STOP modes differs as follows depending on the set value of bit 0 (WDSTBYON) of the option byte (000 COH).

	WDSTBYON $=0$	WDSTBYON $=1$
In HALT mode	Watchdog timer operation stops.	Watchdog timer operation continues.
In STOP mode		

If WDSTBYON $=0$, the watchdog timer resumes counting after the HALT or STOP mode is released. At this time, the counter is cleared to 0 and counting starts.
When operating with the X1 oscillation clock after releasing the STOP mode, the CPU starts operating after the oscillation stabilization time has elapsed.
Therefore, if the period between the STOP mode release and the watchdog timer overflow is short, an overflow occurs during the oscillation stabilization time, causing a reset.
Consequently, set the overflow time in consideration of the oscillation stabilization time when operating with the X1 oscillation clock and when the watchdog timer is to be cleared after the STOP mode release by an interval interrupt.
5. The watchdog timer continues its operation during self-programming of the flash memory and EEPROM ${ }^{T M}$ emulation. During processing, the interrupt acknowledge time is delayed. Set the overflow time and window size taking this delay into consideration.

8.4.2 Setting overflow time of watchdog timer

Set the overflow time of the watchdog timer by using bits 3 to 1 (WDCS2 to WDCSO) of the option byte (000C0H).
If an overflow occurs, an internal reset signal is generated. The present count is cleared and the watchdog timer starts counting again by writing "ACH" to WDTE during the window open period before the overflow time.

The following overflow time is set.

Table 8-3. Setting of Overflow Time of Watchdog Timer

WDCS2	WDCS1	WDCS0	Overflow Time of Watchdog Timer $(\mathrm{fil}=33 \mathrm{kHz}(\mathrm{MAX} .))$
0	0	0	$2^{7} / \mathrm{fLL}(3.88 \mathrm{~ms})$
0	0	1	$2^{8} / \mathrm{fıL}$ (7.76 ms)
0	1	0	$2^{9} / \mathrm{ffL}(15.52 \mathrm{~ms})$
0	1	1	$2^{10} / \mathrm{fiL}(31.03 \mathrm{~ms})$
1	0	0	$2^{12} / \mathrm{fIL}(124.12 \mathrm{~ms})$
1	0	1	$2^{14} / \mathrm{fIL}(496.48 \mathrm{~ms})$
1	1	0	$2^{15} / \mathrm{fLL}(992.97 \mathrm{~ms})$
1	1	1	$2^{17} / \mathrm{fIL}(3971.88 \mathrm{~ms})$

Caution The watchdog timer continues its operation during self-programming of the flash memory and EEPROM emulation. During processing, the interrupt acknowledge time is delayed. Set the overflow time and window size taking this delay into consideration.

Remark fiL: Internal low-speed oscillation clock frequency

8.4.3 Setting window open period of watchdog timer

Set the window open period of the watchdog timer by using bits 6 and 5 (WINDOW1, WINDOW0) of the option byte $(000 \mathrm{COH})$. The outline of the window is as follows.

- If "ACH" is written to WDTE during the window open period, the watchdog timer is cleared and starts counting again.
- Even if "ACH" is written to WDTE during the window close period, an abnormality is detected and an internal reset signal is generated.

Example: If the window open period is 50%

Caution When data is written to WDTE for the first time after reset release, the watchdog timer is cleared in any timing regardless of the window open time, as long as the register is written before the overflow time, and the watchdog timer starts counting again.

The window open period to be set is as follows.

Table 8-4. Setting Window Open Period of Watchdog Timer

WINDOW1	WINDOW0	Window Open Period of Watchdog Timer
0	0	Setting prohibited
0	1	50%
1	0	75%
1	1	100%

Cautions 1. The watchdog timer continues its operation during self-programming of the flash memory and EEPROM emulation. During processing, the interrupt acknowledge time is delayed. Set the overflow time and window size taking this delay into consideration.
2. When bit 0 (WDSTBYON) of the option byte $(000 C O H)=0$, the window open period is 100% regardless of the values of WINDOW1 and WINDOW0.

Remark If the overflow time is set to $2^{10} / f \mathrm{fL}$, the window close time and open time are as follows.

	$(2.7 \mathrm{~V} \leq \mathrm{V} D \mathrm{LD} \leq 5.5 \mathrm{~V})$		
	Setting of Window Open Period		
	0 to 18.96 ms	75%	100%
Window open time	18.96 to 31.03 ms	9.48 to 31.03 ms	0 to 31.03 ms

<When window open period is 50% >

- Overflow time:
$2^{10} / \mathrm{fll}($ MAX. $)=2^{10} / 33 \mathrm{kHz}($ MAX. $)=31.03 \mathrm{~ms}$
- Window close time:

0 to $2^{10} / \mathrm{fliL}(\mathrm{MIN}) \times.(1-0.5)=0$ to $2^{10} / 27 \mathrm{kHz}(\mathrm{MIN}) \times 0.5=$.0 to 18.96 ms

- Window open time:

$$
\begin{aligned}
& 2^{10} / \mathrm{fLL}(\mathrm{MIN} .) \times(1-0.5) \text { to } 2^{10} / \mathrm{fiL}(\mathrm{MAX} .)=2^{10} / 27 \mathrm{kHz}(\mathrm{MIN} .) \times 0.5 \text { to } 2^{10} / 33 \mathrm{kHz}(\mathrm{MAX} .) \\
& =18.96 \text { to } 31.03 \mathrm{~ms}
\end{aligned}
$$

8.4.4 Setting watchdog timer interval interrupt

Depending on the setting of bit 7 (WDTINT) of an option byte (000 COH), an interval interrupt (INTWDTI) can be generated when 75% of the overflow time is reached.

Table 8-5. Setting of Watchdog Timer Interval Interrupt

WDTINT	Use of Watchdog Timer Interval Interrupt
0	Interval interrupt is used.
1	Interval interrupt is generated when 75% of overflow time is reached.

Caution When operating with the X1 oscillation clock after releasing the STOP mode, the CPU starts

 operating after the oscillation stabilization time has elapsed.Therefore, if the period between the STOP mode release and the watchdog timer overflow is short, an overflow occurs during the oscillation stabilization time, causing a reset.
Consequently, set the overflow time in consideration of the oscillation stabilization time when operating with the X1 oscillation clock and when the watchdog timer is to be cleared after the STOP mode release by an interval interrupt.

Remark The watchdog timer continues counting even after INTWDTI is generated (until ACH is written to the WDTE register). If $A C H$ is not written to the WDTE register before the overflow time, an internal reset signal is generated.

CHAPTER 9 CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER

9.1 Functions of Clock Output/Buzzer Output Controller

The clock output/buzzer output controller is mounted onto all 78K0R/Lx3 microcontroller products.
The clock output controller is intended for carrier output during remote controlled transmission and clock output for supply to peripheral ICs.

Buzzer output is a function to output a square wave of buzzer frequency.
One pin can be used to output a clock or buzzer sound.
Two output pins, PCLBUZO and PCLBUZ1, are available.
PCLBUZO outputs a clock selected by clock output select register 0 (CKSO).
PCLBUZ1 outputs a clock selected by clock output select register 1 (CKS1).
Figure 9-1 shows the block diagram of clock output/buzzer output controller.

Figure 9-1. Block Diagram of Clock Output/Buzzer Output Controller

Note The PCLBUZO and PCLBUZ1 pins can output a clock of up to 10 MHz at $2.7 \mathrm{~V} \leq \mathrm{Vdo}$. Setting a clock exceeding 5 MHz at $\mathrm{V} D \mathrm{C}<2.7 \mathrm{~V}$ is prohibited.

9.2 Configuration of Clock Output/Buzzer Output Controller

The clock output/buzzer output controller includes the following hardware.

Table 9-1. Configuration of Clock Output/Buzzer Output Controller

Item	Configuration
Control registers	Clock output select registers 0, 1 (CKS0, CKS1) Port mode register 3 (PM3) Port register 3 (P3)

9.3 Registers Controlling Clock Output/Buzzer Output Controller

The following two registers are used to control the clock output/buzzer output controller.

- Clock output select registers 0, 1 (CKS0, CSK1)
- Port mode register 3 (PM3)
(1) Clock output select registers 0,1 (CKS0, CKS1)

These registers set output enable/disable for clock output or for the buzzer frequency output pin (PCLBUZO/PCLBUZ1), and set the output clock.
Select the clock to be output from PCLBUZO by using CKSO.
Select the clock to be output from PCLBUZ1 by using CKS1.
CKS0 and CKS1 are set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears these registers to 00 H .

Figure 9-2. Format of Clock Output Select Register n (CKSn)

Address: FFFA5H (CKS0), FFFA6H (CKS1) After reset: 00H R/W
Symbol
CKSn

$<7>$	6	5	4	3	2	1	0
PCLOEn	0	0	0	CSELn	CCSn2	CCSn1	CCSn0

PCLOEn	PCLBUZn output enable/disable specification
0	Output disable (default)
1	Output enable

CSELn	CCSn2	CCSn1	CCSn0	PCLBUZn output clock selection			
					$f_{\text {MAIN }}=$ 5 MHz	$f_{\text {MAIN }}=$ 10 MHz	$f_{\text {MAIN }}=$ 20 MHz
0	0	0	0	fmain	5 MHz	$10 \mathrm{MHz}{ }^{\text {Note }}$	Setting prohibited ${ }^{\text {Note }}$
0	0	0	1	fmain/2	2.5 MHz	5 MHz	$10 \mathrm{MHz}{ }^{\text {Note }}$
0	0	1	0	fmain $/ 2{ }^{2}$	1.25 MHz	2.5 MHz	5 MHz
0	0	1	1	fmain $/ 2{ }^{3}$	625 kHz	1.25 MHz	2.5 MHz
0	1	0	0	fmain $/ 2^{4}$	312.5 kHz	625 kHz	1.25 MHz
0	1	0	1	fmain $/ 2{ }^{11}$	2.44 kHz	4.88 kHz	9.76 kHz
0	1	1	0	${\mathrm{fmain} / 2^{12}}^{12}$	1.22 kHz	2.44 kHz	4.88 kHz
0	1	1	1	$\mathrm{fmain} / 2^{13}$	610 Hz	1.22 kHz	2.44 kHz
1	0	0	0	fsub	32.768 kHz		
1	0	0	1	fsub/2	16.384 kHz		
1	0	1	0	fsub/2 ${ }^{2}$	8.192 kHz		
1	0	1	1	fsub $/ 2^{3}$	4.096 kHz		
1	1	0	0	fsub/2 ${ }^{4}$	2.048 kHz		
1	1	0	1	fsub $/ 2^{5}$	1.024 kHz		
1	1	1	0	fsub $/ 2^{6}$	512 Hz		
1	1	1	1	fsub $/ 2^{7}$	256 Hz		

Note Setting an output clock exceeding 10 MHz is prohibited when $2.7 \mathrm{~V} \leq \mathrm{VDD}$. Setting a clock exceeding 5 MHz at $V_{D D}<2.7 \mathrm{~V}$ is also prohibited.

Cautions 1. Change the output clock after disabling clock output (PCLOEn $=0$).
2. If the selected clock (fmain or fsub) stops during clock output (PCLOEn =1), the output becomes undefined.
3. To shift to STOP mode when the main system clock is selected (CSELn $=0$), set PCLOEn $=0$ before executing the STOP instruction. When the subsystem clock is selected (CSELn = 1), PCLOEn = $\mathbf{1}$ can be set because the clock can be output in STOP mode.

Remarks 1. $\mathrm{n}=0,1$
2. fmain: Main system clock frequency
3. fsub: Subsystem clock frequency

(2) Port mode register 3 (PM3)

This register sets port 3 input/output in 1-bit units.
When using the P31/PCLBUZ1/TI00/TO03/RTCDIV/RTCCL/INTP2 and P32/PCLBUZ0/TI01/TO01/INTP5 pins for clock output/buzzer output, clear PM31 and PM32 and the output latches of P32 and P31 to 0 .

PM3 is set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets this register to FFH.

Figure 9-3. Format of Port Mode Register 3 (PM3)

9.4 Operations of Clock Output/Buzzer Output Controller

One pin can be used to output a clock or buzzer sound.
Two output pins, PCLBUZO and PCLBUZ1, are available.
PCLBUZO outputs a clock/buzzer selected by clock output select register 0 (CKSO). PCLBUZ1 outputs a clock/buzzer selected by clock output select register 1 (CKS1).

9.4.1 Operation as output pin

PCLBUZn is output as the following procedure.
<1> Select the output frequency with bits 0 to 3 (CCSn0 to CCSn2, CSELn) of the clock output select register (CKSn) of the PCLBUZn pin (output in disabled status).
<2> Set bit 7 (PCLOEn) of CKSn to 1 to enable clock/buzzer output.

Remark The controller used for outputting the clock starts or stops outputting the clock one clock after enabling or disabling clock output (PCLOEn) is switched. At this time, pulses with a narrow width are not output. Figure 9-4 shows enabling or stopping output using PCLOEn and the timing of outputting the clock.

Figure 9-4. Remote Control Output Application Example

Remark $\mathrm{n}=0,1$

CHAPTER 10 12-BIT A/D CONVERTER (μ PD78F150xA), 10-BIT A/D CONVERTER (μ PD78F151xA)

Item	μ PD78F150xA			μ PD78F151xA		
	78K0R/LF3 (80 pins)	78K0R/LG3 (100 pins)	78K0R/LH3 (128 pins)	$\begin{gathered} \text { 78K0R/LF3 } \\ \text { (80 pins) } \end{gathered}$	78K0R/LG3 (100 pins)	78K0R/LH3 (128 pins)
A/D converter	8 ch	12 ch		8 ch	12 ch	
Resolution	12 bits			10 bits		

10.1 Function of A/D Converter

The A/D converter is a 12-bit resolution or 10-bit resolution converter that converts analog input signals into digital values, and consists of up to twelve channels of A/D converter analog inputs (ANIO to ANI10, ANI15).

ANI1, ANI4, and ANI7 are alternatively used with operational amplifier 0, 1, and 2 outputs (AMP0O, AMP1O, and AMP2O) as pin functions. Accordingly, operational amplifier outputs can be used as analog input sources.

The following four A/D converter operation modes are available.

- Software trigger mode (Continuous conversion mode)
- Software trigger mode (Single conversion mode)
- Timer trigger mode (Continuous conversion mode)
- Timer trigger mode (Single conversion mode)

Figure 10-1. Block Diagram of 12-Bit A/D Converter (μ PD78F150xA)

Remark 78KOR/LF3
ANIO-ANI6, ANI15
78K0R/LG3, 78K0R/LH3: ANIO-ANI10, ANI15

令
Figure 10-2. Block Diagram of 10-Bit A/D Converter (μ PD78F151xA)

10.2 Configuration of A/D Converter

The A/D converter includes the following hardware.

(1) ANIO to ANI10, ANI15 pins

These are the analog input pins of the A/D converter. They input analog signals to be converted into digital signals. Pins other than the one selected as the analog input pin can be used as I/O port pins.

```
Remark 78K0R/LF3: ANIO-ANI6, ANI15
78K0R/LG3, 78K0R/LH3: ANIO-ANI10, ANI15
```

(2) Sample \& hold circuit

The sample \& hold circuit samples each of the analog input voltages sequentially sent from the input circuit, and sends them to the A/D voltage comparator. This circuit also holds the sampled analog input voltage during A/D conversion.
(3) Series resistor string

The series resistor string is connected between ADrefp and ADrefm, and generates a voltage to be compared with the sampled voltage value.

Figure 10-3. Circuit Configuration of Series Resistor String

(4) Voltage comparator

The voltage comparator compares the sampled voltage value and the output voltage of the series resistor string.

(5) Successive approximation register (SAR)

This register converts the result of comparison by the voltage comparator, starting from the most significant bit (MSB).
When the voltage value is converted into a digital value down to the least significant bit (LSB) (end of A/D conversion), the contents of the SAR register are transferred to the A/D conversion result register (ADCR).
(9) AVddo, AVdd pin

This pin inputs an analog power to the A/D converter. When one or more of the pins of ports 2 and 15 are used as the digital port pins, make AVddo the same potential as EVdd or Vdd.
(10) AVss pin

This is the ground potential pin of the A / D converter. Always use this pin at the same potential as that of the $\mathrm{V} s \mathrm{p}$ pin even when the A / D converter is not used.

The ground potential (AV ss) can also be used as the negative reference voltage (ADrefm) of the A / D converter. To use AVss as ADrefm, clear the ADREF bit of the ADVRC register to 0.

(11) AVrefp/Vrefout pin

This pin is used to externally input the reference voltage ($\mathrm{A} \mathrm{V}_{\mathrm{REFP}}$) of the A / D converter or output the voltage ($\mathrm{V}_{\text {REFOUT }}$) generated by the voltage reference.
To use $A V_{\text {refp }}$ as the positive reference voltage (ADrefp) of the A / D converter, clear the VRON bit of the ADVRC register to 0 . To use Vrefout as ADrefp, set the VRON bit to 1.
The analog signal input to ANIO to ANI10, ANI15 is converted into a digital signal, based on the voltage applied across ADrefp and ADrefm.

(12) AVrefm pin

This pin is used to externally input the reference voltage ($A V_{\text {REFM }}$) of the A / D converter. To use $A V_{\text {refm }}$ as the negative reference voltage (ADREFM) of the A/D converter, set the ADREF bit of the ADVRC register to 1 .

Remark 78K0R/LF3: ANIO-ANI6, ANI15
78K0R/LG3, 78K0R/LH3: ANI0-ANI10, ANI15
(13) AVref pin

This pin is used to externally input the reference voltage.

10.3 Registers Used in A/D Converter

The A/D converter uses the following ten registers.

- Peripheral enable register 0 (PERO)
- A/D converter mode register (ADM)
- A/D converter mode register 1 (ADM1)
- Analog reference voltage control register (ADVRC)
- 12-bit A/D conversion result register (ADCR) (μ PD78F150xA only)
- 10-bit A/D conversion result register (ADCR) (μ PD78F151xA only)
- 8-bit A/D conversion result register (ADCRH)
- Analog input channel specification register (ADS)
- A/D port configuration register (ADPC)
- Port mode registers 2, 15 (PM2, PM15)
(1) Peripheral enable register 0 (PERO)

PERO is used to enable or disable use of each peripheral hardware macro. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.

When the A/D converter is used, be sure to set bit 5 (ADCEN) of this register to 1.
PERO can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 10-4. Format of Peripheral Enable Register 0 (PERO)

Note 78K0R/LG3, 78K0R/LH3 only

Caution When setting the A/D converter, be sure to set ADCEN to 1 first. If ADCEN $=0$, writing to a control register of the A/D converter is ignored, and, even if the register is read, only the default value is read.

(2) A/D converter mode register (ADM)

This register sets the conversion time for analog input to be A/D converted, and starts/stops conversion.
ADM can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 10-5. Format of A/D Converter Mode Register (ADM)

Address:	F30H	After reset: 00 H	R/W					
Symbol	<7>	6	5	4	3	2	1	<0>
ADM	ADCS	ADSCM	FR2 ${ }^{\text {Note } 1}$	FR1 ${ }^{\text {Note } 1}$	FR0 ${ }^{\text {Note } 1}$	LV1 ${ }^{\text {Note } 1}$	LV0 ${ }^{\text {Note } 1}$	ADCE

ADCS	A/D conversion operation control ${ }^{\text {Notes } 2,3,4}$
0	Stops conversion operation
1	Enables conversion operation

ADSCM	A/D conversion operation mode specification
0	Continuous conversion mode
1	Single conversion mode

ADCE	A/D voltage comparator operation contro ${ }^{\text {Note } 4}$
0	Stops A/D voltage comparator operation
1	Enables A/D voltage comparator operation

Notes 1. For details of FR2 to FRO, LV1, LV0, and A/D conversion, see Table 10-2 A/D Conversion Time Selection.
2. When using the A / D converter in timer trigger mode, do not set ADCS to 1. (ADCS automatically switches to 1 when a timer trigger signal is generated.) However, ADCS may be set to 0 to stop A/D conversion.
3. Read $A D C S$ to determine whether A / D conversion is under execution.
4. The operation of the A/D voltage comparator is controlled by ADCS and ADCE, and it takes $1 \mu \mathrm{~s}$ from operation start to operation stabilization. Therefore, when ADCS is set to 1 after 1μ s or more has elapsed from the time ADCE is set to 1 , the conversion result at that time has priority over the first conversion result. Otherwise, ignore data of the first conversion.

Table 10-1. Settings of ADCS and ADCE

ADCS	ADCE	A/D Conversion Operation
0	0	Stop status (DC power consumption path does not exist)
0	1	Conversion waiting mode (A/D voltage comparator operation, only comparator lonsumes power)
1	0	Setting prohibited
1	1	Conversion mode (A/D voltage comparator operation)

Figure 10-6. Timing Chart When A/D Voltage Comparator Is Used

Note To stabilize the internal circuit, the time from the rising of the ADCE bit to the falling of the ADCS bit must be 1μ s or longer.

Cautions 1. A/D conversion must be stopped before rewriting bits ADSCM, FRO to FR2, LV1, and LV0 to values other than the identical data.

2 When using the A/D converter in normal mode $2(L V 1=0, L V 0=1)$ or low voltage mode (LV1 = 1, LVO = 0), enable the input gate voltage boost circuit for the A/D converter by using the analog reference voltage control register (ADVRC), and then set ADCE and ADCS to 1. After the voltage boost circuit stabilization time ($10 \mu \mathrm{~S}$) passes after the input gate voltage boost circuit for the A/D converter has been enabled, set ADCS to 1.

Table 10-2. A/D Conversion Time Selection

A/D Converter Mode Register (ADM)					Mode	Conversion Time Selection					Conversion Clock (f_{AD})
FR2	FR1	FR0	LV1	LV0			$\text { fcLK }=$ 1 MHz	$\begin{aligned} & \text { fcLk }= \\ & 8 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fcLk }= \\ & 10 \mathrm{MHz} \end{aligned}$	$\mathrm{fcLK}=$ 20 MHz	
0	0	0	0	0	Normal mode 1 Note 1	240/fclk	Setting prohibited	$30 \mu \mathrm{~s}$	$24 \mu \mathrm{~s}$	$12 \mu \mathrm{~s}$	fcık/12
0	0	1				160/fclk		$20 \mu \mathrm{~s}$	$16 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$	fCLk/8
0	1	0				120/fflk		$15 \mu \mathrm{~s}$	$12 \mu \mathrm{~s}$	$6 \mu \mathrm{~s}$	fclk/6
0	1	1				100/fflk		$12.5 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	fCLK/5
1	0	0				80/fclk		$10 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$	Setting prohibited	fclk/4
1	0	1				60/fclk		$7.5 \mu \mathrm{~s}$	$6 \mu \mathrm{~s}$		fclk/3
1	1	0				40/fclk	$40 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	Setting prohibited		fclk/2
1	1	1				20/fclk	$20 \mu \mathrm{~s}$	Setting prohibited			fclk
0	0	0	0	1	Normal mode 2 Note 2	240/fclk	Setting prohibited	$30 \mu \mathrm{~s}$	$24 \mu \mathrm{~s}$	$12 \mu \mathrm{~s}$	fclk/12
0	0	1				160/fclk		$20 \mu \mathrm{~s}$	$16 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$	fclk/8
0	1	0				120/fflı		$15 \mu \mathrm{~s}$	$12 \mu \mathrm{~s}$	$6 \mu \mathrm{~s}$	fCLK/6
0	1	1				100/fflk		$12.5 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	fCLK/5
1	0	0				80/fclk		$10 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$	Setting prohibited	fclk/4
1	0	1				60/fclk		$7.5 \mu \mathrm{~s}$	$6 \mu \mathrm{~s}$		fCLk/3
1	1	0				40/fclk	$40 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	Setting prohibited		fclk/2
1	1	1				20/fclk	$20 \mu \mathrm{~s}$	Setting prohibited			fclk
0	0	0	1	0	Low voltage mode Note 3	300/fclk	Setting prohibited	$37.5 \mu \mathrm{~s}$	$30 \mu \mathrm{~s}$	$15 \mu \mathrm{~s}$ Note 4	fclk/12
0	0	1				200/fclk		$25 \mu \mathrm{~s}$	$20 \mu \mathrm{~s}^{\text {Note } 4}$	$10 \mu \mathrm{~s}$ Note 4	fclk/8
0	1	0				150/fclı		$18.8 \mu \mathrm{~s}^{\text {Note } 4}$	$15 \mu \mathrm{~s}^{\text {Note } 4}$	$7.5 \mu \mathrm{~s}^{\text {Note } 4}$	fclk/6
0	1	1				125/fclk		$15.6 \mu \mathrm{~s}^{\text {Note } 4}$	$12.5 \mu \mathrm{~s}^{\text {Note } 4}$	$6.25 \mu \mathrm{~s}^{\text {Note } 4}$	fCLK/5
1	0	0				100/fclk		$12.5 \mu \mathrm{~s}^{\text {Note } 4}$	$10 \mu \mathrm{~s}$ Note 4	Setting	fclk/4
1	0	1				75/fclk		$9.38 \mu \mathrm{~S}^{\text {Note } 4}$	$7.5 \mu \mathrm{~s}^{\text {Note } 4}$	prohibited	fclk/3
1	1	0				50/fclk	$50 \mu \mathrm{~s}$	$6.25 \mu \mathrm{~s}^{\text {Note } 4}$	Setting		fclk/2
1	1	1				25/fclk	$25 \mu \mathrm{~s}$	Setting prohibited			fcLk
Other than above					Setting prohibited						

Notes 1. Normal mode 1: $2.7 \mathrm{~V} \leq \mathrm{AVDDO} \leq 5.5 \mathrm{~V}$, when operation of the input gate voltage boost circuit for the A / D converter is stopped.
2. Normal mode 2: $2.3 \mathrm{~V} \leq \mathrm{AVDDO} \leq 5.5 \mathrm{~V}$, when operation of the input gate voltage boost circuit for the A / D converter is operating.
3. Low voltage mode: $1.8 \mathrm{~V} \leq \mathrm{AVDDO} \leq 5.5 \mathrm{~V}$, when operation of the input gate voltage boost circuit for the A / D converter is operating.
4. When $\mathrm{TA}=0$ to $50^{\circ} \mathrm{C}$ and $2.3 \mathrm{~V} \leq \mathrm{AVDDO} \leq 3.6 \mathrm{~V}$.

Caution When using the A/D converter in normal mode 2 (LV1 = $0, L V 0=1$) or low voltage mode (LV1 = 1, LV0 $=0$), enable the input gate voltage boost circuit for the A/D converter by using the analog reference voltage control register (ADVRC), and then set ADCE and ADCS to 1. After the voltage boost circuit stabilization time ($10 \mu \mathrm{~s}$) passes after the input gate voltage boost circuit for the A / D converter has been enabled, set ADCS to 1.
Remark fcLk: CPU/peripheral hardware clock frequency

Figure 10-7. A/D Converter Sampling and A/D Conversion Timing

(3) A/D converter mode register 1 (ADM1)

This register sets the A / D conversion start trigger.
ADM1 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 10-8. Format of A/D Converter Mode Register 1 (ADM1)

Address:	$F F 32 \mathrm{H}$	et:						
Symbol	<7>	6	5	4	3	2	1	0
ADM1	ADTMD	0	0	0	0	0	0	ADTRS

ADTMD	A/D trigger mode selection
0	Software trigger mode
1	Timer trigger mode (hardware trigger mode)

ADTRS	
0	INTTM02
1	INTTM03

Caution Rewriting ADM1 during A/D conversion is prohibited. Rewrite it when conversion operation is stopped (ADCS = 0).
<R> (4) Analog reference voltage control register (ADVRC)
This register is used to select the reference voltage supplies of the A/D and D/A converters, control the operation of the input gate voltage boost circuit for the A/D converter, and control the voltage reference (VR) operation.
The electrical specifications of the A/D converter can be maintained even during low-voltage operation thanks to the operation of the input gate voltage boost circuit for the A/D converter.
ADVRC can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 10-9. Format of Analog Reference Voltage Control Register (ADVRC)

Address:	FFF36H A	After reset: 00 H	R/W					
Symbol	7	6	5	4	3	2	1	0
ADVRC	ADREF ${ }^{\text {Note }}$	0	0	0	VRSEL ${ }^{\text {Note }}$	0	VRGV ${ }^{\text {Note }}$	VRON ${ }^{\text {Note }}$

ADREF $^{\text {Note }}$	Negative reference voltage supply selection of A / D converter selection
0	$A V_{s s}$
1	AV
REFM	

VRSEL ${ }^{\text {Note }}$	VRGV	VRON ${ }^{\text {Note }}$	Positive reference voltage supplies selection of A / D and D / A converters	Operation control of voltage reference	Output voltage selection of voltage reference	Operation control of input gate voltage boost circuit for A/D converter	Relationship with the conversion mode used
0	0	0	AV ${ }_{\text {Refp }}$ (external voltage reference input)	Stops operation (Hi-Z)	2.5 V	Stops operation	Can be set in normal mode 1.
0	1	0			2.0 V	Enables operation	Can be set in normal mode 2 or low voltage mode.
1	0	0	Vrefout (voltage reference output)	Stops operation (pull-down output)	2.5 V	Stops operation	-
1	0	1		Enables operation	2.5 V	Enables operation	Can be set in normal mode 2 or low voltage mode.
1	1	0		Stops operation (pull-down output)	2.0 V		-
1	1	1		Enables operation	2.0 V		Can be set in normal mode 2 or low voltage mode.
Other than the above			Setting prohibited				

Note These bits can be set only for μ PD78F150xA. They are fixed "0" for μ PD78F151xA.

Caution 1. When using the A/D converter in normal mode $2(L V 1=0, L V 0=1)$ or low voltage mode (LV1 = 1, LVO = 0), enable the input gate voltage boost circuit for the A/D converter by using the analog reference voltage control register (ADVRC), and then set ADCE and ADCS to 1. After the voltage boost circuit stabilization time ($10 \mu \mathrm{~s}$) passes after the input gate voltage boost circuit for the A/D converter has been enabled, set ADCS to 1.

Cautions 2. To use voltage reference output to the positive reference voltage of the A/D converter, be sure to set VRON to 1 after setting VRSEL to 1.
3. Do not change the output voltage of the reference voltage by using VRGV during the voltage reference operation (VRON =1).

Remark The combinations of the selectable reference voltage supplies (positive side, negative side) of the A/D converter are as follows, according to the ADREF, VRSEL and VRON settings.

Table 10-3. Settings of ADREF, VRSEL and VRON

ADREF	VRSEL	VRON	Positive reference voltage of A / D converter (ADrefp)	Negative reference voltage of A / D converter (ADrefm)
0	0	0	$\mathrm{AV}_{\text {refp }}$	AVss
0	1	1	Vrefout (VR output)	AVss
1	0	0	AV ${ }_{\text {Refp }}$	AV refm
1	1	1	Vrefout (VR output)	AVrefm

(5) 12-bit A/D conversion result register (ADCR) (μ PD78F150xA only)

This register is a 16 -bit register that stores the A/D conversion result in the select mode. The higher 4 bits are fixed to 0 . Each time A/D conversion ends, the conversion result is loaded from the successive approximation register. The higher 4 bits of the conversion result are stored in FFF1FH and the lower 8 bits are stored in the FFF1EH.
ADCR can be read by a 16-bit memory manipulation instruction.
Reset signal generation clears this register to 0000 H .

Figure 10-10. Format of 10-bit A/D Conversion Result Register (ADCR)

Address: FFF1EH, FFF1FH After reset: 0000H R

Caution When writing to A/D converter mode register (ADM), analog input channel specification register (ADS), and A/D port configuration register (ADPC), the contents of ADCR may become undefined. Read the conversion result following conversion completion before writing to ADM, ADS, and ADPC. Using timing other than the above may cause an incorrect conversion result to be read.
(6) 10-bit A/D conversion result register (ADCR) (μ PD78F151xA only)

This register is a 16-bit register that stores the A / D conversion result in the select mode. The higher 4 bits are fixed to 0 . The lower 2 bits are undefined. Each time A / D conversion ends, the conversion result is loaded from the successive approximation register. The higher 4 bits of the conversion result are stored in FFF1FH and the lower 8 bits are stored in the FFF1EH.
ADCR can be read by a 16-bit memory manipulation instruction.
Reset signal generation clears this register to 0000H.

Figure 10-11. Format of 12-bit A/D Conversion Result Register (ADCR)

Address: FFF1EH, FFF1FH After reset: 0000H R

Caution When writing to A / D converter mode register (ADM), analog input channel specification register (ADS), and A/D port configuration register (ADPC), the contents of ADCR may become undefined. Read the conversion result following conversion completion before writing to ADM, ADS, and ADPC. Using timing other than the above may cause an incorrect conversion result to be read.

(7) 8-bit A/D conversion result register (ADCRH)

This register is an 8-bit register that stores the A / D conversion result. The higher 8 bits of 12 -bit resolution are stored. ADCRH can be read by an 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 10-12. Format of 8-bit A/D Conversion Result Register (ADCRH)

Note If address FFF1FH is read, the data of ADCRH (lower four bits of FFF1FH and higher four bits of FFF1EH) will be read.

Caution When writing to A/D converter mode register (ADM), analog input channel specification register (ADS), and A/D port configuration register (ADPC), the contents of ADCRH may become undefined. Read the conversion result following conversion completion before writing to ADM, ADS, and ADPC. Using timing other than the above may cause an incorrect conversion result to be read.
(8) Analog input channel specification register (ADS)

This register specifies the input channel of the analog voltage to be A/D converted.
ADS can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 10-13. Format of Analog Input Channel Specification Register (ADS)

Address: FFF31H		After reset: 00 H R/W					1	0
Symbol	7	6	5	4	3	2		
ADS	0	0	0	0	ADS3	ADS2	ADS1	ADS0

	ADS3	ADS2	ADS1	ADSO	Analog input channel
	0	0	0	0	ANIO
	0	0	0	1	ANI1
	0	0	1	0	ANI2
	0	0	1	1	ANI3
	0	1	0	0	ANI4
	0	1	0	1	ANI5
	0	1	1	0	ANI6
Note \rightarrow	0	1	1	1	ANI7
Note \rightarrow	1	0	0	0	ANI8
Note \rightarrow	1	0	0	1	ANI9
Note \rightarrow	1	0	1	0	ANI10
	1	1	1	1	ANI15
	Other than the above				Setting prohibited

Note This setting is prohibited for 78K0R/LF3.

Cautions 1. Be sure to clear bits 4 to 7 to " 0 ".
2 Set a channel to be used for A/D conversion in the input mode by using port mode registers 2 and 15 (PM2, PM15).
3. Do not set the pin that is set by ADPC as digital I/O by ADS.
4. When using an operational amplifier n, the output signal of an operational amplifier n can be used as an analog input.

Remark 78K0R/LF3:

$$
\mathrm{n}=0,1
$$

$$
\text { 78K0R/LG3, 78K0R/LH3: } \mathrm{n}=0 \text { to } 2
$$

(9) A / D port configuration register (ADPC)

This register switches the ANIO/AMPO-/P20 to ANI7/AMP2O/P27, ANI8/AMP2+/P150 to ANI10/P152 and ANI15/AV Refm/P157 pins to analog input of A/D converter or digital I/O of port.
ADPC can be set by an 8-bit memory manipulation instruction.
Reset signal generation sets this register to 10 H .

Remark 78K0R/LF3:

ANIO-ANI6, ANI15
78K0R/LG3, 78K0R/LH3: ANIO-ANI10, ANI15

Figure 10-14. Format of A/D Port Configuration Register (ADPC)

Address: F0017H After reset: 10H R/W

Symbol	7	6	5	4	3	2	1	0
ADPC	0	0	0	ADPC4	ADPC3	ADPC2	ADPC1	ADPC0

Note This setting is prohibited for $78 \mathrm{~K} 0 \mathrm{R} / \mathrm{LF} 3$.

Cautions 1. Set a channel to be used for A / D conversion in the input mode by using port mode registers 2 and 15 (PM2, PM15).
2. Do not set the pin that is set by ADPC as digital I/O by ADS.

(10) Port mode registers 2, 15 (PM2, PM15)

When using ANIO/AMP0-/P20 to ANI7/AMP2O/P27, ANI8/AMP2+/P150 to ANI10/P152 and ANI15/AVrefm/P157 pins for analog input port, set PM20 to PM27, PM150 to PM152, and P157 to 1. The output latches of P20 to P27, P150 to P152 and P157 at this time may be 0 or 1.

If PM20 to PM27, PM150 to PM152 and PM157 are set to 0, they cannot be used as analog input port pins. PM2 and PM15 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets these registers to FFH.

Remark	78K0R/LF3:	ANIO-ANI6, ANI15
	$78 \mathrm{KOR} / \mathrm{LG3}, 78 \mathrm{KOR} / \mathrm{LH} 3:$	ANIO-ANI10, ANI15

Caution If a pin is set as an analog input port, not the pin level but " 0 " is always read.

Figure 10-15. Formats of Port Mode Registers 2, 15 (PM2, PM15)

- 78K0R/LF3

Address: FFF2FH After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
PM15	PM157	1	1	1	1	1	1	1

- 78K0R/LG3, 78K0R/LH3

Address: FFF22H After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20

Address: FFF2FH After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
PM15	PM157	1	1	1	1	PM152	PM151	PM150

PMmn	Pmn pin I/O mode selection (mn=20 to 27, 150 to 152, 157)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

The ANIO/AMP0-/P20 to ANI7/AMP2O/P27, ANI8/AMP2+/P150 to ANI10/P152 and ANI15/AVrefm/P157 pins are as shown below depending on the settings of ADPC, ADS, PM2, PM15, OAENn bit and ADREF bit.

> Caution When an operational amplifier is used, pins AMPn+, AMPn-, and AMPnO are used, so the alternative analog input functions cannot be used. The operational amplifier output signals, however, can be used as analog inputs.

Table 10-4. Setting Functions of ANIO/AMP0-/P20, ANI2/AMP0+/P22, ANI3/AMP1-/P23, ANI5/AMP1+/P25, ANI6/AMP2-/P26, and ANI8/AMP2+/P150 Pins

ADPC register	PM2 and PM15 registers	OAENn bit	ADS register	ANIO/AMPO-/P20, ANI2/AMP0+/P22, ANI3/AMP1-/P23, ANI5/AMP1+/P25, ANI6/AMP2-/P26, and ANI8/AMP2+/P150 Pins
Digital I/O selection	Input mode	0	-	Digital input
		1	-	Setting prohibited
	Output mode	0	-	Digital output
		1	-	Setting prohibited
Analog input selection	Input mode	0	Selects ANI.	Analog input (to be converted)
			Does not select ANI.	Analog input (not to be converted)
		1	Selects ANI.	Setting prohibited
			Does not select ANI.	Operational amplifier input
	Output mode	-	-	Setting prohibited

Remark 78K0R/LF3:

78K0R/LG3, 78K0R/LH3: ANIO/AMP0-/P20, ANI2/AMP0+/P22, ANI3/AMP1-/P23, ANI5/AMP1+/P25, ANI6/AMP2-/P26, ANI8/AMP2+/P150, $\mathrm{n}=0$ to 2

Table 10-5. Setting Functions of ANI1/AMP0O/P21, ANI4/AMP1O/P24, and ANI7/AMP2O/P27 Pins

ADPC register	PM2 register	OAENn bit	ADS register	ANI1/AMP0O/P21, ANI4/AMP1O/P24, and ANI7/AMP2O/P27 Pins
Digital I/O selection	Input mode	0	-	Digital input
		1	-	Setting prohibited
	Output mode	0	-	Digital output
		1	-	Setting prohibited
Analog input selection	Input mode	0	Selects ANI.	Analog input (to be converted)
			Does not select ANI.	Analog input (not to be converted)
		1	Selects ANI.	Operational amplifier output (not to be converted)
			Does not select ANI.	Operational amplifier output (to be converted)
	Output mode	-	-	Setting prohibited

Remark 78K0R/LF3:
78K0R/LG3, 78K0R/LH3: ANI1/AMP0O/P21, ANI4/AMP1O/P24, and ANI7/AMP2O/P27, $\mathrm{n}=0$ to 2

Table 10-6. Setting Functions of ANI9/P151 and ANI10/AM152 Pins

ADPC register	PM15 register	ADS register	ANI9/P151 and ANI10/AM152 Pins
	Input mode	-	Digital input
	Output mode	-	Digital output
Analog input selection	Input mode	Selects ANI.	Analog input (to be A/D converted)
		Does not select ANI.	Analog input (not to be A/D converted)
	Output mode	-	Setting prohibited

Remark 78K0R/LF3: ANI9/P151 and ANI10/AM152 are not mounted.
78K0R/LG3, 78K0R/LH3: ANI9/P151, ANI10/AM152

Table 10-7. Setting Functions of ANI15/AVrefm/P157 Pin

ADPC register	PM15 register	ADREF bit	ADS register	ANI15/AVReFm/P157 Pin
Digital I/O selection	Input mode	0	-	Digital input
		1	-	Setting prohibited
	Output mode	0	-	Digital output
		1	-	Setting prohibited
Analog input selection	Input mode	0	Selects ANI.	Analog input (to be converted)
			Does not select ANI.	Analog input (not to be converted)
		1	-	Negative reference voltage input of A / D converter
	Output mode	-	-	Setting prohibited

10.4 A/D Converter Operations

10.4.1 Basic operations of A/D converter

$<1>$ Set bit 5 (ADCEN) of peripheral enable register 0 (PERO) to 1 to start the supply of the input clock to the A/D converter.
<2> Set the A/D conversion time by using bits 5 to 1 (FR2 to FR0, LV1, and LV0) of A/D converter mode register (ADM), and set the operation mode by using bit 6 (ADMD) of ADM.
<3> Use bits 7, 3, 1, and 0 (ADREF, VRSEL, VRGV, and VRON) of the analog reference voltage control register (ADVRC) to specify the reference voltage source of the A/D converter and the operation of the input gate voltage boost circuit for the A/D converter.
<4> Set bit 0 (ADCE) of ADM to 1 to start the operation of the A/D voltage comparator.
$<5>$ Set the channels for A/D conversion to analog input by using the A/D port configuration register (ADPC) and set to input mode by using port mode registers (PM2 and PM15).
$<6>$ Select one channel for A/D conversion using the analog input channel specification register (ADS).
$<7>$ Use the A/D converter mode register 1 (ADM1) to set the trigger mode.
$<8>$ Start the conversion operation by setting bit 7 (ADCS) of ADM to 1 , if the software trigger mode has been set in step <7>.
If timer trigger mode was specified in step <7>, ADCS is automatically set to 1 and A/D conversion starts when the timer trigger signal is detected.(<9> to <15> are operations performed by hardware.)
$<9>$ The voltage input to the selected analog input channel is sampled by the sample \& hold circuit.
$<10>$ When sampling has been done for a certain time, the sample \& hold circuit is placed in the hold state and the sampled voltage is held until the A / D conversion operation has ended.
$<11>$ Bit 11 of the successive approximation register (SAR) is set. The series resistor string voltage tap is set to (1/2) $A V_{\text {ref }}$ by the tap selector.
<12> The voltage difference between the series resistor string voltage tap and sampled voltage is compared by the voltage comparator. If the analog input is greater than (1/2) AVref, the MSB of SAR remains set to 1 . If the analog input is smaller than ($1 / 2$) $A V_{\text {ref, }}$ the MSB is reset to 0 .
$<13>$ Next, bit 10 of SAR is automatically set to 1 , and the operation proceeds to the next comparison. The series resistor string voltage tap is selected according to the preset value of bit 9 , as described below.

- Bit $11=1:(3 / 4) A V_{\text {ref }}$
- Bit $11=0$: (1/4) $A V_{\text {ref }}$

The voltage tap and sampled voltage are compared and bit 8 of SAR is manipulated as follows.

- Sampled voltage \geq Voltage tap: Bit $10=1$
- Sampled voltage < Voltage tap: Bit $10=0$
$<14>$ Comparison is continued in this way up to bit 0 of SAR.
<15> Upon completion of the comparison of 12 bits, an effective digital result value remains in SAR, and the result value is transferred to the A/D conversion result register (ADCR, ADCRH) and then latched.
At the same time, the A/D conversion end interrupt request (INTAD) can also be generated.
$<16>$ If single conversion mode has been set in step <2>, ADCS is automatically cleared to 0 and enters a wait state after the first A / D conversion ends.

If the continuous conversion mode has been set in step <2>, repeat steps <9> to <15>. To stop the A/D converter, clear ADCS to 0.
To restart A / D conversion from the status of $A D C E=1$, start from <8. . To start A / D conversion again when ADCE $=0$, set ADCE to 1 , wait for 1μ s or longer, and start step <8. To change the channel to be A / D converted, perform step <6>.

Cautions 1. Make sure the period of $<4>$ to $<8>$ is $1 \mu s$ or more.
2. To use an operational amplifier output for an analog input, start operating the operational amplifier before setting the A/D conversion operation (see CHAPTER 12 OPERATIONAL AMPLIFIER). Furthermore, do not change the operational amplifier setting during the A/D conversion operation.
3. To use an output voltage of the voltage reference for a positive reference voltage of A/D converter, start operating the voltage reference before setting the A/D conversion operation (see CHAPTER 13 VOLTAGE REFERENCE). Furthermore, do not change the voltage reference setting during the A / D conversion operation.
4. When using the A/D converter in normal mode $2(L V 1=0, L V 0=1)$ or low voltage mode (LV1 = 1 , LVO = 0), enable the input gate voltage boost circuit for the A / D converter by using the analog reference voltage control register (ADVRC), and then set ADCE and ADCS to 1. After the voltage boost circuit stabilization time ($10 \mu \mathrm{~s}$) passes after the input gate voltage boost circuit for the A/D converter has been enabled, set ADCS to 1.

Remark Two types of A/D conversion result registers are available. Reset signal generation clears the A/D conversion result register (ADCR, ADCRH) to 0000 H or 00 H .

- ADCR (16 bits): Store 12-bit A/D conversion value
- ADCRH (8 bits): Store 8-bit A/D conversion value

Figure 10-16. Basic Operation of A/D Converter

10.4.2 Input voltage and conversion results

The relationship between the analog input voltage input to the analog input pins (ANIO to ANI10, ANI15) and the theoretical A / D conversion result (stored in the 12-bit A / D conversion result register (ADCR)) is shown by the following expression.

$$
\text { ADCR }=\operatorname{INT}\left(\frac{V_{\text {AIN }}}{A V_{\text {REF }}} \times 4096+0.5\right)
$$

or

$$
(A D C R-0.5) \times \frac{A V_{\text {REF }}}{4096} \leq V_{\text {AIN }}<(A D C R+0.5) \times \frac{A V_{\text {REF }}}{4096}
$$

where, INT(): Function which returns integer part of value in parentheses
Vain: Analog input voltage
AVref: Reference voltage of A / D converter
ADCR: 12-bit A/D conversion result register (ADCR) value

Remark	78K0R/LF3:	ANIO-ANI6, ANI15
	$78 \mathrm{KOR} / \mathrm{LG} 3,78 \mathrm{KOR} / \mathrm{LH} 3:$	ANIO-ANI10, ANI15

Figure 10-16 shows the relationship between the analog input voltage and the A/D conversion result.

Figure 10-17. Relationship Between Analog Input Voltage and A/D Conversion Result

10.4.3 A/D converter operation modes

The following four A/D converter operation modes are available.

- Software trigger mode (Continuous conversion mode)
- Software trigger mode (Single conversion mode)
- Timer trigger mode (Continuous conversion mode)
- Timer trigger mode (Single conversion mode)

(1) Software trigger mode (Continuous conversion mode)

$<1>$ By setting bit 7 (ADCS) of the A/D converter mode register (ADM) to 1, the A/D conversion operation of the voltage, which is applied to the analog input pin specified by the analog input channel specification register (ADS), is started.
<2> When A/D conversion has been completed, the result of the A/D conversion is stored in the A/D conversion result register (ADCR, ADCRH), and an interrupt request signal (INTAD) is generated. When one A/D conversion has been completed, the next A / D conversion operation is immediately started.
$<3>$ If 1 is written to ADCS during A/D conversion, the A/D conversion operation under execution is stopped and restarted from the beginning. At this time, the conversion result immediately before is retained.
$<4>$ If ADS is rewritten during A/D conversion, the A/D conversion operation under execution is stopped and restarted from the beginning. At this time, the conversion result immediately before is retained.
$<5>$ If 0 is written to ADCS during A/D conversion, A/D conversion is immediately stopped. At this time, the conversion result immediately before is retained.

Figure 10-18. Software trigger mode (Continuous conversion mode)

Remark 78K0R/LF3: $\quad n=0$ to $6,15, \mathrm{~m}=0$ to 6,15
78K0R/LG3, 78K0R/LH3: $n=0$ to $10,15, m=0$ to 10,15

(2) Software trigger mode (Single conversion mode)

$<1>$ By setting bit 7 (ADCS) of the A/D converter mode register (ADM) to 1, the A/D conversion operation of the voltage, which is applied to the analog input pin specified by the analog input channel specification register (ADS), is started.
<2> When A/D conversion has been completed, the result of the A/D conversion is stored in the A/D conversion result register (ADCR, ADCRH), and an interrupt request signal (INTAD) is generated. When one A/D conversion has been completed, ADCS is automatically cleared and an A/D conversion wait state is entered.
$<3>$ If 1 is written to ADCS during A/D conversion, the A/D conversion operation under execution is stopped and restarted from the beginning. At this time, the conversion result immediately before is retained.
$<4>$ If ADS is rewritten during A/D conversion, the A/D conversion operation under execution is stopped and restarted from the beginning. At this time, the conversion result immediately before is retained.
$<5>$ If 0 is written to ADCS during A/D conversion, A/D conversion is immediately stopped. At this time, the conversion result immediately before is retained.

Figure 10-19. Software trigger mode (Single conversion mode)

Remark 78K0R/LF3: $\quad n=0$ to $6,15, m=0$ to 6,15
78K0R/LG3, 78K0R/LH3: $n=0$ to $10,15, m=0$ to 10,15

(3) Timer trigger mode (Continuous conversion mode)

$<1>$ Timer trigger mode is set and a timer trigger wait state is entered by setting bit 7 (ADTMD) of A/D converter mode register 1 (ADM1) to 1.
<2> When the timer trigger signal is detected, bit 7 (ADCS) of the A/D converter mode register (ADM) is automatically set to 1 and A / D conversion of the voltage applied to the analog input pin specified using the analog input channel specification register (ADS) starts.
$<3>$ When A / D conversion has been completed, the result of the A / D conversion is stored in the A / D conversion result register (ADCR, ADCRH), and an interrupt request signal (INTAD) is generated. When one A/D conversion has been completed, the next A / D conversion operation is immediately started.
$<4>$ If 1 is written to ADS during A/D conversion, the A/D conversion operation under execution is stopped and restarted from the beginning. At this time, the conversion result immediately before is retained.
$<5>$ If a timer trigger signal is generated during A/D conversion, the A/D conversion operation under execution is stopped and restarted from the beginning. At this time, the conversion result immediately before is retained
<6> If 0 is written to ADCS during A/D conversion, A/D conversion is immediately stopped, and a timer trigger wait state is entered. At this time, the conversion result immediately before is retained.
$<7>$ When 0 is written to ADTMD while A/D conversion operation is stopped (ADCS = 0), the software trigger mode is set and A / D conversion operation is not started, even if a timer trigger signal is generated

Figure 10-20. Timer trigger mode (Continuous conversion mode)

Note Leave at least enough time for A / D conversion to finish between each generation of the timer trigger signal.
Remark 78K0R/LF3: $\quad n=0$ to $6,15, m=0$ to 6,15
78K0R/LG3, 78 KOR/LH3: $n=0$ to $10,15, m=0$ to 10,15

(4) Timer trigger mode (Single conversion mode)

$<1>$ Timer trigger mode is set and a timer trigger wait state is entered by setting bit 7 (ADTMD) of A/D converter mode register 1 (ADM1) to 1.
$<2>$ When the timer trigger signal is detected, bit 7 (ADCS) of the A/D converter mode register (ADM) is automatically set to 1 and A / D conversion of the voltage applied to the analog input pin specified using the analog input channel specification register (ADS) starts.
$<3>$ When A / D conversion has been completed, the result of the A / D conversion is stored in the A / D conversion result register (ADCR, ADCRH), and an interrupt request signal (INTAD) is generated. When one A/D conversion has been completed, ADCS is automatically cleared and a timer trigger wait state is entered.
$<4>$ Even if ADS is rewritten during an A/D conversion operation, the A/D conversion operation performed at that time is continued. The channel will be switched when the next A / D conversion operation starts.
<5> If a timer trigger signal is generated during A / D conversion, the A / D conversion operation under execution is stopped and restarted from the beginning. At this time, the conversion result immediately before is retained.
<6> When 0 is written to ADTMD while A/D conversion operation is stopped (ADCS =0), the software trigger mode is set and A / D conversion operation is not started, even if a timer trigger signal is generated.

Figure 10-21. Timer trigger mode (Single conversion mode)

Note Leave at least enough time for A / D conversion to finish between each generation of the timer trigger signal.

$$
\begin{array}{lll}
\text { Remark } & \text { 78K0R/LF3: } & \mathrm{n}=0 \text { to } 6,15, \mathrm{~m}=0 \text { to } 6,15 \\
& 78 \mathrm{KOR} / \mathrm{LG} 3,78 \mathrm{KOR} / \mathrm{LH} 3: & \mathrm{n}=0 \text { to } 10,15, \mathrm{~m}=0 \text { to } 10,15
\end{array}
$$

The setting methods are described below.
<1> Set bit 5 (ADCEN) of peripheral enable register 0 (PERO) to 1.
<2> Select the conversion time by using bits 5 to 1 (FR2 to FRO, LV1, and LV0) of A/D converter mode register (ADM), and select the operation mode by using bit 6 (ADSCM) of ADM.
<3> Use bits 7, 3, 1, and 0 (ADREF, VRSEL, VRGV, and VRON) of the analog reference voltage control register (ADVRC) to specify the reference voltage source of the A/D converter and the operation of the input gate voltage boost circuit for the A/D converter.
$<4>$ Set bit 0 (ADCE) of ADM to 1 .
$<5>$ Set the channel to be used in the analog input mode by using bits 4 to 0 (ADPC4 to ADPC0) of the A/D port configuration register (ADPC), bits 7 to 0 (PM27 to PM20) of port mode register 2 (PM2), and bits 7, 2 to 0 (PM157, PM152 to PM150) of port mode register 15 (PM15).
<6> Select a channel to be used by using bits 3 to 0 (ADS3 to ADSO) of the analog input channel specification register (ADS).
$<7>$ Use bits 0 and 7 (ADTRS, ADTMD) of A/D converter mode register 1 (ADM1) to set the trigger mode.
<8> In the software trigger mode
\rightarrow Start A/D conversion by setting bit 7 (ADCS) of ADM to 1 .
In the timer trigger mode
\rightarrow ADCS is automatically set to 1 and A/D conversion starts when the timer trigger signal is generated.
$<9>$ When one A/D conversion has been completed, an interrupt request signal (INTAD) is generated.
<10> Transfer the A/D conversion data to the A/D conversion result register (ADCR, ADCRH).
<11> In the continuous conversion mode
\rightarrow Start the next A/D conversion automatically.
In the single conversion mode
\rightarrow ADCS is automatically cleared to 0 and the A/D converter goes on standby. To start A/D conversion operation, go to step <8>.
<Change the channel>
<12> Change the channel using bits 3 to 0 (ADS3 to ADSO) of ADS to start A/D conversion. ${ }^{\text {Note }}$
<13> When one A/D conversion has been completed, an interrupt request signal (INTAD) is generated.
<14> Transfer the A/D conversion data to the A/D conversion result register (ADCR, ADCRH).
<Complete A/D conversion>
<15> Clear ADCS to 0.
<16> In the software trigger mode
\rightarrow Clear ADCE to 0 .
In the timer trigger mode
\rightarrow Clear ADCE and ADTMD to 0 .
$<17>$ Clear bit 5 (ADCEN) of peripheral enable register 0 (PERO) to 0.

Note When in timer trigger mode (single conversion mode), the A/D conversion operation is continued even if bits 3 to 0 of ADS are set during A/D conversion. The channel will be changed when the next A / D conversion operation starts.
When in any other mode, A/D conversion operation is aborted after bits 3 to 0 of ADS have been set, and A / D conversion operation is started from the beginning after the channel has been changed.

Cautions 1. Make sure the period of $\langle 4\rangle$ to $<8>$ is $1 \mu s$ or more.
2. <4> may be done between <5> and <7>.
3. $<4>$ can be omitted. However, ignore data of the first conversion after $<8>$ in this case.
4. The period from <9> to <13> differs from the conversion time set using bits 5 to 1 (FR2 to FRO, LV1, LV0) of ADM. The period from <12> to $<13>$ is the conversion time set using FR2 to FR0, LV1, and LV0.
5. To use an operational amplifier output for an analog input, start operating the operational amplifier before setting the A/D conversion operation (see CHAPTER 12 OPERATIONAL AMPLIFIER). Furthermore, do not change the operational amplifier setting during the A/D conversion operation.
6. To use an output voltage of the voltage reference for a positive reference voltage of A / D converter, start operating the voltage reference before setting the A/D conversion operation (see CHAPTER 13 VOLTAGE REFERENCE). Furthermore, do not change the voltage reference setting during the A / D conversion operation.
7. When using the A/D converter in normal mode $2(L V 1=0, L V 0=1)$ or low voltage mode (LV1 $=1, L V 0=0$), enable the input gate voltage boost circuit for the A/D converter by using the analog reference voltage control register (ADVRC), and then set ADCE and ADCS to 1. After the voltage boost circuit stabilization time ($10 \mu \mathrm{~S}$) passes after the input gate voltage boost circuit for the A/D converter has been enabled, set ADCS to 1.

10.5 How to Read A/D Converter Characteristics Table

Here, special terms unique to the A/D converter are explained.

(1) Resolution

This is the minimum analog input voltage that can be identified. That is, the percentage of the analog input voltage per bit of digital output is called 1LSB (Least Significant Bit). The percentage of 1LSB with respect to the full scale is expressed by \%FSR (Full Scale Range).

1 LSB is as follows when the resolution is 12 bits.

$$
\begin{aligned}
1 \mathrm{LSB} & =1 / 2^{12}=1 / 4096 \\
& =0.024 \% \text { FSR }
\end{aligned}
$$

Accuracy has no relation to resolution, but is determined by overall error.

(2) Overall error

This shows the maximum error value between the actual measured value and the theoretical value.
Zero-scale error, full-scale error, integral linearity error, and differential linearity errors that are combinations of these express the overall error.
Note that the quantization error is not included in the overall error in the characteristics table.
(3) Quantization error

When analog values are converted to digital values, $a \pm 1 / 2 L S B$ error naturally occurs. In an A / D converter, an analog input voltage in a range of $\pm 1 / 2$ LSB is converted to the same digital code, so a quantization error cannot be avoided.
Note that the quantization error is not included in the overall error, zero-scale error, full-scale error, integral linearity error, and differential linearity error in the characteristics table.

Figure 10-22. Overall Error

Figure 10-23. Quantization Error

(4) Zero-scale error

This shows the difference between the actual measurement value of the analog input voltage and the theoretical value ($1 / 2 \mathrm{LSB}$) when the digital output changes from 0000 to 0 \qquad . 001.
If the actual measurement value is greater than the theoretical value, it shows the difference between the actual measurement value of the analog input voltage and the theoretical value ($3 / 2 \mathrm{LSB}$) when the digital output changes from 0...... 001 to 0...... 010 .
(5) Full-scale error

This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (Full-scale - 3/2LSB) when the digital output changes from 1...... 110 to 1...... 111 .
(6) Integral linearity error

This shows the degree to which the conversion characteristics deviate from the ideal linear relationship. It expresses the maximum value of the difference between the actual measurement value and the ideal straight line when the zeroscale error and full-scale error are 0 .

(7) Differential linearity error

While the ideal width of code output is 1LSB, this indicates the difference between the actual measurement value and the ideal value.

Figure 10-24. Zero-Scale Error

Figure 10-26. Integral Linearity Error

Figure 10-25. Full-Scale Error

Figure 10-27. Differential Linearity Error

(8) Conversion time

This expresses the time from the start of sampling to when the digital output is obtained.
The sampling time is included in the conversion time in the characteristics table.

(9) Sampling time

This is the time the analog switch is turned on for the analog voltage to be sampled by the sample \& hold circuit.

10.6 Cautions for A/D Converter

(1) Operating current in STOP mode

Shift to STOP mode after stopping the A/D converter (by setting bit 7 (ADCS) of the A/D converter mode register (ADM) to 0). The operating current can be reduced by setting bit 0 (ADCE) of the A/D converter mode register (ADM) to 0 at the same time.
When using normal mode $2(L V 1=0, L V 0=1)$ or low voltage mode (LV1 $=1, L V 0=0)$, clear bit $1(V R G V)$ and bit 0 (VRON) of the analog reference voltage control register (ADVRC) to 0 , and then shift to STOP mode.
To restart from the standby status, clear bit 0 (ADIF) of interrupt request flag register 1 L (IF1L) to 0 and start operation.
(2) Input range of ANIO to ANI10, ANI15

Observe the rated range of the ANIO to ANI10, ANI15 input voltage. If a voltage of $A V \operatorname{DDo}$ or higher and AVss or lower (even in the range of absolute maximum ratings) is input to an analog input channel, the converted value of that channel becomes undefined. In addition, the converted values of the other channels may also be affected.

(3) Conflicting operations

$<1>$ Conflict between A/D conversion result register (ADCR, ADCRH) write and ADCR or ADCRH read by instruction upon the end of conversion
ADCR or ADCRH read has priority. After the read operation, the new conversion result is written to ADCR or ADCRH.
<2> Conflict between ADCR or ADCRH write and A/D converter mode register (ADM) write, analog input channel specification register (ADS), or A/D port configuration register (ADPC) write upon the end of conversion ADM, ADS, or ADPC write has priority. ADCR or ADCRH write is not performed, nor is the conversion end interrupt signal (INTAD) generated.
(4) Noise countermeasures

To maintain the 12-bit resolution, attention must be paid to noise input to the AVrefp pin and pins ANIO to ANI10, ANI15.
<1> Connect a capacitor with a low equivalent resistance and a good frequency response to the power supply.
$<2>$ The higher the output impedance of the analog input source, the greater the influence. To reduce the noise, connecting external C as shown in Figure 10-26 is recommended.
$<3>$ Do not switch these pins with other pins during conversion.
<4> The accuracy is improved if the HALT mode is set immediately after the start of conversion.

```
Remark 78K0R/LF3: ANIO-ANI6, ANI15
```

78K0R/LG3, 78K0R/LH3: ANI0-ANI10, ANI15

Figure 10-28. Analog Input Pin Connection

(5) ANIO to ANI10, ANI15

<1> The analog input pins (ANIO to ANI7) are also used as input port pins (P20 to P27).
The analog input pins (ANI8 to ANI10, ANI15) are also used as input port pins (P150 to P152, P157).
When A/D conversion is performed with any of ANIO to ANI10, and ANI15 selected, do not access P20 to P27, P 150 to P 152 , and P 157 while conversion is in progress; otherwise the conversion resolution may be degraded. It is recommended to select pins used as P20 to P27, P150 to P152, and P157 starting with the ANI0/P20 that is the furthest from $A V_{D D O}$.
<2> If the pins adjacent to the pins currently used for A/D conversion are used as digital I/O port, the expected value of the A / D conversion may not be obtained due to coupling noise. Therefore, make sure that digital pulses are not input to or output from the pins adjacent to the pin undergoing A/D conversion.
$<3>$ If any pin among pins of ports 2 and 15 is used as digital output port during A / D conversion, the expected value of the A / D conversion may not be obtained due to coupling noise. Therefore, make sure that digital pulses are not output to pins of ports 2 and 15 during A/D conversion.
(6) Input impedance of ANIO to ANI10, ANI15 pins

This A / D converter charges a sampling capacitor for sampling during sampling time.
Therefore, only a leakage current flows when sampling is not in progress, and a current that charges the capacitor flows during sampling. Consequently, the input impedance fluctuates depending on whether sampling is in progress, and on the other states.
To make sure that sampling is effective, however, it is recommended to keep the output impedance of the analog input source to within $1 \mathrm{k} \Omega$, and to connect a capacitor of about 100 pF to the ANIO to ANI10 and ANI15 pins (see Figure 10-26).

```
Remark 78K0R/LF3: ANIO-ANI6, ANI15
```

78K0R/LG3, 78K0R/LH3: ANIO-ANI10, ANI15

(7) $A V_{\text {refp }}$ pin input impedance

A series resistor string of several tens of $k \Omega$ is connected between the $A V_{\text {refp }}$ and $A V_{\text {refm (}}$ (or $A V s s$) pins.
Therefore, if the output impedance of the reference voltage supply is high, this will result in a series connection to the series resistor string between the $A V_{\text {refp }}$ and $A V_{\text {refm }}$ (or $A V s s$) pins, resulting in a large reference voltage ($A V_{\text {ref }}$) error of A/D converter.
(8) Interrupt request flag (ADIF)

The interrupt request flag (ADIF) is not cleared even if the analog input channel specification register (ADS) is changed.
Therefore, if an analog input pin is changed during A/D conversion, the A/D conversion result and ADIF for the prechange analog input may be set just before the ADS rewrite. Caution is therefore required since, at this time, when ADIF is read immediately after the ADS rewrite, ADIF is set despite the fact A/D conversion for the post-change analog input has not ended.
When A/D conversion is stopped and then resumed, clear ADIF before the A / D conversion operation is resumed.

Figure 10-29. Timing of A/D Conversion End Interrupt Request Generation

Remark 78K0R/LF3: $\quad n=0$ to $6,15, m=0$ to 6,15
78K0R/LG3, 78K0R/LH3: $n=0$ to $10,15, m=0$ to 10,15

(9) Conversion results just after A/D conversion start

The first A/D conversion value immediately after A/D conversion starts may not fall within the rating range if the ADCS bit is set to 1 within 1μ s after the ADCE bit was set to 1 , or if the ADCS bit is set to 1 with the ADCE bit = 0 . Take measures such as polling the A/D conversion end interrupt request (INTAD) and removing the first conversion result.

(10) A / D conversion result register (ADCR, ADCRH) read operation

When a write operation is performed to A / D converter mode register (ADM), A/D converter mode register 1 (ADM1), analog input channel specification register (ADS), and A/D port configuration register (ADPC), the contents of ADCR and ADCRH may become undefined. Read the conversion result following conversion completion before writing to ADM, ADM1, ADS, or ADPC. Using a timing other than the above may cause an incorrect conversion result to be read.

(11) Internal equivalent circuit

The equivalent circuit of the analog input block is shown below.

Figure 10-30. Internal Equivalent Circuit of ANIn Pin

Table 10-8. Resistance and Capacitance Values of Equivalent Circuit (Reference Values)

R 1	C 1	C 2
$11.5 \mathrm{k} \Omega$	8.0 pF	8.0 pF

Remarks 1. The resistance and capacitance values shown in Table 10-8 are not guaranteed values.
2. $78 \mathrm{KOR} / \mathrm{LF} 3: \mathrm{n}=0$ to $6,15,78 \mathrm{KOR} / \mathrm{LG} 3,78 \mathrm{KOR} / \mathrm{LH} 3: \mathrm{n}=0$ to 10,15

(12) Rewriting DACSWn during A/D conversion

Rewriting DACSWn $(\mathrm{n}=0,1)$ during A / D conversion is prohibited when both the positive reference voltage of A / D converter (ADrefp) and the positive reference voltage of the D/A converter (DArefp) are the voltage reference output (VREFOUT) (VRSEL = 1 and DAREF = 1). Rewrite it when conversion operation is stopped (ADCS = 0).

CHAPTER 11 D/A CONVERTER (μ PD78F150xA only)

11.1 Function of D/A Converter

The D/A converter with two channels is mounted onto all 78K0R/Lx3 microcontroller products.
The D/A converter has the following features.

O 12-bit resolution $\times 2$ channels
O R-2R ladder method
O Output analog voltage

- 12-bit resolution: Reference voltage for D/A converter $\times \mathrm{m} 12 / 4096$ (m 12 : Value set to DACSWn register)
- 8-bit resolution: Reference voltage for D/A converter $\times \mathrm{m} 8 / 256$ (m8: Value set to DACSn register)

O Supply voltage for D/A converter: AVDD1
O Ground for D/A converter: AVss
O Positive reference voltage for D/A converter: AVdD1, or AVrefp/Vrefout
O Negative reference voltage for D/A converter: AVss
O Operation mode

- Normal mode
- Real-time output mode

Remark $\mathrm{n}=0,1$

11.2 Configuration of D/A Converter

The D/A converter includes the following hardware.
Table 11-1. Configuration of D/A Converter

Item	Configuration
Control registers	Peripheral enable register 0 (PER0)
	D/A converter mode register (DAM)
	D/A conversion value setting registers W0, W1 (DACSW0, DACSW1)
	D/A conversion value setting registers 0, 1 (DACS0, DACS1)

Figure 11-1. Block Diagram of D/A Converter

Remarks 1. INTTM04 and INTTM05 are timer trigger signals (interrupt signals from timer channels 5 and 6) that are used in the real-time output mode.
2. Channels 0 and 1 of the D / A converter share the $A V_{\text {ref1 }}$ pin and the $A V_{\text {refp/Vrefout pin. }}$
3. Channels 0 and 1 of the D / A converter share the $A V$ ss pin. The $A V$ ss pin is also shared with an A / D converter, an operational amplifier, and a voltage reference.

11.3 Registers Used in D/A Converter

The D/A converter uses the following four registers.

- Peripheral enable register 0 (PERO)
- D/A converter mode register (DAM)
- D/A conversion value setting registers W0, W1 (DACSW0, DACSW1)
- D/A conversion value setting registers 0,1 (DACS0, DACS1)
(1) Peripheral enable register 0 (PERO)

PERO is used to enable or disable use of each peripheral hardware macro. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.
When the D/A converter is used, be sure to set bit 6 (DACEN) of this register to 1.
PERO can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Cautions When setting the D/A converter, be sure to set DACEN to 1 first. If DACEN $=0$, writing to a control register of the D/A converter is ignored, and, even if the register is read, only the default value is read.

Figure 11-2. Format of Peripheral Enable Register 0 (PERO)

DACEN	Control of D/A converter input clock
0	Stops supply of input clock. - SFR used by the D/A converter cannot be written. - The D/A converter is in the reset status.
1	Supplies input clock. - SFR used by the D/A converter can be read/written.

Note $78 \mathrm{KOR} / \mathrm{LG} 3,78 \mathrm{KOR} / \mathrm{LH} 3$ only

(2) D/A converter mode register (DAM)

This register controls the operation of the D/A converter.
DAM can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 11-3. Format of D/A Converter Mode Register (DAM)

Address: FFF5CH	After reset: 00 H R/W							
Symbol	7	6	$<5>$	$<4>$	3	2	1	0
DAM	0	DAREF	DACE1	DACE0	DARES1	DARES0	DAMD1	DAMD0

DAREF	Positive reference voltage supply selection of D / A converter ${ }^{\text {Note1 }}$
0	AV $_{\text {DDI }}$ (power supply for D / A converter analog circuit)
1	$\mathrm{~V}_{\text {REFOUT }}$ (voltage reference output) ${ }^{\text {Note2 } / ~} / \mathrm{AV}_{\text {REFP }}$ (external voltage reference input)

DACEn	D/A conversion operation Control $(\mathrm{n}=0,1)$
0	Stops conversion operation
1	Enables conversion operation

DARES n	D/A converter resolution selection $(\mathrm{n}=0,1)$	
0	8-bit	
1	12 -bit	

| DAMDn | D/A converter operation mode selection $(\mathrm{n}=0,1)$ |
| :---: | :--- | :--- |
| 0 | Normal mode |
| 1 | Real-time output mode |

Notes 1. The reference voltage of the D/A converter cannot be specified separately for each channel because it is common to both channels.
2. To use an output voltage of the voltage reference for the positive reference voltage of the D/A converter (DArefp), start operating the voltage reference before setting the D/A conversion operation (see CHAPTER 13 VOLTAGE REFERENCE). Furthermore, do not change the voltage reference setting during the D/A conversion operation.

Remark The positive reference voltage of the D/A converter is as follows, according to the DAREF, VRSEL and VRON settings.

Table 11-2. Settings of DAREF, VRSEL and VRON

DAREF	VRSEL	VRON	Positive reference voltage of D/A converter (DArefp)
0	\times	\times	AV $_{\text {DD } 1}$
1	0	0	AV $_{\text {REFP }}$
1	1	1	V $_{\text {REFOUT }}$

: don't care

(3) D/A conversion value setting registers W0, W1 (DACSW0, DACSW1)

These registers are used to set an analog voltage value to be output to the ANOO and ANO1 pins, when the D/A converter is used.
DACSW0 and DACSW1 can be read by a 16-bit memory manipulation instruction.
Reset signal generation clears these registers to 0000H.

Figure 11-4. Format of D/A Conversion Value Setting Registers W0, W1 (DACSW0, DACSW1)

Address: FFF58H, FFF59H (DACSW0), FFF5AH, FFF5BH (DACSW1)									After reset: 0000 H			R/W				
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DACSWn	0	0	0	0	DACS Wn11	DACS Wn10	DACS Wn9	DACS Wn8	DACS Wn7	DACS Wn6	DACS Wn5	DACS Wn4	DACS Wn3	DACS Wn2	DACS Wn1	DACS WnO

Caution Rewriting DACSWn during A/D conversion is prohibited when both the positive reference voltage of the A/D converter (ADrefp) and the positive reference voltage of the D/A converter (DArEfP) are the voltage reference output (VREFOUT) (VRSEL = 1 and DAREF = 1). Rewrite it when conversion operation is stopped $($ ADCS $=0)$.

Remarks 1. The relations between the resolutions and analog output voltages (VANOn) of the D/A converter are as follows.

- 8-bit resolution (DARESn = 0) :

Vanon $=$ Reference voltage for D/A converter $\times($ DACSWn7 to DACSWn0) /256

- 12-bit resolution (DARESn = 1) :
$\mathrm{V}_{\text {ANOn }}=$ Reference voltage for D/A converter $\times($ DACSWn11 to DACSWn0) /4096

2. $\mathrm{n}=0,1$
(4) D/A conversion value setting registers 0,1 (DACS0, DACS1)

These registers are used to set the analog voltage values to be output to the ANO0 and ANO1 pins when the D/A converter is used at 8-bit resolution.
DACS0 and DACS1 can be read by an 8-bit memory manipulation instruction.
Reset signal generation clears these registers to 00 H .

Figure 11-5. Format of D/A Conversion Value Setting Registers 0, 1 (DACS0, DACS1)

Address: FFF58H (DACS0), FFF5AH (DACS1)			After reset: 00 H		R/W			
Symbol	7	6	5	4	3	2	1	0
DACSn	DACSn7	DACSn6	DACSn5	DACSn4	DACSn3	DACSn2	DACSn1	DACSn0

Remarks 1. The relations between the resolutions and analog output voltages (VANOn) of the D/A converter are as follows.

- 8-bit resolution (DARESn $=0$) :
$\mathrm{V}_{\text {ANOn }}=$ Reference voltage for D/A converter $\times(\mathrm{DACSn} 7$ to DACSn0) /256

2. $\mathrm{n}=0,1$

11.4 Operation of D/A Converter

11.4.1 Operation in normal mode

D/A conversion is performed using write operation to the DACSn register as the trigger. The setting method is described below.
<1> Set bit 6 (DACEN) of peripheral enable register 0 (PERO) to 1 to start the supply of the input clock to the D/A converter.
<2> Set the DAMDn bit of the D/A converter mode register (DAM) to 0 (normal mode).
$<3>$ Use the bit 6 (DAREF) of the DAM register to select the D/A converter reference voltage supply on the positive side.
<4> Use the DARESn bit of the DAM register to select the resolution of the D/A converter.
$<5>$ Set the analog voltage value to be output to the ANOn pin to the D/A conversion value setting register Wn (DACSWn) or D/A conversion value setting register n (DACSn).
Steps <1> and <5> above constitute the initial settings.
<6> Set the DACEn bit of the DAM register to 1 (D/A conversion enable).
After the wait time (20μ s or more) elapses, D/A conversion starts, and then, after the settling time ($18 \mu \mathrm{~s}$ (max.)) elapses, the D/A converted analog voltage value is output from the ANOn pin.
$<7>$ To perform subsequent D/A conversions, write to the DACSWn or DACSn register.
The previous D/A conversion result is held until the next D/A conversion is performed.
When the DACEn bit of the DAM register is set to 0 (D/A conversion operation stop), D/A conversion stops, the ANOn pin goes into a high-impedance state when the PM11n bit of the PM11 register = 1 (input mode), and the ANOn pin outputs the set value of the P 11 register when the PM11n bit $=0$ (output mode).

Cautions 1. Even if 1,0 , and then 1 is set to the DACEn bit, there is a wait after $\mathbf{1}$ is set for the last time.

2. If the DACSWn or DACSn register is rewritten during the settling time, D/A conversion is aborted and reconversion by using the rewritten values starts.

Remark $\mathrm{n}=0,1$

11.4.2 Operation in real-time output mode

D/A conversion is performed using the interrupt request signals (INTTM04 and INTTMO5) ${ }^{\text {Note }}$ of timer channels 4 and 5 as triggers.

The setting method is described below.

Note Channel 0 of the D/A converter: INTTM04
Channel 1 of the D/A converter: INTTM05
$<1>$ Set bit 6 (DACEN) of peripheral enable register 0 (PERO) to 1 to start the supply of the input clock to the D/A converter.
<2> Set the DAMDn bit of the D/A converter mode register (DAM) to 0 (normal mode).
<3> Use the bit 6 (DAREF) of the DAM register to select the D/A converter reference voltage supply on the positive side.
<4> Use the DARESn bit of the DAM register to select the resolution of the D/A converter.
$<5>$ Set the analog voltage value to be output to the ANOn pin to the D/A conversion value setting register Wn (DACSWn) or D/A conversion value setting register n (DACSn).
<6> Set the DACEn bit of the DAM register to 1 (D/A conversion enable).
After the wait time ($20 \mu \mathrm{~s}$ or more) elapses, D / A conversion starts, and then, after the setting time ($18 \mu \mathrm{~s}$ (max.)) elapses, the D/A converted analog voltage value is output from the ANOn pin.
$<7>$ Set the DAMDn bit of the DAM register to 1 (real-time output mode).
Steps $<1>$ to $<7>$ above constitute the initial settings.
<8> Operate timer channel m.
<9> Generation of the INTTMOm signals starts D/A conversion and the D/A converted analog voltage value will be output from the ANOn pin after a settling time ($18 \mu \mathrm{~s}$ (max.)) has elapsed.
$<10>$ Afterward, the value set to the DACSWn or DACSn register will be output at the generation timing of the INTTMOm signals.
Set the analog voltage value to be output to the ANOn pin, to the DACSWn or DACSn register before performing the next D/A conversion (INTTMOm signal are generated).
When the DACEn bit of the DAM register is set to 0 (D/A conversion operation stop), D/A conversion stops, the ANOn pin goes into a high-impedance state when the PM11n bit of the PM11 register = 1 (input mode), and the ANOn pin outputs the set value of the P 11 register when the PM11n bit $=0$ (output mode).

Cautions 1. Even if 1,0 , and then 1 is set to the DACEn bit, there is a wait after $\mathbf{1}$ is set for the last time.

2. Make the interval between each generation of the INTTMOm signal longer than the settling time. If an INTTMOm signal is generated during the settling time, D/A conversion is aborted and reconversion starts.
3. Even if the generation of the INTTMOm signal and rewriting the DACSWn or DACSn register conflict, the D/A conversion result is output.

Remark $\mathrm{n}=0,1$

11.5 Cautions for D/A Converter

Observe the following cautions when using the D/A converter.
(1) The digital port I/O function, which is the alternate function of the ANOO and ANO1 pins, does not operate during D/A conversion.
When the P11 register is read during D/A conversion, 0 is read in input mode and the set value of the P11 register is read in output mode. If the digital output mode is set, no output data is output to pins.
(2) The operation of the D/A converter continues in the HALT and STOP mode. To lower the power consumption, therefore, clear the DACEn bit of the DAM register to 0 (D/A conversion stop), and execute HALT or STOP instruction.
(3) Rewriting DACSWn $(\mathrm{n}=0,1)$ during A / D conversion is prohibited when both the positive reference voltage of the A / D converter (ADrefp) and the positive reference voltage of the D/A converter (DArefp) are the voltage reference output (VREFOUT) (VRSEL = 1 and DAREF = 1). Rewrite it when conversion operation is stopped (ADCS = 0).

Remark $n=0,1, m=4,5$

Item	$\begin{gathered} \text { 78K0R/LF3 } \\ (\mu \text { PD78F150nA: } \mathrm{n}=0 \text { to } 2) \end{gathered}$	$\begin{gathered} \text { 78K0R/FG3 } \\ (\mu \text { PD78F150nA: } \mathrm{n}=3 \text { to } 5) \end{gathered}$	78K0R/LH3 (μ PD78F150nA: $\mathrm{n}=6$ to 8)
	80 pins	100 pins	128 pins
Operational amplifier	2 ch (operational amplifiers 0,1)	3 ch (operational amplifiers 0 to 2)	

12.1 Function of Operational Amplifier

Operational amplifiers are mounted onto products of $78 \mathrm{~K} 0 \mathrm{R} / \mathrm{Lx} 3$ microcontrollers. The operational amplifiers have the following modes.

- Single AMP mode

The difference in potential of analog voltages input from two pins (AMPn- and AMPn+ pins) is amplified and the amplified voltage is output from the AMPnO pin.
The amplified voltage can be used as an analog input of the A/D converter, because the AMPnO pin is alternatively used with analog input pin of the A/D converter.

Remark 78K0R/LF3: $\quad \mathrm{n}=0,1$
78K0R/LG3, 78K0R/LH3: $n=0$ to 2

12.2 Configuration of Operational Amplifier

The operational amplifiers consist of the following hardware.

Table 12-1. Configuration of Operational Amplifiers

Item	Configuration
Operational amplifier input	AMPn- pin, AMPn+ pin
Operational amplifier output	AMPnO pin
Control registers	Peripheral enable register 0 (PER0) Operational amplifier control register (OAC) A/D configuration register (ADPC) Port mode registers 2, 15 (PM2, PM15)

Remark	78K0R/LF3:	$n=0,1$
	$78 \mathrm{KOR} / \mathrm{LG} 3,78 K 0 R / L H 3:$	$\mathrm{n}=0$ to 2

Figure 12-1. Block Diagram of Operational Amplifier

Remark 78K0R/LF3:
Operational amplifiers 0,1
78K0R/LG3, 78K0R/LH3: Operational amplifiers 0 to 2

12.3 Amplifier Registers Used in Operational Amplifier

The operational amplifiers use the following four registers.

- Peripheral enable register 0 (PERO)
- Operational amplifier control register (OAC)
- A/D port configuration register (ADPC)
- Port mode registers 2, 15 (PM2, PM15)

(1) Peripheral enable register 0 (PERO)

PERO is used to enable or disable use of each peripheral hardware macro. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.
When the operational amplifier is used, be sure to set bit 5 (ADCEN) of this register to 1 . PERO can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00 H .

Figure 12-2. Format of Peripheral Enable Register 0 (PERO)

Address:	H Af	et: 00 H	W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PERO	RTCEN	DACEN	ADCEN	IICAEN ${ }^{\text {Note }}$	SAU1EN	SAUOEN	TAU1EN	tauoen

ADCEN	Control of A/D converter, operational amplifier, and voltage reference input clock
0	Stops input clock supply. - SFR used by the A/D converter, operational amplifier, and voltage reference cannot be written. - The A/D converter, operational amplifier, and voltage reference is in the reset status.
1	Supplies input clock. - SFR used by the A/D converter, operational amplifier, and voltage reference can be read and written.

Note 78K0R/LG3, 78K0R/LH3 only

Caution When setting operational amplifier, be sure to set ADCEN to 1 first. If ADCEN $=\mathbf{0}$, writing to a control register of operational amplifier is ignored, and, even if the register is read, only the default value is read

(2) Operational amplifier control register (OAC)

This register controls the operations of operational amplifiers 0 to 2 .
OAC can be set by a 1-bit or 8 -bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

```
Remark 78K0R/LF3: Operational amplifiers 0,1
    78K0R/LG3, 78K0R/LH3: Operational amplifiers 0 to 2
```

Figure 12-3. Format of Operational Amplifier Control Register (OAC)

Symbol	7	6	5	4	3	2	1	0
OAC	0	0	0	0	0	OAEN2	OAEN1	OAENO
	OAEN2	Operational amplifier 2 operation control						
	0	Stops operational amplifier 2 operation						
	1	Enables operational amplifier 2 operation						
	OAEN1	Operational amplifier 1 operation control						
	0	Stops operational amplifier 1 operation						
	1	Enables operational amplifier 1 operation						
	OAENO	Operational amplifier 1 operation control						
	0	Stops operational amplifier 0 operation						
	1	Enables operational amplifier 0 operation						

Cautions 1. Use the ADPC register to specify as analog inputs the pins to be used with operational amplifiers.
2. When using as digital inputs the pins of ports 2 and 15, which are not used with operational amplifiers, when the operational amplifiers are used, make sure that the input levels are fixed.

(3) A/D port configuration register (ADPC)

This register switches the ANIO/AMPO-/P20 to ANI7/AMP2O/P27, ANI8/AMP2+/P150 to ANI10/P152, and ANI15/AV refm $^{2} / \mathrm{P} 157$ pins to analog input of A/D converter or digital I/O of port. Set pins to be used with operational amplifiers to the analog input.
ADPC can be set by an 8-bit memory manipulation instruction.
Reset signal generation sets this register to 10 H .

```
Remark 78K0R/LF3: ANIO-ANI6, ANI15
    78K0R/LG3, 78K0R/LH3: ANIO-ANI10, ANI15
```

Figure 12-4. Format of A/D Port Configuration Register (ADPC)

Address:		After reset: 10 H	R/W					
Symbol	7	6	5	4	3	2	1	0
ADPC	0	0	0	ADPC4	ADPC3	ADPC2	ADPC1	ADPC0

Note This setting is prohibited for 78K0R/LF3.

Caution Set pins to be used with operational amplifiers in the input mode by using port mode registers 2 and 15 (PM2, PM15).

(4) Port mode registers 2, 15 (PM2, PM15)

When using ANIO/AMPO-/P20 to ANI7/AMP2O/P27, ANI8/AMP2+/P150 to ANI10/P152 and ANI15/AVREFm/P157 pins for analog input port, set PM20 to PM27, PM150 to PM152, and P157 to 1. The output latches of P20 to P27, P150 to P152 and P157 at this time may be 0 or 1.
If PM20 to PM27, PM150 to PM152 and PM157 are set to 0, they cannot be used as analog input port pins.
PM2 and PM15 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets these registers to FFH.

Remark	78K0R/LF3:	ANIO-ANI6, ANI15
	$78 \mathrm{KOR} / \mathrm{LG} 3,78 \mathrm{KOR} / \mathrm{LH} 3:$	ANIO-ANI10, ANI15

Caution If a pin is set as an analog input port, not the pin level but " 0 " is always read.

Figure 12-5. Formats of Port Mode Registers 2, 15 (PM2, PM15)

- 78K0R/LF3

Address: FFF2FH After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
PM15	PM157	1	1	1	1	1	1	1

- 78K0R/LG3, 78K0R/LH3

Address: FFF22H After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20

Address: FFF2FH After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
PM15	PM157	1	1	1	1	PM152	PM151	PM150

PMmn	Pmn pin I/O mode selection (mn=20 to 27, 150 to 152, 157)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

The ANIO/AMP0-/P20 to ANI7/AMP2O/P27, ANI8/AMP2+/P150 to ANI10/P152 and ANI15/AVreFm/P157 pins are as shown below depending on the settings of ADPC, ADS, PM2, PM15, OAENn bit and ADREF bit.

Table 12-2. Setting Functions of ANIO/AMP0-/P20, ANI2/AMP0+/P22, ANI3/AMP1-/P23, ANI5/AMP1+/P25, ANI6/AMP2-/P26, and ANI8/AMP2+/P150 Pins

ADPC register	PM2 and PM15 registers	OAENn bit	ADS register	ANIO/AMPO-/P2O, ANI2/AMP0+/P22, ANI3/AMP1- /P23, ANI5/AMP1+/P25, ANI6/AMP2-/P26, and ANI8/AMP2+/P150 Pins
Digital I/O selection	Input mode	0	-	Digital input
		1	-	Setting prohibited
	Output mode	0	-	Digital output
		1	-	Setting prohibited
Analog input selection	Input mode	0	Selects ANI.	Analog input (to be converted)
			Does not select ANI.	Analog input (not to be converted)
		1	Selects ANI.	Setting prohibited
			Does not select ANI.	Operational amplifier input
	Output mode	-	-	Setting prohibited

Remark 78K0R/LF3:
ANIO/AMPO-/P20, ANI2/AMP0+/P22, ANI3/AMP1-/P23,
ANI5/AMP1+/P25, $\mathrm{n}=0,1$
78K0R/LG3, 78K0R/LH3: ANI0/AMP0-/P20, ANI2/AMP0+/P22, ANI3/AMP1-/P23,
ANI5/AMP1+/P25, ANI6/AMP2-/P26, ANI8/AMP2+/P150, n = 0 to 2

Caution When an operational amplifier is used, AMPn+, AMPn-, and AMPnO pins are used, so the alternative analog input functions cannot be used.

Table 12-3. Setting Functions of ANI1/AMP0O/P21, ANI4/AMP1O/P24, and ANI7/AMP2O/P27 Pins

ADPC register	PM2 register	OAENn bit	ADS register	ANI1/AMP0O/P21, ANI4/AMP1O/P24, and ANI7/AMP2O/P27 Pins
Digital I/O selection	Input mode	0	-	Digital input
		1	-	Setting prohibited
	Output mode	0	-	Digital output
		1	-	Setting prohibited
Analog input selection	Input mode	0	Selects ANI.	Analog input (to be converted)
			Does not select ANI.	Analog input (not to be converted)
		1	Selects ANI.	Operational amplifier output (not to be converted)
			Does not select ANI.	Operational amplifier output (to be converted)
	Output mode	-	-	Setting prohibited

Remark 78K0R/LF3: ANI1/AMP0O/P21, ANI4/AMP1O/P24, $\mathrm{n}=0,1$
78K0R/LG3, 78K0R/LH3: ANI1/AMP0O/P21, ANI4/AMP1O/P24, and ANI7/AMP2O/P27, $\mathrm{n}=0$ to 2

Caution When an operational amplifier is used, AMPn+, AMPn-, and AMPnO pins are used, so the alternative analog input functions cannot be used. The operational amplifier output signals, however, can be used as analog inputs.

Table 12-4. Setting Functions of ANI9/P151 and ANI10/AM152 Pins

ADPC register	PM15 register	ADS register	ANI9/P151 and ANI10/AM152 Pins
Digital I/O selection	Input mode	-	Digital input
	Output mode	-	Digital output
Analog input selection	Input mode	Selects ANI.	Analog input (to be converted)
		Does not select ANI.	Analog input (not to be converted)
	Output mode	-	Setting prohibited

$\begin{array}{lll}\text { Remark } & \text { 78K0R/LF3: } & \text { ANI9/P151 and ANI10/AM152 are not mounted. } \\ & 78 \mathrm{KOR} / \mathrm{LG} 3,78 \mathrm{KOR} / \mathrm{LH} 3: & \text { ANI9/P151, ANI10/AM152 }\end{array}$

Table 12-5. Setting Functions of ANI15/AVrefm/P157 Pin

ADPC register	PM15 register	ADREF bit	ADS register	ANI15/AVrefm/P157 Pin
Digital I/O selection	Input mode	0	-	Digital input
		1	-	Setting prohibited
	Output mode	0	-	Digital output
		1	-	Setting prohibited
Analog input selection	Input mode	0	Selects ANI.	Analog input (to be converted)
			Does not select ANI.	Analog input (not to be converted)
		1	-	Negative reference voltage input of A/D converter
	Output mode	-	-	Setting prohibited

12.4 Operational Amplifier Operations

The operational amplifiers 0 to 2 have the following mode.

- Single AMP mode (operational amplifiers 0 to 2)

12.4.1 Single AMP Mode

In single amplifier mode, the difference in potential of analog voltages input from two pins (AMPn- and AMPn+ pins) is amplified and the amplified voltage is output from the AMPnO pin. The gain is determined by externally connecting a resistor or the like.

The amplified voltage can be used as an analog input of the A/D converter, because the AMPnO pin is alternatively used with analog input pin of the A/D converter.

The procedure for starting operation in single amplifier mode is described below.
$<1>$ Set bit 5 (ADCEN) of peripheral enable register 0 (PERO) to 1 to start the supply of the input clock to the operational amplifier.
<2> Use the A/D port configuration register (ADPC) to set the pins (AMPn-, AMPn+, AMPnO) to be used in single amplifier mode as analog inputs.
$<3>$ Use the port mode register x (PMx) to set the pins (AMPn-, AMPn+, AMPnO) to be used in single amplifier mode to input mode.
$<4>$ Set (1) the OAENn bit of operational amplifier control register (OAC) and enable operation in single amplifier mode. $<5>$ Use software to wait until the operational amplifier stabilizes (turn-on time: $20 \mu \mathrm{~s}$ (MAX.)).

Caution To use as an input of the A/D converter a voltage that has been amplified in single amplifier mode, enable operation in single amplifier mode before selecting an analog input channel by using the ADS register.

Remark 78K0R/LF3:
$\mathrm{n}=0,1, \mathrm{x}=2$
78K0R/LG3, 78K0R/LH3: $n=0$ to $2, x=2,15$

CHAPTER 13 VOLTAGE REFERENCE (μ PD78F150xA only)

13.1 Function of Voltage Reference

The voltage reference is mounted onto all 78K0R/Lx3 microcontroller products. The Voltage Reference has the following modes.

- Reference voltage output mode

A reference voltage is output from the $V_{\text {refout pin. Furthermore, the generated reference voltage is supplied to the }}$ internal A/D and D/A converters. 2.0 V (TYP.) or 2.5 V (TYP.) can be selected as the output voltage.

13.2 Configuration of Voltage Reference

The voltage reference consists of the following hardware.

Table 13-1. Configuration of Voltage Reference

Item	Configuration
Reference voltage output	Vrefout pin $^{\substack{\text { P } \\ \text { Control registers }}}$Peripheral enable registers 0 (PERO) Analog reference voltage control register (ADVRC)

Figure 13-1. Block Diagram of Voltage Reference

13.3 Amplifier Registers Used in Voltage Reference

The voltage reference uses the following two registers.

- Peripheral enable register 0 (PERO)
- Analog reference voltage control register (ADVRC)
(1) Peripheral enable register 0 (PERO)

PERO is used to enable or disable use of each peripheral hardware macro. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.
When the voltage reference is used, be sure to set bit 5 (ADCEN) of this register to 1 .
PERO can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 13-2. Format of Peripheral Enable Register 0 (PERO)

ADCEN	Control of A/D converter, operational amplifier, and voltage reference input clock
0	Stops input clock supply. - SFR used by the A/D converter, operational amplifier, and voltage reference cannot be written. - The A/D converter, operational amplifier, and voltage reference is in the reset status.
1	Supplies input clock. - SFR used by the A/D converter, operational amplifier, and voltage reference can be read and written.

Note 78K0R/LG3, 78K0R/LH3 only

Caution When setting voltage reference, be sure to set ADCEN to 1 first. If ADCEN $=0$, writing to a control register of voltage reference is ignored, and, even if the register is read, only the default value is read.
(2) Analog reference voltage control register (ADVRC)

This register is used to select the reference voltage supplies of the A / D and D / A converters, control the operation of the input gate voltage boost circuit for the A/D converter, and control the voltage reference (VR) operation.
ADVRC can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 13-3. Format of Analog Reference Voltage Control Register (ADVRC)

Address:	36H	t:						
Symbol	7	6	5	4	3	2	1	0
ADVRC	ADREF	0	0	0	VRSEL	0	VRGV	VRON

ADREF	Negative reference voltage supply of A/D converter selection
0	AVss
1	AV

VRSEL	VRGV	VRON	Positive reference voltage supplies selection of A / D and D/A converters	Operation control of voltage reference	Output voltage selection of voltage reference	Operation control of input gate voltage boost circuit for A/D converter	Relationship with the conversion mode used
0	0	0	$\mathrm{A} \mathrm{V}_{\text {refp }}$ (external voltage reference input)	Stops operation (Hi-Z)	2.5 V	Stops operation	Can be set in normal mode 1.
0	1	0			2.0 V	Enables operation	Can be set in normal mode 2 or low voltage mode.
1	0	0	VRefout (voltage reference output)	Stops operation (pull-down output)	2.5 V	Stops operation	-
1	0	1		Enables operation	2.5 V	Enables operation	Can be set in normal mode 2 or low voltage mode.
1	1	0		Stops operation (pull-down output)	2.0 V		-
1	1	1		Enables operation	2.0 V		Can be set in normal mode 2 or low voltage mode.
Other than the above			Setting prohibited				

Cautions 1. During voltage reference operation, be sure to connect a tantalum capacitor (capacitance: 10 $\mu \mathrm{F} \pm 30 \%$, ESR: 2Ω (max.), ESL: 10 nH (max.)) and a ceramic capacitor (capacitance: $0.1 \mu \mathrm{~F} \pm 30 \%$, ESR: 2Ω (max.), ESL: 10 nH (max.)) to the $\mathrm{V}_{\text {refout/AV恠 }}$ (min for stabilizing the reference voltage. Furthermore, do not apply a voltage from the $\mathrm{V}_{\text {refout/AV }}$ refp pin during voltage reference operation.
2. To use voltage reference output (Vrefout) to the positive reference voltage of the A/D converter (ADrefp) and the positive reference voltage of the D/A converter (DArefp), be sure to set VRON to 1 after setting VRSEL to 1 .

Cautions 3. Rewriting DACSWn $(\mathrm{n}=0,1)$ during A / D conversion is prohibited when both the positive reference voltage of the A/D converter (ADrefp) and the positive reference voltage of the D/A converter (DArefp) are the voltage reference output (Vrefout) (VRSEL = 1 and DAREF = 1). Rewrite it when conversion operation is stopped (ADCS $=0$).
4. Do not change the output voltage of the reference voltage by using VRGV during the voltage reference operation (VRON =1).

13.4 Voltage Reference Operations

The voltage reference has the following mode.

- Reference voltage output mode

A reference voltage is output from the Vrefout pin. Furthermore, the generated reference voltage is supplied to the internal A/D and D/A converters. 2.0 V (TYP.) or 2.5 V (TYP.) can be selected as the output voltage.

13.4.1 Reference voltage output mode

The procedure for starting operation is described below.
$<1>$ Set bit 5 (ADCEN) of peripheral enable register 0 (PERO) to 1 to start the supply of the input clock to the voltage reference.
<2> Set bit 3 (VRSEL) of the analog reference voltage control register (ADVRC) to 1. The positive reference voltage of both the A / D and D / A converters or only the A / D converter is set to voltage reference output.
$<3>$ Specify the reference voltage value by using bit 1 (VRGV) of ADVRC.
<4> Enable voltage reference operation by setting bit 0 (VRON) of ADVRC to 1.
$<5>$ Use software to wait until the voltage reference operation stabilizes (settling time: 17 ms (max.)).

13.5 Cautions for Voltage Reference

Observe the following cautions when using the voltage reference.

- The Vrefout output voltage can be used only as the positive reference voltage of the internal A/D and D/A converters of the microcontroller. Do not connect an external circuit other than a tantalum capacitor (capacitance: $10 \mu \mathrm{~F} \pm 30 \%$, ESR: 2Ω (max.), ESL: 10 nH (max.)) and a ceramic capacitor (capacitance: $0.1 \mu \mathrm{~F} \pm 30 \%$, ESR: 2Ω (max.), ESL: 10 nH (max.)) to the Vrefout pin for stabilizing the reference voltage.

CHAPTER 14 SERIAL ARRAY UNIT

The serial array unit has four serial channels per unit and can use two or more of various serial interfaces (3-wire serial (CSI), UART, and simplified $I^{2} C$) in combination.

Function assignment of each channel supported by the 78K0R/Lx3 microcontrollers is as shown below (channels 2 and 3 of unit 1 are dedicated to UART3 (supporting LIN-bus)).

- 78K0R/LF3

Unit	Channel	Used as CSI	Used as UART	Used as Simplified I ${ }^{2} \mathrm{C}$
0	2	CSI10	UART1	IIC10
	3	-		-
1	0	CSI20	UART2	IIC20
	1	-		-
	2	-	UART3 (supporting LIN-bus)	-
	3	-		-

- 78K0R/LG3

Unit	Channel	Used as CSI	Used as UART	Used as Simplified $I^{2} \mathrm{C}$
0	0	CSIOO	UARTO	-
	1	-		-
	2	CSI10	UART1	IIC10
	3	-		-
1	0	CSI20	UART2	IIC20
	1	-		-
	2	-	UART3 (supporting LIN-bus)	-
	3	-		-

- 78K0R/LH3

Unit	Channel	Used as CSI	Used as UART	Used as Simplified $I^{2} \mathrm{C}$
0	0	CSIOO	UARTO	-
	1	CSI01		-
	2	CSI10	UART1	IIC10
	3	-		-
1	0	CSI20	UART2	IIC20
	1	-		-
	2	-	UART3 (supporting LIN-bus)	-
	3	-		-

(Example of combination) When "UARTO" is used for channels 0 and 1 of unit 0, CSIOO and CSIO1 cannot be used, but CSI10, UART1, or IIC10 can be used.

14.1 Functions of Serial Array Unit

Each serial interface supported by the $78 \mathrm{~K} 0 \mathrm{R} / \mathrm{Lx} 3$ microcontrollers has the following features.

14.1.1 3-wire serial I/O (CSI00, CSI01, CSI10, CSI20)

This is a clocked communication function that uses three lines: serial clock (SCK) and serial data (SI and SO) lines. [Data transmission/reception]

- Data length of 7 or 8 bits
- Phase control of transmit/receive data
- MSB/LSB first selectable
- Level setting of transmit/receive data
[Clock control]
- Master/slave selection
- Phase control of I/O clock
- Setting of transfer period by prescaler and internal counter of each channel [Interrupt function]
- Transfer end interrupt/buffer empty interrupt
[Error detection flag]
- Overrun error

14.1.2 UART (UART0, UART1, UART2, UART3)

This is a start-stop synchronization function using two lines: serial data transmission (TxD) and serial data reception ($\mathrm{R} \times \mathrm{D}$) lines. It transmits or receives data in asynchronization with the party of communication (by using an internal baud rate). Full-duplex UART communication can be realized by using two channels, one dedicated to transmission (even channel) and the other to reception (odd channel).
[Data transmission/reception]

- Data length of 5, 7 , or 8 bits
- Select the MSB/LSB first
- Level setting of transmit/receive data and select of reverse
- Parity bit appending and parity check functions
- Stop bit appending
[Interrupt function]
- Transfer end interrupt/buffer empty interrupt
- Error interrupt in case of framing error, parity error, or overrun error
[Error detection flag]
- Framing error, parity error, or overrun error

The LIN-bus is accepted in UART3 (2 and 3 channels of unit 1)
[LIN-bus functions]

- Wakeup signal detection
- Sync break field (SBF) detection
- Sync field measurement, baud rate calculation

External interrupt (INTPO) or timer array unit (TAU) is used.

14.1.3 Simplified $I^{2} C$ (IIC10, IIC20)

This is a clocked communication function to communicate with two or more devices by using two lines: serial clock (SCL) and serial data (SDA). This simplified $\mathrm{I}^{2} \mathrm{C}$ is designed for single communication with a device such as EEPROM, flash memory, or A/D converter, and therefore, it functions only as a master and does not have a function to detect wait states.

Make sure by using software, as well as operating the control registers, that the AC specifications of the start and stop conditions are observed.
[Data transmission/reception]

- Master transmission, master reception (only master function with a single master)
- ACK output function ${ }^{\text {Note }}$ and ACK detection function
- Data length of 8 bits (When an address is transmitted, the address is specified by the higher 7 bits, and the least significant bit is used for R/W control.)
- Manual generation of start condition and stop condition
[Interrupt function]
- Transfer end interrupt
[Error detection flag]
- Parity error (ACK error)
[Functions not supported by simplified $\mathrm{I}^{2} \mathrm{C}$]
- Slave transmission, slave reception
- Arbitration loss detection function
- Wait detection functions

Note An ACK is not output when the last data is being received by writing 0 to the SOEmn (SOEm register) bit and stopping the output of serial communication data. See 14.7.3 (2) Processing flow for details.

Remarks 1. To use an $I^{2} C$ bus of full function, see CHAPTER 15 SERIAL INTERFACE IICA.
2. m : Unit number $(m=0,1), n$: Channel number $(n=0,2), m n=02,10$

14.2 Configuration of Serial Array Unit

Serial array unit includes the following hardware.

Table 14-1. Configuration of Serial Array Unit

Item	Configuration
Shift register	8 bits
Buffer register	Lower 8 bits of serial data register mn (SDRmn) ${ }^{\text {Note }}$
Serial clock I/O	SCK00, SCK01, SCK10, SCK20 pins (for 3-wire serial I/O), SCL10, SCL20 pins (for simplified $I^{2} C$)
Serial data input	SI00, SI01, SI10, SI20 pins (for 3-wire serial I/O), RxD0, RxD1, RxD2 pins (for UART), RxD3 pin (for UART supporting LIN-bus)
Serial data output	SO00, SO01, SO10, SO20 pins (for 3-wire serial I/O), TxD0, TxD1, TxD2 pins (for UART), TxD3 pin (for UART supporting LIN-bus), output controller
Serial data I/O	SDA10, SDA20 pins (for simplified ${ }^{2} \mathrm{C}$)
Control registers	<Registers of unit setting block> - Peripheral enable register 0 (PERO) - Serial clock select register m (SPSm) - Serial channel enable status register m (SEm) - Serial channel start register m (SSm) - Serial channel stop register m (STm) - Serial output enable register m (SOEm) - Serial output register m (SOm) - Serial output level register m (SOLm) - Input switch control register (ISC) - Noise filter enable register 0 (NFENO)
	<Registers of each channel> - Serial data register mn (SDRmn) - Serial mode register mn (SMRmn) - Serial communication operation setting register mn (SCRmn) - Serial status register mn (SSRmn) - Serial flag clear trigger register mn (SIRmn) - Port input mode registers 1, 7 (PIM1, PIM7) - Port output mode registers 1, 7, 8 (POM1, POM7, POM8) - Port mode registers 1, 5, 7, 8 (PM1, PM5, PM7, PM8) - Port registers 1, 5, 7, 8 (P1, P5, P7, P8)

Note The lower 8 bits of the serial data register mn (SDRmn) can be read or written as the following SFR, depending on the communication mode.

- CSIp communication ... SIOp (CSIp data register)
- UARTq reception ... RXDq (UARTq receive data register)
- UARTq transmission ... TXDq (UARTq transmit data register)
- IICr communication ... SIOr (IICr data register)

Remark m : Unit number ($\mathrm{m}=0,1$), n : Channel number ($\mathrm{n}=0$ to 3),
p : CSI number $(p=00,01,10,20)$, q : UART number $(q=0$ to 3$)$, r : IIC number $(r=10,20)$

Figure 14-1 shows the block diagram of serial array unit 0 .

Figure 14-1. Block Diagram of Serial Array Unit 0

Remarks 1. For 78K0R/LF3, the channels 0 and 1 are not mounted.
2. For $78 \mathrm{KOR} / \mathrm{LG} 3, \mathrm{CSI} 01$ is not mounted.

Figure 14-2 shows the block diagram of serial array unit 1.

Figure 14-2. Block Diagram of Serial Array Unit 1

(1) Shift register

This is an 8-bit register that converts parallel data into serial data or vice versa.
During reception, it converts data input to the serial pin into parallel data.
When data is transmitted, the value set to this register is output as serial data from the serial output pin.
The shift register cannot be directly manipulated by program.
To read or write the shift register, use the lower 8 bits of serial data register mn (SDRmn).

(2) Lower 8 bits of the serial data register mn (SDRmn)

SDRmn is the transmit/receive data register (16 bits) of channel n . Bits 7 to 0 function as a transmit/receive buffer register, and bits 15 to 9 are used as a register that sets the division ratio of the operation clock (MCK).
When data is received, parallel data converted by the shift register is stored in the lower 8 bits. When data is to be transmitted, set transmit to be transferred to the shift register to the lower 8 bits.

The data stored in the lower 8 bits of this register is as follows, depending on the setting of bits 0 to 2 (DLSmn0 to DLSmn2) of the SCRmn register, regardless of the output sequence of the data.

- 5-bit data length (stored in bits 0 to 4 of SDRmn register) (settable in UART mode only)
- 7-bit data length (stored in bits 0 to 6 of SDRmn register)
- 8-bit data length (stored in bits 0 to 7 of SDRmn register)

SDRmn can be read or written in 16-bit units.
The lower 8 bits of SDRmn of SDRmn can be read or written ${ }^{\text {Note }}$ as the following SFR, depending on the communication mode.

- CSIp communication ... SIOp (CSIp data register)
- UARTq reception ... RXDq (UARTq receive data register)
- UARTq transmission ... TXDq (UARTq transmit data register)
- IICr communication ... SIOr (IICr data register)

Note Writing in 8-bit units is prohibited when the operation is stopped (SEmn = 0).

Reset signal generation clears this register to 0000 H .

Remarks 1. After data is received, " 0 " is stored in bits 0 to 7 in bit portions that exceed the data length.
2. m : Unit number $(m=0,1)$, n : Channel number $(\mathrm{n}=0$ to 3),
p : CSI number ($p=00,01,10,20$), q : UART number ($q=0$ to 3), r : IIC number $(r=10,20)$

Figure 14-3. Format of Serial Data Register mn (SDRmn)

Caution Be sure to clear bit 8 to " 0 ".

Remarks 1. For the function of the higher 7 bits of SDRmn, see 14.3 Registers Controlling Serial Array Unit.
2. m : Unit number $(m=0,1)$, n : Channel number $(n=0$ to 3$)$,
p : CSI number ($p=00,01,10,20$), q : UART number ($q=0$ to 3), r : IIC number ($r=10,20$)

14.3 Registers Controlling Serial Array Unit

Serial array unit is controlled by the following registers.

- Peripheral enable register 0 (PERO)
- Serial clock select register m (SPSm)
- Serial mode register mn (SMRmn)
- Serial communication operation setting register mn (SCRmn)
- Serial data register mn (SDRmn)
- Serial status register mn (SSRmn)
- Serial flag clear trigger register mn (SIRmn)
- Serial channel enable status register m (SEm)
- Serial channel start register m (SSm)
- Serial channel stop register m (STm)
- Serial output enable register m (SOEm)
- Serial output level register m (SOLm)
- Serial output register m (SOm)
- Input switch control register (ISC)
- Noise filter enable register 0 (NFENO)
- Port input mode registers 1, 7 (PIM1, PIM7)
- Port output mode registers 1, 7, 8 (POM1, POM7, POM8)
- Port mode registers 1, 5, 7, 8 (PM1, PM5, PM7, PM8)
- Port registers 1, 5, 7, 8 (P1, P5, P7, P8)

Remark m : Unit number ($m=0,1$)
n : Channel number ($\mathrm{n}=0$ to 3)
(1) Peripheral enable register 0 (PERO)

PERO is used to enable or disable use of each peripheral hardware macro. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.
When serial array unit 0 is used, be sure to set bit 2 (SAUOEN) of this register to 1 .
When serial array unit 1 is used, be sure to set bit 3 (SAU1EN) of this register to 1 .
PERO can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 14-4. Format of Peripheral Enable Register 0 (PERO)

Address: F00FOH After reset: 00 H R/W								
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PER0	RTCEN	DACEN	ADCEN	IICAEN ${ }^{\text {Note }}$	SAU1EN	SAU0EN	TAU1EN	TAU0EN
	SAUmEN	Control of serial array unit m input clock						
	0	Stops supply of input clock. - SFR used by serial array unit m cannot be written. - Serial array unit m is in the reset status.						
	1	Supplies input clock. - SFR used by serial array unit m can be read/written.						

Note 78K0R/LG3, 78K0R/LH3 only

Cautions 1. When setting serial array unit m , be sure to set SAUmEN to 1 first. If SAUmEN $=\mathbf{0}$, writing to a control register of serial array unit m is ignored, and, even if the register is read, only the default value is read (except for input switch control register (ISC), noise filter enable register (NFENO), port input mode registers (PIM1, PIM7), port output mode registers (POM1, POM7, POM8), port mode registers (PM1, PM5, PM7, PM8), and port registers (P1, P5, P7, P8)).
2. After setting the SAUmEN to 1 , be sure to set the SPSm register after 4 or more clocks have elapsed.

Remark m : Unit number $(\mathrm{m}=0,1)$
(2) Serial clock select register m (SPSm)

SPSm is a 16-bit register that is used to select two types of operation clocks (CKm0, CKm1) that are commonly supplied to each channel. CKm1 is selected by bits 7 to 4 of SPSm , and CKm0 is selected by bits 3 to 0 .

Rewriting SPSm is prohibited when the register is in operation (when SEmn =1).
SPSm can be set by a 16-bit memory manipulation instruction.
The lower 8 bits of SPSm can be set with an 8-bit memory manipulation instruction with SPSmL.
Reset signal generation clears this register to 0000 H .

Figure 14-5. Format of Serial Clock Select Register m (SPSm)

PRS	PRS	PRS	PRS	Section of operation clock (CKmp) ${ }^{\text {Note } 1}$				
mp3	mp2	mp1	mp0		$\mathrm{fcLk}^{\text {a }} 2 \mathrm{MHz}$	$\mathrm{fcLk}^{\text {a }} 5 \mathrm{MHz}$	$\mathrm{fcLk}=10 \mathrm{MHz}$	$\mathrm{fcLk}=20 \mathrm{MHz}$
0	0	0	0	fclk	2 MHz	5 MHz	10 MHz	20 MHz
0	0	0	1	fclk/2	1 MHz	2.5 MHz	5 MHz	10 MHz
0	0	1	0	fclk $/ 2^{2}$	500 kHz	1.25 MHz	2.5 MHz	5 MHz
0	0	1	1	fcLk $/ 2{ }^{3}$	250 kHz	625 kHz	1.25 MHz	2.5 MHz
0	1	0	0	fcLk $/ 2{ }^{4}$	125 kHz	313 kHz	625 kHz	1.25 MHz
0	1	0	1	fcLk $/ 2^{5}$	62.5 kHz	156 kHz	313 kHz	625 kHz
0	1	1	0	fclk $/{ }^{6}$	31.3 kHz	78.1 kHz	156 kHz	313 kHz
0	1	1	1	fcLk $/ 2{ }^{7}$	15.6 kHz	39.1 kHz	78.1 kHz	156 kHz
1	0	0	0	fcLk $/ 2^{8}$	7.81 kHz	19.5 kHz	39.1 kHz	78.1 kHz
1	0	0	1	fclk $/ 2^{9}$	3.91 kHz	9.77 kHz	19.5 kHz	39.1 kHz
1	0	1	0	$\mathrm{fcLK} / 2^{10}$	1.95 kHz	4.88 kHz	9.77 kHz	19.5 kHz
1	0	1	1	fclk/2 ${ }^{11}$	977 Hz	2.44 kHz	4.88 kHz	9.77 kHz
1	1	1	1	INTTM02 if $m=0$, INTTM03 if $m=1^{\text {Note } 2}$				
Other than above				Setting prohibited				

Notes 1. When changing the clock selected for fcLk (by changing the system clock control register (CKC) value), do so after having stopped ($\mathrm{STm}=000 \mathrm{FH}$) the operation of the serial array unit (SAUm). When selecting INTTM02 and INTTM03 for the operation clock, also stop the timer array unit (TAU0) (TT0 = 00FFH).
2. SAUm can be operated at a fixed division ratio of the subsystem clock, regardless of the fcLk frequency (main system clock, subsystem clock), by operating the interval timer for which fsub/4 has been selected as the count clock (setting TIS02 (if $m=0$) or TIS03 (if $m=1$) of the TISO register to 1) and selecting INTTM02 and INTTM03 by using the SPSm register in channels 2 and 3 of TAU0. When changing fcLK, however, SAUm and TAUO must be stopped as described in Note 1 above.

Cautions 1. Be sure to clear bits 15 to 8 to " 0 ".

2. After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

Remarks 1. fcık: CPU/peripheral hardware clock frequency
fsub: Subsystem clock frequency
2. m : Unit number $(m=0,1), p=0,1$

(3) Serial mode register mn (SMRmn)

SMRmn is a register that sets an operation mode of channel n . It is also used to select an operation clock (MCK), specify whether the serial clock (SCK) may be input or not, set a start trigger, an operation mode (CSI, UART, or $I^{2} C$), and an interrupt source. This register is also used to invert the level of the receive data only in the UART mode.
Rewriting SMRmn is prohibited when the register is in operation (when SEmn = 1). However, the MDmn0 bit can be rewritten during operation.
SMRmn can be set by a 16-bit memory manipulation instruction.
Reset signal generation sets this register to 0020H.

Figure 14-6. Format of Serial Mode Register mn (SMRmn) (1/2)

Address: F0110H, F0111H (SMR00) to F0116H, F0117H (SMR03), After reset: 0020H R/W F0150H, F0151H (SMR10), F0152H, F0153H (SMR11),
F0154H, F0155H (SMR12), F0156H, F0157H (SMR13)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMRmn	CKS mn	$\begin{gathered} \text { CCS } \\ \mathrm{mn} \end{gathered}$	0	0	0	0	0	$\begin{gathered} \mathrm{STS} \\ \mathrm{mn} \end{gathered}$	0	$\begin{gathered} \mathrm{SIS} \\ \mathrm{mnO} \end{gathered}$	1	0	0	MD mn2	$\begin{aligned} & \text { MD } \\ & \mathrm{mn} 1 \end{aligned}$	$\begin{aligned} & \mathrm{MD} \\ & \mathrm{mnO} \end{aligned}$

CKS $m n$	Selection of operation clock (MCK) of channel n
0	Prescaler output clock CKm0 set by SPSm register
1	Prescaler output clock CKm1 set by SPSm register
Operation clock MCK is used by the edge detector. In addition, depending on the setting of the CCSmn bit and the higher 7 bits of the SDRmn register, a transfer clock (TCLK) is generated.	

CCS mn	Selection of transfer clock (TCLK) of channel n
0	Divided operation clock MCK specified by CKSmn bit
1	Clock input from SCK pin (slave transfer in CSI mode)
Transfer clock TCLK is used for the shift register, communication controller, output controller, interrupt controller, and error controller. When CCSmn $=0$, the division ratio of MCK is set by the higher 7 bits of the SDRmn register.	

STS mn	Selection of start trigger source
0	Only software trigger is valid (selected for CSI, UART transmission, and simplified $\mathrm{I}^{2} \mathrm{C}$).
1	Valid edge of RxD pin (selected for UART reception)
Transfer is started when the above source is satisfied after 1 is set to the SSm register.	

Caution Be sure to clear bits 13 to $9,7,4$, and 3 to " 0 ". Be sure to set bit 5 to " 1 ".

Remark m : Unit number $(m=0,1)$, n : Channel number ($\mathrm{n}=0$ to 3)

Figure 14-6. Format of Serial Mode Register mn (SMRmn) (2/2)

Address:	$\begin{aligned} & 10 \mathrm{H}, \mathrm{FC} \\ & 50 \mathrm{H}, \mathrm{Fc} \\ & 54 \mathrm{H}, \mathrm{FC} \end{aligned}$		F0154H, F0155H (SMR12), F0156H, F0157H (SMR13)													
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMRmn	CKS mn	CCS mn	0	0	0	0	0	$\begin{gathered} \text { STS } \\ \mathrm{mn} \end{gathered}$	0	$\begin{aligned} & \text { SIS } \\ & \mathrm{mnO} \end{aligned}$	1	0	0	$\begin{aligned} & \mathrm{MD} \\ & \mathrm{mn} 2 \end{aligned}$	MD mn1	$\begin{aligned} & \mathrm{MD} \\ & \mathrm{mnO} \end{aligned}$
	$\begin{aligned} & \text { SIS } \\ & \text { mnO } \end{aligned}$	Controls inversion of level of receive data of channel n in UART mode														
	0	Falling edge is detected as the start bit. The input communication data is captured as is.														
	1	Rising edge is detected as the start bit. The input communication data is inverted and captured.														

MD $m n 2$	MD $m n 1$	Setting of operation mode of channel n
0	0	CSI mode
0	1	UART mode
1	0	Simplified ${ }^{2} C$ mode
1	1	Setting prohibited

MD mn0	Selection of interrupt source of channel n
0	Transfer end interrupt
1	Buffer empty interrupt
For successive transmission, the next transmit data is written by setting MDmn0 to 1 when SDRmn data has run out.	

Remark m : Unit number $(m=0,1), n$: Channel number $(n=0$ to 3$)$

(4) Serial communication operation setting register mn (SCRmn)

SCRmn is a communication operation setting register of channel n . It is used to set a data transmission/reception mode, phase of data and clock, whether an error signal is to be masked or not, parity bit, start bit, stop bit, and data length.
Rewriting SCRmn is prohibited when the register is in operation (when SEmn = 1).
SCRmn can be set by a 16-bit memory manipulation instruction.
Reset signal generation sets this register to 0087H.

Figure 14-7. Format of Serial Communication Operation Setting Register mn (SCRmn) (1/3)

Address: F0118H, F0119H (SCR00) to F011EH, F011FH (SCR03), After reset: 0087H R/W F0158H, F0159H (SCR10), F015AH, F015BH (SCR11), F015CH, F015DH (SCR12), F015EH, F015FH (SCR13)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SCRmn	$\begin{aligned} & \text { TXE } \\ & \text { mn } \end{aligned}$	$\begin{gathered} \text { RXE } \\ \mathrm{mn} \end{gathered}$	$\begin{gathered} \text { DAP } \\ \mathrm{mn} \end{gathered}$	$\begin{gathered} \text { CKP } \\ \mathrm{mn} \end{gathered}$	0	$\begin{gathered} \mathrm{EOC} \\ \mathrm{mn} \end{gathered}$	PTC mn1	$\begin{aligned} & \text { PTC } \\ & \text { mn0 } \end{aligned}$	DIR mn	0	$\begin{aligned} & \text { SLC } \\ & \mathrm{mn} 1 \end{aligned}$	$\begin{aligned} & \mathrm{SLC} \\ & \mathrm{mnO} \end{aligned}$	0	DLS mn2	DLS mn1	$\begin{aligned} & \text { DLS } \\ & \text { mn0 } \end{aligned}$

TXE $m n$	RXE $m n$	\quad Setting of operation mode of channel n
0	0	Does not start communication.
0	1	Reception only
1	0	Transmission only
1	1	Transmission/reception

$\begin{gathered} \text { DAP } \\ \mathrm{mn} \end{gathered}$	$\begin{gathered} \text { CKP } \\ \mathrm{mn} \end{gathered}$	Selection	f data and clock phase in CSI mode	Type
0	0	$\begin{aligned} & \overline{\text { SCKp }} \\ & \text { SOp } \\ & \text { SIp input timing } \end{aligned}$		1
0	1	$\begin{aligned} & \overline{\text { SCKp }} \\ & \text { SOp } \\ & \text { Slp input timing } \end{aligned}$		2
1	0	$\begin{aligned} & \hline \overline{\text { SCKp }} \\ & \text { SOp } \\ & \text { Slp input timing } \end{aligned}$		3
1	1	$\begin{aligned} & \overline{\text { SCKp }} \\ & \text { SOp } \\ & \text { SIp input timing } \end{aligned}$		4
Be sure to set DAPmn, CKPmn $=0,0$ in the UART mode and simplified $\mathrm{I}^{2} \mathrm{C}$ mode.				

Caution Be sure to clear bits 3, 6, and 11 to " 0 ". Be sure to set bit 2 to " 1 ".

Remark m : Unit number $(m=0,1)$, n : Channel number ($n=0$ to 3), p : CSI number $(p=00,01,10,20)$

Figure 14-7. Format of Serial Communication Operation Setting Register mn (SCRmn) (2/3)

EOC mn	Selection of masking of error interrupt signal (INTSREx $(\mathrm{x}=0$ to 3$)$)
0	Masks error interrupt INTSREx (INTSRx is not masked).
1	Enables generation of error interrupt INTSREx (INTSRx is masked if an error occurs).
Set EOCmn $=0$ Set EOCmn $=1$ during UART reception.	

PTC mn1	PTC	Setting of parity bit in UART mode		
		Transmission	Reception	
0	0	Does not output the parity bit.	Receives without parity	
0	1	Outputs 0 parity.	No parity judgment	
1	0	Outputs even parity.	Judged as even parity.	
1	1	Outputs odd parity.	Judges as odd parity.	
Be sure to set PTCmn1, PTCmn0 $=0,0$ in the CSI mode and simplified $\mathrm{I}^{2} \mathrm{C}$ mode.				

DIR mn	Selection of data transfer sequence in CSI and UART modes
0	Inputs/outputs data with MSB first.
1	Inputs/outputs data with LSB first.
Be sure to clear DIRmn $=0$ in the simplified ${ }^{2} \mathrm{C}$ mode.	

SLC mn1	SLC mn0	
0	0	No stop bit
0	1	Stop bit length $=1$ bit
1	0	Stop bit length $=2$ bits of stop bit in UART mode
1	1	Setting prohibited
When the transfer end interrupt is selected, the interrupt is generated when all stop bits have been completely transferred. Set 1 bit (SLCmn1, SLCmn0 $=0,1)$ during UART reception and in the simplified I ${ }^{2} \mathrm{C}$ mode. Set no stop bit $(S L C m n 1, S L C m n 0=0,0)$ in the CSI mode.		

Note When using CSIO1 not with EOC01 = 0, error interrupt INTSRE0 may be generated.

Caution Be sure to clear bits 3, 6, and 11 to " 0 ". Be sure to set bit 2 to " 1 ".

Remark m : Unit number $(m=0,1), n$: Channel number $(n=0$ to 3$)$

Figure 14-7. Format of Serial Communication Operation Setting Register mn (SCRmn) (3/3)

DLS mn2	DLS mn1	DLS mn0	Setting of data length in CSI and UART modes		
1	0	0	5-bit data length (stored in bits 0 to 4 of SDRmn register) (settable in UART mode only)		
1	1	0	7-bit data length (stored in bits 0 to 6 of SDRmn register)		
1	1	1	8-bit data length (stored in bits 0 to 7 of SDRmn register)		
Other than above					Setting prohibited
Be sure to set DLSmn0 $=1$ in the simplified $I^{2} C$ mode.					

Caution Be sure to clear bits 3, 6, and 11 to " 0 ". Be sure to set bit 2 to " 1 ".

Remark m : Unit number $(m=0,1)$, n : Channel number ($\mathrm{n}=0$ to 3)
(5) Higher 7 bits of the serial data register mn (SDRmn)

SDRmn is the transmit/receive data register (16 bits) of channel n . Bits 7 to 0 function as a transmit/receive buffer register, and bits 15 to 9 are used as a register that sets the division ratio of the operation clock (MCK).
If the CCSmn bit of serial mode register mn (SMRmn) is cleared to 0 , the clock set by dividing the operating clock by the higher 7 bits of SDRmn is used as the transfer clock.

For the function of the lower 8 bits of SDRmn, see 14.2 Configuration of Serial Array Unit.
SDRmn can be read or written in 16-bit units.
However, the higher 7 bits can be written or read only when the operation is stopped (SEmn $=0$). During operation $(S E m n=1)$, a value is written only to the lower 8 bits of SDRmn. When SDRmn is read during operation, 0 is always read.
Reset signal generation clears this register to 0000 H .

Figure 14-8. Format of Serial Data Register mn (SDRmn)

SDRmn[15:9]							Transfer clock setting by dividing the operating clock (MCK)
0	0	0	0	0	0	0	MCK/2
0	0	0	0	0	0	1	MCK/4
0	0	0	0	0	1	0	MCK/6
0	0	0	0	0	1	1	MCK/8
$\stackrel{-}{-}$	$\stackrel{-}{-}$	$\stackrel{-}{\bullet}$	$\stackrel{-}{-}$	$\stackrel{-}{-}$	$\stackrel{-}{-}$	$\stackrel{-}{-}$	$\stackrel{-}{-}$
1	1	1	1	1	1	0	MCK/254
1	1	1	1	1	1	1	MCK/256

Cautions 1. Be sure to clear bit 8 to " 0 ".
2. Setting SDRmn[15:9] $=(0000000 \mathrm{~B}, 0000001 \mathrm{~B})$ is prohibited when UART is used.
3. Setting SDRmn[15:9] $=0000000 B$ is prohibited when the simplified $I^{2} C$ is used. Set SDRmn[15:9] to 0000001B or greater.

Remarks 1. For the function of the lower 8 bits of SDRmn, see 14.2 Configuration of Serial Array Unit.
2. m : Unit number $(m=0,1)$
n : Channel number ($\mathrm{n}=0$ to 3)

(6) Serial status register mn (SSRmn)

SSRmn is a register that indicates the communication status and error occurrence status of channel n . The errors indicated by this register are a framing error, parity error, and overrun error.
SSRmn can be read by a 16-bit memory manipulation instruction.
The lower 8 bits of SSRmn can be set with an 8-bit memory manipulation instruction with SSRmnL.
Reset signal generation clears this register to 0000 H .

Figure 14-9. Format of Serial Status Register mn (SSRmn) (1/2)

Address:	$\mathrm{OH},$ $\mathrm{OH},$	$\begin{aligned} & 101 \mathrm{H} \\ & 141 \mathrm{H} \\ & 145 \mathrm{H} \end{aligned}$	SRO SR		-	$07 \mathrm{r}$ 3H				res	0000	R					
Symbol	15	14	13	12	11	10	9	8		7	6	5	4	3	2	1	0
SSRmn	0	0	0	0	0	0	0	0		0	$\begin{gathered} \text { TSF } \\ \mathrm{mn} \end{gathered}$	BFF mn	0	0	$\begin{gathered} \text { FEF } \\ \text { mn } \\ \text { Note } \end{gathered}$	$\begin{gathered} \text { PEF } \\ \text { mn } \\ \text { Note } \end{gathered}$	$\begin{gathered} \text { OVF } \\ \text { mn } \\ \text { Note } \end{gathered}$

TSF mn	Communication status indication flag of channel n
0	Communication is not under execution.
1	Communication is under execution.
Because this flag is an updating flag, it is automatically cleared when the communication operation is completed. This flag is cleared also when the STmn/SSmn bit is set to 1.	

BFF $m n$	Buffer register status indication flag of channel n
0	Valid data is not stored in the SDRmn register.
1	Valid data is stored in the SDRmn register.
This is an updating flag. It is automatically cleared when transfer from the SDRmn register to the shift register is completed. During reception, it is automatically cleared when data has been read from the SDRmn register. This flag is cleared also when the STmn/SSmn bit is set to 1.	
This flag is automatically set if transmit data is written to the SDRmn register when the TXEmn bit of the SCRmn	
register = 1 (transmission or reception mode in each communication mode). It is automatically set if receive data is	
stored in the SDRmn register when the RXEmn bit of the SCRmn register = 1 (transmission or reception mode in	
each communication mode). It is also set in case of a reception error.	
If data is written to the SDRmn register when BFFmn $=1$, the transmit/receive data stored in the register is	
discarded and an overrun error (OVFmn =1) is detected.	

Note Only SSR12 register does not have FET12, PET12, and OVF12.

Remark m : Unit number $(m=0,1)$, n : Channel number $(n=0$ to 3$)$

Figure 14-9. Format of Serial Status Register mn (SSRmn) (2/2)

Address:	$\mathrm{OH},$ H, H,				$6 \mathrm{H},$, ,	$107 \mathrm{H}$ $3 \mathrm{H}$	R11		After reset: 0000 H			R				
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSRmn	0	0	0	0	0	0	0	0	0	$\begin{aligned} & \text { TSF } \\ & \mathrm{mn} \end{aligned}$	BFF mn	0	0	$\begin{gathered} \text { FEF } \\ \text { mn } \\ \text { Note } \end{gathered}$	$\begin{gathered} \text { PEF } \\ \text { mn } \\ \text { Note } \end{gathered}$	$\begin{gathered} \text { OVF } \\ \text { mn } \\ \text { Note } \end{gathered}$

FEF mn	Framing error detection flag of channel n				
0	No error occurs.				
1	A framing error occurs during UART reception. <Framing error cause> A framing error occurs if the stop bit is not detected upon completion of UART reception.				
This is a cumulative flag and is not cleared until 1 is written to the FECTmn bit of the SIRmn register.					

PEF $m n$	Parity error detection flag of channel n
0	Error does not occur.
1	A parity error occurs during UART reception or ACK is not detected during I ${ }^{2}$ C transmission. <Parity error cause> - A parity error occurs if the parity of transmit data does not match the parity bit on completion of UART - ACK is not detected if the ACK signal is not returned from the slave in the timing of ACK reception during I 2 C transmission.
This is a cumulative flag and is not cleared until 1 is written to the PECTmn bit of the SIRmn register.	

OVF mn	Overrun error detection flag of channel n 0 No error occurs.
1	An overrun error occurs. <Causes of overrun error> - Receive data stored in the SDRmn register is not read and transmit data is written or the next receive - Trata is written.
This is a cumulative flag and is not cleared until 1 is written to the OVCTmn bit of the SIRmn register.	

Note Only SSR12 register does not have FET12, PET12, and OVF12.

Remark m : Unit number $(m=0,1)$, n : Channel number $(\mathrm{n}=0$ to 3)

(7) Serial flag clear trigger register mn (SIRmn)

SIRmn is a trigger register that is used to clear each error flag of channel n.
When each bit (FECTmn, PECTmn, OVCTmn) of this register is set to 1 , the corresponding bit (FEFmn, PEFmn, OVFmn) of serial status register mn is cleared to 0 . Because SIRmn is a trigger register, it is cleared immediately when the corresponding bit of SSRmn is cleared.
SIRmn can be set by a 16-bit memory manipulation instruction.
The lower 8 bits of SIRmn can be set with an 8-bit memory manipulation instruction with SIRmnL.
Reset signal generation clears this register to 0000 H .

Figure 14-10. Format of Serial Flag Clear Trigger Register mn (SIRmn)

Address: $\mathrm{F0108H}, \mathrm{F0109H}$ (SIR00) to F010EH, F010FH (SIR03), After reset: 0000H R/W F0148H, F0149H (SIR10), F014AH, F014BH (SIR11), F014EH, F014FH (SIR13)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SIRmn	0	0	0	0	0	0	0	0	0	0	0	0	0	$\begin{aligned} & \text { FEC } \\ & \text { Tmn } \end{aligned}$	$\begin{aligned} & \text { PEC } \\ & \text { Tmn } \end{aligned}$	OVC Tmn

FEC Tmn	Clear trigger of framing error of channel n
0	No trigger operation
1	Clears the FEFmn bit of the SSRmn register to 0.

PEC Tmn	Clear trigger of parity error flag of channel n
0	No trigger operation
1	Clears the PEFmn bit of the SSRmn register to 0.

OVC	
Tmn	

Caution Be sure to clear bits 15 to 3 to " 0 ".

Remarks 1. m : Unit number ($m=0,1$), n : Channel number ($\mathrm{n}=0$ to 3)
2. When the SIRmn register is read, 0000 H is always read.
(8) Serial channel enable status register m (SEm)

SEm indicates whether data transmission/reception operation of each channel is enabled or stopped.
When 1 is written a bit of serial channel start register $0(\mathrm{SSm})$, the corresponding bit of this register is set to 1 . When 1 is written a bit of serial channel stop register 0 (STm), the corresponding bit is cleared to 0 .

Channel n that is enabled to operate cannot rewrite by software the value of CKOmn of the serial output register m (SOm) to be described below, and a value reflected by a communication operation is output from the serial clock pin.
Channel n that stops operation can set the value of CKOmn of the SOm register by software and output its value from the serial clock pin. In this way, any waveform, such as that of a start condition/stop condition, can be created by software.
SEm can be read by a 16-bit memory manipulation instruction.
The lower 8 bits of SEm can be set with an 1-bit or 8-bit memory manipulation instruction with SEmL.
Reset signal generation clears this register to 0000 H .

Figure 14-11. Format of Serial Channel Enable Status Register m (SEm)

Note Bits 6 and 5 (TSFmn, BFFmn) of the SSRmn register are cleared.

Remark m : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0$ to 3)
(9) Serial channel start register m (SSm)

SSm is a trigger register that is used to enable starting communication/count by each channel.
When 1 is written a bit of this register (SSmn), the corresponding bit (SEmn) of serial channel enable status register m (SEm) is set to 1 . Because SSmn is a trigger bit, it is cleared immediately when SEmn = 1 .

SSm can be set by a 16-bit memory manipulation instruction.
The lower 8 bits of SSm can be set with an 1-bit or 8-bit memory manipulation instruction with SSmL.
Reset signal generation clears this register to 0000 H .

Figure 14-12. Format of Serial Channel Start Register m (SSm)

Address: F0122H, F0123H (SS0), F0162H, F0163H (SS1)							After reset: 0000 H			R/W		4	3	2	1	0
Symbol	15	14	13	12	11	10	9	8	7	6	5					
SSm	0	0	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \text { SSm } \\ 3 \end{gathered}$	$\begin{gathered} \text { SSm } \\ 2 \end{gathered}$	SSm 1	SSm 0

SSmn	Operation start trigger of channel n
0	No trigger operation
1	Sets SEmn to 1 and enters the communication wait status (if a communication operation is already under execution, the operation is stopped and the start condition is awaited).

Caution Be sure to clear bits 15 to 4 to " 0 ".

Remarks 1. m : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0$ to 3)
2. When the SSm register is read, 0000 H is always read.

(10) Serial channel stop register m (STm)

STm is a trigger register that is used to enable stopping communication/count by each channel.
When 1 is written a bit of this register (STmn), the corresponding bit (SEmn) of serial channel enable status register $m(S E m)$ is cleared to 0 . Because STmn is a trigger bit, it is cleared immediately when SEmn $=0$. STm can set written by a 16-bit memory manipulation instruction.
The lower 8 bits of STm can be set with an 1-bit or 8-bit memory manipulation instruction with STmL.
Reset signal generation clears this register to 0000 H .

Figure 14-13. Format of Serial Channel Stop Register m (STm)

Address: F0124H, F0125H (ST0), F0164H, F0165H (ST1)							After reset: 0000 H			R/W		4	3	2	1	0
Symbol	15	14	13	12	11	10	9	8	7	6	5					
STm	0	0	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \text { STm } \\ 3 \end{gathered}$	$\begin{gathered} \text { STm } \\ 2 \end{gathered}$	STm 1	STm 0

STm n	Operation stop trigger of channel n
0	No trigger operation
1	Clears SEmn to 0 and stops the communication operation. (Stops with the values of the control register and shift register, and the statuses of the serial clock I/O pin, serial data output pin, and the FEF, PEF, and OVF error flags retained ${ }^{\text {Note. }}$.)

Note Bits 6 and 5 (TSFmn, BFFmn) of the SSRmn register are cleared.

Caution Be sure to clear bits 15 to 4 to " 0 ".

Remarks 1. m : Unit number $(m=0,1)$, n : Channel number ($n=0$ to 3)
2. When the STm register is read, 0000 H is always read.
(11) Serial output enable register m (SOEm)

SOEm is a register that is used to enable or stop output of the serial communication operation of each channel.
Channel n that enables serial output cannot rewrite by software the value of SOmn of the serial output register m (SOm) to be described below, and a value reflected by a communication operation is output from the serial data output pin.
For channel n , whose serial output is stopped, the SOmn value of the SOm register can be set by software, and that value can be output from the serial data output pin. In this way, any waveform of the start condition and stop condition can be created by software.
SOEm can be set by a 16-bit memory manipulation instruction.
The lower 8 bits of SOEm can be set with an 1-bit or 8-bit memory manipulation instruction with SOEmL.
Reset signal generation clears this register to 0000 H .

Figure 14-14. Format of Serial Output Enable Register m (SOEm)

Address: F	H,	6BH	Afte	set:	OH	R/W										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOE1	0	0	0	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \text { SOE } \\ 12 \end{gathered}$	0	$\begin{gathered} \text { SOE } \\ 10 \end{gathered}$

SOE mn	Serial output enable/disable of channel n
0	Stops output by serial communication operation.
1	Enables output by serial communication operation.

Caution Be sure to clear bits 15 to 3 of SOEO, and bits 1 and 15 to 3 of SOE1 to " 0 ".

Remark m : Unit number $(m=0,1)$, n : Channel number ($\mathrm{n}=0$ to 2), $m n=00$ to $02,10,12$
(12) Serial output register m (SOm)

SOm is a buffer register for serial output of each channel.
The value of bit n of this register is output from the serial data output pin of channel n.
The value of bit ($n+8$) of this register is output from the serial clock output pin of channel n.
SOmn of this register can be rewritten by software only when serial output is disabled (SOEmn $=0$). When serial output is enabled $(S O E m n=1)$, rewriting by software is ignored, and the value of the register can be changed only by a serial communication operation.
CKOmn of this register can be rewritten by software only when the channel operation is stopped (SEmn $=0$). While channel operation is enabled ($\mathrm{SEmn}=1$), rewriting by software is ignored, and the value of CKOmn can be changed only by a serial communication operation.
To use the P10/ $\overline{\mathrm{SCK} 20} / \mathrm{SCL} 20, \mathrm{P} 11 / \mathrm{SI} 20 / \mathrm{SDA} 20 / \mathrm{RxD} 2 / I N T P 6, ~ P 12 / \mathrm{SO} 20 / \mathrm{TxD2/TO02}, \mathrm{P13/SO10/TxD1/TO04}$, P14/SI10/SDA10/RxD1/INTP4, P15/SCK10/SCL10/INTP7, P51/TxD3/SDGx (78K0R/LF3: $x=29,78 K 0 R / L G 3: ~ x=$ 38, 78K0R/LH3: $x=52$), P75/ $\overline{\mathrm{SCK} 01 / K R 5, ~ P 77 / S O 01 / K R 7, ~ P 80 / / \overline{S C K 00 / I N T P 11, ~ o r ~ P 82 / S O 00 / T x D 0 ~ p i n ~ a s ~ a ~ p o r t ~}}$ function pin, set the corresponding CKOmn and SOmn bits to "1".
SOm can be set by a 16 -bit memory manipulation instruction.
Reset signal generation clears this register to OFOFH.

Figure 14-15. Format of Serial Output Register m (SOm)

Caution Be sure to set bits 11 and 3 of SOO, and bits 11 to 9,3 , and 1 of SO1 to " 1 ". And be sure to clear bits 15 to 12 and 7 to 4 of SOm to " 0 ".

Remark m : Unit number $(m=0,1)$, n : Channel number ($n=0$ to 2), $\mathrm{mn}=00$ to $02,10,12$

(13) Serial output level register m (SOLm)

SOLm is a register that is used to set inversion of the data output level of each channel.
This register can be set only in the UART mode. Be sure to set 0000 H in the CSI mode and simplifies $\mathrm{I}^{2} \mathrm{C}$ mode. Inverting channel n by using this register is reflected on pin output only when serial output is enabled (SOEmn = 1). When serial output is disabled $(S O E m n=0)$, the value of the SOmn bit is output as is.

Rewriting SOLm is prohibited when the register is in operation (when SEmn =1).
SOLm can be set by a 16 -bit memory manipulation instruction.
The lower 8 bits of SOLm can be set with an 8-bit memory manipulation instruction with SOLmL.
Reset signal generation clears this register to 0000 H .

Figure 14-16. Format of Serial Output Level Register m (SOLm)

Address: F0134H, F0135H (SOLO), F0174H, F0175H (SOL1) After reset: 0000H R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOLm	0	0	0	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \text { SOL } \\ \text { m2 } \end{gathered}$	0	$\begin{gathered} \text { SOL } \\ \mathrm{mo} \end{gathered}$

SOL mn	Selects inversion of the level of the transmit data of channel n in UART mode
0	Communication data is output as is.
1	Communication data is inverted and output.

Caution Be sure to clear bits 15 to 3 , 1 to " 0 ".

Remark m : Unit number $(m=0,1), n$: Channel number $(\mathrm{n}=0,2)$
(14) Input switch control register (ISC)

ISC is used to realize a LIN-bus communication operation by UART3 in coordination with an external interrupt and the timer array unit.
When bit 0 is set to 1 , the input signal of the serial data input (RxD3) pin is selected as an external interrupt (INTPO) that can be used to detect a wakeup signal.
When bit 1 is set to 1 , the input signal of the serial data input (RxD 3) pin is selected as a timer input, so that the pulse widths of a sync break field and a sync field can be measured by the timer.
ISC can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 14-17. Format of Input Switch Control Register (ISC)

Address: FFF3CH	After reset: 00H		R/W					
Symbol	7	6	5	4	3	2	1	0
ISC	0	0	0	ISC4	ISC3	ISC2	ISC1	ISCO

ISC1	Switching channel 7 input of timer array unit
0	Uses the input signal of the TI07 pin as a timer input (normal operation).
1	Input signal of RxD3 pin is used as timer input (wakeup signal detection).

ISC0	Switching external interrupt (INTPO) input
0	Uses the input signal of the INTP0 pin as an external interrupt (normal operation).
1	Uses the input signal of the RxD3 pin as an external interrupt (to measure the pulse widths of the sync break field and sync field).

Caution Be sure to clear bits 7 to 5 to " 0 ".

Remark Bits 2 to 4 of ISC are not used with SAU1.

(15) Noise filter enable register 0 (NFENO)

NFENO is used to set whether the noise filter can be used for the input signal from the serial data input pin to each channel.
Disable the noise filter of the pin used for CSI or simplified $I^{2} C$ communication, by clearing the corresponding bit of this register to 0 .
Enable the noise filter of the pin used for UART communication, by setting the corresponding bit of this register to 1.

When the noise filter is enabled, CPU/peripheral operating clock (fclk) is synchronized with 2-clock match detection.
NFENO can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 14-18. Format of Noise Filter Enable Register 0 (NFENO)

Address: $\mathrm{F0060H}$	After reset: 00 H		R/W					
Symbol	7	6	5	4	3	2	1	0
NFENO	0	SNFEN30	0	SNFEN20	0	SNFEN10	0	SNFEN00

SNFEN30	Use of noise filter of RxD3/P50/SEGx (78K0R/LF3: $x=30,78 \mathrm{K0R} / \mathrm{LG} 3: x=39,78 \mathrm{KOR} / \mathrm{LH} 3: x=53$) pin
0	Noise filter OFF
1	Noise filter ON
Set SNFEN30 to 1 to use the RxD3 pin. Clear SNFEN30 to 0 to use the P50 or SEGx pins.	

SNFEN20	Use of noise filter of RxD2/P11/SI20/SDA20/INTP6 pin
0	Noise filter OFF
1	Noise filter ON
Set SNFEN20 to 1 to use the RxD2 pin. Clear SNFEN20 to 0 to use the P11, SI20, SDA20 or INTP6 pins.	

SNFEN10	Use of noise filter of RxD1/P14/SI10/SDA10/INTP4 pin
0	Noise filter OFF
1	Noise filter ON
Set SNFEN10 to 1 to use the RxD1 pin. Clear SNFEN10 to 0 to use the P14, SI10, SDA10 or INTP4 pins.	

SNFEN00	\quad Use of noise filter of RxD0/P80/SI00/INTP9 pin
0	Noise filter OFF
1	Noise filter ON
Set SNFEN00 to 1 to use the RxD0 pin. Clear SNFEN00 to 0 to use the P80, SI00 or INTP9.	

Caution Be sure to clear bits 7, 5, 3, and 1 to " 0 ".

(16) Port input mode registers 1, 7 (PIM1, PIM7)

These registers set the input buffer of P10, P11, P14, P15, P75, and P76 in 1-bit units.
PIM1 and PIM7 can be set by a 1-bit or 8 -bit memory manipulation instruction.
Reset signal generation clears these registers to 00 H .

Figure 14-19. Format of Port Input Mode Registers 1, and 7 (PIM1, PIM7)

- 78K0R/LF3, 78K0R/LG3

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PIM1	0	0	PIM15	PIM14	0	0	PIM11	PIM10	F0041H	OOH	

- 78K0R/LH3

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PIM1	0	0	PIM15	PIM14	0	0	PIM11	PIM10	F0041H	00H	R/W
PIM7	0	PIM76	PIM75	0	0	0	0	0	F0047H	OOH	R/W

PIMmn	Pmn pin input buffer selection $(\mathrm{m}=1$ and $7 ; \mathrm{n}=0,1,4$ to 6$)$	
0	Normal input buffer	
1	TTL input buffer	

(17) Port output mode registers 1, 7,8 (POM1, POM7, POM8)

These registers set the output mode of P10 to P15, P75, P77, P80 and 82 in 1-bit units.
POM1, POM7, and POM8 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears these registers to 00 H .

Figure 14-20. Format of Port Output Mode Registers 1, 7, and 8 (POM1, POM7, POM8)

- 78K0R/LF3

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
POM1	0	0	POM15	POM14	POM13	POM12	POM11	POM10	F0051H	00H	R/W

- 78K0R/LG3

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
POM1	0	0	POM15	POM14	POM13	POM12	POM11	POM10	F0051H	00H	R/W
POM8	0	0	0	0	0	POM82	0	POM80	F0058H	00H	R/W

- 78K0R/LH3

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
POM1	0	0	POM15	POM14	POM13	POM12	POM11	POM10	F0051H	00H	R/W
POM7	POM77	0	POM75	0	0	0	0	0	F0057H	00H	R/W
POM8	0	0	0	0	0	POM82	0	POM80	F0058H	OOH	R/W

POMmn	Pmn pin output mode selection $(m=1,7$, and $8 ; n=0$ to 5 and 7$)$
0	Normal output mode
1	N-ch open-drain output (VDD tolerance) mode

(18) Port mode registers 1, 5, 7, 8 (PM1, PM5, PM7, PM8)

These registers set input/output of ports 1,5,7 and 8 in 1-bit units.
When using the P10/SCK20/SCL20, P11/SI20/SDA20/RxD2/INTP6, P12/SO20/TxD2/TO02, P13/SO10/TxD1/TO04, P14/SI10/SDA10/RxD1/INTP4, P15/SCK10/SCL10/INTP7, P51/TxD3/SEGx (78K0R/LF3: $x=29,78 K 0 R / L G 3: x=38$, 78K0R/LH3: $x=52$), P75/SCK01/KR5, P77/SO01/KR7, P80/SCK00/INTP11, and P82/SO00/TxD0 pins for serial data output or serial clock output, clear the PM10, PM11, PM12, PM13, PM14, PM15, PM51, PM75, PM77, PM80, and PM82 bits to 0, and set the output latches of P10, P11, P12, P13, P14, P15, P51, P75, P77, P80, and P82 to 1. When using the P10/ㅇS20/SCL20, P11/SI20/SDA20/RxD2/INTP6, P14/SI10/SDA10/RxD1/INTP4, P15/SCK10/SCL10/INTP7, P50/RxD3/SEGx (78K0R/LF3: $x=30,78 K 0 R / L G 3: x=39,78 K 0 R / L H 3: x=53$), P75/SCK01/KR5, P76/SI01/KR6, P80/SCK00/INTP11, and P81/SI00/RxD0/INTP9 pins for serial data input or serial clock input, set the PM10, PM11, PM14, PM15, PM50, PM75, PM76, PM80, and PM81 bits to 1. At this time, the output latches of P10, P11, P14, P15, P50, P75, P76, P80, and P81 may be 0 or 1.
PM1, PM5, PM7, and PM8 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets these registers to FFH.

Figure 14-21. Format of Port Mode Registers 1, 5, 7, and 8 (PM1, PM5, PM7, PM8)

- 78K0R/LF3

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PM1	1	1	PM15	PM14	PM13	PM12	PM11	PM10	FFF21H	FFH	R/W
PM5	PM57	PM56	PM55	PM54	PM53	PM52	PM51	PM50	FFF25H	FFH	R/W

- 78K0R/LG3

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PM1	1	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FFF21H	FFH	R/W
PM5	PM57	PM56	PM55	PM54	PM53	PM52	PM51	PM50	FFF25H	FFH	R/W
PM8	1	1	1	1	1	PM82	PM81	PM80	FFF28H	FFH	R/W

- 78K0R/LH3

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FFF21H	FFH	R/W
PM5	PM57	PM56	PM55	PM54	PM53	PM52	PM51	PM50	FFF25H	FFH	R/W
PM7	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70	FFF27H	FFH	R/W
PM8	PM87	PM86	PM85	PM84	PM83	PM82	PM81	PM80	FFF28H	FFH	R/W

PMmn		Pmn pin I/O mode selection $(m=1,5,7,8 ; n=0$ to 7$)$
0	Output mode (output buffer on)	
1	Input mode (output buffer off)	

14.4 Operation stop mode

Each serial interface of serial array unit has the operation stop mode.
In this mode, serial communication cannot be executed, thus reducing the power consumption.
In addition, the P10/SCK20/SCL20, P11/SI20/SDA20/RxD2/INTP6, P12/SO20/TxD2/TO02, P13/SO10/TxD1/TO04, P14/SI10/SDA10/RxD1/INTP4, P15/SCK10/SCL10/NTP7, P50/RxD3/SEGx (78K0R/LF3: x = 30, 78K0R/LG3: x = 39, 78K0R/LH3: $x=53$), P51/TxD3/SEGx (78K0R/LF3: $x=29,78 K 0 R / L G 3: ~ x=38,78 K 0 R / L H 3: x=52$), P75/SCK01/KR5, P76/SI01/KR6, P77/SO01/KR7, P80/SCK00/INTP11, P81/SI00/RxD0/INTP9, and P82/SO00/TxD0 pins can be used as ordinary port pins in this mode.

14.4.1 Stopping the operation by units

The stopping of the operation by units is set by using peripheral enable register 0 (PERO).
PER0 is used to enable or disable use of each peripheral hardware macro. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.

To stop the operation of serial array unit 0 , set bit 2 (SAUOEN) to 0 .
To stop the operation of serial array unit 1 , set bit 3 (SAU1EN) to 0 .

Figure 14-22. Peripheral Enable Register 0 (PERO) Setting When Stopping the Operation by Units
(a) Peripheral enable register $\mathbf{0}$ (PERO) ... Set only the bit of SAUm to be stopped to 0 .

	7	6	5	4	3	2	1	0
PER0	RTCEN	DACEN \times	ADCEN	IICOEN \times	SAU1EN 0/1	SAUOEN $0 / 1$	TAU1EN	TAUOEN \times
Control of SAUm input clock 0 : Stops supply of input clock 1: Supplies input clock								

[^3]Remark m : Unit number ($\mathrm{m}=0,1$)
x : Bits not used with serial array units (depending on the settings of other peripheral functions)
$0 / 1$: Set to 0 or 1 depending on the usage of the user

14.4.2 Stopping the operation by channels

The stopping of the operation by channels is set using each of the following registers.

Figure 14-23. Each Register Setting When Stopping the Operation by Channels (1/2)

- Serial Channel Enable Status Register m (SEm) ... This register indicates whether data transmission/reception operation of each channel is enabled or stopped.

- The Sem register is a read-only status register, whose operation is stopped by using the STm register.

With a channel whose operation is stopped, the value of CKOmn of the Som register can be set by software.

- Serial channel stop register m (STm) ... This register is a trigger register that is used to enable stopping communication/count by each channel.

* Because STmn is a trigger bit, it is cleared immediately when SEmn $=0$.
(c) Serial output enable register m (SOEm) ... This register is a register that is used to enable or stop output of the serial communication operation of each channel.

* For channel n , whose serial output is stopped, the SOO value of the SOO register can be set by software.

* For channel n , whose serial output is stopped, the SO1n value of the SO1 register can be set by software.

Remark m : Unit number ($m=0,1$), n : Channel number ($n=0$ to 3)
: Setting disabled (fixed by hardware), 0/1: Set to 0 or 1 depending on the usage of the user

Figure 14-23. Each Register Setting When Stopping the Operation by Channels (2/2)
(d) Serial output register $\mathrm{m}(\mathrm{SOm})$...This register is a buffer register for serial output of each channel.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOO	0	0	0	0	1	$\begin{array}{\|c\|c\|} \hline \text { скоо2 } \\ 0 / 1 \end{array}$	$\begin{array}{\|c} \hline \text { Скоо1 } \\ \hline 0 / 1 \end{array}$	$\begin{array}{\|c} \hline \text { скооо } \\ 0 / 1 \end{array}$	0	0	0	0	1	$\begin{gathered} \text { sooz } \\ 0 / 1 \end{gathered}$	$\begin{aligned} & \text { sool } \\ & 0 / 1 \end{aligned}$	$\begin{gathered} \text { sooo } \\ 0 / 1 \end{gathered}$

* When using pins corresponding to each channel as port function pins, set the corresponding CKOOn and SOOn bits to " 1 ".

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SO1	0	0	0	0	1	1	1	$\begin{gathered} \text { CKO10 } \\ 0 / 1 \end{gathered}$	0	0	0	0	1	SO12 0/1	1	SO10 0/1

* When using pins corresponding to each channel as port function pins, set the corresponding CKO10 and SO1n bits to " 1 ".

Remark m : Unit number ($\mathrm{m}=0,1$), n : Channel number $(\mathrm{n}=0$ to 3)
\square : Setting disabled (fixed by hardware), $0 / 1$: Set to 0 or 1 depending on the usage of the user

14.5 Operation of 3-Wire Serial I/O (CSI00, CSI01, CSI10, CSI20) Communication

This is a clocked communication function that uses three lines: serial clock ($\overline{\mathrm{SCK}}$) and serial data (SI and SO) lines.
[Data transmission/reception]

- Data length of 7 or 8 bits
- Phase control of transmit/receive data
- MSB/LSB first selectable
- Level setting of transmit/receive data
[Clock control]
- Master/slave selection
- Phase control of I/O clock
- Setting of transfer period by prescaler and internal counter of each channel
[Interrupt function]
- Transfer end interrupt/buffer empty interrupt
[Error detection flag]
- Overrun error

The channels supporting 3-wire serial I/O (CSIOO, CSIO1, CSI10, CSI20) are channels 0 to 2 of SAUO and channel 0 of SAU1.

Unit	Channel	Used as CSI	Used as UART	Used as Simplified I ${ }^{2} \mathrm{C}$
0	0	CSIOO	UARTO	-
	1	CSI01		-
	2	CSI10	UART1	IIC10
	3	-		-
1	0	CSI20	UART2	IIC20
	1	-		-
	2	-	UART3 (supporting LIN-bus)	-
	3	-		-

Remarks 1. For $78 \mathrm{KOR} / \mathrm{LF} 3, \mathrm{CSI} 00$ and CSIO1 are not mounted.
2. For $78 \mathrm{KOR} / \mathrm{LG} 3, \mathrm{CSIO1}$ is not mounted.

3-wire serial I/O (CSI00, CSI01, CIS10, CSI20) performs the following six types of communication operations.

- Master transmission
- Master reception
- Master transmission/reception
- Slave transmission
- Slave reception
- Slave transmission/reception
(See 14.5.1.)
(See 14.5.2.)
(See 14.5.3.)
(See 14.5.4.)
(See 14.5.5.)
(See 14.5.6.)

14.5.1 Master transmission

Master transmission is that the $78 \mathrm{~K} 0 \mathrm{R} / \mathrm{Lx} 3$ microcontrollers output a transfer clock and transmit data to another device.

3-Wire Serial I/O	CSIOO	CSI01	CSI10	CSI20
Target channel	Channel 0 of SAU0	Channel 1 of SAU0	Channel 2 of SAU0	Channel 0 of SAU1
Pins used	SCK00, SOOO	SCK01, SO01	$\overline{\text { SCK10, SO10 }}$	SCK20, SO20
Interrupt	INTCSIOO	INTCSI01	INTCSI10	INTCSI20
	Transfer end interrupt (in single-transfer mode) or buffer empty interrupt (in continuous transfer mode) can be selected.			
Error detection flag	None			
Transfer data length	7 or 8 bits			
Transfer rate	Max. fclk/4 [MHz], Min. fcLk/($\left.2 \times 2^{11} \times 128\right)[\mathrm{MHz}]^{\text {Note }} \quad$ fclk: System clock frequency			
Data phase	Selectable by DAPmn bit - DAPmn = 0: Data output starts from the start of the operation of the serial clock. - DAPmn = 1: Data output starts half a clock before the start of the serial clock operation.			
Clock phase	Selectable by CKPmn bit - CKPmn = 0: Forward - CKPmn = 1: Reverse			
Data direction	MSB or LSB first			

Note Use this operation within a range that satisfies the conditions above and the AC characteristics in the electrical specifications (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).

Remarks 1. For 78K0R/LF3, CSI00 and CSI01 are not mounted.

2. For $78 \mathrm{KOR} / \mathrm{LG} 3, \mathrm{CSI} 01$ is not mounted.

(1) Register setting

Figure 14-24. Example of Contents of Registers for Master Transmission of 3-Wire Serial I/O (CSI00, CSIO1, CSI10, CSI20)
(a) Serial output register $\mathrm{m}(\mathrm{SOm})$... Sets only the bits of the target channel.

(b) Serial output enable register m (SOEm) ... Sets only the bits of the target channel to 1.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOEm	0	0	0	0	0	0	0	0	0	0	0	0	0	SOEm2 $0 / 1$	$\begin{gathered} \text { SOEm1 } \\ 0 / 1 \end{gathered}$	$\begin{gathered} \text { SOEm0 } \\ 0 / 1 \end{gathered}$

(c) Serial channel start register $\mathrm{m}(\mathrm{SSm}) \ldots$ Sets only the bits of the target channel to 1.

(d) Serial mode register mn (SMRmn)

(e) Serial communication operation setting register mn (SCRmn)

(f) Serial data register mn (SDRmn) (lower 8 bits: SIOp)

Remark m : Unit number ($m=0,1$), n : Channel number ($\mathrm{n}=0$ to 2), p : CSI number ($\mathrm{p}=00,01,10,20$) \square : Setting is fixed in the CSI master transmission mode, \square : Setting disabled (set to the initial value) \times : Bit that cannot be used in this mode (set to the initial value when not used in any mode) $0 / 1$: Set to 0 or 1 depending on the usage of the user

(2) Operation procedure

Figure 14-25. Initial Setting Procedure for Master Transmission

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

Figure 14-26. Procedure for Stopping Master Transmission

Remarks 1. Even after communication is stopped, the pin level is retained. To resume the operation, re-set the SOm register (see Figure 14-27 Procedure for Resuming Master Transmission).
2. p : CSI number $(p=00,01,10,20)$

Figure 14-27. Procedure for Resuming Master Transmission

Disable data output and clock output of the target channel by setting a port register and a port mode register.

Change the setting if an incorrect division ratio of the operation clock is set

Change the setting if an incorrect transfer baud rate is set.

Change the setting if the setting of the SMRmn register is incorrect.

Change the setting if the setting of the SCRmn register is incorrect.

Cleared by using SIRmn register if FEF, PEF, or OVF flag remains set.

Set the SOEm register and stop the output of the target channel.

Manipulate the SOmn and CKOmn bits and set an initial output level.

Set the SOEm register and enable data output of the target channel.

Enable data output and clock output of the target channel by setting a port register and a port mode register

Set the SSmn bit of the target channel to 1 to set SEmn =1.

Sets transmit data to the SIOp register (bits 7 to 0 of the SDRmn register) and start communication

(3) Processing flow (in single-transmission mode)

Figure 14-28. Timing Chart of Master Transmission (in Single-Transmission Mode)

Remark m : Unit number $(m=0,1)$, n : Channel number ($\mathrm{n}=0$ to 2), p : CSI number $(\mathrm{p}=00,01,10,20)$

Figure 14-29. Flowchart of Master Transmission (in Single-Transmission Mode)

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

(4) Processing flow (in continuous transmission mode)

Figure 14-30. Timing Chart of Master Transmission (in Continuous Transmission Mode)

Note When transmit data is written to the SDRmn register while BFFmn $=1$, the transmit data is overwritten.

Caution The MDmn0 bit can be rewritten even during operation.

However, rewrite it before transfer of the last bit is started, so that it will be rewritten before the transfer end interrupt of the last transmit data.

Remark m : Unit number ($m=0,1$), n : Channel number ($n=0$ to 2), p : CSI number ($p=00,01,10,20$)

Figure 14-31. Flowchart of Master Transmission (in Continuous Transmission Mode)

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

Remark <1> to <6> in the figure correspond to <1> to $<6>$ in Figure 14-30 Timing Chart of Master Transmission (in Continuous Transmission Mode).

14.5.2 Master reception

Master reception is that the $78 \mathrm{~K} 0 \mathrm{R} / \mathrm{Lx} 3$ microcontrollers output a transfer clock and receive data from other device.

3-Wire Serial I/O	CSIOO	CSI01	CSI10	CSI20
Target channel	Channel 0 of SAU0	Channel 1 of SAU0	Channel 2 of SAU0	Channel 0 of SAU1
Pins used	$\overline{\text { SCKOO, SIOO }}$	SCK01, SI01	SCK10, SI10	SCK20, SI20
Interrupt	INTCSIOO	INTCSI01	INTCSI10	INTCSI20
	Transfer end interrupt only (Setting the buffer empty interrupt is prohibited.)			
Error detection flag	Overrun error detection flag (OVFmn) only			
Transfer data length	7 or 8 bits			
Transfer rate	Max. fclk/4 [MHz], Min. fclk $/\left(2 \times 2^{11} \times 128\right)[\mathrm{MHz}]^{\text {Note }} \quad$ fclk: System clock frequency			
Data phase	Selectable by DAPmn bit - DAPmn = 0: Data input starts from the start of the operation of the serial clock. - DAPmn = 1: Data input starts half a clock before the start of the serial clock operation.			
Clock phase	Selectable by CKPmn bit - CKPmn = 0: Forward - CKPmn = 1: Reverse			
Data direction	MSB or LSB first			

Note Use this operation within a range that satisfies the conditions above and the AC characteristics in the electrical specifications (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).

Remarks 1. For 78K0R/LF3, CSIO0 and CSIO1 are not mounted.
2. For $78 \mathrm{KOR} / \mathrm{LG} 3, \mathrm{CSI} 01$ is not mounted.

(1) Register setting

Figure 14-32. Example of Contents of Registers for Master Reception of 3-Wire Serial I/O (CSI00, CSI01, CSI10, CSI20)
(a) Serial output register m (SOm) ... Sets only the bits of the target channel.

(b) Serial output enable register $\mathrm{m}(\mathrm{SOEm})$... Clears only the bits of the target channel to 0 .

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOEm	0	0	0	0	0	0	0	0	0	0	0	0	0	SOEm2 $0 / 1$	SOEm1 1 $0 / 1$	SOEm0 $0 / 1$

(c) Serial channel start register $\mathrm{m}(\mathrm{SSm})$... Sets only the bits of the target channel to 1.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSm	0	0	0	0	0	0	0	0	0	0	0	0	SSm3 \times	$\begin{gathered} \text { SSm2 } \\ 0 / 1 \end{gathered}$	$\begin{gathered} \text { SSm1 } \\ 0 / 1 \end{gathered}$	$\begin{gathered} \text { SSm0 } \\ 0 / 1 \end{gathered}$

(d) Serial mode register mn (SMRmn)

(e) Serial communication operation setting register mn (SCRmn)

(f) Serial data register mn (SDRmn) (lower 8 bits: SIOp)

Remark m: Unit number ($m=0,1$), n : Channel number ($n=0$ to 2), p : CSI number ($p=00,01,10,20$) \square : Setting is fixed in the CSI master reception mode, \square : Setting disabled (set to the initial value) \times : Bit that cannot be used in this mode (set to the initial value when not used in any mode) $0 / 1$: Set to 0 or 1 depending on the usage of the user

(2) Operation procedure

Figure 14-33. Initial Setting Procedure for Master Reception

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

Figure 14-34. Procedure for Stopping Master Reception

Remark Even after communication is stopped, the pin level is retained. To resume the operation, re-set the SOm register (see Figure 14-35 Procedure for Resuming Master Reception).

Figure 14-35. Procedure for Resuming Master Reception

(3) Processing flow (in single-reception mode)

Figure 14-36. Timing Chart of Master Reception (in Single-Reception Mode) (Type 1: DAPmn $=0$, CKPmn $=0$)

Remark m : Unit number $(m=0,1), n$: Channel number $(n=0$ to 2$), p$: CSI number $(p=00,01,10,20)$

Figure 14-37. Flowchart of Master Reception (in Single-Reception Mode)

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

14.5.3 Master transmission/reception

Master transmission/reception is that the 78K0R/Lx3 microcontrollers output a transfer clock and transmit/receive data to/from other device.

3-Wire Serial I/O	CSIOO	CSI01	CSI10	CSI20
Target channel	Channel 0 of SAU0	Channel 1 of SAU0	Channel 2 of SAU0	Channel 0 of SAU1
Pins used	$\overline{\text { SCK00, SIOO, SOOO }}$	$\overline{\text { SCK01, SI01, SO01 }}$	SCK10, SI10, SO10	$\overline{\text { SCK20, SI20, SO20 }}$
Interrupt	INTCSIOO	INTCSI01	INTCSI10	INTCSI20
	Transfer end interrupt (in single-transfer mode) or buffer empty interrupt (in continuous transfer mode) can be selected.			
Error detection flag	Overrun error detection flag (OVFmn) only			
Transfer data length	7 or 8 bits			
Transfer rate	Max. fclk/4 [MHz], Min. fclk $/\left(2 \times 2^{11} \times 128\right)[\mathrm{MHz}]^{\text {Note }} \quad$ fclk: System clock frequency			
Data phase	Selectable by DAPmn bit - DAPmn = 0: Data I/O starts at the start of the operation of the serial clock. - DAPmn = 1: Data I/O starts half a clock before the start of the serial clock operation.			
Clock phase	Selectable by CKPmn bit - CKPmn = 0: Forward - CKPmn = 1: Reverse			
Data direction	MSB or LSB first			

Note Use this operation within a range that satisfies the conditions above and the AC characteristics in the electrical specifications (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).

Remarks 1. For $78 \mathrm{KOR} / \mathrm{LF} 3, \mathrm{CSI} 00$ and CSI01 are not mounted.
2. For $78 \mathrm{KOR} / \mathrm{LG} 3, \mathrm{CSI} 01$ is not mounted.

(1) Register setting

Figure 14-38. Example of Contents of Registers for Master Transmission/Reception of 3-Wire Serial I/O (CSI00, CSIO1, CSI10, CSI20)
(a) Serial output register m (SOm) ... Sets only the bits of the target channel.

Communication starts when these bits are 1 if the data phase is forward (CKPmn $=0$). If the phase is reversed (CKPmn = 1), communication starts when these bits are 0 .
(b) Serial output enable register m (SOEm) ... Sets only the bits of the target channel to 1 .

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOEm	0	0	0	0	0	0	0	0	0	0	0	0	0	SOEm2 $0 / 1$	SOEm1 1 $0 / 1$	SOEm0 $0 / 1$

(c) Serial channel start register $\mathrm{m}(\mathrm{SSm})$... Sets only the bits of the target channel to 1.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSm	0	0	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \text { SSm3 } \\ \times \end{gathered}$	$\begin{gathered} \text { SSm2 } \\ 0 / 1 \end{gathered}$	$\begin{gathered} \text { sSm1 } \\ 0 / 1 \end{gathered}$	$\begin{gathered} \text { sSm0 } \\ 0 / 1 \end{gathered}$

(d) Serial mode register mn (SMRmn)

(e) Serial communication operation setting register mn (SCRmn)

(f) Serial data register mn (SDRmn) (lower 8 bits: SIOp)

Remark m: Unit number ($m=0,1$), n: Channel number ($\mathrm{n}=0$ to 2), p : CSI number ($\mathrm{p}=00,01,10,20$)
\square : Setting is fixed in the CSI master transmission/reception mode, \square : Setting disabled (set to the initial value)
\times : Bit that cannot be used in this mode (set to the initial value when not used in any mode)
$0 / 1$: Set to 0 or 1 depending on the usage of the user

(2) Operation procedure

Figure 14-39. Initial Setting Procedure for Master Transmission/Reception

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

Figure 14-40. Procedure for Stopping Master Transmission/Reception

Write 1 to the STmn bit of the target channel.

Set the SOEm register and stop the output of the target channel.

Stop communication in midway.

Remark Even after communication is stopped, the pin level is retained. To resume the operation, re-set the SOm register (see Figure 14-41 Procedure for Resuming Master Transmission/Reception).

Figure 14-41. Procedure for Resuming Master Transmission/Reception

Disable data output and clock output of the target channel by setting a port register and a port mode register.

Change the setting if an incorrect division ratio of the operation clock is set.

Change the setting if an incorrect transfer baud rate is set.

Change the setting if the setting of the SMRmn register is incorrect.

Change the setting if the setting of the SCRmn register is incorrect.

Cleared by using SIRmn register if FEF, PEF, or OVF flag remains set.

Set the SOEm register and stop the output of the target channel.

Manipulate the SOmn and CKOmn bits and set an initial output level.

Set the SOEm register and enable the output of the target channel.

Enable data output and clock output of the target channel by setting a port register and a port mode register.

Set the SSmn bit of the target channel to 1 and set SEmn to 1 .

Set transmit data to the SIOp register (bits 7 to 0 of the SDRmn register) and start communication.

(3) Processing flow (in single-transmission/reception mode)

Figure 14-42. Timing Chart of Master Transmission/Reception (in Single-Transmission/Reception Mode)
(Type 1: DAPmn $=0$, CKPmn $=0$)

Remark m : Unit number $(m=0,1)$, n : Channel number $(n=0$ to 2$), p$: CSI number $(p=00,01,10,20)$

Figure 14-43. Flowchart of Master Transmission/Reception (in Single-Transmission/Reception Mode)

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

(4) Processing flow (in continuous transmission/reception mode)

Figure 14-44. Timing Chart of Master Transmission/Reception (in Continuous Transmission/Reception Mode)
(Type 1: DAPmn = 0, CKPmn = 0)

Notes 1. When transmit data is written to the SDRmn register while BFFmn = 1, the transmit data is overwritten.
2. The transmit data can be read by reading the SDRmn register during this period. At this time, the transfer operation is not affected.

Caution The MDmn0 bit can be rewritten even during operation.
However, rewrite it before transfer of the last bit is started, so that it has been rewritten before the transfer end interrupt of the last transmit data.

Remarks 1. <1> to $<8>$ in the figure correspond to $<1>$ to $<8>$ in Figure 14-45 Flowchart of Master Transmission/Reception (in Continuous Transmission/Reception Mode).
2. m : Unit number $(m=0,1)$, n : Channel number $(n=0$ to 2$)$, p : CSI number $(p=00,01,10,20)$

Figure 14-45. Flowchart of Master Transmission/Reception (in Continuous Transmission/Reception Mode)

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

Remark <1> to <8> in the figure correspond to <1> to <8> in Figure 14-44 Timing Chart of Master Transmission/Reception (in Continuous Transmission/Reception Mode).

14.5.4 Slave transmission

Slave transmission is that the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers transmit data to another device in the state of a transfer clock being input from another device.

3-Wire Serial I/O	CSIOO	CSI01	CSI10	CSI20
Target channel	Channel 0 of SAU0	Channel 1 of SAU0	Channel 2 of SAU0	Channel 0 of SAU1
Pins used	$\overline{\text { SCK00, SOOO }}$	$\overline{\text { SCK01, SO01 }}$	$\overline{\text { SCK10, SO10 }}$	$\overline{\text { SCK20, SO20 }}$
Interrupt	INTCSIOO	INTCSI01	INTCSI10	INTCSI20
	Transfer end interrupt (in single-transfer mode) or buffer empty interrupt (in continuous transfer mode) can be selected.			
Error detection flag	Overrun error detection flag (OVFmn) only			
Transfer data length	7 or 8 bits			
Transfer rate	Max. fmск/6 $\left.{ }_{\text {c }} \mathrm{MHz}\right]^{\text {Notes 1,2 }}$			
Data phase	Selectable by DAPmn bit - DAPmn = 0: Data output starts from the start of the operation of the serial clock. - DAPmn = 1: Data output starts half a clock before the start of the serial clock operation.			
Clock phase	Selectable by CKPmn bit - CKPmn = 0: Forward - CKPmn = 1: Reverse			
Data direction	MSB or LSB first			

Notes 1. Because the external serial clock input to pins SCK00, $\overline{\text { SCK01 }}, \overline{\text { SCK10 }}$, and SCK20 is sampled internally and used, the fastest transfer rate is $f м с к / 6[\mathrm{MHz}]$.
2. Use this operation within a range that satisfies the conditions above and the AC characteristics in the electrical specifications (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).

Remarks 1. fмск: Operation clock (MCK) frequency of target channel
2. For $78 \mathrm{KOR} / \mathrm{LF} 3, \mathrm{CSIOO}$ and CSIO1 are not mounted.
3. For $78 \mathrm{KOR} / \mathrm{LG} 3, \mathrm{CSIO1}$ is not mounted.

(1) Register setting

Figure 14-46. Example of Contents of Registers for Slave Transmission of 3-Wire Serial I/O (CSI00, CSI01, CSI10, CSI20)
(a) Serial output register m (SOm) ... Sets only the bits of the target channel.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOm	0	0	0	0	1	CKOm2 \times	$\begin{gathered} \text { CKOm1 } \\ \times \end{gathered}$	$\begin{gathered} \text { CKOm0 } \\ \times \end{gathered}$	0	0	0	0	1	SOm2 $0 / 1$	SOm1 $0 / 1$	$\begin{gathered} \text { sOm0 } \\ 0 / 1 \end{gathered}$

(b) Serial output enable register m (SOEm) ... Sets only the bits of the target channel to 1 .

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOEm	0	0	0	0	0	0	0	0	0	0	0	0	0	SOEm2 $0 / 1$	SOEm1 $0 / 1$	SOEm0 $0 / 1$

(c) Serial channel start register $\mathrm{m}(\mathrm{SSm})$... Sets only the bits of the target channel to 1.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSm	0	0	0	0	0	0	0	0	0	0	0	0	SSm3 \times	$\begin{gathered} \text { SSm2 } \\ 0 / 1 \end{gathered}$	$\begin{gathered} \text { SSm1 } \\ 0 / 1 \end{gathered}$	$\begin{gathered} \text { SSm0 } \\ 0 / 1 \end{gathered}$

(d) Serial mode register mn (SMRmn)

Operation mode of channel n
0 : Transfer end interrupt
1: Buffer empty interrupt
(e) Serial communication operation setting register mn (SCRmn)

(f) Serial data register mn (SDRmn) (lower 8 bits: SIOp)

Remark m : Unit number $(m=0,1)$, n : Channel number ($n=0$ to 2), p : CSI number ($p=00,01,10,20$) \square : Setting is fixed in the CSI slave transmission mode, \square : Setting disabled (set to the initial value) \times : Bit that cannot be used in this mode (set to the initial value when not used in any mode)
$0 / 1$: Set to 0 or 1 depending on the usage of the user

(2) Operation procedure

Figure 14-47. Initial Setting Procedure for Slave Transmission

Release the serial array unit from the reset status and start clock supply.

Set the prescaler.

Set an operation mode, etc.

Set a communication format.

Set bits 15 to 9 to 0000000B for baud rate setting.

Manipulate the SOmn bit and set an initial output level.

Set the SOEmn bit to 1 and enable data output of the target channel.

Enable data output of the target channel by setting a port register and a port mode register.

Set the SSmn bit of the target channel to 1 to set $\operatorname{SEmn}=1$

Set transmit data to the SIOp register (bits 7 to 0 of the SDRmn register) and wait for a clock from the master.

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have

 elapsed.Figure 14-48. Procedure for Stopping Slave Transmission

Remark Even after communication is stopped, the pin level is retained. To resume the operation, re-set the SOm register (see Figure 14-49 Procedure for Resuming Slave Transmission).

Figure 14-49. Procedure for Resuming Slave Transmission

(3) Processing flow (in single-transmission mode)

Figure 14-50. Timing Chart of Slave Transmission (in Single-Transmission Mode)
(Type 1: DAPmn = 0, CKPmn = 0)

Remark m: Unit number $(m=0,1)$, n : Channel number $(n=0$ to 2$), p$: CSI number $(p=00,01,10,20)$

Figure 14-51. Flowchart of Slave Transmission (in Single-Transmission Mode)

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

(4) Processing flow (in continuous transmission mode)

Figure 14-52. Timing Chart of Slave Transmission (in Continuous Transmission Mode)
(Type 1: DAPmn = 0, CKPmn = 0)

Note When transmit data is written to the SDRmn register while BFFmn $=1$, the transmit data is overwritten.

Caution The MDmn0 bit can be rewritten even during operation. However, rewrite it before transfer of the last bit is started.

Figure 14-53. Flowchart of Slave Transmission (in Continuous Transmission Mode)

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

Remark <1> to <6> in the figure correspond to <1> to <6> in Figure 14-52 Timing Chart of Slave Transmission (in Continuous Transmission Mode).

14.5.5 Slave reception

Slave reception is that the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers receive data from another device in the state of a transfer clock being input from another device.

3-Wire Serial I/O	CSIOO	CSI01	CSI10	CSI20
Target channel	Channel 0 of SAU0	Channel 1 of SAU0	Channel 2 of SAU0	Channel 0 of SAU1
Pins used	$\overline{\text { SCK00, SIOO }}$	SCK01, SI01	$\overline{\text { SCK10, SI10 }}$	$\overline{\text { SCK20, SI20 }}$
Interrupt	INTCSIOO	INTCSI01	INTCSI10	INTCSI20
	Transfer end interrupt only (Setting the buffer empty interrupt is prohibited.)			
Error detection flag	Overrun error detection flag (OVFmn) only			
Transfer data length	7 or 8 bits			
Transfer rate	Max. $\mathrm{fmck}^{\text {/ }} 6[\mathrm{MHz}]^{\text {Notes 1,2 }}$			
Data phase	Selectable by DAPmn bit - DAPmn = 0: Data input starts from the start of the operation of the serial clock. - DAPmn = 1: Data input starts half a clock before the start of the serial clock operation.			
Clock phase	Selectable by CKPmn bit - CKPmn = 0: Forward - CKPmn = 1: Reverse			
Data direction	MSB or LSB first			

Notes 1. Because the external serial clock input to pins $\overline{\text { SCK00 }}, \overline{\text { SCK01 }}, \overline{\text { SCK10 }}$, and $\overline{\text { SCK20 }}$ is sampled internally and used, the fastest transfer rate is $\mathrm{f}_{\mathrm{m}} \mathrm{K} / 6[\mathrm{MHz}]$.
2. Use this operation within a range that satisfies the conditions above and the AC characteristics in the electrical specifications (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).

Remarks 1. fмск: Operation clock (MCK) frequency of target channel
2. For 78KOR/LF3, CSIOO and CSIO1 are not mounted.
3. For $78 \mathrm{KOR} / \mathrm{LG} 3, \mathrm{CSIO1}$ is not mounted.

(1) Register setting

Figure 14-54. Example of Contents of Registers for Slave Reception of 3-Wire Serial I/O (CSI00, CSI01, CSI10, CSI20)
(a) Serial output register m (SOm)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOm	0	0	0	0	1	$\begin{gathered} \text { CKOm2 } \\ \times \end{gathered}$	$\begin{gathered} \text { CKOm1 } \\ \times \end{gathered}$	$\begin{gathered} \text { CKOm0 } \\ \times \end{gathered}$	0	0	0	0	1	SOm2 \times	SOm1 \times	SOm0 \times

(b) Serial output enable register m (SOEm) ... Clears only the bits of the target channel to 0 .

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOEm	0	0	0	0	0	0	0	0	0	0	0	0	0	SOEm2 $0 / 1$	SOEm1 $0 / 1$	SOEm0 $0 / 1$

(c) Serial channel start register $\mathrm{m}(\mathrm{SSm}) \ldots$ Sets only the bits of the target channel to 1.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSm	0	0	0	0	0	0	0	0	0	0	0	0	SSm3 \times	$\begin{gathered} \text { SSm2 } \\ 0 / 1 \end{gathered}$	$\begin{gathered} \text { SSm1 } \\ 0 / 1 \end{gathered}$	$\begin{gathered} \text { SSm0 } \\ 0 / 1 \end{gathered}$

(d) Serial mode register mn (SMRmn)

Operation mode of channel n
0 : Transfer end interrupt
(e) Serial communication operation setting register mn (SCRmn)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SCRmn	TXEmn 0	RXEmn	$\begin{array}{\|c} \text { DAPmn } \\ 0 / 1 \end{array}$	$\begin{array}{\|c} \hline \text { CKPmn } \\ 0 / 1 \end{array}$	0	EOCmn	PTCmn1 0	PTCmno 0	DIRmn $0 / 1$	0	SLCmn1	SLCmno 0	0	DLSmn2	DLSmn1 1	DLSmno $0 / 1$

(f) Serial data register mn (SDRmn) (lower 8 bits: SIOp)

Remark m : Unit number ($m=0,1$), n : Channel number ($n=0$ to 2), p : CSI number ($p=00,01,10,20$) \square : Setting is fixed in the CSI slave reception mode, \square : Setting disabled (set to the initial value) \times : Bit that cannot be used in this mode (set to the initial value when not used in any mode) $0 / 1$: Set to 0 or 1 depending on the usage of the user

(2) Operation procedure

Figure 14-55. Initial Setting Procedure for Slave Reception

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

Figure 14-56. Procedure for Stopping Slave Reception

Write 1 to the STmn bit of the target channel.

Stop communication in midway.

Figure 14-57. Procedure for Resuming Slave Reception

	Starting setting for resumption	Stop the target for communication or wait until the target completes its operation. Disable clock output of the target channel by setting a port register and a port mode register.
(Essential)	Manipulating target for communication	
(Essential)	Port manipulation	
(Selective)	Changing setting of SPSm register	Change the setting if an incorrect division ratio of the operation clock is set.
(Selective)	Changing setting of SMRmn register	Change the setting if the setting of the SMRmn register is incorrect.
(Selective)	Changing setting of SCRmn register	Change the setting if the setting of the SCRmn register is incorrect.
(Selective)	Changing setting of SDRmn register	Change the setting if the setting of the SDRmn register is incorrect.
(Selective)	Changing setting of SOm register	Manipulate the CKOmn bit and enable reception.
(Essential)	Changing setting of SOEm register	Clear the SOEm register to 0 and stop data output of the target channel.
(Selective)	Clearing error flag	Cleared by using SIRmn register if FEF, PEF, or OVF flag remains set.
(Essential)	Port manipulation	Enable clock output of the target channel by setting a port register and a port mode register.
(Essential)	Writing to SSm register	Set the SSmn bit of the target channel to 1 to set $\operatorname{SEmn}=1$.
(Essential)	Starting communication	Wait for a clock from the master.

(3) Processing flow (in single-reception mode)

Figure 14-58. Timing Chart of Slave Reception (in Single-Reception Mode) (Type 1: DAPmn =0, CKPmn =0)

Remark m : Unit number ($m=0,1$), n : Channel number ($n=0$ to 2), p : CSI number $(p=00,01,10,20)$

Figure 14-59. Flowchart of Slave Reception (in Single-Reception Mode)

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

14.5.6 Slave transmission/reception

Slave transmission/reception is that the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers transmit/receive data to/from another device in the state of a transfer clock being input from another device.

3-Wire Serial I/O	CSIOO	CSI01	CSI10	CSI20
Target channel	Channel 0 of SAU0	Channel 1 of SAU0	Channel 2 of SAU0	Channel 0 of SAU1
Pins used	$\overline{\text { SCK00, SIOO, SOOO }}$	SCK01, SI01, SO01	SCK10, SI10, SO10	$\overline{\text { SCK20, SI20, SO20 }}$
Interrupt	INTCSIOO	INTCSI01	INTCSI10	INTCSI20
	Transfer end interrupt (in single-transfer mode) or buffer empty interrupt (in continuous transfer mode) can be selected.			
Error detection flag	Overrun error detection flag (OVFmn) only			
Transfer data length	7 or 8 bits			
Transfer rate	Max. $\left.\mathrm{fmck}^{\text {/ } 6[M H z] ~}\right]^{\text {Notes 1,2 }}$			
Data phase	Selectable by DAPmn bit - DAPmn = 0: Data I/O starts from the start of the operation of the serial clock. - DAPmn = 1: Data I/O starts half a clock before the start of the serial clock operation.			
Clock phase	Selectable by CKPmn bit - CKPmn = 0: Forward - CKPmn = 1: Reverse			
Data direction	MSB or LSB first			

Notes 1. Because the external serial clock input to pins SCK00, SCK01, SCK10, and SCK20 is sampled internally and used, the fastest transfer rate is $\mathrm{f}_{\mathrm{m} / \kappa} / 6[\mathrm{MHz}]$.
2. Use this operation within a range that satisfies the conditions above and the AC characteristics in the electrical specifications (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).

Remarks 1. fмск: Operation clock (MCK) frequency of target channel
2. For $78 \mathrm{KOR} / \mathrm{LF} 3, \mathrm{CSIOO}$ and CSI01 are not mounted.
3. For $78 \mathrm{KOR} / \mathrm{LG} 3, \mathrm{CSI} 01$ is not mounted.

Figure 14-60. Example of Contents of Registers for Slave Transmission/Reception of 3-Wire Serial I/O (CSI00, CSI01, CSI10, CSI20)
(a) Serial output register m (SOm) ... Sets only the bits of the target channel.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOm	0	0	0	0	1	$\begin{gathered} \text { CKOm2 } \\ \times \end{gathered}$	$\begin{gathered} \text { CKOm1 } \\ \times \end{gathered}$	$\begin{gathered} \text { CKOm0 } \\ \times \end{gathered}$	0	0	0	0	1	$\begin{gathered} \text { sOm2 } \\ 0 / 1 \end{gathered}$	$\begin{gathered} \text { som1 } \\ 0 / 1 \end{gathered}$	SOm0 0/1

(b) Serial output enable register m (SOEm) ... Sets only the bits of the target channel to 1 .

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOEm	0	0	0	0	0	0	0	0	0	0	0	0	0	SOEm2 $0 / 1$	SOEm1 $0 / 1$	SOEm0 $0 / 1$

(c) Serial channel start register $\mathrm{m}(\mathrm{SSm})$... Sets only the bits of the target channel to 1.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSm	0	0	0	0	0	0	0	0	0	0	0	0	SSm3 \times	$\begin{gathered} \text { SSm2 } \\ 0 / 1 \end{gathered}$	$\begin{gathered} \text { SSm1 } \\ 0 / 1 \end{gathered}$	$\begin{gathered} \text { SSm0 } \\ 0 / 1 \end{gathered}$

(d) Serial mode register mn (SMRmn)

Operation mode of channel n
0 : Transfer end interrupt
1: Buffer empty interrupt
(e) Serial communication operation setting register mn (SCRmn)

(f) Serial data register mn (SDRmn) (lower 8 bits: SIOp)

Remark m : Unit number ($m=0,1$), n : Channel number ($n=0$ to 2), p : CSI number ($p=00,01,10,20$)
\square : Setting is fixed in the CSI slave transmission/reception mode, \square : Setting disabled (set to the initial value)
\times : Bit that cannot be used in this mode (set to the initial value when not used in any mode)
$0 / 1$: Set to 0 or 1 depending on the usage of the user

(2) Operation procedure

Figure 14-61. Initial Setting Procedure for Slave Transmission/Reception

Release the serial array unit from the reset status and start clock supply. Set the prescaler. Set an operation mode, etc.

Set a communication format.

Set bits 15 to 9 to 0000000B for baud rate setting.

Manipulate the SOmn bit and set an initial output level.

Set the SOEmn bit to 1 and enable data output of the target channel. Enable data output of the target channel by setting a port register and a port mode register.

Set the SSmn bit of the target channel to 1 to set $\operatorname{SEmn}=1$

Set transmit data to the SIOp register (bits 7 to 0 of the SDRmn register) and wait for a clock from the master.

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

Figure 14-62. Procedure for Stopping Slave Transmission/Reception

Remark Even after communication is stopped, the pin level is retained. To resume the operation, re-set the SOm register (see Figure 14-63 Procedure for Resuming Slave Transmission/Reception).

Figure 14-63. Procedure for Resuming Slave Transmission/Reception

Stop the target for communication or wait until the target completes its operation. Disable data output of the target channel by setting a port register and a port mode register.

Change the setting if an incorrect division ratio of the operation clock is set.

Change the setting if an incorrect division ratio of the operation clock is set.

Change the setting if the setting of the SMRmn register is incorrect.

Change the setting if the setting of the SCRmn register is incorrect.

Cleared by using SIRmn register if FEF, PEF, or OVF flag remains set.

Set the SOEm register and stop the output of the target channel.

Manipulate the SOmn bit and set an initial output level.

Set the SOEm register and enable the output of the target channel.

Enable data output of the target channel by setting a port register and a port mode register.

Set the SSmn bit of the target channel to 1 to set SEmn = 1 .

Set transmit data to the SIOp register (bits 7 to 0 of the SDRmn register) and wait for a clock from the master. Start the target for communication.

(3) Processing flow (in single-transmission/reception mode)

Figure 14-64. Timing Chart of Slave Transmission/Reception (in Single-Transmission/Reception Mode)
(Type 1: DAPmn = 0, CKPmn =0)

Remark m : Unit number ($m=0,1$), n : Channel number ($n=0$ to 2), p : CSI number ($p=00,01,10,20$)

Figure 14-65. Flowchart of Slave Transmission/Reception (in Single- Transmission/Reception Mode)

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

(4) Processing flow (in continuous transmission/reception mode)

Figure 14-66. Timing Chart of Slave Transmission/Reception (in Continuous Transmission/Reception Mode) (Type 1: $\mathrm{DAPmn}=0, C K P m n=0$)

Notes 1. When transmit data is written to the SDRmn register while BFFmn = 1, the transmit data is overwritten.
2. The transmit data can be read by reading the SDRmn register during this period. At this time, the transfer operation is not affected.

Caution The MDmn0 bit can be rewritten even during operation.
However, rewrite it before transfer of the last bit is started, so that it will be rewritten before the transfer end interrupt of the last transmit data.

Remarks 1. $<1>$ to $<8>$ in the figure correspond to $<1>$ to $<8>$ in Figure 14-67 Flowchart of Slave Transmission/Reception (in Continuous Transmission/Reception Mode).
2. m : Unit number $(m=0,1)$, n : Channel number $(n=0$ to 2$)$, p : CSI number $(p=00,01,10,20)$

Figure 14-67. Flowchart of Slave Transmission/Reception (in Continuous Transmission/Reception Mode)

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

Remark <1> to <8> in the figure correspond to $<1>$ to $<8>$ in Figure 14-66 Timing Chart of Slave Transmission/Reception (in Continuous Transmission/Reception Mode).

14.5.7 Calculating transfer clock frequency

The transfer clock frequency for 3 -wire serial I/O (CSI00, CSIO1, CSI10, CSI20) communication can be calculated by the following expressions.
(1) Master
(Transfer clock frequency) $=\{$ Operation clock $($ MCK $)$ frequency of target channel $\} \div($ SDRmn $[15: 9]+1) \div 2[\mathrm{~Hz}]$
(2) Slave
(Transfer clock frequency) $=\{\text { Frequency of serial clock (SCK) supplied by master }\}^{\text {Note }}[\mathrm{Hz}]$
Note The permissible maximum frequency is the smaller of fcLk/6 and fmск/2.

Remarks 1. The value of $\operatorname{SDRmn}[15: 9]$ is the value of bits 15 to 9 of the SDRmn register (0000000B to 1111111 B) and therefore is 0 to 127.
2. m : Unit number $(m=0,1)$, n : Channel number $(n=0$ to 2$)$

The operation clock (MCK) is determined by serial clock select register m (SPSm) and bit 15 (CKSmn) of serial mode register mn (SMRmn).

Table 14-2. Selection of operation clock

SMRmn	SPSm Register								Operation Clock (MCK) ${ }^{\text {Note1 }}$	
CKSmn	$\begin{array}{\|l} \text { PRS } \\ \text { m13 } \end{array}$	$\begin{aligned} & \mathrm{PRS} \\ & \mathrm{~m} 12 \end{aligned}$	$\begin{aligned} & \text { PRS } \\ & \text { m11 } \end{aligned}$	$\begin{array}{\|l} \text { PRS } \\ \text { m10 } \end{array}$	$\begin{aligned} & \text { PRS } \\ & \text { m03 } \end{aligned}$	$\begin{array}{\|l} \hline \text { PRS } \\ \text { m02 } \end{array}$	$\begin{array}{\|l} \text { PRS } \\ \text { m01 } \end{array}$	$\begin{aligned} & \text { PRS } \\ & \text { m00 } \end{aligned}$		$\mathrm{fcLK}=20 \mathrm{MHz}$
0	X	x	X	X	0	0	0	0	fcık	20 MHz
	X	X	X	X	0	0	0	1	fclk/2	10 MHz
	x	x	X	X	0	0	1	0	fcık $/ 2^{2}$	5 MHz
	x	x	x	x	0	0	1	1	fcık $/ 2^{3}$	2.5 MHz
	X	X	X	X	0	1	0	0	fcık $/ 2^{4}$	1.25 MHz
	X	X	X	x	0	1	0	1	$\mathrm{fcık} / 2^{5}$	625 kHz
	X	X	X	X	0	1	1	0	fcık $/ 2^{6}$	313 kHz
	x	x	x	X	0	1	1	1	fcık $/ 2^{7}$	156 kHz
	x	X	X	X	1	0	0	0	$\mathrm{fcLk} / 2^{8}$	78.1 kHz
	x	x	x	x	1	0	0	1	fcık $/ 2^{9}$	39.1 kHz
	X	X	X	x	1	0	1	0	$\mathrm{fcık} / 2^{10}$	19.5 kHz
	X	X	X	X	1	0	1	1	fcık/2 ${ }^{11}$	9.77 kHz
	X	X	X	X	1	1	1	1	INTTM INTTM	$\begin{aligned} & =0, \\ & =1^{\text {Note2 }} \end{aligned}$
1	0	0	0	0	X	X	x	x	fcık	20 MHz
	0	0	0	1	X	X	X	X	fclu/2	10 MHz
	0	0	1	0	x	x	x	x	fcık $/ 2^{2}$	5 MHz
	0	0	1	1	x	x	x	x	fcık $/ 2^{3}$	2.5 MHz
	0	1	0	0	X	x	X	X	fcık $/ 2^{4}$	1.25 MHz
	0	1	0	1	x	X	x	x	fcık $/ 2^{5}$	625 kHz
	0	1	1	0	X	x	x	x	fcık $/ 2^{6}$	313 kHz
	0	1	1	1	X	X	X	X	fcık $/ 2^{7}$	156 kHz
	1	0	0	0	X	X	X	x	fcık $/ 2^{8}$	78.1 kHz
	1	0	0	1	x	X	x	x	fcık $/ 2^{9}$	39.1 kHz
	1	0	1	0	X	x	x	x	fcık/2 ${ }^{10}$	19.5 kHz
	1	0	1	1	X	X	x	X	fcık/2 ${ }^{11}$	9.77 kHz
	1	1	1	1	X	X	x	X	INTTM INTTM	$\begin{aligned} & =0, \\ & =1^{\text {Note2 }} \end{aligned}$
Other than above									Setting	

Notes 1. When changing the clock selected for fclk (by changing the system clock control register (CKC) value), do so after having stopped (STm $=000 \mathrm{FH}$) the operation of the serial array unit (SAUm). When selecting INTTM02 and INTTM03 for the operation clock, also stop the timer array unit (TAUO) (TT0 = 00FFH).
2. SAUm can be operated at a fixed division ratio of the subsystem clock, regardless of the fcLk frequency (main system clock, subsystem clock), by operating the interval timer for which fsub/4 has been selected as the count clock (setting TIS02 (if $m=0$) or TIS03 (if $m=1$) of the TIS0 register to 1) and selecting INTTM02 and INTTM03 by using the SPSm register in channels 2 and 3 of TAUO. When changing fclk, however, SAUm and TAUO must be stopped as described in Note 1 above.
Remarks 1. X: Don't care
2. m : Unit number $(m=0,1)$, n : Channel number $(n=0$ to 2$)$

14.6 Operation of UART (UART0, UART1, UART2, UART3) Communication

This is a start-stop synchronization function using two lines: serial data transmission (TxD) and serial data reception (RxD) lines. It transmits or receives data in asynchronization with the party of communication (by using an internal baud rate). Full-duplex UART communication can be realized by using two channels, one dedicated to transmission (even channel) and the other to reception (odd channel).
[Data transmission/reception]

- Data length of 5, 7, or 8 bits
- Select the MSB/LSB first
- Level setting of transmit/receive data and select of reverse
- Parity bit appending and parity check functions
- Stop bit appending
[Interrupt function]
- Transfer end interrupt/buffer empty interrupt
- Error interrupt in case of framing error, parity error, or overrun error
[Error detection flag]
- Framing error, parity error, or overrun error

The LIN-bus is supported in UART3 (2, 3 channels of unit 1)
[LIN-bus functions]

- Wakeup signal detection
- Sync break field (SBF) detection
- Sync field measurement, baud rate calculation

External interrupt (INTPO) or timer array unit (TAU) is used.

UART0 uses channels 0 and 1 of SAUO.
UART1 uses channels 2 and 3 of SAUO.
UART2 uses channels 0 and 1 of SAU1.
UART3 uses channels 2 and 3 of SAU1.

Unit	Channel	Used as CSI	Used as UART	Used as Simplified I ${ }^{2} \mathrm{C}$
0	0	CSIOO	UARTO	-
	1	CSI01		-
	2	CSI10	UART1	IIC10
	3	-		-
1	0	CSI20	UART2	IIC20
	1	-		-
	2	-	UART3 (supporting LIN-bus)	-
	3	-		-

Caution When using serial array units 0 and 1 as UARTs, the channels of both the transmitting side (evennumber channel) and the receiving side (odd-number channel) can be used only as UARTs.

Remark For 78K0R/LF3, UART0 is not mounted.

UART performs the following four types of communication operations.

- UART transmission
(See 14.6.1.)
- UART reception
(See 14.6.2.)
- LIN transmission (UART3 only)
(See 14.6.3.)
- LIN reception (UART 3 only)
(See 14.6.4.)

14.6.1 UART transmission

UART transmission is an operation to transmit data from the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers to another device asynchronously (start-stop synchronization).

Of two channels used for UART, the even channel is used for UART transmission.

UART	UARTO	UART1	UART2	UART3
Target channel	Channel 0 of SAU0	Channel 2 of SAU0	Channel 0 of SAU1	Channel 2 of SAU1
Pins used	TxD0	TxD1	TxD2	TxD3
Interrupt	INTSTO	INTST1	INTST2	INTST3
	Transfer end interrupt (in single-transfer mode) or buffer empty interrupt (in continuous transfer mode) can be selected.			
Error detection flag	None			
Transfer data length	5,7 , or 8 bits			
Transfer rate	Max. fmck/6 [bps] (SDRmn [15:9] = 2 or more), Min. $\mathrm{fcLk} /\left(2 \times 2^{11} \times 128\right)[\mathrm{bps}]^{\text {Note }}$			
Data phase	Forward output (default: high level) Reverse output (default: low level)			
Parity bit	The following selectable - No parity bit - Appending 0 parity - Appending even parity - Appending odd parity			
Stop bit	The following selectable - Appending 1 bit - Appending 2 bits			
Data direction	MSB or LSB first			

Note Use this operation within a range that satisfies the conditions above and the AC characteristics in the electrical specifications (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).

Remarks 1. fмск: Operation clock (МСK) frequency of target channel
fcık: System clock frequency
2. For $78 \mathrm{KOR} / \mathrm{LF} 3, ~ U A R T 0$ is not mounted.

(1) Register setting

Figure 14-68. Example of Contents of Registers for UART Transmission of UART
(UARTO, UART1, UART2, UART3) (1/2)
(a) Serial output register m (SOm) ... Sets only the bits of the target channel to 1.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOm	0	0	0	0	1	CKOm2 \times	$\begin{gathered} \text { CKOm1 } \\ \times \end{gathered}$	CKOm0 \times	0	0	0	0	1	$\begin{aligned} & \text { SOm2 } \\ & 0 / 1^{\text {Note }} \end{aligned}$	SOm1	$\begin{aligned} & \text { SOm0 } \\ & 0 / 1^{\text {Note }} \end{aligned}$

(b) Serial output enable register m (SOEm) ... Sets only the bits of the target channel to 1 .

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOEm	0	0	0	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \text { SOEm2 } \\ 0 / 1 \end{gathered}$	SOEm1 \times	$\begin{array}{\|c\|} \text { SOEm0 } \\ 0 / 1 \end{array}$

(c) Serial channel start register $\mathbf{m}(\mathrm{SSm}) \ldots$ Sets only the bits of the target channel to 1.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSm	0	0	0	0	0	0	0	0	0	0	0	0	SSm3 \times	$\begin{gathered} \text { SSm2 } \\ 0 / 1 \end{gathered}$	SSm1 \times	SSm0 $0 / 1$

(d) Serial output level register m (SOLm) ... Sets only the bits of the target channel.

(e) Serial mode register mn (SMRmn)

Note Before transmission is started, be sure to set to 1 when the SOLmn bit of the target channel is set to 0 , and set to 0 when the SOLmn bit of the target channel is set to 1 . The value varies depending on the communication data during communication operation.

Remark m: Unit number $(m=0,1), n$: Channel number $(n=0,2), q$: UART number ($q=0$ to 3)
\square : Setting is fixed in the UART transmission mode, \square : Setting disabled (fixed by hardware) \times : Bit that cannot be used in this mode (set to the initial value when not used in any mode) $0 / 1$: Set to 0 or 1 depending on the usage of the user

Figure 14-68. Example of Contents of Registers for UART Transmission of UART (UARTO, UART1, UART2, UART3) (2/2)
(f) Serial communication operation setting register mn (SCRmn)

(g) Serial data register mn (SDRmn) (lower 8 bits: TXDq)

Remark m : Unit number $(m=0,1), n$: Channel number $(\mathrm{n}=0,2)$, q : UART number ($\mathrm{q}=0$ to 3) \square : Setting is fixed in the UART transmission mode, \square : Setting disabled (set to the initial value) \times : Bit that cannot be used in this mode (set to the initial value when not used in any mode) $0 / 1$: Set to 0 or 1 depending on the usage of the user

(2) Operation procedure

Figure 14-69. Initial Setting Procedure for UART Transmission

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

Figure 14-70. Procedure for Stopping UART Transmission

Remark Even after communication is stopped, the pin level is retained. To resume the operation, re-set the SOm register (see Figure 14-71 Procedure for Resuming UART Transmission).

Figure 14-71. Procedure for Resuming UART Transmission

(3) Processing flow (in single-transmission mode)

Figure 14-72. Timing Chart of UART Transmission (in Single-Transmission Mode)

Remark m: Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0,2), \mathrm{q}$: UART number $(\mathrm{q}=0$ to 3$)$

Figure 14-73. Flowchart of UART Transmission (in Single-Transmission Mode)

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

(4) Processing flow (in continuous transmission mode)

Figure 14-74. Timing Chart of UART Transmission (in Continuous Transmission Mode)

Note When transmit data is written to the SDRmn register while BFFmn $=1$, the transmit data is overwritten.

Caution The MDmn0 bit can be rewritten even during operation.
However, rewrite it before transfer of the last bit is started, so that it has been rewritten before the transfer end interrupt of the last transmit data.

Remark m : Unit number $(m=0,1), n$: Channel number $(n=0,2)$, q : UART number $(q=0$ to 3$)$

Figure 14-75. Flowchart of UART Transmission (in Continuous Transmission Mode)

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

Remark <1> to <5> in the figure correspond to $<1>$ to $<5>$ in Figure 14-74 Timing Chart of UART Transmission (in Continuous Transmission Mode).

14.6.2 UART reception

UART reception is an operation wherein the $78 \mathrm{~K} 0 \mathrm{R} / \mathrm{Lx} 3$ microcontrollers asynchronously receive data from another device (start-stop synchronization).

For UART reception, the odd-number channel of the two channels used for UART is used. The SMR register of both the odd- and even-numbered channels must be set.

UART	UARTO	UART1	UART2	UART3
Target channel	Channel 1 of SAU0	Channel 3 of SAU0	Channel 1 of SAU1	Channel 3 of SAU1
Pins used	RxD0	RxD1	RxD2	RxD3
Interrupt	INTSR0	INTSR1	INTSR2	INTSR3
	Transfer end interrupt only (Setting the buffer empty interrupt is prohibited.)			
Error interrupt	INTSREO	INTSRE1	INTSRE2	INTSRE3
Error detection flag	- Framing error detection flag (FEFmn) - Parity error detection flag (PEFmn) - Overrun error detection flag (OVFmn)			
Transfer data length	5,7 or 8 bits			
Transfer rate	Max. fmck/6 [bps] (SDRmn [15:9] = 2 or more), Min. fclk $/\left(2 \times 2^{11} \times 128\right)[\mathrm{bps}]^{\text {Note }}$			
Data phase	Forward output (default: high level) Reverse output (default: low level)			
Parity bit	The following selectable - No parity bit (no parity check) - Appending 0 parity (no parity check) - Appending even parity - Appending odd parity			
Stop bit	Appending 1 bit			
Data direction	MSB or LSB first			

Note Use this operation within a range that satisfies the conditions above and the AC characteristics in the electrical specifications (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).

Remarks 1. fмск: Operation clock (МСК) frequency of target channel
fcık: System clock frequency
2. For $78 \mathrm{KOR} / \mathrm{LF} 3, ~ U A R T 0$ is not mounted.

Figure 14-76. Example of Contents of Registers for UART Reception of UART (UART0, UART1, UART2, UART3) (1/2)
(a) Serial output register m (SOm)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOm	0	0	0	0	1	$\begin{gathered} \text { CKOm2 } \\ \times \end{gathered}$	$\begin{array}{\|c} \text { CKOm1 } \\ \times \end{array}$	$\begin{gathered} \text { CKOMO } \\ \times \end{gathered}$	0	0	0	0	1	SOm2 \times	SOm1 \times	SOm0 \times

(b) Serial output enable register \mathbf{m} (SOEm) ... Sets the bits of the target channel to 0 .

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOEm	0	0	0	0	0	0	0	0	0	0	0	0	0	SOEm2 \times	SOEm1 $0 / 1$	SOEm0 \times

(c) Serial channel start register $\mathbf{m}(\mathrm{SSm}) \ldots$... Sets only the bits of the target channel is 1.

SSm	0	0	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \text { SSm3 } \\ 0 / 1 \end{gathered}$	$\begin{gathered} \text { SSm2 } \\ \times \end{gathered}$	$\begin{gathered} \text { SSm1 } \\ 0 / 1 \end{gathered}$	$\begin{gathered} \text { SSm0 } \\ \times \end{gathered}$

(d) Serial mode register mn (SMRmn)

(e) Serial mode register mr (SMRmr)

(f) Serial communication operation setting register mn (SCRmn)

Caution For the UART reception, be sure to set SMRmr of channel r that is to be paired with channel n.

Remark m : Unit number $(m=0,1)$, n : Channel number $(n=1,3)$, r : Channel number $(r=n-1)$,
$\mathrm{q}:$ UART number ($\mathrm{q}=0$ to 3)
\square : Setting is fixed in the UART reception mode, \square : Setting disabled (set to the initial value) \times : Bit that cannot be used in this mode (set to the initial value when not used in any mode)
$0 / 1$: Set to 0 or 1 depending on the usage of the user

Figure 14-76. Example of Contents of Registers for UART Reception of UART (UARTO, UART1, UART2, UART3) (2/2)
(g) Serial data register mn (SDRmn) (lower 8 bits: RXDq)

Caution For the UART reception, be sure to set SMRmr of channel r that is to be paired with channel n.

Remark m: Unit number $(m=0,1)$, n : Channel number $(n=1,3)$, r : Channel number $(r=n-1)$, $\mathrm{q}:$ UART number ($\mathrm{q}=0$ to 3)
\square : Setting is fixed in the UART reception mode,Setting disabled (set to the initial value) \times : Bit that cannot be used in this mode (set to the initial value when not used in any mode) $0 / 1$: Set to 0 or 1 depending on the usage of the user

(2) Operation procedure

Figure 14-77. Initial Setting Procedure for UART Reception

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have

 elapsed.Figure 14-78. Procedure for Stopping UART Reception

Figure 14-79. Procedure for Resuming UART Reception

(3) Processing flow

Figure 14-80. Timing Chart of UART Reception

Remark m: Unit number $(m=0,1), n$: Channel number $(n=1,3), q$: UART number $(q=0$ to 3$)$

Figure 14-81. Flowchart of UART Reception

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

14.6.3 LIN transmission

Of UART transmission, UART3 supports LIN communication.
For LIN transmission, channel 2 of unit 1 (SAU1) is used.

UART	UART0	UART1	UART2	UART3
Support of LIN communication	Not supported	Not supported	Not supported	Supported
Target channel	-	-	-	Channel 2 of SAU1
Pins used	-	-	-	TxD3
Interrupt	-	-	-	INTST3
	Transfer end interrupt (in single-transfer mode) or buffer empty interrupt (in continuous transfer mode) can be selected.			
Error detection flag	None			
Transfer data length	8 bits			
Transfer rate	Max. fmск/6 [bps] (SDRmn [15:9] = 2 or more), Min. fcLk/($\left.2 \times 2^{11} \times 128\right)[\mathrm{bps}]^{\text {Note }}$			
Data phase	Forward output (default: high level) Reverse output (default: low level)			
Parity bit	The following selectable - No parity bit - Appending 0 parity - Appending even parity - Appending odd parity			
Stop bit	The following selectable - Appending 1 bit - Appending 2 bits			
Data direction	MSB or LSB first			

Note Use this operation within a range that satisfies the conditions above and the AC characteristics in the electrical specifications (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).

Remarks 1. fмск: Operation clock (MCK) frequency of target channel fclk: System clock frequency
2. For $78 K 0 R / L F 3, ~ U A R T 0$ is not mounted.

LIN stands for Local Interconnect Network and is a low-speed (1 to 20 kbps) serial communication protocol designed to reduce the cost of an automobile network.

Communication of LIN is single-master communication and up to 15 slaves can be connected to one master.
The slaves are used to control switches, actuators, and sensors, which are connected to the master via LIN.
Usually, the master is connected to a network such as CAN (Controller Area Network).
A LIN bus is a single-wire bus to which nodes are connected via transceiver conforming to ISO9141.
According to the protocol of LIN, the master transmits a frame by attaching baud rate information to it. A slave receives this frame and corrects a baud rate error from the master. If the baud rate error of a slave is within $\pm 15 \%$, communication can be established.

Figure 14-82 outlines a transmission operation of LIN.

Figure 14-82. Transmission Operation of LIN

Notes 1. The baud rate is set so as to satisfy the standard of the wakeup signal and data of 00 H is transmitted.
2. A sync break field is defined to have a width of 13 bits and output a low level. Where the baud rate for main transfer is N [bps], therefore, the baud rate of the sync break field is calculated as follows.
(Baud rate of sync break field) $=9 / 13 \times \mathrm{N}$
By transmitting data of 00 H at this baud rate, a sync break field is generated.
3. INTST3 is output upon completion of transmission. INTST3 is also output when SBF transmission is executed.

Remark The interval between fields is controlled by software.

Figure 14-83. Flowchart for LIN Transmission

14.6.4 LIN reception

Of UART reception, UART3 supports LIN communication.
For LIN reception, channel 3 of unit 1 (SAU1) is used.

UART	UARTO	UART1	UART2	UART3
Support of LIN communication	Not supported	Not supported	Not supported	Supported
Target channel	-	-	-	Channel 3 of SAU1
Pins used	-	-	-	RxD3
Interrupt	-	-	-	INTSR3
	Transfer end interrupt only (Setting the buffer empty interrupt is prohibited.)			
Error interrupt	-	-	-	INTSRE3
Error detection flag	- Framing error detection flag (FEF13) - Parity error detection flag (PEF13) - Overrun error detection flag (OVF13)			
Transfer data length	8 bits			
Transfer rate	Max. $\mathrm{fmck}^{\prime} / 6$ [bps] (SDRmn [15:9] $=2$ or more), Min. $\mathrm{fcLk} /\left(2 \times 2^{11} \times 128\right)[\mathrm{bps}]^{\text {Note }}$			
Data phase	Forward output (default: high level) Reverse output (default: low level)			
Parity bit	The following selectable - No parity bit - Appending 0 parity - Appending even parity - Appending odd parity			
Stop bit	The following selectable - Appending 1 bit - Appending 2 bits			
Data direction	MSB or LSB first			

Note Use this operation within a range that satisfies the conditions above and the AC characteristics in the electrical specifications (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).

Remarks 1. fмск: Operation clock (MCK) frequency of target channel fcık: System clock frequency
2. For $78 \mathrm{KOR} / \mathrm{LF} 3$, UART0 is not mounted.

Figure 14-84 outlines a reception operation of LIN.

Figure 14-84. Reception Operation of LIN

Here is the flow of signal processing.
$<1>$ The wakeup signal is detected by detecting an interrupt edge (INTPO) on a pin. When the wakeup signal is detected, enable reception of UART3 $($ RXE13 $=1)$ and wait for SBF reception.
<2> When the start bit of SBF is detected, reception is started and serial data is sequentially stored in the RXD3 register (= bits 7 to 0 of the serial data register 13 (SDR13)) at the set baud rate. When the stop bit is detected, the reception end interrupt request (INTSR3) is generated. When data of low levels of 11 bits or more is detected as SBF, it is judged that SBF reception has been correctly completed. If data of low levels of less than 11 bits is detected as SBF, it is judged that an SBF reception error has occurred, and the system returns to the SBF reception wait status.
<3> When SBF reception has been correctly completed, start channel 7 of the timer array unit and measure the bit interval (pulse width) of the sync field (see 6.7.5 Operation as input signal high-/low-level width measurement).
<4> Calculate a baud rate error from the bit interval of sync field (SF). Stop UART3 once and adjust (re-set) the baud rate.
<5> The checksum field should be distinguished by software. In addition, processing to initialize UART3 after the checksum field is received and to wait for reception of SBF should also be performed by software.

Figure 14-85 shows the configuration of a port that manipulates reception of LIN.
The wakeup signal transmitted from the master of LIN is received by detecting an edge of an external interrupt (INTPO). The length of the sync field transmitted from the master can be measured by using the external event capture operation of the timer array unit (TAU) to calculate a baud-rate error.

By controlling switch of port input (ISC0/ISC1), the input source of port input (RxD3) for reception can be input to the external interrupt pin (INTPO) and timer array unit (TAU).

Figure 14-85. Port Configuration for Manipulating Reception of LIN

Remark ISCO, ISC1: Bits 0 and 1 of the input switch control register (ISC) (See Figure 14-17.)

The peripheral functions used for the LIN communication operation are as follows.
<Peripheral functions used>

- External interrupt (INTPO); Wakeup signal detection

Usage: To detect an edge of the wakeup signal and the start of communication

- Channel 7 of timer array unit (TAU); Baud rate error detection

Usage: To detect the length of the sync field (SF) and divide it by the number of bits in order to detect an error (The interval of the edge input to RxD3 is measured in the capture mode.)

- Channels 2 and 3 (UART3) of serial array unit 1 (SAU1)

Figure 14-86. Flowchart of LIN Reception

14.6.5 Calculating baud rate

(1) Baud rate calculation expression

The baud rate for UART (UART0, UART1, UART2, UART3) communication can be calculated by the following expressions.

$$
(\text { Baud rate })=\{\text { Operation clock }(\mathrm{MCK}) \text { frequency of target channel }\} \div(\operatorname{SDRmn}[15: 9]+1) \div 2[\mathrm{bps}]
$$

Caution Setting SDRmn $[15: 9]=(0000000 \mathrm{~B}, 0000001 \mathrm{~B})$ is prohibited.

Remarks 1. When UART is used, the value of SDRmn[15:9] is the value of bits 15 to 9 of the SDRmn register (0000010 B to 111111 B) and therefore is 2 to 127.
2. m : Unit number $(m=0,1), n$: Channel number $(n=0$ to 3$)$

The operation clock (MCK) is determined by serial clock select register m (SPSm) and bit 15 (CKSmn) of serial mode register mn (SMRmn).

Table 14-3. Selection of operation clock

SMRmn	SPSm Register								Operation Clock (MCK) ${ }^{\text {Note1 }}$	
CKSmn	$\begin{array}{\|l} \text { PRS } \\ \text { m13 } \end{array}$	$\begin{aligned} & \mathrm{PRS} \\ & \mathrm{~m} 12 \end{aligned}$	$\begin{aligned} & \text { PRS } \\ & \text { m11 } \end{aligned}$	$\begin{array}{\|l} \text { PRS } \\ \text { m10 } \end{array}$	$\begin{aligned} & \text { PRS } \\ & \text { m03 } \end{aligned}$	$\begin{array}{\|l} \hline \text { PRS } \\ \text { m02 } \end{array}$	$\begin{array}{\|l} \text { PRS } \\ \text { m01 } \end{array}$	$\begin{aligned} & \text { PRS } \\ & \text { m00 } \end{aligned}$		$\mathrm{fcLK}=20 \mathrm{MHz}$
0	X	x	X	X	0	0	0	0	fcık	20 MHz
	X	X	X	X	0	0	0	1	fclk/2	10 MHz
	x	x	X	X	0	0	1	0	fcık $/ 2^{2}$	5 MHz
	x	x	x	x	0	0	1	1	fcık $/ 2^{3}$	2.5 MHz
	X	X	X	X	0	1	0	0	fcık $/ 2^{4}$	1.25 MHz
	X	X	X	x	0	1	0	1	$\mathrm{fcık} / 2^{5}$	625 kHz
	X	X	X	X	0	1	1	0	fcık $/ 2^{6}$	313 kHz
	x	x	x	X	0	1	1	1	fcık $/ 2^{7}$	156 kHz
	x	X	X	X	1	0	0	0	$\mathrm{fcLk} / 2^{8}$	78.1 kHz
	x	x	x	x	1	0	0	1	fcık $/ 2^{9}$	39.1 kHz
	X	X	X	x	1	0	1	0	$\mathrm{fcık} / 2^{10}$	19.5 kHz
	X	X	X	X	1	0	1	1	fcık/2 ${ }^{11}$	9.77 kHz
	X	X	X	X	1	1	1	1	INTTM INTTM	$\begin{aligned} & =0, \\ & =1^{\text {Note2 }} \end{aligned}$
1	0	0	0	0	X	X	x	x	fcık	20 MHz
	0	0	0	1	X	X	X	X	fclu/2	10 MHz
	0	0	1	0	x	x	x	x	fcık $/ 2^{2}$	5 MHz
	0	0	1	1	x	x	x	x	fcık $/ 2^{3}$	2.5 MHz
	0	1	0	0	X	x	X	X	fcık $/ 2^{4}$	1.25 MHz
	0	1	0	1	x	X	x	x	fcık $/ 2^{5}$	625 kHz
	0	1	1	0	X	x	x	x	fcık $/ 2^{6}$	313 kHz
	0	1	1	1	X	X	X	X	fcık $/ 2^{7}$	156 kHz
	1	0	0	0	X	X	X	x	fcık $/ 2^{8}$	78.1 kHz
	1	0	0	1	x	X	x	x	fcık $/ 2^{9}$	39.1 kHz
	1	0	1	0	X	x	x	x	fcık/2 ${ }^{10}$	19.5 kHz
	1	0	1	1	X	X	x	X	fcık/2 ${ }^{11}$	9.77 kHz
	1	1	1	1	X	X	x	X	INTTM INTTM	$\begin{aligned} & =0, \\ & =1^{\text {Note2 }} \end{aligned}$
Other than above									Setting	

Notes 1. When changing the clock selected for fclk (by changing the system clock control register (CKC) value), do so after having stopped (STm $=000 \mathrm{FH}$) the operation of the serial array unit (SAUm). When selecting INTTM02 and INTTM03 for the operation clock, also stop the timer array unit (TAUO) (TT0 = 00FFH).
2. SAUm can be operated at a fixed division ratio of the subsystem clock, regardless of the fcLk frequency (main system clock, subsystem clock), by operating the interval timer for which fsub/4 has been selected as the count clock (setting TIS02 (if $m=0$) or TIS03 (if $m=1$) of the TIS0 register to 1) and selecting INTTM02 and INTTM03 by using the SPSm register in channels 2 and 3 of TAUO. When changing fclk, however, SAUm and TAUO must be stopped as described in Note 1 above.
Remarks 1. X: Don't care
2. m : Unit number $(m=0,1)$, n : Channel number $(n=0$ to 3$)$

(2) Baud rate error during transmission

The baud rate error of UART (UARTO, UART1, UART2, UART3) communication during transmission can be calculated by the following expression. Make sure that the baud rate at the transmission side is within the permissible baud rate range at the reception side.
$($ Baud rate error $)=($ Calculated baud rate value $) \div($ Target baud rate $) \times 100-100[\%]$

Here is an example of setting a UART baud rate at fcLk $=20 \mathrm{MHz}$

UART Baud Rate (Target Baud Rate)	$\mathrm{fcLk}=20 \mathrm{MHz}$			
	Operation Clock (MCK)	SDRmn[15:9]	Calculated Baud Rate	Error from Target Baud Rate
300 bps	fcLk $/ 2{ }^{9}$	64	300.48 bps	+0.16 \%
600 bps	fclk $/ 2{ }^{8}$	64	600.96 bps	+0.16 \%
1200 bps	$\mathrm{fcLk} / 2^{7}$	64	1201.92 bps	+0.16 \%
2400 bps	fclk $/ 2{ }^{6}$	64	2403.85 bps	+0.16 \%
4800 bps	$\mathrm{fcLk} / 2^{5}$	64	4807.69 bps	+0.16 \%
9600 bps	fclk/2 ${ }^{4}$	64	9615.38 bps	+0.16 \%
19200 bps	$\mathrm{fcLK} / 2^{3}$	64	19230.8 bps	+0.16 \%
31250 bps	$\mathrm{fcLk} / 2^{3}$	39	31250.0 bps	± 0.0 \%
38400 bps	$\mathrm{fcLK} / 2^{2}$	64	38461.5 bps	+0.16 \%
76800 bps	fclk/2	64	76923.1 bps	+0.16 \%
153600 bps	fclk	64	153846 bps	+0.16 \%
312500 bps	fclk	31	312500 bps	± 0.0 \%

(3) Permissible baud rate range for reception

The permissible baud rate range for reception during UART (UART0, UART1, UART2, UART3) communication can be calculated by the following expression. Make sure that the baud rate at the transmission side is within the permissible baud rate range at the reception side.

Brate: Calculated baud rate value at the reception side (See 14.6.5 (1) Baud rate calculation expression.)
k: \quad SDRmn[15:9] + 1
Nfr: 1 data frame length [bits]
$=($ Start bit $)+($ Data length $)+($ Parity bit $)+($ Stop bit $)$

Figure 14-87. Permissible Baud Rate Range for Reception (1 Data Frame Length = 11 Bits)

As shown in Figure 14-87, the timing of latching receive data is determined by the division ratio set by bits 15 to 9 of the serial data register mn (SDRmn) after the start bit is detected. If the last data (stop bit) is received before this latch timing, the data can be correctly received.

Remark m : Unit number $(\mathrm{m}=0,1), \mathrm{n}$: Channel number $(\mathrm{n}=0$ to 3$)$

14.7 Operation of Simplified I ${ }^{2}$ C (IIC10, IIC20) Communication

This is a clocked communication function to communicate with two or more devices by using two lines: serial clock (SCL) and serial data (SDA). This communication function is designed to execute single communication with devices such as EEPROM, flash memory, and A/D converter, and therefore, can be used only by the master and does not have a wait detection function. Make sure by using software, as well as operating the control registers, that the AC specifications of the start and stop conditions are observed.
[Data transmission/reception]

- Master transmission, master reception (only master function with a single master)
- ACK output function ${ }^{\text {Note }}$ and ACK detection function
- Data length of 8 bits
(When an address is transmitted, the address is specified by the higher 7 bits, and the least significant bit is used for R/W control.)
- Manual generation of start condition and stop condition
[Interrupt function]
- Transfer end interrupt
[Error detection flag]
- Parity error (ACK error)
* [Functions not supported by simplified $\mathrm{I}^{2} \mathrm{C}$]
- Slave transmission, slave reception
- Arbitration loss detection function
- Wait detection function

Note An ACK is not output when the last data is being received by writing 0 to the SOEmn (SOEm register) bit and stopping the output of serial communication data. See 14.7.3 (2) Processing flow for details.

Remarks 1. To use the full-function $I^{2} \mathrm{C}$ bus, see CHAPTER 15 SERIAL INTERFACE IICA.
2. m : Unit number $(m=0,1), n$: Channel number $(n=0,2)$

The channels supporting simplified $I^{2} C$ (IIC10, IIC20) are channel 2 of SAU0 and channel 0 of SAU1.

Unit	Channel	Used as CSI	Used as UART	Used as Simplified $I^{2} \mathrm{C}$
0	0	CSIOO	UARTO	-
	1	CSIO1		-
	2	CSI10	UART1	IIC10
	3	-		-
1	0	CSI20	UART2	IIC20
	1	-		-
	2	-	UART3 (supporting LIN-bus)	-
	3	-		-

Simplified I²C (IIC10, IIC20) performs the following four types of communication operations.

- Address field transmission (See 14.7.1.)
- Data transmission (See 14.7.2.)
- Data reception
(See 14.7.3.)
- Stop condition generation (See 14.7.4.)

14.7.1 Address field transmission

Address field transmission is a transmission operation that first executes in $I^{2} C$ communication to identify the target for transfer (slave). After a start condition is generated, an address (7 bits) and a transfer direction (1 bit) are transmitted in one frame.

Simplified $\mathrm{I}^{2} \mathrm{C}$	IIC10	IIC20
Target channel	Channel 2 of SAU0	Channel 0 of SAU1
Pins used	SCL10, SDA10 ${ }^{\text {Note }}$	SCL20, SDA20 ${ }^{\text {Note }}$
Interrupt	INTIIC10	INTIIC20
	Transfer end interrupt only (Setting the buffer empty interrupt is prohibited.)	
Error detection flag	Parity error detection flag (PEFmn)	
Transfer data length	8 bits (transmitted with specifying the higher 7 bits as address and the least significant bit as R/W control)	
Transfer rate	Max. fclk/4 [MHz] (SDRmn [15:9] = 1 or more) fcık: System clock frequency However, the following condition must be satisfied in each mode of $I^{2} C$. - Max. 400 kHz (first mode) - Max. 100 kHz (standard mode)	
Data level	Forward output (default: high level)	
Parity bit	No parity bit	
Stop bit	Appending 1 bit (for ACK reception timing)	
Data direction	MSB first	

Note To perform communication via simplified I ${ }^{2} \mathrm{C}$, set the data I/O pins (SDA10, SDA20) in the N-ch open-drain output (VDD tolerance) mode (POM14 = 1, POM11 = 1) by using the port output mode register 1 (POM1) (see 4.3 Registers Controlling Port Function for details). When communicating with an external device with a different potential, set the N-ch open-drain output (VdD tolerance) mode (POM15 = 1, POM10 = 1) also for the clock input/output pins (SCL10, SCL20) (see 4.4.4 Connecting to external device with different potential (2.5 V, 3 V) for details).

Remark m : Unit number $(m=0,1), n$: Channel number $(n=0,2)$

(1) Register setting

Figure 14-88. Example of Contents of Registers for Address Field Transmission of Simplified I² (IIC10, IIC20)
(a) Serial output register m (SOm) ... Sets only the bits of the target channel.

Start condition is generated by manipulating the SOmn bit.
(b) Serial output enable register m (SOEm) ... Sets only the bits of the target channel.

(c) Serial channel start register $\mathrm{m}(\mathrm{SSm})$... Sets only the bits of the target channel is 1.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSm	0	0	0	0	0	0	0	0	0	0	0	0	SSm3 \times	$\begin{gathered} \text { SSm2 } \\ 0 / 1 \end{gathered}$	SSm1 \times	SSm0 0/1

(d) Serial mode register mn (SMRmn)

(e) Serial communication operation setting register mn (SCRmn)

(f) Serial data register mn (SDRmn) (lower 8 bits: SIOr)

Remark m : Unit number $(m=0,1)$, n : Channel number $(n=0,2)$, r : IIC number ($r=10,20)$
\square : Setting is fixed in the IIC mode,Setting disabled (set to the initial value) \times : Bit that cannot be used in this mode (set to the initial value when not used in any mode) $0 / 1$: Set to 0 or 1 depending on the usage of the user

(2) Operation procedure

Figure 14-89. Initial Setting Procedure for Address Field Transmission

Release the serial array unit from the reset status and start clock supply.

Set the prescaler

Set an operation mode, etc.

Set a communication format.

Set a transfer baud rate.

Manipulate the SOmn and CKOmn bits and set an initial output level.

Enable data output, clock output, and the N-ch open-drain output (Vod tolerance) mode of the target channel by setting a port register, a port mode register, and a port output mode register.

Clear the SOmn bit to 0 to generate the start condition.

Secure a wait time so that the specifications of $I^{2} C$ on the slave side are satisfied.

Clear the CKOmn bit to 0 to lower the clock output level.

Set the SOEmn bit to 1 and enable data output of the target channel.

Set the SSmn bit of the target channel to 1 to set $\operatorname{SEmn}=1$.

Set address and R/W to the SIOr register (bits 7 to 0 of the SDRmn register) and start communication.

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

(3) Processing flow

Figure 14-90. Timing Chart of Address Field Transmission

Remark m : Unit number $(m=0,1)$, n : Channel number $(n=0,2)$, r : IIC number $(r=10,20)$

Figure 14-91. Flowchart of Address Field Transmission

14.7.2 Data transmission

Data transmission is an operation to transmit data to the target for transfer (slave) after transmission of an address field. After all data are transmitted to the slave, a stop condition is generated and the bus is released.

Simplified I ${ }^{2} \mathrm{C}$	IIC10	IIC20
Target channel	Channel 2 of SAU0	Channel 0 of SAU1
Pins used	SCL10, SDA10 ${ }^{\text {Note }}$	SCL20, SDA20 ${ }^{\text {Note }}$

Note To perform communication via simplified I ${ }^{2} \mathrm{C}$, set the data I/O pins (SDA10, SDA20) in the N-ch open-drain output (Vdo tolerance) mode (POM14 = 1, POM11 = 1) by using the port output mode register 1 (POM1) (see 4.3 Registers Controlling Port Function for details). When communicating with an external device with a different potential, set the N-ch open-drain output (VDD tolerance) mode (POM15 = 1, POM10 = 1) also for the clock input/output pins (SCL10, SCL20) (see 4.4.4 Connecting to external device with different potential (2.5 V, 3 V) for details).

Remark m : Unit number $(m=0,1)$, n : Channel number $(n=0,2)$

(1) Register setting

Figure 14-92. Example of Contents of Registers for Data Transmission of Simplified I ${ }^{2}$ C (IIC10, IIC20)
(a) Serial output register m (SOm) ... Do not manipulate this register during data transmission/reception.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOm	0	0	0	0	1	$\begin{aligned} & \text { CKOm2 } \\ & 0 / 1^{\text {Note }} \end{aligned}$	CKOm1 \times	$\begin{aligned} & \text { CKOmo } \\ & 0 / 1^{\text {Note }} \end{aligned}$	0	0	0	0	1	$\begin{aligned} & \text { SOm2 } \\ & 0 / 1^{\text {Note }} \end{aligned}$	SOm1 \times	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \text { SOm0 } \\ 0 / \text { Note } \end{array}$

(b) Serial output enable register m (SOEm) ... Do not manipulate this register during data transmission/reception.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOEm	0	0	0	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \text { SOEm2 } \\ 0 / 1 \end{gathered}$	SOEm1 1 \times	SOEm0 $0 / 1$

(c) Serial channel start register m (SSm) ... Do not manipulate this register during data transmission/reception.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSm	0	0	0	0	0	0	0	0	0	0	0	0	SSm3 \times	$\begin{gathered} \text { SSm2 } \\ 0 / 1 \end{gathered}$	SSm1 \times	$\begin{gathered} \text { SSmo } \\ 0 / 1 \end{gathered}$

(d) Serial mode register mn (SMRmn) ...Do not manipulate this register during data transmission/reception.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMRmn	CKSmn 0/1	CCSmn 0	0	0	0	0	0	STSmn 0	0	SISmn0 0	1	0	0	MDmn2 1	MDmn1 0	MDmn0 0

(e) Serial communication operation setting register mn (SCRmn) ... Do not manipulate the bits of this register, except the TXEmn and RXEmn bits, during data transmission/reception.

(f) Serial data register mn (SDRmn) (lower 8 bits: SIOr)

Note The value varies depending on the communication data during communication operation.
Remark m : Unit number $(m=0,1)$, n : Channel number $(n=0,2)$, r : IIC number $(r=10,20)$
\square : Setting is fixed in the IIC mode,Setting disabled (set to the initial value) \times : Bit that cannot be used in this mode (set to the initial value when not used in any mode) $0 / 1$: Set to 0 or 1 depending on the usage of the user

(2) Processing flow

Figure 14-93. Timing Chart of Data Transmission

Remark m : Unit number $(m=0,1)$, n : Channel number $(n=0,2)$, r : IIC number $(r=10,20)$
Figure 14-94. Flowchart of Data Transmission

14.7.3 Data reception

Data reception is an operation to receive data to the target for transfer (slave) after transmission of an address field. After all data are received to the slave, a stop condition is generated and the bus is released.

Simplified $\mathrm{I}^{2} \mathrm{C}$	IIC10	IIC20
Target channel	Channel 2 of SAU0	Channel 0 of SAU1
Pins used	SCL10, SDA10 ${ }^{\text {Note }}$	SCL20, SDA20 ${ }^{\text {Note }}$
Interrupt	INTIIC10	INTIIC20
	Transfer end interrupt only (Setting the buffer empty interrupt is prohibited.)	
Error detection flag	None	
Transfer data length	8 bits	
Transfer rate	Max. fclk/4 [MHz] (SDRmn [15:9] = 1 or more) fclk: System clock frequency However, the following condition must be satisfied in each mode of $I^{2} C$. - Max. 400 kHz (first mode) - Max. 100 kHz (standard mode)	
Data level	Forward output (default: high level)	
Parity bit	No parity bit	
Stop bit	Appending 1 bit (ACK transmission)	
Data direction	MSB first	

Note To perform communication via simplified I ${ }^{2} \mathrm{C}$, set the data I/O pins (SDA10, SDA20) in the N-ch open-drain output (Vdo tolerance) mode (POM14 = 1, POM11 = 1) by using the port output mode register 1 (POM1) (see 4.3 Registers Controlling Port Function for details). When communicating with an external device with a different potential, set the N-ch open-drain output (VDd tolerance) mode (POM15 = 1, POM10 = 1) also for the clock input/output pins (SCL10, SCL20) (see 4.4.4 Connecting to external device with different potential (2.5 V, 3 V) for details).

Remark m : Unit number $(m=0,1)$, n : Channel number $(n=0,2)$

(1) Register setting

Figure 14-95. Example of Contents of Registers for Data Reception of Simplified I² (IIC10, IIC20)
(a) Serial output register $\mathrm{m}(\mathrm{SOm})$... Do not manipulate this register during data transmission/reception.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOm	0	0	0	0	1	$\begin{aligned} & \text { CKOm2 } \\ & 0 / 1^{\text {Note }} \end{aligned}$	CKOm1 1 \times	$\begin{aligned} & \text { CKOm0 } \\ & 0 / 1^{\text {Note }} \end{aligned}$	0	0	0	0	1	$\begin{aligned} & \text { sOm2 } \\ & 0 / 1^{\text {Note }} \end{aligned}$	SOm1 \times	SOm0 $0 / 1^{\text {Note }}$

(b) Serial output enable register m (SOEm) ... Do not manipulate this register during data transmission/reception.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOEm	0	0	0	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \text { SOEm2 } \\ 0 / 1 \end{gathered}$	SOEm1 1 \times	SOEm0 $0 / 1$

(c) Serial channel start register $\mathrm{m}(\mathrm{SSm})$... Do not manipulate this register during data transmission/reception.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSm	0	0	0	0	0	0	0	0	0	0	0	0	SSm3 \times	$\begin{gathered} \text { SSm2 } \\ 0 / 1 \end{gathered}$	SSm1 \times	$\begin{gathered} \text { SSmo } \\ 0 / 1 \end{gathered}$

(d) Serial mode register mn (SMRmn) ...Do not manipulate this register during data transmission/reception.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMRmn	$\begin{gathered} \text { cKSmn } \\ 0 / 1 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { ccsmn } \\ 0 \end{gathered}\right.$	0	0	0	0	0	STSmn 0	0	SISmno 0	1	0	0	MDmn2 1	MDmn1 0	MDmno 0

(e) Serial communication operation setting register mn (SCRmn) ... Do not manipulate the bits of this register, except the TXEmn and RXEmn bits, during data transmission/reception.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SCRmn	TXEmn 0	RXEmn 1	DAPmn 0	$\begin{gathered} \text { CKPmn } \\ 0 \end{gathered}$	0	EOCmn 0	PTCmn1 0	PTCmno 0	$\begin{gathered} \text { DIRmn } \\ 0 \end{gathered}$	0	SLCmn1 0	SLCmno 1	0	DLSmn2 1	DLSmn1 1	DLSmno 1

(f) Serial data register mn (SDRmn) (lower 8 bits: SIOr)

Note The value varies depending on the communication data during communication operation.
Remark m : Unit number $(m=0,1)$, n : Channel number $(n=0,2)$, r : IIC number ($r=10,20)$
\square : Setting is fixed in the IIC mode, \square : Setting disabled (set to the initial value) \times : Bit that cannot be used in this mode (set to the initial value when not used in any mode) $0 / 1$: Set to 0 or 1 depending on the usage of the user
(2) Processing flow

Figure 14-96. Timing Chart of Data Reception
(a) When starting data reception

(b) When receiving last data

Remark m : Unit number $(m=0,1)$, n : Channel number $(n=0,2)$, r : IIC number $(r=10,20)$

Figure 14-97. Flowchart of Data Reception

Caution ACK is also output when the last data is received. Communication is then completed by setting " 1 " to the STmn bit to stop operation and generating a stop condition.

14.7.4 Stop condition generation

After all data are transmitted to or received from the target slave, a stop condition is generated and the bus is released.
(1) Processing flow

Figure 14-98. Timing Chart of Stop Condition Generation

Note During the receive operation, the SOEmn bit is set to 0 before receiving the last data.

Remark m : Unit number $(m=0,1)$, n : Channel number $(n=0,2)$, r : IIC number $(r=10,20)$

Figure 14-99. Flowchart of Stop Condition Generation

14.7.5 Calculating transfer rate

The transfer rate for simplified $I^{2} \mathrm{C}$ (IIC10, IIC20) communication can be calculated by the following expressions.
$($ Transfer rate $)=\{$ Operation clock $($ MCK $)$ frequency of target channel $\} \div(\operatorname{SDRmn}[15: 9]+1) \div 2$
Caution Setting SDRmn [15:9] $=0000000 B$ is prohibited. Set SDRmn[15:9] to 0000001B or greater.

Remarks 1. The value of SDRmn[15:9] is the value of bits 15 to 9 of the SDRmn register (0000000B to 1111111 B) and therefore is 0 to 127.
2. m : Unit number $(m=0,1)$, n : Channel number $(n=0,2)$

The operation clock (MCK) is determined by serial clock select register m (SPSm) and bit 15 (CKSmn) of serial mode register mn (SMRmn).

Table 14-4. Selection of operation clock

SMRmn	SPSm Register								Operation Clock (MCK) ${ }^{\text {Note1 }}$	
CKSmn	$\begin{array}{\|l} \hline \text { PRS } \\ \text { m13 } \\ \hline \end{array}$	$\begin{aligned} & \text { PRS } \\ & \text { m12 } \end{aligned}$	$\begin{aligned} & \text { PRS } \\ & \text { m11 } \end{aligned}$	$\begin{array}{\|l} \hline \text { PRS } \\ \text { m10 } \end{array}$	$\begin{aligned} & \text { PRS } \\ & \text { m03 } \end{aligned}$	$\begin{array}{\|l} \hline \text { PRS } \\ \text { m02 } \end{array}$	$\begin{aligned} & \text { PRS } \\ & \text { m01 } \end{aligned}$	$\begin{aligned} & \text { PRS } \\ & \text { m00 } \end{aligned}$		$\mathrm{fcLK}=20 \mathrm{MHz}$
0	x	X	x	x	0	0	0	0	fcık	20 MHz
	X	X	X	X	0	0	0	1	fcık/2	10 MHz
	x	x	x	x	0	0	1	0	fCLK/2 ${ }^{2}$	5 MHz
	x	x	x	x	0	0	1	1	f¢LK/2 ${ }^{3}$	2.5 MHz
	x	x	x	x	0	1	0	0	fCLL/2 ${ }^{4}$	1.25 MHz
	x	x	x	x	0	1	0	1	fıLK/ 2^{5}	625 kHz
	X	X	X	X	0	1	1	0	falk 2^{6}	313 kHz
	x	x	x	x	0	1	1	1	fCLL/2 2^{7}	156 kHz
	X	X	X	X	1	0	0	0	fCLK/2 ${ }^{8}$	78.1 kHz
	X	X	X	X	1	0	0	1	fCLK/2 2^{9}	39.1 kHz
	x	X	X	x	1	0	1	0	fLLK/2 ${ }^{10}$	19.5 kHz
	X	X	X	X	1	0	1	1	fclk/2 ${ }^{11}$	9.77 kHz
	x	x	x	x	1	1	1	1	$\begin{aligned} & \text { INTTM02 if } m=0 \text {, } \\ & \text { INTTM03 if } m=1^{\text {Noote2 }} \end{aligned}$	
1	0	0	0	0	X	X	X	X	fcık	20 MHz
	0	0	0	1	x	X	x	x	f¢Lk/2	10 MHz
	0	0	1	0	X	X	X	X	fLLK/2 2^{2}	5 MHz
	0	0	1	1	X	X	X	X	fLLK/2 ${ }^{3}$	2.5 MHz
	0	1	0	0	x	X	x	x	fcle $/ 2{ }^{4}$	1.25 MHz
	0	1	0	1	X	X	X	X	fCLK/ 2^{5}	625 kHz
	0	1	1	0	X	X	x	X	f¢LK 22^{6}	313 kHz
	0	1	1	1	X	X	X	X	fCLK/2 ${ }^{7}$	156 kHz
	1	0	0	0	X	X	X	X	fLLK/2 2^{8}	78.1 kHz
	1	0	0	1	X	X	X	X	fLLK/2 2^{9}	39.1 kHz
	1	0	1	0	X	X	X	X	folk 2^{10}	19.5 kHz
	1	0	1	1	X	X	X	X	fCLK/2 ${ }^{11}$	9.77 kHz
	1	1	1	1	x	x	x	x	$\begin{aligned} & \text { INTTM02 if } m=0, \\ & \text { INTTM03 if } m=1^{\text {Note2 }} \end{aligned}$	
Other than above									Setting prohibited	

Notes 1. When changing the clock selected for fclk (by changing the system clock control register (CKC) value), do so after having stopped (STm $=000 \mathrm{FH}$) the operation of the serial array unit (SAUm). When selecting INTTM02 and INTTM03 for the operation clock, also stop the timer array unit (TAUO) (TT0 = 00FFH).
2. SAUm can be operated at a fixed division ratio of the subsystem clock, regardless of the fcLk frequency (main system clock, subsystem clock), by operating the interval timer for which fsub/4 has been selected as the count clock (setting TIS02 (if $m=0$) or TIS03 (if $m=1$) of the TIS0 register to 1) and selecting INTTM02 and INTTM03 by using the SPSm register in channels 2 and 3 of TAUO. When changing fclk, however, SAUm and TAUO must be stopped as described in Note 1 above.
Remarks 1. X: Don't care
2. m : Unit number $(m=0,1)$, n : Channel number ($n=0$ to 2)

Here is an example of setting an IIC transfer rate where MCK $=$ fcLK $=20 \mathrm{MHz}$.

IIC Transfer Mode (Desired Transfer Rate)	fcLk $=20 \mathrm{MHz}$			
	Operation Clock (MCK)	SDRmn[15:9]	Calculated Transfer Rate	Error from Desired Transfer Rate
100 kHz	fcLk	99	100 kHz	0.0%
400 kHz	fcLk	24	400 kHz	0.0%

14.8 Processing Procedure in Case of Error

The processing procedure to be followed if an error of each type occurs is described in Figures 14-100 to 14-102.

Figure 14-100. Processing Procedure in Case of Parity Error or Overrun Error

Software Manipulation	Hardware Status Reads SDRmn register. Reads SSRmn register. Receive data.	Remark
Writes SIRmn register.		This is to prevent an overrun error if the next reception is completed during error processing.
Error flag is cleared.	Error type is identified and the read value is used to clear error flag.	

Figure 14-101. Processing Procedure in Case of Framing Error

Software Manipulation	Hardware Status	Remark
Reads SDRmn register.	$B F F=0$, and channel n is enabled to receive data.	This is to prevent an overrun error if the next reception is completed during error processing.
Reads SSRmn register.		Error type is identified and the read value is used to clear error flag.
Writes SIRmn register.	\rightarrow Error flag is cleared.	Error can be cleared only during reading, by writing the value read from the SSRmn register to the SIRmn register without modification.
Sets STmn bit to 1.	SEmn $=0$, and channel n stops operation.	
Synchronization with other party of communication		Synchronization with the other party of communication is re-established and communication is resumed because it is considered that a framing error has occurred because the start bit has been shifted.
Sets SSmn bit to 1.	SEmn $=1$, and channel n is enabled to operate.	

Remark m : Unit number $(\mathrm{m}=0,1)$, n : Channel number ($\mathrm{n}=0$ to 3)

Figure 14-102. Processing Procedure in Case of Parity Error (ACK error) in Simplified I ${ }^{2}$ C Mode

Software Manipulation	Hardware Status	Remark
Reads SDRmn register.	$B F F=0$, and channel n is enabled to receive data.	This is to prevent an overrun error if the next reception is completed during error processing.
Reads SSRmn register.		Error type is identified and the read value is used to clear error flag.
Writes SIRmn register.	\rightarrow Error flag is cleared.	Error can be cleared only during reading, by writing the value read from the SSRmn register to the SIRmn register without modification.
Sets STmn bit to 1.	SEmn $=0$, and channel n stops operation.	Slave is not ready for reception because ACK is not returned. Therefore, a stop condition is created, the bus is released, and communication is started again from the start condition. Or, a restart
Creates stop condition.		transmission can be redone from
Creates start condition.		address transmission.
Sets SSmn bit to 1.	SEmn $=1$, and channel n is enabled to operate.	

Remark m : Unit number $(m=0,1), n$: Channel number $(n=0,2), m n=02,10$

14.9 Relationship Between Register Settings and Pins

Tables 14-5 to $14-12$ show the relationship between register settings and pins for each channel of serial array units 0 and 1.

Table 14-5. Relationship between register settings and pins (Channel 0 of unit 0: CSIOO, UARTO transmission)

SE	$\begin{aligned} & \mathrm{MD} \\ & 002 \end{aligned}$	$\begin{aligned} & \text { MD } \\ & 001 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { SOE } \\ 00 \end{array}$	$\begin{aligned} & \text { so } \\ & 00 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { CKO } \\ 00 \end{array}$	$\begin{array}{\|c\|} \hline \text { TXE } \\ 00 \end{array}$	$\begin{gathered} \mathrm{RXE} \\ 00 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { PM } \\ 80 \\ \hline \end{array}$	P80	$\begin{array}{\|c\|} \hline \text { PM } \\ 81 \\ \text { Note2 } \end{array}$	$\left\|\begin{array}{l} \text { P81 } \\ \text { Note2 } \end{array}\right\|$	$\begin{gathered} \text { PM } \\ 82 \end{gathered}$	P82	Operation mode	Pin Function		
$\left.\right\|_{\text {Note1 }} ^{000}$															SCKOO/ INTP11 /P80	$\begin{array}{\|c\|} \hline \text { SIOO/RxDO/ } \\ \text { INTP9/ } \\ \text { P81 Note2 } \end{array}$	$\begin{gathered} \text { SO00/ } \\ \text { TxD0/P82 } \end{gathered}$
0	0	0	0	1	1	0	0	$\begin{array}{\|c\|} \hline \times \\ \hline \text { Note3 } \\ \hline \end{array}$	$\underset{\text { Note3 }}{\times}$		$\begin{array}{\|c\|} \hline \times \\ \text { Note3 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \times \\ \text { Note3 } \end{array}$	$\begin{array}{\|c\|} \hline \times \\ \hline \text { Note3 } \\ \hline \end{array}$	Operation stop mode	$\begin{gathered} \text { INTP11/ } \\ \text { P80 } \end{gathered}$	INTP9/P81	P82
	0	1														RxD0/ INTP9/P81	
1	0	0	0	1	1	0	1	1	\times	1	\times	$\begin{array}{\|c\|} \hline \times \\ \hline \text { Note3 } \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline & \times \\ \text { Note3 } \end{array}$	Slave CSIOO reception	SCKOO (input)	SIOO	P82
			1	$\left\lvert\, \begin{array}{\|c\|} 0 / 1 \\ \text { Note } 4 \end{array}\right.$	1	1	0	1	\times	$\begin{array}{\|c\|} \hline \times \\ \hline \text { Note3 } \\ \hline \end{array}$	$\underset{\text { Note3 }}{\times}$	0	1	Slave CSIOO transmission	SCKOO (input)	INTP9/P81	SO00
			1	$\left\lvert\, \begin{gathered} 0 / 1 \\ \text { Note } 4 \end{gathered}\right.$	1	1	1	1	\times	1	\times	0	1	Slave CSIOO transmission/ reception	SCKOO (input)	SIOO	SOOO
			0	1	$\left\lvert\, \begin{gathered} 0 / 1 \\ \text { Note4 } \end{gathered}\right.$	0	1	0	1	1	\times	$\begin{array}{\|c\|} \hline \times \\ \text { Note3 } \\ \hline \end{array}$	$\begin{array}{\|c\|c\|c} x \\ \text { Note3 } \end{array}$	Master CSIOO reception	$\begin{aligned} & \hline \text { SCKOO } \\ & \text { (output) } \end{aligned}$	SIOO	P82
			1	$\begin{array}{\|c} 0 / 1 \\ \text { Note4 } \end{array}$	$\begin{array}{\|c} \hline 0 / 1 \\ \text { Note4 } \end{array}$	1	0	0	1	$\begin{array}{\|c\|} \hline \times \\ \text { Note3 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \times \\ \hline \text { Note3 } \\ \hline \end{array}$	0	1	Master CSIOO transmission	$\begin{aligned} & \hline \overline{\text { SCKOO }} \\ & \text { (output) } \end{aligned}$	INTP9/P81	SOOO
			1	$\left\lvert\, \begin{gathered} 0 / 1 \\ \text { Note4 } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0 / 1 \\ \text { Note4 } \end{gathered}\right.$	1	1	0	1	1	\times	0	1	Master CSIOO transmission/ reception	$\begin{aligned} & \hline \overline{\text { SCKOO }} \\ & \text { (output) } \end{aligned}$	SIOO	SO00
	0	1	1	$\left\lvert\, \begin{gathered} 0 / 1 \\ \text { Note4 } \end{gathered}\right.$	1	1	0	$\underset{\text { Note3 }}{\times}$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	$\left\|\begin{array}{c} \times \\ \text { Note3 } \end{array}\right\|$	$\left\|\begin{array}{c} \times \\ \text { Note3 } \end{array}\right\|$	0	1	UARTO $\text { transmission }^{\text {Note5 }}$	$\begin{gathered} \text { INTP11/ } \\ \text { P80 } \end{gathered}$	RxD0/ INTP9/P81	TxD0

Notes 1. The SEO register is a read-only status register which is set using the SSO and STO registers.
2. When channel 1 of unit 0 is set to UARTO reception, this pin becomes an RxDO function pin (refer to Table 14-6). In this case, operation stop mode or UART0 transmission must be selected for channel 0 of unit 0 .
3. This pin can be set as a port function pin.
4. This is 0 or 1 , depending on the communication operation. For details, refer to 14.3 (12) Serial output register m (SOm).
5. When using UARTO transmission and reception in a pair, set channel 1 of unit 0 to UARTO reception (refer to Table 14-6).

Remarks 1. X: Don't care
2. For $78 \mathrm{~K} 0 \mathrm{R} / \mathrm{LF} 3$, the channel 0 of unit 0 is not mounted.

Table 14-6. Relationship between register settings and pins (Channel 1 of unit 0: CSI01, UARTO reception)

SE 01 Note1	$\left\|\begin{array}{l} \mathrm{MD} \\ 012 \end{array}\right\|$	$\left\|\begin{array}{c} \mathrm{MD} \\ 011 \end{array}\right\|$	$\left\|\begin{array}{c} \mathrm{SOE} \\ 01 \end{array}\right\|$	SO01	$\left.\begin{gathered} \text { CKO } \\ 01 \end{gathered} \right\rvert\,$	$\left\lvert\, \begin{gathered} \text { TXE } \\ 01 \end{gathered}\right.$	$\begin{gathered} \text { RXE } \\ 01 \end{gathered}$	$\begin{gathered} \mathrm{PM} \\ 75 \end{gathered}$	P75	$\begin{gathered} \text { PM } \\ 76 \end{gathered}$	P76	$\begin{gathered} \mathrm{PM} \\ 77 \end{gathered}$	P77	$\left\lvert\, \begin{gathered} \text { PM } \\ 81 \\ \text { Note2 } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { P81 } \\ \text { Note2 } \end{array}\right\|$	Operation mode	Pin Function			
																	$\begin{gathered} \hline \text { SCK01/ } \\ \text { KR5/ } \\ \text { P75 } \end{gathered}$	SI01/ KR6/ P76	$\left\|\begin{array}{c} \mathrm{SO} 01 / \\ \mathrm{KR7/} \\ \mathrm{P} 77 \end{array}\right\|$	RxD0/SI00/ INTP9/ P81 ${ }^{\text {Note2 }}$
0	0 0	0 1	0	1	1	0	0	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	$\begin{gathered} \times \\ \text { Note3 } \end{gathered}$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	$\underset{\text { Note3 }}{\times}$	$\underset{\text { Note3 }}{\times}$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	Operation stop mode	$\begin{gathered} \text { KR5/ } \\ \text { P75 } \end{gathered}$	KR6/P76	$\begin{gathered} \text { KR7/ } \\ \text { P77 } \end{gathered}$	$\begin{gathered} \text { SIOO/ } \\ \text { INTP9/P80 } \end{gathered}$
1	0	0	0	1	1	0	1	1	\times	1	\times	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	$\underset{\text { Note3 }}{\times}$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	Slave CSI01 reception	$\begin{gathered} \overline{\text { SCK01 }} \\ \text { (input) } \end{gathered}$	SIO1	$\begin{gathered} \text { KR7/ } \\ \text { P77 } \end{gathered}$	SIOO/ INTP9/P80
			1	$\begin{gathered} 0 / 1 \\ \text { Note } 4 \end{gathered}$	1	1	0	1	\times	$\underset{\text { Note3 }}{\times}$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	0	1	$\underset{\text { Note3 }}{\times}$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	Slave CSIO1 transmission	$\begin{gathered} \overline{\text { SCK01 }} \\ \text { (input) } \end{gathered}$	KR6/P76	SO01	SIOO/ INTP9/P80
			1	$\begin{gathered} 0 / 1 \\ \text { Note } 4 \end{gathered}$	1	1	1	1	\times	1	\times	0	1	$\underset{\text { Note3 }}{\times}$		Slave CSI01 transmission /reception	$\begin{aligned} & \overline{\text { SCK01 }} \\ & \text { (input) } \end{aligned}$	SI01	SO01	SIOO/ INTP9/P80
			0	1	$\begin{array}{\|c\|c} \hline 0 / 1 \\ \text { Note4 } \end{array}$	0	1	0	1	1	\times	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	$\underset{\text { Note3 }}{\times}$	$\underset{\text { Note3 }}{\times}$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	Master CSI01 reception	$\overline{\text { SCK01 }} \text { (output) }$	SI01	$\begin{aligned} & \text { KR7/ } \\ & \text { P77 } \end{aligned}$	SIOO/ INTP9/P80
			1	$\begin{gathered} 0 / 1 \\ \text { Note } 4 \end{gathered}$	$\left\lvert\, \begin{gathered} 0 / 1 \\ \text { Note4 } \end{gathered}\right.$	1	0	0	1	$\begin{gathered} \times \\ \text { Note3 } \end{gathered}$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	0	1	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	Master CSI01 transmission	$\overline{\text { SCK01 }} \text { (output) }$	KR6/P76	SO01	SIOO/ INTP9/P80
			1	$\begin{gathered} 0 / 1 \\ \text { Note } 4 \end{gathered}$	$\begin{array}{\|c\|c\|} \hline 0 / 1 \\ \text { Note4 } \end{array}$	1	1	0	1	1	\times	0	1	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	Master CSI01 transmission /reception	$\overline{\text { SCK01 }} \text { (output) }$	SIO1	SO01	SIOO/ INTP9/P80
	0	1	0	1	1	0	1	$\underset{\text { Note3 }}{\times}$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	1	\times	UARTO reception Note5, 6	$\begin{gathered} \text { KR5/ } \\ \text { P75 } \end{gathered}$	KR6/P76	$\begin{gathered} \text { KR7/ } \\ \text { P77 } \end{gathered}$	RxD0			

Notes 1. The SEO register is a read-only status register which is set using the SSO and ST0 registers.
2. When channel 1 of unit 0 is set to UARTO reception, this pin becomes an RxDO function pin. In this case, set channel 0 of unit 0 to operation stop mode or UART0 transmission (refer to Table 14-5).
When channel 0 of unit 0 is set to CSIOO, this pin cannot be used as an RxDO function pin. In this case, set channel 1 of unit 0 to operation stop mode or CSIO1.
3. This pin can be set as a port function pin.
4. This is 0 or 1, depending on the communication operation. For details, refer to 14.3 (12) Serial output register m (SOm).
5. When using UARTO transmission and reception in a pair, set channel 0 of unit 0 to UARTO transmission (refer to Table 14-5).
6. The SMROO register of channel 0 of unit 0 must also be set during UARTO reception. For details, refer to 14.5.2 (1) Register setting.

Remarks 1. X: Don't care
2. For $78 \mathrm{KOR} / \mathrm{LF} 3$, the channel 1 of unit 0 is not mounted.
3. For $78 \mathrm{KOR} / \mathrm{LG} 3, \mathrm{CSI} 01$ is not mounted.

Table 14-7. Relationship between register settings and pins
(Channel 2 of unit 0: CSI10, UART1 transmission, IIC10)

$\left\lvert\, \begin{gathered} \text { SE } \\ 02 \\ \text { Note1 } \end{gathered}\right.$	$\begin{aligned} & \mathrm{MD} \\ & 022 \end{aligned}$	$\begin{aligned} & \mathrm{MD} \\ & 021 \end{aligned}$	$\begin{gathered} \mathrm{SOE} \\ 02 \end{gathered}$	$\begin{aligned} & \mathrm{SO} \\ & 02 \end{aligned}$	$\left.\begin{gathered} \text { CKO } \\ 02 \end{gathered} \right\rvert\,$	$\begin{gathered} \text { TXE } \\ 02 \end{gathered}$	$\begin{gathered} \text { RXE } \\ 02 \end{gathered}$	$\begin{gathered} \text { PM } \\ 15 \end{gathered}$	P15	PM14 Note2	$\begin{aligned} & \text { P14 } \\ & \text { Note2 } \end{aligned}$	PM13	P13	Operation mode	Pin Function		
															SCK10/ SCL10/ INTP7/P15	SI10/SDA10/ RxD1/INTP4 $/ \mathrm{P} 14^{\text {Note2 }}$	$\begin{array}{\|c\|} \hline \text { SO10/ } \\ \text { TxD1/ } \\ \text { TO04/P13 } \end{array}$
0	0	0	0	1	1	0	0	$\left\|\begin{array}{c} \times \\ \text { Note3 } \end{array}\right\|$	$\underset{\text { Note3 }}{\times}$	$\begin{gathered} \times \\ \text { Note3 } \end{gathered}$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	$\begin{gathered} \times \\ \text { Note } 3 \end{gathered}$	$\begin{array}{\|c\|} \hline \times \\ \hline \text { Note3 } \\ \hline \end{array}$	Operation stop mode	INTP7/P15	INTP4/P14	TO04/P13
	0	1														$\begin{array}{\|c} \hline \text { RxD1/INTP4/ } \\ \text { P14 } \end{array}$	
	1	0														INTP4/P14	
1	0	0	0	1	1	0	1	1	\times	1	\times	$\begin{gathered} \times \\ \text { Note3 } \end{gathered}$	$\underset{\text { Note3 }}{\times}$	Slave CSI10 reception	$\overline{\text { SCK10 }}$ (input)	SI10	TO04/P13
			1	$\left\lvert\, \begin{gathered} 0 / 1 \\ \text { Note4 } \end{gathered}\right.$	1	1	0	1	\times	$\stackrel{\times}{\stackrel{\times}{\text { Note3 }}}$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	0	1	Slave CSI10 transmission	$\overline{\text { SCK10 }}$ (input)	INTP4/P14	SO10
			1	$\left\lvert\, \begin{gathered} \text { O/1 } \\ \text { Note4 } \end{gathered}\right.$	1	1	1	1	\times	1	\times	0	1	Slave CSI10 transmission /reception	$\overline{\text { SCK10 }}$ (input)	SI10	SO10
			0	1	$\begin{array}{\|c\|} \hline 0 / 1 \\ \text { Note4 } \end{array}$	0	1	0	1	1	\times	$\stackrel{\times}{\stackrel{\times}{\text { Note3 }}}$	$\underset{\text { Note3 }}{\times}$	Master CSI10 reception	SCK10 (output)	SI10	TO04/P13
			1	$\underset{\text { Note } 4}{0 / 1}$	$\begin{array}{\|c\|} \hline 0 / 1 \\ \text { Note4 } \end{array}$	1	0	0	1	$\stackrel{\times}{\times}$	$\underset{\text { Note3 }}{\times}$	0	1	Master CSI10 transmission	$\overline{\text { SCK10 }}$ (output)	INTP4/P14	SO10
			1	$\begin{array}{\|c\|} \hline 0 / 1 \\ \text { Note4 } \end{array}$	$\begin{array}{\|c\|c\|} \hline 0 / 1 \\ \text { Note4 } \end{array}$	1	1	0	1	1	\times	0	1	Master CSI10 transmission/reception	SCK10 (output)	SI10	SO10
	0	1	1	$\begin{array}{\|c} 0 / 1 \\ \text { Note4 } \end{array}$	1	1	0	$\begin{gathered} \times \\ \text { Note3 } \end{gathered}$	$\stackrel{\times}{\times} \begin{gathered} \text { Note3 } \end{gathered}$	$\begin{gathered} \times \\ \text { Note } 3 \end{gathered}$	$\underset{\text { Note3 }}{\times}$	0	1	UART1 transmission ${ }^{\text {Note5 }}$	INTP7/P15	$\begin{gathered} \mathrm{RxD} 1 / \mathrm{INTP} 4 / \\ \text { P14 } \end{gathered}$	TxD1
0	1	0	0	$\left\lvert\, \begin{gathered} 0 / 1 \\ \text { Note6 } \end{gathered}\right.$	$\begin{array}{\|c} 0 / 1 \\ \text { Note6 } \end{array}$	0	0	0	1	0	1	$\begin{gathered} \times \\ \text { Note3 } \end{gathered}$	$\begin{array}{\|c\|} \hline \times \\ \text { Note3 } \end{array}$	IIC10 start condition	SCL10	SDA10	TO04/P13
						1	0										
						0	1										
1			1	$\begin{array}{\|c\|} \hline 0 / 1 \\ \text { Note4 } \end{array}$	$\begin{array}{\|c} \hline 0 / 1 \\ \text { Note4 } \end{array}$	1	0	0	1	0	1	$\stackrel{\times}{\times}$	$\underset{\text { Note3 }}{\times}$	IIC10 address field transmission	SCL10	SDA10	TO04/P13
			1	0/1 Note4	$\begin{array}{\|c\|} \hline 0 / 1 \\ \text { Note4 } \end{array}$	1	0	0	1	0	1	$\stackrel{\times}{\stackrel{\times}{\text { Note3 }}}$	$\underset{\text { Note3 }}{\times}$	IIC10 data transmission	SCL10	SDA10	TO04/P13
			1	$\begin{array}{\|c} \text { O/1 } \\ \text { Note4 } \end{array}$	$\begin{array}{\|c\|} \hline 0 / 1 \\ \text { Note4 } \end{array}$	0	1	0	1	0	1	$\begin{gathered} \times \\ \text { Note3 } \end{gathered}$	$\begin{array}{\|c} \times \\ \text { Note3 } \end{array}$	IIC10 data reception	SCL10	SDA10	TO04/P13
0			0	$\left\|\begin{array}{c} 0 / 1 \\ \text { Note7 } \end{array}\right\|$	$\begin{array}{\|c\|} \hline 0 / 1 \\ \text { Note7 } \end{array}$	0	0	0	1	0	1	$\underset{\substack{\times \\ \text { Note3 }}}{ }$	$\begin{array}{\|c\|} \hline \times \\ \text { Note3 } \end{array}$	IIC10 stop condition	SCL10	SDA10	TO04/P13
						1	0										
						0	1										

Notes 1. The SEO register is a read-only status register which is set using the SSO and STO registers.
2. When channel 3 of unit 0 is set to UART1 reception, this pin becomes an RxD1 function pin (refer to Table 14-8). In this case, operation stop mode or UART1 transmission must be selected for channel 2 of unit 0 .
3. This pin can be set as a port function pin.
4. This is 0 or 1 , depending on the communication operation. For details, refer to 14.3 (12) Serial output register m (SOm).
5. When using UART1 transmission and reception in a pair, set channel 3 of unit 0 to UART1 reception (refer to Table 14-8).
6. Set the CKOO2 bit to 1 before a start condition is generated. Clear the SOO2 bit from 1 to 0 when the start condition is generated.
7. Set the CKOO2 bit to 1 before a stop condition is generated. Clear the SOO2 bit from 0 to 1 when the stop condition is generated.

Remark X: Don't care

Table 14-8. Relationship between register settings and pins (Channel 3 of unit 0: UART1 reception)

SE03 ${ }^{\text {Note1 }}$	MD032	MD031	TXE03	RXE03	PM14 $^{\text {Note2 }}$	$\mathrm{P}^{2} 4^{\text {Note2 }}$	Operation mode	Pin Function
0	0	1	0	0	$x^{\text {Note3 }}$	$x^{\text {Rote3 }}$	Operation stop mode	SI10/SDA10/SDA10/INTP4/ P14 Note2
1	0	1	0	1	1	\times	UART1 reception Note4, 5	RxD1

Notes 1. The SEO register is a read-only status register which is set using the SSO and STO registers.
2. When channel 3 of unit 0 is set to UART1 reception, this pin becomes an RxD1 function pin. In this case, set channel 2 of unit 0 to operation stop mode or UART1 transmission (refer to Table 14-7).
When channel 2 of unit 0 is set to CSI10 or IIC10, this pin cannot be used as an RxD1 function pin. In this case, set channel 3 of unit 0 to operation stop mode.
3. This pin can be set as a port function pin.
4. When using UART1 transmission and reception in a pair, set channel 2 of unit 0 to UART1 transmission (refer to Table 14-7).
5. The SMR02 register of channel 2 of unit 0 must also be set during UART1 reception. For details, refer to 14.5.2 (1) Register setting.

Remark X: Don't care

Table 14-9. Relationship between register settings and pins
(Channel 0 of unit 1: CSI20, UART2 transmission, IIC20)

$\begin{array}{\|c} \text { SE } \\ 10 \\ \text { Note1 } \end{array}$	$\begin{aligned} & \text { MD } \\ & 102 \end{aligned}$	$\begin{aligned} & \mathrm{MD} \\ & 101 \end{aligned}$	$\begin{gathered} \text { SOE } \\ 10 \end{gathered}$	$\begin{aligned} & \text { SO } \\ & 10 \end{aligned}$	$\left\|\begin{array}{c} \text { CKO } \\ 10 \end{array}\right\|$	$\left\|\begin{array}{c} \text { TXE } \\ 10 \end{array}\right\|$	$\left\|\begin{array}{c} \text { RXE } \\ 10 \end{array}\right\|$	$\begin{gathered} \text { PM } \\ 10 \end{gathered}$	P10	$\begin{array}{\|c\|} \hline \text { PM } \\ 11 \\ \text { Note2 } \end{array}$	P11 Note2	$\begin{gathered} \text { PM } \\ 12 \end{gathered}$	P12	Operation mode	Pin Function		
															$\begin{gathered} \overline{\text { SCK20/ }} \\ \text { SCL20/P10 } \end{gathered}$	SI20/SDA20/ RxD2/INTP6/ P11 ${ }^{\text {Note2 }}$	$\begin{gathered} \mathrm{SO} 20 / \\ \mathrm{TxD2/} \\ \mathrm{TO} 2 / \mathrm{P} 12 \end{gathered}$
0	0	0	0	1	1	0	0	Note3	$\underset{\text { Note3 }}{\times}$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \times \\ \text { Note3 } \end{gathered}\right.$	$\underset{\text { Note3 }}{\times}$	Operation stop mode	P10	INTP6/P11	TO02/P12
	0	1														$\begin{array}{\|c} \text { RxD2/INTP6/ } \\ \text { P11 } \end{array}$	
	1	0														INTP6/P11	
1	0	0	0	1	1	0	1	1	\times	1	\times	$\begin{array}{\|c} \times \\ \text { Note3 } \end{array}$	$\underset{\text { Note3 }}{\times}$	Slave CSI20 reception	$\overline{\text { SCK20 }}$ (input)	SI20	TO02/P12
			1	$\begin{array}{\|c} \hline 0 / 1 \\ \text { Note4 } \end{array}$	1	1	0	1	\times	$\underset{\text { Note3 }}{\times}$	$\underset{\text { Note3 }}{\times}$	0	1	Slave CSI20 transmission	SCK20 (input)	INTP6/P11	SO20
			1	$\begin{array}{\|c\|} \hline 0 / 1 \\ \text { Note4 } \end{array}$	1	1	1	1	\times	1	\times	0	1	Slave CSI20 transmission/reception	SCK20 (input)	SI20	SO20
			0	1	$\underset{\text { Note4 }}{0 / 1}$	0	1	0	1	1	\times	$\underset{\text { Note3 }}{\times}$	$\underset{\text { Note3 }}{\times}$	Master CSI20 reception	SCK20 (output)	SI20	TO02/P12
			1	$\begin{array}{\|c} \hline 0 / 1 \\ \text { Note4 } \end{array}$	$\begin{gathered} 0 / 1 \\ \text { Note4 } \end{gathered}$	1	0	0	1	$\underset{\text { Note3 }}{\times}$	$\underset{\text { Note3 }}{\times}$	0	1	Master CSI20 transmission	SCK20 (output)	INTP6/P11	SO20
			1	$\begin{gathered} 0 / 1 \\ \text { Note4 } \end{gathered}$	$\underset{\text { Note4 }}{0 / 1}$	1	1	0	1	1	\times	0	1	Master CSI20 transmission/reception	SCK20 (output)	SI20	SO20
	0	1	1	$\begin{array}{\|c} \hline 0 / 1 \\ \text { Note4 } \end{array}$	1	1	0	$\underset{\text { Note3 }}{\times}$	$\begin{gathered} \times \\ \text { Note3 } \end{gathered}$	$\underset{\text { Note3 }}{\times}$	$\underset{\text { Note3 }}{\times}$	0	1	UART2 transmission ${ }^{\text {Note5 }}$	P10	$\begin{array}{\|c} \text { RxD2/INTP6/ } \\ \text { P11 } \end{array}$	TxD2
0	1	0	0	$\begin{array}{\|c\|c\|} \hline 0 / 1 \\ \text { Note6 } \end{array}$	$\underset{\text { Note6 }}{0 / 1}$	0	0	0	1	0	1	$\underset{\text { Note3 }}{\times}$	$\begin{array}{\|c\|} \hline \times \\ \text { Note3 } \end{array}$	IIC20 start condition	SCL20	SDA20	TO02/P12
						1	0										
						0	1										
1			1	$\begin{array}{\|c\|} \hline 0 / 1 \\ \text { Note4 } \end{array}$	$\begin{gathered} 0 / 1 \\ \text { Note4 } \end{gathered}$	1	0	0	1	0	1	$\underset{\text { Note3 }}{\times}$	$\stackrel{\times}{\stackrel{\times}{\text { Note3 }}}$	IIC20 address field transmission	SCL20	SDA20	TO02/P12
			1	$\begin{array}{\|c\|} \hline 0 / 1 \\ \text { Note4 } \end{array}$	$\underset{\text { Note4 }}{0 / 1}$	1	0	0	1	0	1	$\underset{\text { Note3 }}{\times}$	$\stackrel{\times}{\times} \begin{gathered} \times \\ \text { Note3 } \end{gathered}$	IIC20 data transmission	SCL20	SDA20	TO02/P12
			1	$\begin{array}{\|c} \hline 0 / 1 \\ \text { Note4 } \end{array}$	$\begin{gathered} 0 / 1 \\ \text { Note } \end{gathered}$	0	1	0	1	0	1	$\underset{\text { Note3 }}{\times}$	$\begin{gathered} \times \\ \text { Note3 } \end{gathered}$	IIC20 data reception	SCL20	SDA20	TO02/P12
0			0	$\begin{array}{\|c\|} \hline 0 / 1 \\ \text { Note7 } \end{array}$	$\begin{gathered} 0 / 1 \\ \text { Note7 } \end{gathered}$	0	0	0	1	0	1	$\begin{gathered} \times \\ \text { Note3 } \end{gathered}$	$\begin{gathered} \times \\ \text { Note3 } \end{gathered}$	IIC20 stop condition	SCL20	SDA20	TO02/P12
						1	0										
						0	1										

Notes 1. The SE1 register is a read-only status register which is set using the SS1 and ST1 registers.
2. When channel 1 of unit 1 is set to UART2 reception, this pin becomes an RxD2 function pin (refer to Table 1410). In this case, operation stop mode or UART2 transmission must be selected for channel 0 of unit 1.
3. This pin can be set as a port function pin.
4. This is 0 or 1 , depending on the communication operation. For details, refer to 14.3 (12) Serial output register m (SOm).
5. When using UART2 transmission and reception in a pair, set channel 1 of unit 1 to UART2 reception (refer to Table 14-10).
6. Set the CKO10 bit to 1 before a start condition is generated. Clear the SO10 bit from 1 to 0 when the start condition is generated.
7. Set the CKO10 bit to 1 before a stop condition is generated. Clear the SO10 bit from 0 to 1 when the stop condition is generated.

Remark X: Don't care

Table 14-10. Relationship between register settings and pins (Channel 1 of unit 1: UART2 reception)

SE11 ${ }^{\text {Note1 }}$	MD112	MD111	TXE11	RXE11	PM11 ${ }^{\text {Note2 }}$	P11 ${ }^{\text {Note2 }}$	Operation mode	Pin Function
0	0	1	0	0	$x^{\text {Note3 }}$	$x^{\text {Note3 }}$	Operation stop mode	SI20/SDA20/INTP6/P11
INTP6/P11 Note2								

Notes 1. The SE1 register is a read-only status register which is set using the SS1 and ST1 registers.
2. When channel 1 of unit 1 is set to UART2 reception, this pin becomes an RxD2 function pin. In this case, set channel 0 of unit 1 to operation stop mode or UART2 transmission (refer to Table 14-9).
When channel 0 of unit 1 is set to CSI20 or IIC20, this pin cannot be used as an RxD2 function pin. In this case, set channel 1 of unit 1 to operation stop mode.
3. This pin can be set as a port function pin.
4. When using UART2 transmission and reception in a pair, set channel 0 of unit 1 to UART2 transmission (refer to Table 14-9).
5. The SMR10 register of channel 0 of unit 1 must also be set during UART2 reception. For details, refer to 14.5.2 (1) Register setting.

Remark X: Don't care

Table 14-11. Relationship between register settings and pins (Channel 2 of unit 1: UART3 transmission)

SE12 Note1	MD122	MD121	SOE12	SO12	TXE12	RXE12	PM51	P51	Operation mode	Pin Function
0	0	1	0	1	0	0	\times Note2	\times Note2	Operation stop mode	SEG52/P51
1	0	1	1	$0 / 1^{\text {Note3 }}$	1	0	0	1	UART3 transmission Note4	TxD3

Notes 1. The SE1 register is a read-only status register which is set using the SS1 and ST1 registers.
2. This pin can be set as a port function pin
3. This is 0 or 1, depending on the communication operation. For details, refer to 14.3 (12) Serial output register m (SOm).
4. When using UART3 transmission and reception in a pair, set channel 3 of unit 1 to UART3 reception (refer to Table 14-12).

Remark X: Don't care

Table 14-12. Relationship between register settings and pins (Channel 3 of unit 1: UART3 reception)

SE13 ${ }^{\text {Note1 }}$	MD132	MD131	TXE13	RXE13	PM50	P50	Operation mode	Pin Function
0	0	1	0	0	$x^{\text {Note2 }}$	$x^{\text {Note2 }}$	Operation stop mode	SEG533/P50
1	0	1	0	1	1	\times	UART3 reception Note3, 4	RxD3

Notes 1. The SE1 register is a read-only status register which is set using the SS1 and ST1 registers.
2. This pin can be set as a port function pin.
3. When using UART3 transmission and reception in a pair, set channel 2 of unit 1 to UART3 transmission (refer to Table 14-11).
4. The SMR12 register of channel 2 of unit 1 must also be set during UART3 reception. For details, refer to 14.5.2 (1) Register setting.

Remark X: Don't care

CHAPTER 15 SERIAL INTERFACE IICA

Item	78K0R/LF3	78K0R/LG3	78K0R/LH3
	80 pins	100 pins	128 pins
Serial interface IICA	-	1 ch	

15.1 Functions of Serial Interface IICA

Serial interface IICA has the following three modes.

(1) Operation stop mode

This mode is used when serial transfers are not performed. It can therefore be used to reduce power consumption.
(2) $\mathrm{I}^{2} \mathrm{C}$ bus mode (multimaster supported)

This mode is used for 8-bit data transfers with several devices via two lines: a serial clock (SCLO) line and a serial data bus (SDAO) line.
This mode complies with the $I^{2} C$ bus format and the master device can generated "start condition", "address", "transfer direction specification", "data", and "stop condition" data to the slave device, via the serial data bus. The slave device automatically detects these received status and data by hardware. This function can simplify the part of application program that controls the $I^{2} C$ bus.
Since the SCLO and SDAO pins are used for open drain outputs, IICA requires pull-up resistors for the serial clock line and the serial data bus line.

(3) Wakeup mode

The STOP mode can be released by generating an interrupt request signal (INTIICA) when an extension code from the master device or a local address has been received while in STOP mode. This can be set by using the WUP bit of IICA control register 1 (IICCTL1).

Figure 15-1 shows a block diagram of serial interface IICA.

Figure 15-1. Block Diagram of Serial Interface IICA

Figure $15-2$ shows a serial bus configuration example.

Figure 15-2. Serial Bus Configuration Example Using I ${ }^{2} \mathrm{C}$ Bus

15.2 Configuration of Serial Interface IICA

Serial interface IICA includes the following hardware.
Table 15-1. Configuration of Serial Interface IICA

Item	Configuration
Registers	IICA shift register (IICA) Slave address register (SVA)
Control registers	Peripheral enable register 0 (PERO) IICA control register 0 (IICCTLO) IICA status register (IICS) IICA flag register (IICF) IICA control register 1 (IICCTL1) IICA low-level width setting register (IICWL) IICA high-level width setting register (IICWH) Port mode register 6 (PM6) Port register 6 (P6)

(1) IICA shift register (IICA)

IICA is used to convert 8-bit serial data to 8-bit parallel data and vice versa in synchronization with the serial clock. IICA can be used for both transmission and reception.
The actual transmit and receive operations can be controlled by writing and reading operations to IICA.
Cancel the wait state and start data transfer by writing data to IICA during the wait period.
IICA can be set by an 8-bit memory manipulation instruction.
Reset signal generation clears IICA to 00 H .

Figure 15-3. Format of IICA Shift Register (IICA)

Cautions 1. Do not write data to IICA during data transfer.
2. Write or read IICA only during the wait period. Accessing IICA in a communication state other than during the wait period is prohibited. When the device serves as the master, however, IICA can be written only once after the communication trigger bit (STT) is set to 1 .
3. When communication is reserved, write data to IICA after the interrupt triggered by a stop condition is detected.
(2) Slave address register (SVA)

This register stores seven bits of local addresses $\{A 6, A 5, A 4, A 3, A 2, A 1, A 0\}$ when in slave mode. SVA can be set by an 8-bit memory manipulation instruction.

However, rewriting to this register is prohibited while STD = 1 (while the start condition is detected). Reset signal generation clears SVA to 00 H .

Figure 15-4. Format of Slave Address Register (SVA)

Address:	34 H	r re	H					
Symbol	7	6	5	4	3	2	1	0
SVA	A6	A5	A4	A3	A2	A1	A0	$0^{\text {Note }}$

Note Bit 0 is fixed to 0 .
(3) SO latch

The SO latch is used to retain the SDAO pin's output level.
(4) Wakeup controller

This circuit generates an interrupt request (INTIICA) when the address received by this register matches the address value set to the slave address register (SVA) or when an extension code is received.

(5) Serial clock counter

This counter counts the serial clocks that are output or input during transmit/receive operations and is used to verify that 8-bit data was transmitted or received.
(6) Interrupt request signal generator

This circuit controls the generation of interrupt request signals (INTIICA).
An $I^{2} C$ interrupt request is generated by the following two triggers.

- Falling edge of eighth or ninth clock of the serial clock (set by WTIM bit)
- Interrupt request generated when a stop condition is detected (set by SPIE bit)

Remark WTIM bit: Bit 3 of IICA control register 0 (IICCTLO)
SPIE bit: Bit 4 of IICA control register 0 (IICCTLO)

(7) Serial clock controller

In master mode, this circuit generates the clock output via the SCLO pin from a sampling clock.

(8) Serial clock wait controller

This circuit controls the wait timing.
(9) ACK generator, stop condition detector, start condition detector, and ACK detector

These circuits generate and detect each status.
(10) Data hold time correction circuit

This circuit generates the hold time for data corresponding to the falling edge of the serial clock.
(11) Start condition generator

This circuit generates a start condition when the STT bit is set to 1 .
However, in the communication reservation disabled status (IICRSV bit = 1), when the bus is not released (IICBSY bit $=1$), start condition requests are ignored and the STCF bit is set to 1 .

(12) Stop condition generator

This circuit generates a stop condition when the SPT bit is set to 1 .

(13) Bus status detector

This circuit detects whether or not the bus is released by detecting start conditions and stop conditions.
However, as the bus status cannot be detected immediately following operation, the initial status is set by the STCEN bit.

Remark STT bit: Bit 1 of IICA control register 0 (IICCTLO)
SPT bit: Bit 0 of IICA control register 0 (IICCTLO)
IICRSV bit: Bit 0 of IICA flag register (IICF)
IICBSY bit: Bit 6 of IICA flag register (IICF)
STCF bit: \quad Bit 7 of IICA flag register (IICF)
STCEN bit: Bit 1 of IICA flag register (IICF)

15.3 Registers Controlling Serial Interface IICA

Serial interface IICA is controlled by the following eight registers.

- Peripheral enable register 0 (PERO)
- IICA control register 0 (IICCTLO)
- IICA flag register (IICF)
- IICA status register (IICS)
- IICA control register 1 (IICCTL1)
- IICA low-level width setting register (IICWL)
- IICA high-level width setting register (IICWH)
- Port mode register 6 (PM6)
- Port register 6 (P6)

(1) Peripheral enable register 0 (PERO)

This register is used to enable or disable supplying the clock to the peripheral hardware. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.
When serial interface IICA is used, be sure to set bit 4 (IICAEN) of this register to 1.
PERO can be set by a 1-bit or 8 -bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 15-5. Format of Peripheral Enable Register 0 (PERO)

Address: F0	After reset: 00 H		R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PER0	RTCEN	DACEN	ADCEN	IICAEN ${ }^{\text {Note }}$	SAU1EN	SAU0EN	TAU1EN	TAU0EN
	IICAEN	Control of serial interface IICA input clock						
	0	Stops supply of input clock. - SFR used by serial interface IICA cannot be written. - Serial interface IICA is in the reset status.						
	1	Supplies input clock. - SFR used by serial interface IICA can be read/written.						

Note 78K0R/LG3, 78K0R/LH3 only

Caution When setting serial interface IICA, be sure to set IICAEN to 1 first. If IICAEN $=0$, writing to a control register of serial interface IICA is ignored, and, even if the register is read, only the default value is read.
(2) IICA control register 0 (IICCTLO)

This register is used to enable/stop $I^{2} C$ operations, set wait timing, and set other $I^{2} C$ operations.
IICCTLO can be set by a 1-bit or 8-bit memory manipulation instruction. However, set the SPIE, WTIM, and ACKE bits while IICE bit $=0$ or during the wait period. These bits can be set at the same time when the IICE bit is set from " 0 " to " 1 ".
Reset signal generation clears this register to 00 H .

Figure 15-6. Format of IICA Control Register 0 (IICCTLO) (1/4)

IICE	$I^{2} \mathrm{C}$ operation enable	
0	Stop operation. Reset the IICA status register (IICS) ${ }^{\text {Note } 1}$. Stop internal operation.	
1	Enable operation.	
Be sure to set this bit (1) while the SCLO and SDAO lines are at high level.		
Condition for clearing ($\mathrm{IICE}=0$)		Condition for setting (IICE = 1)
- Cleared by instruction - Reset		- Set by instruction

LREL $^{\text {Notes } 2,3}$	Exit from communications
0	Normal operation
1	This exits from the current communications and sets standby mode. This setting is automatically cleared to 0 after being executed. Its uses include cases in which a locally irrelevant extension code has been received. The SCLO and SDAO lines are set to high impedance. The following flags of IICA control register 0 (IICCTLO) and IICA status register (IICS) are cleared to 0. \bullet STT •SPT •MSTS •EXC •COI •TRC •ACKD •STD

The standby mode following exit from communications remains in effect until the following communications entry conditions are met.

- After a stop condition is detected, restart is in master mode.
- An address match or extension code reception occurs after the start condition.

Condition for clearing $(\mathrm{LREL}=0)$	Condition for setting $(\mathrm{LREL}=1)$
- Automatically cleared after execution	\bullet Set by instruction
\bullet Reset	

WREL $^{\text {Notes } 2,3}$	Wait cancellation
0	Do not cancel wait
1	Cancel wait. This setting is automatically cleared after wait is canceled.
When WREL is set (wait canceled) during the wait period at the ninth clock pulse in the transmission status (TRC = $1), ~ t h e ~ S D A 0 ~ l i n e ~ g o e s ~ i n t o ~ t h e ~ h i g h ~ i m p e d a n c e ~ s t a t e ~(T R C ~$$=0$).	
Condition for clearing (WREL = 0)	Condition for setting (WREL = 1)
- Automatically cleared after execution - Reset	\bullet Set by instruction

Notes 1. The IICS register, the STCF and IICBSY bits of the IICF register, and the CLD and DAD bits of the IICCTL1 register are reset.
2. The signal of this bit is invalid while IICE is 0 .
3. When the LREL and WREL bits are read, 0 is always read.

Caution If the operation of $I^{2} C$ is enabled (IICE =1) when the SCLO line is at high level, the SDAO line is at low level, and DFC of the IICCTL1 register is 1 , a start condition will be inadvertently detected immediately. Immediately after enabling I $^{2} C$ to operate (IICE = 1), set LREL (1) by using a 1-bit memory manipulation instruction.

Figure 15-6. Format of IICA Control Register 0 (IICCTLO) (2/4)

SPIE $^{\text {Note 1 }}$	Enable/disable generation of interrupt request when stop condition is detected
0	Disable
1	Enable
If WUP of the IICCTL1 register is 1, no stop condition interrupt will be generated even if SPIE $=1$.	
Condition for clearing (SPIE $=0)$	Condition for setting (SPIE $=1$)
- Cleared by instruction \bullet	\bullet Seset by instruction

WTIM $^{\text {Note } 1}$	Control of wait and interrupt request generation
0	Interrupt request is generated at the eighth clock's falling edge. Master mode: After output of eight clocks, clock output is set to low level and wait is set. Slave mode: After input of eight clocks, the clock is set to low level and wait is set for master device.
1	Interrupt request is generated at the ninth clock's falling edge. Master mode: After output of nine clocks, clock output is set to low level and wait is set. Slave mode: After input of nine clocks, the clock is set to low level and wait is set for master device.

An interrupt is generated at the falling edge of the ninth clock during address transfer independently of the setting of this bit. The setting of this bit is valid when the address transfer is completed. When in master mode, a wait is inserted at the falling edge of the ninth clock during address transfers. For a slave device that has received a local address, a wait is inserted at the falling edge of the ninth clock after an acknowledge $(\overline{\mathrm{ACK}})$ is issued. However, when the slave device has received an extension code, a wait is inserted at the falling edge of the eighth clock.

Condition for clearing $(\mathrm{WTIM}=0)$	Condition for setting $(\mathrm{WTIM}=1)$
- Cleared by instruction	\bullet Set by instruction
\bullet Reset	

ACKE $^{\text {Notes } 1,2}$	Acknowledgment control	
0	Disable acknowledgment.	Condition for setting (ACKE $=1)$
1	Enable acknowledgment. During the ninth clock period, the SDAO line is set to low level.	
Condition for clearing $(\mathrm{ACKE}=0)$	• Set by instruction	
- Cleared by instruction - Reset		

Notes 1. The signal of this bit is invalid while IICE is 0 . Set this bit during that period.
2. The set value is invalid during address transfer and if the code is not an extension code. When the device serves as a slave and the addresses match, an acknowledgment is generated regardless of the set value.

Figure 15-6. Format of IICA Control Register 0 (IICCTLO) (3/4)

STT ${ }^{\text {Note }}$	art condition trigger	
0	Do not generate a start condition.	
1	When bus is released (in standby state, when IICBSY $=0$): If this bit is set (1), a start condition is generated (startup as the master). When a third party is communicating: - When communication reservation function is enabled (IICRSV $=0$) Functions as the start condition reservation flag. When set to 1 , automatically generates a start condition after the bus is released. - When communication reservation function is disabled (IICRSV $=1$) Even if this bit is set (1), the STT bit is cleared and the STT clear flag (STCF) is set (1). No start condition is generated. In the wait state (when master device): Generates a restart condition after releasing the wait.	
Cautions concerning set timing - For master reception: Cannot be set to 1 during transfer. Can be set to 1 only in the waiting period when ACKE has been cleared to 0 and slave has been notified of final reception. - For master transmission: A start condition cannot be generated normally during the acknowledge period. Set to 1 during the wait period that follows output of the ninth clock. - Cannot be set to 1 at the same time as SPT. - Setting STT to 1 and then setting it again before it is cleared to 0 is prohibited.		
Condition for clearing (STT $=0$)		Condition for setting (STT = 1)
- Cleared reservation - Cleared - Cleared device - Cleared - When IIC - Reset	y setting STT to 1 while communication n is prohibited. loss in arbitration fter start condition is generated by master LREL = 1 (exit from communications) = 0 (operation stop)	- Set by instruction

Note The signal of this bit is invalid while IICEO is 0 .

Remarks 1. Bit 1 (STT) becomes 0 when it is read after data setting.
2. IICRSV: Bit 0 of IIC flag register (IICF)

STCF: Bit 7 of IIC flag register (IICF)

Figure 15-6. Format of IICA Control Register 0 (IICCTLO) (4/4)

SPT	Stop condition trigger	
0	Stop condition is not generated.	
1	Stop condition is generated (termination of master device's transfer).	
Cautions concerning set timing - For master reception: Cannot be set to 1 during transfer. Can be set to 1 only in the waiting period when ACKE has been cleared to 0 and slave has been notified of final reception. - For master transmission: A stop condition cannot be generated normally during the acknowledge period. Therefore, set it during the wait period that follows output of the ninth clock. - Cannot be set to 1 at the same time as STT. - SPT can be set to 1 only when in master mode. - When WTIM has been cleared to 0 , if SPT is set to 1 during the wait period that follows output of eight clocks, note that a stop condition will be generated during the high-level period of the ninth clock. WTIM should be changed from 0 to 1 during the wait period following the output of eight clocks, and SPT should be set to 1 during the wait period that follows the output of the ninth clock. - Setting SPT to 1 and then setting it again before it is cleared to 0 is prohibited.		
Condition	r clearing (SPT = 0)	Condition for setting (SPT = 1)
- Cleared - Automa - Cleared - When II - Reset	loss in arbitration ally cleared after stop condition is detected LREL = 1 (exit from communications) $=0$ (operation stop)	- Set by instruction

Caution When bit 3 (TRC) of the IICA status register (IICS) is set to 1 , WREL is set to 1 during the ninth clock and wait is canceled, after which TRC is cleared and the SDAO line is set to high impedance. Release the wait performed while the TRC bit is $\mathbf{1}$ (transmission status) by writing to the IICA shift register.

Remark Bit 0 (SPT) becomes 0 when it is read after data setting.
(3) IICA status register (IICS)

This register indicates the status of $I^{2} \mathrm{C}$.
IICS is read by a 1-bit or 8 -bit memory manipulation instruction only when STT = 1 and during the wait period.
Reset signal generation clears this register to 00 H .
Caution Reading the IICS register while the address match wakeup function is enabled (WUP =1) in STOP mode is prohibited. When the WUP bit is changed from 1 to 0 (wakeup operation is stopped), regardless of the INTIICA interrupt request, the change in status is not reflected until the next start condition or stop condition is detected. To use the wakeup function, therefore, enable (SPIE = 1) the interrupt generated by detecting a stop condition and read the IICS register after the interrupt has been detected.

Remark STT: bit 1 of IICA control register 0 (IICCTLO) WUP: bit 7 of IICA control register 1 (IICCTL1)

Figure 15-7. Format of IICA Status Register (IICS) (1/3)

Address:		res	H					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IICS	MSTS	ALD	EXC	COI	TRC	ACKD	STD	SPD

MSTS	Master status check flag	
0	Slave device status or communication standby status	
1	Master device communication status	Condition for setting (MSTS = 1)
Condition for clearing (MSTS $=0$)	• When a start condition is generated	
- When a stop condition is detected - When ALD = 1 (arbitration loss) - Cleared by LREL = 1 (exit from communications) - When IICE changes from 1 to 0 (operation stop) - Reset		

ALD	Detection of arbitration loss	
0	This status means either that there was no arbitration or that the arbitration result was a "win".	
1	This status indicates the arbitration result was a "loss". MSTS is cleared.	
Condition for clearing (ALD = 0)		Condition for setting (ALD =1)
- Automatically cleared after IICS is read - Whete - Reset	• When the arbitration result is a "loss".	

EXC	Detection of extension code reception	
0	Extension code was not received.	Condition for setting (EXC = 1)
1	Extension code was received.	• When the higher four bits of the received address
data is either "0000" or "1111" (set at the rising edge		
of the eighth clock).		
Condition for clearing (EXC = 0)		
- When a start condition is detected - When a stop condition is detected - Cleared by LREL = 1 (exit from communications) - When IICE changes from 1 to 0 (operation stop) - Reset		

Note This register is also cleared when a 1-bit memory manipulation instruction is executed for bits other than IICS. Therefore, when using the ALD bit, read the data of this bit before the data of the other bits.
$\begin{array}{lll}\text { Remark } & \text { LREL: } & \text { Bit } 6 \text { of IICA control register } 0 \text { (IICCTLO) } \\ & \text { IICE: } & \text { Bit } 7 \text { of IICA control register } 0 \text { (IICCTLO) }\end{array}$

Figure 15-7. Format of IICA Status Register (IICS) (2/3)

COI	Detection of matching addresses	
0	Addresses do not match.	Condition for setting (COI =1)
1	Addresses match.	• When the received address matches the local
address (slave address register (SVA))		
(set at the rising edge of the eighth clock).		
Condition for clearing (COI = 0)		
- When a start condition is detected - When a stop condition is detected - Cleared by LREL $=1$ (exit from communications) - When IICE changes from 1 to 0 (operation stop) - Reset		

TRC	Detection of transmit/receive status	
0	Receive status (other than transmit status). The SDA0 line is set for high impedance.	
1	Transmit status. The value in the SOO latch is enabled for output to the SDAO line (valid starting at the falling edge of the first byte's ninth clock).	
Condition for clearing ($\mathrm{TRC}=0$)		Condition for setting (TRC = 1)
<Both master and slave> - When a stop condition is detected - Cleared by LREL = 1 (exit from communications) -When the IICE bit changes from 1 to 0 (operation stop) - Cleared by WREL $=1^{\text {Note }}$ (wait cancel) - When the ALD bit changes from 0 to 1 (arbitration loss) - Reset - When not used for communication (MSTS, EXC, COI = 0) <Master> - When " 1 " is output to the first byte's LSB (transfer direction specification bit) <Slave> - When a start condition is detected - When " 0 " is input to the first byte's LSB (transfer direction specification bit)		<Master> - When a start condition is generated - When 0 (master transmission) is output to the LSB (transfer direction specification bit) of the first byte (during address transfer) <Slave> - When 1 (slave transmission) is input to the LSB (transfer direction specification bit) of the first byte from the master (during address transfer)

Note When bit 3 (TRC) of the IICA status register (IICS) is set to 1 (transmission status), bit 5 (WREL) of IICA control register 0 (IICCTLO) is set to 1 during the ninth clock and wait is canceled, after which the TRC bit is cleared (reception status) and the SDAO line is set to high impedance. Release the wait performed while the TRC bit is 1 (transmission status) by writing to the IICA shift register.

Remark LREL: Bit 6 of IICA control register 0 (IICCTLO) IICE: \quad Bit 7 of IICA control register 0 (IICCTLO)

Figure 15-7. Format of IICA Status Register (IICS) (3/3)

ACKD	Detection of acknowledge $\overline{(\mathrm{ACK})}$	
0	Acknowledge was not detected.	Condition for setting (ACKD $=1$)
1	Acknowledge was detected.	• After the SDAO line is set to low level at the rising
Condition for clearing (ACKD $=0$)	edge of SCLO's ninth clock	
- When a stop condition is detected - At the rising edge of the next byte's first clock - Cleared by LREL $=1$ (exit from communications) - When IICE changes from 1 to 0 (operation stop) - Reset		

STD	Detection of start condition	
0	Start condition was not detected.	
1	Start condition was detected. This indicates that the address transfer period is in effect.	
Condition for clearing (STD $=0$)	Condition for setting (STD = 1)	
- When a stop condition is detected - At the rising edge of the next byte's first clock following address transfer - Cleared by LREL = 1 (exit from communications) - When IICE changes from 1 to 0 (operation stop) - Reset	• When a start condition is detected	

SPD	Detection of stop condition	
0	Stop condition was not detected.	
1	Stop condition was detected. The master device's communication is terminated and the bus is released.	
Condition for clearing (SPD = 0)	Condition for setting (SPD = 1)	
- At the rising edge of the address transfer byte's first clock following setting of this bit and detection of a start condition - When IICE changes from 1 to 0 (operation stop) - Reset	•When a stop condition is detected	

Remark LREL: Bit 6 of IICA control register 0 (IICCTLO) IICE: Bit 7 of IICA control register 0 (IICCTLO)

(4) IICA flag register (IICF)

This register sets the operation mode of $I^{2} \mathrm{C}$ and indicates the status of the $I^{2} \mathrm{C}$ bus.
IICF can be set by a 1-bit or 8-bit memory manipulation instruction. However, the STCF and IICBSY bits are readonly.
The IICRSV bit can be used to enable/disable the communication reservation function.
STCEN can be used to set the initial value of the IICBSY bit.
IICRSV and STCEN can be written only when the operation of $I^{2} \mathrm{C}$ is disabled (bit 7 (IICE) of IICA control register 0 $($ IICCTLO $)=0$). When operation is enabled, the IICF register can be read.
Reset signal generation clears this register to 00 H .

Figure 15-8. Format of IICA Flag Register (IICF)

IICBSY	$\mathrm{I}^{2} \mathrm{C}$ bus status flag	
0	Bus release status (communication initial status when STCEN $=1$)	
1	Bus communication status (communication initial status when STCEN = 0)	
Condition for clearing (IICBSY = 0)		Condition for setting (IICBSY = 1)
- Detection of stop condition - When IICE $=0$ (operation stop) - Reset	- Detection of start condition	

STCEN	Initial start enable trigger	
0	After operation is enabled (IICE $=1)$, enable generation of a start condition upon detection of a stop condition.	
1	After operation is enabled (IICE $=1)$, enable generation of a start condition without detecting a stop condition.	
Condition for clearing (STCEN $=0)$ Condition for setting (STCEN = 1) - Cleared by instruction - Detection of start condition - Reset - Set by instruction		

IICRSV	Communication reservation function disable bit	
0	Enable communication reservation	
1	Disable communication reservation	
Condition for clearing (IICRSV $=0)$ Condition for setting (IICRSV = 1) - Cleared by instruction - Set by instruction		

Note Bits 6 and 7 are read-only.
Cautions 1. Write to STCEN only when the operation is stopped (IICE =0).
2. As the bus release status (IICBSY $=0$) is recognized regardless of the actual bus status when STCEN = 1, when generating the first start condition (STT = 1), it is necessary to verify that no third party communications are in progress in order to prevent such communications from being destroyed.
3. Write to IICRSV only when the operation is stopped (IICE $=0$).

Remark STT: Bit 1 of IICA control register 0 (IICCTLO)
IICE: Bit 7 of IICA control register 0 (IICCTLO)

(5) IICA control register 1 (IICCTL1)

This register is used to set the operation mode of $I^{2} \mathrm{C}$ and detect the statuses of the SCLO and SDAO pins.
IICCTL1 can be set by a 1 -bit or 8-bit memory manipulation instruction. However, the CLD and DAD bits are readonly.
Set the IICCTL1 register, except the WUP bit, while operation of ${ }^{2} \mathrm{C}$ is disabled (bit 7 (IICE) of IICA control register 0 (IICCTLO) is 0).
Reset signal generation clears this register to 00 H .
Figure 15-9. Format of IICA Control Register 1 (IICCTL1) (1/2)
Address: F0231H After reset: $00 \mathrm{H} \quad \mathrm{R} / \mathrm{W}^{\text {Note } 1}$

| Symbol | 7 | 6 | $<5>$ | $<4>$ | $<3>$ | $<2>$ | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IICCTL1 | WUP | 0 | CLD | DAD | SMC | DFC | 0 | 0 |
| | | | | | | | | |

WUP	Control of address match wakeup	
0	Stops operation of address match wakeup function in STOP mode.	
1	Enables operation of address match wakeup function in STOP mode.	
To shift to STOP mode when WUP = 1, execute the STOP instruction at least three clocks after setting (1) the WUP bit (see Figure 15-22 Flow When Setting WUP = 1). Clear (0) the WUP bit after the address has matched or an extension code has been received. The subsequent communication can be entered by the clearing (0) WUP bit. (The wait must be released and transmit data must be written after the WUP bit has been cleared (0).) The interrupt timing when the address has matched or when an extension code has been received, while WUP $=1$, is identical to the interrupt timing when WUP $=0$. (A delay of the difference of sampling by the clock will occur.) Furthermore, when WUP $=1$, a stop condition interrupt is not generated even if the SPIE bit is set to 1 . When WUP $=0$ is set by a source other than an interrupt from serial interface IICA, operation as the master device cannot be performed until the subsequent start condition or stop condition is detected. Do not output a start condition by setting (1) the STT bit, without waiting for the detection of the subsequent start condition or stop condition.		
Condition for clearing (WUP = 0)		Condition for setting (WUP = 1)
- Cleared by instruction (after address match or extension code reception)		- Set by instruction (when the MSTS, EXC, and COI bits are " 0 ", and the STD bit also " 0 " (communication not entered) $)^{\text {Note } 2}$

Notes 1. Bits 4 and 5 are read-only.
2. The status of the IICA status register (IICS) must be checked and the WUP bit must be set during the period shown below.

Figure 15-9. Format of IICA Control Register 1 (IICCTL1) (2/2)

CLD	Detection of SCLO pin level (valid only when IICE $=1$)	
0	The SCLO pin was detected at low level.	
1	The SCL0 pin was detected at high level.	
Condition for clearing (CLD $=0$)		Condition for setting (CLD $=1$)
- When the SCLO pin is at low level - When IICE $=0$ (operation stop) - Reset	• When the SCLO pin is at high level	

DAD	Detection of SDA0 pin level (valid only when IICE $=1$)	
0	The SDA0 pin was detected at low level.	
1	The SDA0 pin was detected at high level.	
Condition for clearing (DAD $=0)$ Condition for setting (DAD $=1$) - When the SDA0 pin is at low level - When IICE $=0$ (operation stop) - Reset • When the SDA0 pin is at high level		

SMC		Operation mode switching
0	Operates in standard mode.	
1	Operates in fast mode.	

DFC	Digital filter operation control
0	Digital filter off.
1	Digital filter on.
Digital filter can be used only in fast mode. In fast mode, the transfer clock does not vary, regardless of the DFC bit being set (1) or cleared (0). The digital filter is used for noise elimination in fast mode.	

Remark IICE: Bit 7 of IICA control register 0 (IICCTLO)

(6) IICA low-level width setting register (IICWL)

This register is used to set the low-level width of the SCLO pin signal that is output by serial interface IICA.
The IICWL register can be set by an 8-bit memory manipulation instruction.
Set the IICWL register while operation of $I^{2} \mathrm{C}$ is disabled (bit 7 (IICE) of IICA control register 0 (IICCTLO) is 0). Reset signal generation sets this register to FFH.

Figure 15-10. Format of IICA Low-Level Width Setting Register (IICWL)

(7) IICA high-level width setting register (IICWH)

This register is used to set the high-level width of the SCLO pin signal that is output by serial interface IICA.
The IICWH register can be set by an 8-bit memory manipulation instruction.
Set the IICWH register while operation of $I^{2} \mathrm{C}$ is disabled (bit 7 (IICE) of IICA control register 0 (IICCTLO) is 0). Reset signal generation sets this register to FFH.

Figure 15-11. Format of IICA High-Level Width Setting Register (IICWH)

Remark For how to set the transfer clock by using the IICWL and IICWH registers, see 15.4.2 Setting transfer clock by using IICWL and IICWH registers.

(8) Port mode register 6 (PM6)

This register sets the input/output of port 6 in 1-bit units.
When using the P60/SCLO pin as clock I/O and the P61/SDA0 pin as serial data I/O, clear PM60 and PM61, and the output latches of P60 and P61 to 0 .
Set IICE (bit 7 of IICA control register 0 (IICCTLO)) to 1 before setting the output mode because the P60/SCL0 and P61/SDA0 pins output a low level (fixed) when IICE is 0 .
PM6 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets this register to FFH.

Figure 15-12. Format of Port Mode Register 6 (PM6)

Address: FFF26H		After reset: FFH R/W						
Symbol	7	6	5	4	3	2	1	0
PM6	1	1	1	1	1	1	PM61	PM60
	PM6n	P6n pin I/O mode selection ($\mathrm{n}=0,1$)						
	0	Output mode (output buffer on)						
	1	Input mode (output buffer off)						

15.4 I 2 C Bus Mode Functions

15.4.1 Pin configuration

The serial clock pin (SCLO) and serial data bus pin (SDAO) are configured as follows.
(1) SCLO....... This pin is used for serial clock input and output.

This pin is an N-ch open-drain output for both master and slave devices. Input is Schmitt input.
(2) SDAO

This pin is used for serial data input and output.
This pin is an N-ch open-drain output for both master and slave devices. Input is Schmitt input.

Since outputs from the serial clock line and the serial data bus line are N-ch open-drain outputs, an external pull-up resistor is required.

Figure 15-13. Pin Configuration Diagram

15.4.2 Setting transfer clock by using IICWL and IICWH registers

(1) Setting transfer clock on master side

$$
\text { Transfer clock }=\frac{\text { fCLK }}{\text { IICWL }+ \text { IICWH }+ \text { fcLK }(\mathrm{tr}+\mathrm{tF})}
$$

At this time, the optimal setting values of IICWL and IICWH are as follows.
(The fractional parts of all setting values are rounded up.)

- When the fast mode

$$
\begin{aligned}
& \text { IICWL }=\frac{0.52}{\text { Transfer clock }} \times \text { fcLk } \\
& \text { IICWH }=\left(\frac{0.48}{\text { Transfer clock }}-\mathrm{tr}-\mathrm{tF}\right) \times \text { fcLk }
\end{aligned}
$$

- When the standard mode

$$
\begin{aligned}
& \text { IICWL }=\frac{0.47}{\text { Transfer clock }} \times \text { fcLk } \\
& \text { IICWH }=\left(\frac{0.53}{\text { Transfer clock }}-\mathrm{t}_{\mathrm{R}}-\mathrm{tF}\right) \times \text { fcLk }
\end{aligned}
$$

(2) Setting IICWL and IICWH on slave side
(The fractional parts of all setting values are truncated.)

- When the fast mode

$$
\begin{aligned}
& \text { IICWL }=1.3 \mu \mathrm{~s} \times \mathrm{fcLk} \\
& \text { IICWH }=(1.2 \mu \mathrm{~s}-\mathrm{tR}-\mathrm{tF}) \times \mathrm{fcLK}
\end{aligned}
$$

- When the standard mode

$$
\begin{aligned}
& \mathrm{IICWL}=4.7 \mu \mathrm{~s} \times \mathrm{fcLK} \\
& \mathrm{IICWH}=(5.3 \mu \mathrm{~s}-\mathrm{tR}-\mathrm{tf}) \times \mathrm{fcLK}
\end{aligned}
$$

Caution Note the minimum fclk operation frequency when setting the transfer clock. The minimum fclk operation frequency for serial interface IICA is determined according to the mode.

Fast mode: \quad fcLk $=3.5 \mathrm{MHz}$ (MIN.)
Standard mode: fclk = 1 MHz (MIN.)

Remarks 1. Calculate the rise time (tr) and fall time (t) of the SDAO and SCLO signals separately, because they differ depending on the pull-up resistance and wire load.
2. IICWL: IICA low-level width setting register

IICWH: IICA high-level width setting register
tF: SDAO and SCLO signal falling times
tr: SDAO and SCLO signal rising times
fclk: CPU/peripheral hardware clock frequency

15.5 I $^{2} \mathrm{C}$ Bus Definitions and Control Methods

The following section describes the $I^{2} C$ bus's serial data communication format and the signals used by the $I^{2} C$ bus. Figure 15-14 shows the transfer timing for the "start condition", "address", "data", and "stop condition" output via the I ${ }^{2} \mathrm{C}$ bus's serial data bus.

Figure 15-14. ${ }^{2}$ ² Bus Serial Data Transfer Timing

The master device generates the start condition, slave address, and stop condition.
The acknowledge $(\overline{\mathrm{ACK}})$ can be generated by either the master or slave device (normally, it is output by the device that receives 8 -bit data).

The serial clock (SCLO) is continuously output by the master device. However, in the slave device, the SCLO's low level period can be extended and a wait can be inserted.

15.5.1 Start conditions

A start condition is met when the SCLO pin is at high level and the SDAO pin changes from high level to low level. The start conditions for the SCLO pin and SDAO pin are signals that the master device generates to the slave device when starting a serial transfer. When the device is used as a slave, start conditions can be detected.

Figure 15-15. Start Conditions

A start condition is output when bit 1 (STT) of IICA control register 0 (IICCTLO) is set (1) after a stop condition has been detected (SPD: Bit 0 of the IICA status register $($ IICS $)=1$). When a start condition is detected, bit 1 (STD) of IICS is set (1).

15.5.2 Addresses

The address is defined by the 7 bits of data that follow the start condition.
An address is a 7-bit data segment that is output in order to select one of the slave devices that are connected to the master device via the bus lines. Therefore, each slave device connected via the bus lines must have a unique address.

The slave devices include hardware that detects the start condition and checks whether or not the 7-bit address data matches the data values stored in the slave address register (SVA). If the address data matches the SVA values, the slave device is selected and communicates with the master device until the master device generates a start condition or stop condition.

Figure 15-16. Address

Note INTIICA is not issued if data other than a local address or extension code is received during slave device operation.

Addresses are output when a total of 8 bits consisting of the slave address and the transfer direction described in 15.5.3 Transfer direction specification are written to the IICA shift register (IICA). The received addresses are written to IICA.

The slave address is assigned to the higher 7 bits of IICA.

15.5.3 Transfer direction specification

In addition to the 7-bit address data, the master device sends 1 bit that specifies the transfer direction.
When this transfer direction specification bit has a value of " 0 ", it indicates that the master device is transmitting data to a slave device. When the transfer direction specification bit has a value of "1", it indicates that the master device is receiving data from a slave device.

Figure 15-17. Transfer Direction Specification

Note INTIICA is not issued if data other than a local address or extension code is received during slave device operation.

15.5.4 Acknowledge ($\overline{\text { ACK }}$)

$\overline{\mathrm{ACK}}$ is used to check the status of serial data at the transmission and reception sides.
The reception side returns $\overline{\mathrm{ACK}}$ each time it has received 8 -bit data.
The transmission side usually receives $\overline{\mathrm{ACK}}$ after transmitting 8-bit data. When $\overline{\mathrm{ACK}}$ is returned from the reception side, it is assumed that reception has been correctly performed and processing is continued. Whether $\overline{\mathrm{ACK}}$ has been detected can be checked by using bit 2 (ACKD) of the IICA status register (IICS).

When the master receives the last data item, it does not return $\overline{A C K}$ and instead generates a stop condition. If a slave does not return $\overline{\mathrm{ACK}}$ after receiving data, the master outputs a stop condition or restart condition and stops transmission. If $\overline{A C K}$ is not returned, the possible causes are as follows.

```
<1> Reception was not performed normally.
<2> The final data item was received.
<3> The reception side specified by the address does not exist.
```

To generate $\overline{\mathrm{ACK}}$, the reception side makes the SDAO line low at the ninth clock (indicating normal reception).
Automatic generation of $\overline{\text { ACK }}$ is enabled by setting bit 2 (ACKE) of IICA control register 0 (IICCTLO) to 1 . Bit 3 (TRC) of the IICS register is set by the data of the eighth bit that follows 7 -bit address information. Usually, set ACKE to 1 for reception ($T R C=0$).

If a slave can receive no more data during reception $(T R C=0)$ or does not require the next data item, then the slave must inform the master, by clearing ACKE to 0 , that it will not receive any more data.

When the master does not require the next data item during reception (TRC $=0$), it must clear ACKE to 0 so that $\overline{\text { ACK }}$ is not generated. In this way, the master informs a slave at the transmission side that it does not require any more data (transmission will be stopped).

Figure 15-18. $\overline{\text { ACK }}$

When the local address is received, $\overline{\mathrm{ACK}}$ is automatically generated, regardless of the value of ACKE. When an address other than that of the local address is received, $\overline{\mathrm{ACK}}$ is not generated (NACK).

When an extension code is received, $\overline{A C K}$ is generated if ACKE is set to 1 in advance.
How $\overline{A C K}$ is generated when data is received differs as follows depending on the setting of the wait timing.

- When 8-clock wait state is selected (bit 3 (WTIM) of IICCTLO register $=0$):

By setting ACKE to 1 before releasing the wait state, $\overline{\mathrm{ACK}}$ is generated at the falling edge of the eighth clock of the SCLO pin.

- When 9-clock wait state is selected (bit 3 (WTIM) of IICCTLO register = 1):
$\overline{\mathrm{ACK}}$ is generated by setting ACKE to 1 in advance.

15.5.5 Stop condition

When the SCLO pin is at high level, changing the SDAO pin from low level to high level generates a stop condition.
A stop condition is a signal that the master device generates to the slave device when serial transfer has been completed. When the device is used as a slave, stop conditions can be detected.

Figure 15-19. Stop Condition

A stop condition is generated when bit 0 (SPT) of IICA control register 0 (IICCTLO) is set to 1 . When the stop condition is detected, bit 0 (SPD) of the IICA status register (IICS) is set to 1 and INTIICA is generated when bit 4 (SPIE) of IICCTLO is set to 1 .

15.5.6 Wait

The wait is used to notify the communication partner that a device (master or slave) is preparing to transmit or receive data (i.e., is in a wait state).

Setting the SCLO pin to low level notifies the communication partner of the wait state. When wait state has been canceled for both the master and slave devices, the next data transfer can begin.

Figure 15-20. Wait (1/2)
(1) When master device has a nine-clock wait and slave device has an eight-clock wait (master transmits, slave receives, and ACKE = 1)
Master

Slave

ACKE
H

Transfer lines

Figure 15-20. Wait (2/2)
(2) When master and slave devices both have a nine-clock wait
(master transmits, slave receives, and ACKE = 1)

Remark ACKE: Bit 2 of IICA control register 0 (IICCTLO)
WREL: Bit 5 of IICA control register 0 (IICCTLO)

A wait may be automatically generated depending on the setting of bit 3 (WTIM) of IICA control register 0 (IICCTLO).
Normally, the receiving side cancels the wait state when bit 5 (WREL) of the IICCTLO register is set to 1 or when FFH is written to the IICA shift register (IICA), and the transmitting side cancels the wait state when data is written to the IICA register.

- By setting bit 1 (STT) of IICCTLO to 1
- By setting bit 0 (SPT) of IICCTLO to 1

15.5.7 Canceling wait

The $I^{2} C$ usually cancels a wait state by the following processing.

- Writing data to IICA shift register (IICA)
- Setting bit 5 (WREL) of IICA control register 0 (IICCTLO) (canceling wait)
- Setting bit 1 (STT) of IICCTLO register (generating start condition) ${ }^{\text {Note }}$
- Setting bit 0 (SPT) of IICCTLO register (generating stop condition) ${ }^{\text {Note }}$

Note Master only

When the above wait canceling processing is executed, the $I^{2} \mathrm{C}$ cancels the wait state and communication is resumed.
To cancel a wait state and transmit data (including addresses), write the data to IICA.
To receive data after canceling a wait state, or to complete data transmission, set bit 5 (WREL) of IICA control register 0 (IICCTLO) to 1.

To generate a restart condition after canceling a wait state, set bit 1 (STT) of IICCTLO to 1.
To generate a stop condition after canceling a wait state, set bit 0 (SPT) of IICCTLO to 1 .
Execute the canceling processing only once for one wait state.
If, for example, data is written to IICA after canceling a wait state by setting WREL to 1 , an incorrect value may be output to SDAO because the timing for changing the SDAO line conflicts with the timing for writing IICA.

In addition to the above, communication is stopped if IICE is cleared to 0 when communication has been aborted, so that the wait state can be canceled.

If the $I^{2} C$ bus has deadlocked due to noise, processing is saved from communication by setting bit 6 (LREL) of IICCTLO, so that the wait state can be canceled.

Caution If a processing to cancel a wait state executed when WUP (bit 7 of IICA control register 1 (IICCTL1)) = 1, the wait state will not be canceled.

15.5.8 Interrupt request (INTIICA) generation timing and wait control

The setting of bit 3 (WTIM) of IICA control register 0 (IICCTLO) determines the timing by which INTIICA is generated and the corresponding wait control, as shown in Table 15-2.

Table 15-2. INTIICA Generation Timing and Wait Control

WTIM	During Slave Device Operation		During Master Device Operation			
	Address	Data Reception	Data Transmission	Address	Data Reception	Data Transmission
0	$9^{\text {Notes } 1,2}$	$8^{\text {Note 2 }}$	$8^{\text {Note 2 }}$	9	8	8
1	$9^{\text {Notes } 1,2}$	$9^{\text {Note 2 }}$	$9^{\text {Note 2 }}$	9	9	9

Notes 1. The slave device's INTIICA signal and wait period occurs at the falling edge of the ninth clock only when there is a match with the address set to the slave address register (SVA).
At this point, $\overline{A C K}$ is generated regardless of the value set to IICCTLO's bit 2 (ACKE). For a slave device that has received an extension code, INTIICA occurs at the falling edge of the eighth clock.
However, if the address does not match after restart, INTIICA is generated at the falling edge of the 9th clock, but wait does not occur.
2. If the received address does not match the contents of the slave address register (SVA) and extension code is not received, neither INTIICA nor a wait occurs.

Remark The numbers in the table indicate the number of the serial clock's clock signals. Interrupt requests and wait control are both synchronized with the falling edge of these clock signals.

(1) During address transmission/reception

- Slave device operation: Interrupt and wait timing are determined depending on the conditions described in Notes 1 and 2 above, regardless of the WTIM bit.
- Master device operation: Interrupt and wait timing occur at the falling edge of the ninth clock regardless of the WTIM bit.

(2) During data reception

- Master/slave device operation: Interrupt and wait timing are determined according to the WTIM bit.
(3) During data transmission
- Master/slave device operation: Interrupt and wait timing are determined according to the WTIM bit.
(4) Wait cancellation method

The four wait cancellation methods are as follows.

- Writing data to IICA shift register (IICA)
- Setting bit 5 (WREL) of IICA control register 0 (IICCTLO) (canceling wait)
- Setting bit 1 (STT) of IICCTLO register (generating start condition) ${ }^{\text {Note }}$
- Setting bit 0 (SPT) of IICCTLO register (generating stop condition) ${ }^{\text {Note }}$

Note Master only.
When an 8 -clock wait has been selected (WTIM $=0$), the presence/absence of $\overline{A C K}$ generation must be determined prior to wait cancellation.
(5) Stop condition detection

INTIICA is generated when a stop condition is detected (only when SPIE $=1$).

15.5.9 Address match detection method

In $I^{2} C$ bus mode, the master device can select a particular slave device by transmitting the corresponding slave address.
Address match can be detected automatically by hardware. An interrupt request (INTIICA) occurs when the address set to the slave address register (SVA) matches the slave address sent by the master device, or when an extension code has been received.

15.5.10 Error detection

In $I^{2} C$ bus mode, the status of the serial data bus (SDAO) during data transmission is captured by the IICA shift register (IICA) of the transmitting device, so the IICA data prior to transmission can be compared with the transmitted IICA data to enable detection of transmission errors. A transmission error is judged as having occurred when the compared data values do not match.

15.5.11 Extension code

(1) When the higher 4 bits of the receive address are either " 0000 " or " 1111 ", the extension code reception flag (EXC) is set to 1 for extension code reception and an interrupt request (INTIICA) is issued at the falling edge of the eighth clock. The local address stored in the slave address register (SVA) is not affected.
(2) The settings below are specified if $11110 \times x 0$ is transferred from the master by using a 10-bit address transfer when the SVA register is set to 11110xx0. Note that INTIICA occurs at the falling edge of the eighth clock.

- Higher four bits of data match: EXC = 1
- Seven bits of data match: \quad COI $=1$

Remark EXC: Bit 5 of IICA status register (IICS)
COI: Bit 4 of IICA status register (IICS)
(3) Since the processing after the interrupt request occurs differs according to the data that follows the extension code, such processing is performed by software.
If the extension code is received while a slave device is operating, then the slave device is participating in communication even if its address does not match.
For example, after the extension code is received, if you do not wish to operate the target device as a slave device, set bit 6 (LREL) of the IICA control register 0 (IICCTLO) to 1 to set the standby mode for the next communication operation.

Table 15-3. Bit Definitions of Main Extension Code

Slave Address	$\mathrm{R} \overline{\mathrm{W}} \mathrm{Bit}$	Description
0000000	0	General call address
$11110 \times \mathrm{x}$	0	10-bit slave address specification (for address authentication)
$11110 \times \mathrm{x}$	1	10-bit slave address specification (for read command issuance after address match)

Remark For extension codes other than the above, refer to THE I ${ }^{2}$ C-BUS SPECIFICATION published by NXP.

15.5.12 Arbitration

When several master devices simultaneously generate a start condition (when STT is set to 1 before STD is set to 1), communication among the master devices is performed as the number of clocks are adjusted until the data differs. This kind of operation is called arbitration.

When one of the master devices loses in arbitration, an arbitration loss flag (ALD) in the IICA status register (IICS) is set (1) via the timing by which the arbitration loss occurred, and the SCLO and SDAO lines are both set to high impedance, which releases the bus.

The arbitration loss is detected based on the timing of the next interrupt request (the eighth or ninth clock, when a stop condition is detected, etc.) and the ALD $=1$ setting that has been made by software.

For details of interrupt request timing, see 15.5.8 Interrupt request (INTIICA) generation timing and wait control.

Remark STD: Bit 1 of IICA status register (IICS)
STT: Bit 1 of IICA control register 0 (IICCTLO)

Figure 15-21. Arbitration Timing Example

Table 15-4. Status During Arbitration and Interrupt Request Generation Timing

Status During Arbitration	Interrupt Request Generation Timing
During address transmission	At falling edge of eighth or ninth clock following byte transfer ${ }^{\text {Note } 1}$
Read/write data after address transmission	
During extension code transmission	
Read/write data after extension code transmission	
During data transmission	
During $\overline{\mathrm{ACK}}$ transfer period after data transmission	
When restart condition is detected during data transfer	
When stop condition is detected during data transfer	When stop condition is generated (when SPIE $=1)^{\text {Note } 2}$
When data is at low level while attempting to generate a restart condition	At falling edge of eighth or ninth clock following byte transfer ${ }^{\text {Note }} 1$
When stop condition is detected while attempting to generate a restart condition	When stop condition is generated (when SPIE $=1)^{\text {Note } 2}$
When data is at low level while attempting to generate a stop condition	At falling edge of eighth or ninth clock following byte transfer ${ }^{\text {Note } 1}$
When SCLO is at low level while attempting to generate a restart condition	

Notes 1. When WTIM (bit 3 of IICA control register 0 (IICCTLO)) $=1$, an interrupt request occurs at the falling edge of the ninth clock. When WTIM $=0$ and the extension code's slave address is received, an interrupt request occurs at the falling edge of the eighth clock.
2. When there is a chance that arbitration will occur, set SPIE $=1$ for master device operation.

Remark SPIE: Bit 4 of IICA control register 0 (IICCTLO)

15.5.13 Wakeup function

The $I^{2} C$ bus slave function is a function that generates an interrupt request signal (INTIICA) when a local address and extension code have been received.

This function makes processing more efficient by preventing unnecessary INTIICA signal from occurring when addresses do not match.

When a start condition is detected, wakeup standby mode is set. This wakeup standby mode is in effect while addresses are transmitted due to the possibility that an arbitration loss may change the master device (which has generated a start condition) to a slave device.

However, when a stop condition is detected, bit 4 (SPIE) of IICA control register 0 (IICCTLO) is set regardless of the wakeup function, and this determines whether interrupt requests are enabled or disabled.

To use the wakeup function in the STOP mode, set WUP to 1. Addresses can be received regardless of the operation clock. An interrupt request signal (INTIICA) is also generated when a local address and extension code have been received. Operation returns to normal operation by using an instruction to clear (0) the WUP bit after this interrupt has been generated.

Figure $15-22$ shows the flow for setting WUP $=1$ and Figure $15-23$ shows the flow for setting WUP $=0$ upon an address match.

Figure 15-22. Flow When Setting WUP $=1$

Figure 15-23. Flow When Setting WUP $=0$ upon Address Match (Including Extension Code Reception)

Executes processing corresponding to the operation to be executed after checking the operation state of serial interface IICA.

Use the following flows to perform the processing to release the STOP mode other than by an interrupt request (INTIICA) generated from serial interface IICA.

- Master device operation: Flow shown in Figure 15-24
- Slave device operation: Same as the flow in Figure 15-23

Figure 15-24. When Operating as Master Device after Releasing STOP Mode other than by INTIICA

15.5.14 Communication reservation

(1) When communication reservation function is enabled (bit $\mathbf{0}$ (IICRSV) of IICA flag register (IICF) $=\mathbf{0}$)

To start master device communications when not currently using a bus, a communication reservation can be made to enable transmission of a start condition when the bus is released. There are two modes under which the bus is not used.

- When arbitration results in neither master nor slave operation
- When an extension code is received and slave operation is disabled $\overline{(A C K}$ is not returned and the bus was released by setting bit 6 (LREL) of IICA control register 0 (IICCTLO) to 1 and saving communication).

If bit 1 (STT) of IICCTLO is set to 1 while the bus is not used (after a stop condition is detected), a start condition is automatically generated and wait state is set.
If an address is written to the IICA shift register (IICA) after bit 4 (SPIE) of IICCTLO was set to 1 , and it was detected by generation of an interrupt request signal (INTIICA) that the bus was released (detection of the stop condition), then the device automatically starts communication as the master. Data written to IICA before the stop condition is detected is invalid.
When STT has been set to 1 , the operation mode (as start condition or as communication reservation) is determined according to the bus status.

- If the bus has been released \qquad a start condition is generated
- If the bus has not been released (standby mode) \qquad communication reservation

Check whether the communication reservation operates or not by using MSTS (bit 7 of the IICA status register (IICS)) after STT is set to 1 and the wait time elapses.
Use software to secure the wait time calculated by the following expression.

Wait time from setting STT $=1$ to checking the MSTS flag:
(IICWL setting value + IICWH setting value +4 clocks) $/$ fcLk + tF $\times 2$

Remark IICWL: IICA low-level width setting register
IICWH: IICA high-level width setting register
tF: SDAO and SCLO signal falling times
fcLk: CPU/peripheral hardware clock frequency

Figure 15-25 shows the communication reservation timing.

Figure 15-25. Communication Reservation Timing

Remark IICA: IICA shift register
STT: Bit 1 of IICA control register 0 (IICCTLO)
STD: Bit 1 of IICA status register (IICS)
SPD: Bit 0 of IICA status register (IICS)

Communication reservations are accepted via the timing shown in Figure 15-26. After bit 1 (STD) of the IICA status register (IICS) is set to 1 , a communication reservation can be made by setting bit 1 (STT) of IICA control register 0 (IICCTLO) to 1 before a stop condition is detected.

Figure 15-26. Timing for Accepting Communication Reservations

Figure 15-27 shows the communication reservation protocol.

Figure 15-27. Communication Reservation Protocol

Notes 1. The wait time is calculated as follows.
(IICWL setting value + IICWH setting value +4 clocks) / fclk + tF $\times 2$
2. The communication reservation operation executes a write to the IICA shift register (IICA) when a stop condition interrupt request occurs.

Remark STT: Bit 1 of IICA control register 0 (IICCTLO)
MSTS: Bit 7 of IICA status register (IICS)
IICA: IICA shift register
IICWL: IICA low-level width setting register
IICWH: IICA high-level width setting register
tF: \quad SDAO and SCLO signal falling times
fсLk: CPU/peripheral hardware clock frequency

(2) When communication reservation function is disabled (bit $\mathbf{0}$ (IICRSV) of IICA flag register (IICF) $=\mathbf{1}$)

When bit 1 (STT) of IICA control register 0 (IICCTLO) is set to 1 when the bus is not used in a communication during bus communication, this request is rejected and a start condition is not generated. The following two statuses are included in the status where bus is not used.

- When arbitration results in neither master nor slave operation
- When an extension code is received and slave operation is disabled ($\overline{A C K}$ is not returned and the bus was released by setting bit 6 (LREL) of IICCTLO to 1 and saving communication)

To confirm whether the start condition was generated or request was rejected, check STCF (bit 7 of IICF). It takes up to 5 clocks until STCF is set to 1 after setting STT $=1$. Therefore, secure the time by software.

15.5.15 Cautions

(1) When STCEN $=0$

Immediately after $I^{2} C$ operation is enabled (IICE $=1$), the bus communication status (IICBSY $=1$) is recognized regardless of the actual bus status. When changing from a mode in which no stop condition has been detected to a master device communication mode, first generate a stop condition to release the bus, then perform master device communication.
When using multiple masters, it is not possible to perform master device communication when the bus has not been released (when a stop condition has not been detected).
Use the following sequence for generating a stop condition.
<1> Set IICA control register 1 (IICCTL1).
$<2>$ Set bit 7 (IICE) of IICA control register 0 (IICCTLO) to 1.
$<3>$ Set bit 0 (SPT) of IICCTLO to 1 .
(2) When STCEN = 1

Immediately after $I^{2} C$ operation is enabled (IICE $=1$), the bus released status (IICBSY $=0$) is recognized regardless of the actual bus status. To generate the first start condition (STT = 1), it is necessary to confirm that the bus has been released, so as to not disturb other communications.
(3) If other $I^{2} C$ communications are already in progress

If $I^{2} \mathrm{C}$ operation is enabled and the device participates in communication already in progress when the SDAO pin is low and the SCLO pin is high, the macro of $I^{2} \mathrm{C}$ recognizes that the SDAO pin has gone low (detects a start condition). If the value on the bus at this time can be recognized as an extension code, $\overline{\mathrm{ACK}}$ is returned, but this interferes with other $I^{2} C$ communications. To avoid this, start $I^{2} C$ in the following sequence.
<1> Clear bit 4 (SPIE) of IICCTLO to 0 to disable generation of an interrupt request signal (INTIICA) when the stop condition is detected.
$<2>$ Set bit 7 (IICE) of IICCTLO to 1 to enable the operation of $I^{2} C$.
<3> Wait for detection of the start condition.
<4> Set bit 6 (LREL) of IICCTLO to 1 before $\overline{\text { ACK }}$ is returned (4 to 80 clocks after setting IICE to 1), to forcibly disable detection.
(4) Setting STT and SPT (bits 1 and 0 of IICCTLO) again after they are set and before they are cleared to 0 is prohibited.
(5) When transmission is reserved, set SPIE (bit 4 of IICTLO) to 1 so that an interrupt request is generated when the stop condition is detected. Transfer is started when communication data is written to IICA after the interrupt request is generated. Unless the interrupt is generated when the stop condition is detected, the device stops in the wait state because the interrupt request is not generated when communication is started. However, it is not necessary to set SPIE to 1 when MSTS (bit 7 of IICS) is detected by software.

15.5.16 Communication operations

The following shows three operation procedures with the flowchart.
(1) Master operation in single master system

The flowchart when using the 78K0R/Lx3 microcontrollers as the master in a single master system is shown below. This flowchart is broadly divided into the initial settings and communication processing. Execute the initial settings at startup. If communication with the slave is required, prepare the communication and then execute communication processing.
(2) Master operation in multimaster system

In the $I^{2} C$ bus multimaster system, whether the bus is released or used cannot be judged by the $I^{2} C$ bus specifications when the bus takes part in a communication. Here, when data and clock are at a high level for a certain period (1 frame), the 78K0R/Lx3 microcontrollers take part in a communication with bus released state.
This flowchart is broadly divided into the initial settings, communication waiting, and communication processing. The processing when the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers loose in arbitration and are specified as the slave is omitted here, and only the processing as the master is shown. Execute the initial settings at startup to take part in a communication. Then, wait for the communication request as the master or wait for the specification as the slave. The actual communication is performed in the communication processing, and it supports the transmission/reception with the slave and the arbitration with other masters.
(3) Slave operation

An example of when the 78K0R/Lx3 microcontrollers are used as the $I^{2} \mathrm{C}$ bus slave is shown below.
When used as the slave, operation is started by an interrupt. Execute the initial settings at startup, then wait for the INTIICA interrupt occurrence (communication waiting). When an INTIICA interrupt occurs, the communication status is judged and its result is passed as a flag over to the main processing.
By checking the flags, necessary communication processing is performed.

(1) Master operation in single-master system

Figure 15-28. Master Operation in Single-Master System

Note Release (SCLO and SDAO pins = high level) the $I^{2} C$ bus in conformance with the specifications of the product that is communicating. If EEPROM is outputting a low level to the SDAO pin, for example, set the SCLO pin in the output port mode, and output a clock pulse from the output port until the SDAO pin is constantly at high level.
Remark Conform to the specifications of the product that is communicating, with respect to the transmission and reception formats.
(2) Master operation in multi-master system

Figure 15-29. Master Operation in Multi-Master System (1/3)

Note Confirm that the bus is released (CLD bit = 1, DAD bit =1) for a specific period (for example, for a period of one frame). If the SDAO pin is constantly at low level, decide whether to release the $I^{2} C$ bus (SCLO and SDAO pins $=$ high level) in conformance with the specifications of the product that is communicating.

Figure 15-29. Master Operation in Multi-Master System (2/3)

Note The wait time is calculated as follows.
(IICWL setting value + IICWH setting value +4 clocks) $/$ fclk $+\mathrm{tF} \times 2$

Remark IICWL: IICA low-level width setting register
IICWH: IICA high-level width setting register
t : \quad SDAO and SCLO signal falling times
fcLk: CPU/peripheral hardware clock frequency

Figure 15-29. Master Operation in Multi-Master System (3/3)

Remarks 1. Conform to the specifications of the product that is communicating, with respect to the transmission and reception formats.
2. To use the device as a master in a multi-master system, read the MSTS bit each time interrupt INTIICA has occurred to check the arbitration result.
3. To use the device as a slave in a multi-master system, check the status by using the IICS and IICF registers each time interrupt INTIICA has occurred, and determine the processing to be performed next.

(3) Slave operation

The processing procedure of the slave operation is as follows.
Basically, the slave operation is event-driven. Therefore, processing by the INTIICA interrupt (processing that must substantially change the operation status such as detection of a stop condition during communication) is necessary.

In the following explanation, it is assumed that the extension code is not supported for data communication. It is also assumed that the INTIICA interrupt servicing only performs status transition processing, and that actual data communication is performed by the main processing.

Therefore, data communication processing is performed by preparing the following three flags and passing them to the main processing instead of INTIICA.

<1> Communication mode flag

This flag indicates the following two communication statuses.

- Clear mode: Status in which data communication is not performed
- Communication mode: Status in which data communication is performed (from valid address detection to stop condition detection, no detection of $\overline{\text { ACK from master, address mismatch) }}$

Ready flag

This flag indicates that data communication is enabled. Its function is the same as the INTIICA interrupt for ordinary data communication. This flag is set by interrupt servicing and cleared by the main processing. Clear this flag by interrupt servicing when communication is started. However, the ready flag is not set by interrupt servicing when the first data is transmitted. Therefore, the first data is transmitted without the flag being cleared (an address match is interpreted as a request for the next data).

<3> Communication direction flag

This flag indicates the direction of communication. Its value is the same as TRC.

The main processing of the slave operation is explained next.
Start serial interface IICA and wait until communication is enabled. When communication is enabled, execute communication by using the communication mode flag and ready flag (processing of the stop condition and start condition is performed by an interrupt. Here, check the status by using the flags).
The transmission operation is repeated until the master no longer returns $\overline{\mathrm{ACK}}$. If $\overline{\mathrm{ACK}}$ is not returned from the master, communication is completed.
For reception, the necessary amount of data is received. When communication is completed, $\overline{\mathrm{ACK}}$ is not returned as the next data. After that, the master generates a stop condition or restart condition. Exit from the communication status occurs in this way.

Figure 15-30. Slave Operation Flowchart (1)

Remark Conform to the specifications of the product that is in communication, regarding the transmission and reception formats.

An example of the processing procedure of the slave with the INTIICA interrupt is explained below (processing is performed assuming that no extension code is used). The INTIICA interrupt checks the status, and the following operations are performed.
$<1>$ Communication is stopped if the stop condition is issued.
<2> If the start condition is issued, the address is checked and communication is completed if the address does not match. If the address matches, the communication mode is set, wait is cancelled, and processing returns from the interrupt (the ready flag is cleared).
$<3>$ For data transmit/receive, only the ready flag is set. Processing returns from the interrupt with the $I^{2} \mathrm{C}$ bus remaining in the wait state.

Remark <1> to <3> above correspond to <1> to $<3>$ in Figure 15-31 Slave Operation Flowchart (2).

Figure 15-31. Slave Operation Flowchart (2)

15.5.17 Timing of $I^{2} C$ interrupt request (INTIICA) occurrence

The timing of transmitting or receiving data and generation of interrupt request signal INTIICA, and the value of the IICS register when the INTIICA signal is generated are shown below.

Remark	ST:	Start condition
	AD6 to AD0:	Address
	$R / \bar{W}:$	Transfer direction specification
	$\overline{A C K}:$	Acknowledge
D7 to D0:	Data	
SP:	Stop condition	

(1) Master device operation
(a) Start ~ Address ~ Data ~ Data ~ Stop (transmission/reception)
(i) When WTIM = 0

$\Delta 1$: IICS $=1000 \times 110 \mathrm{~B}$
-2: IICS $=1000 \times 000 \mathrm{~B}$
43: IICS $=1000 \times 000$ (Sets WTIM to 1$)^{\text {Note }}$
$\Delta 4$: IICS $=1000 \times \times 00 \mathrm{~B}(\text { Sets SPT to } 1)^{\text {Note }}$
$\triangle 5:$ IICS $=00000001 \mathrm{~B}$

Note To generate a stop condition, set WTIM to 1 and change the timing for generating the INTIICA interrupt request signal.

Remark A: Always generated
Δ : Generated only when SPIE $=1$
x : Don't care
(ii) When WTIM = 1

$\triangle 1$: IICS $=1000 \times 110 \mathrm{~B}$
-2: IICS $=1000 \times 100 \mathrm{~B}$
43: IICS $=1000 \times \times 00 \mathrm{~B}$ (Sets SPT to 1)
$\triangle 4:$ IICS $=00000001 \mathrm{~B}$

Remark A: Always generated
Δ : Generated only when SPIE $=1$
\times : Don't care
(b) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop (restart)
(i) When WTIM = 0

Notes 1. To generate a start condition, set WTIM to 1 and change the timing for generating the INTIICA interrupt request signal.
2. Clear WTIM to 0 to restore the original setting.
3. To generate a stop condition, set WTIM to 1 and change the timing for generating the INTIICA interrupt request signal.

Remark A: Always generated
Δ : Generated only when SPIE $=1$
\times : Don't care

(ii) When WTIM = 1

41: IICS = $1000 \times 110 \mathrm{~B}$
42: IICS $=1000 \times \times 00 \mathrm{~B}$ (Sets STT to 1)
43: IICS = 1000×110B
44: IICS $=1000 \times \times 00 \mathrm{~B}$ (Sets SPT to 1)
$\triangle 5:$ IICS $=00000001 \mathrm{~B}$

Remark 4: Always generated
Δ : Generated only when SPIE $=1$
x : Don't care
(c) Start ~ Code ~ Data ~ Data ~ Stop (extension code transmission)
(i) When WTIM = 0

A1: IICS = 1010×110B
A2: IICS = 1010×000B
43: IICS $=1010 \times 000 \mathrm{~B}(\text { Sets WTIM to } 1)^{\text {Note }}$
44: IICS $=1010 \times \times 00 \mathrm{~B}$ (Sets SPT to 1)
$\triangle 5:$ IICS $=00000001 \mathrm{~B}$

Note To generate a stop condition, set WTIM to 1 and change the timing for generating the INTIICA interrupt request signal.

Remark A: Always generated
Δ : Generated only when SPIE $=1$
\times : Don't care
(ii) When WTIM = $\mathbf{1}$

$\Delta 1$: IICS $=1010 \times 110 \mathrm{~B}$
A2: IICS $=1010 \times 100 \mathrm{~B}$
43: IICS $=1010 \times \times 00 \mathrm{~B}$ (Sets SPT to 1)
$\triangle 4$: IICS $=00001001 \mathrm{~B}$

Remark A: Always generated
Δ : Generated only when SPIE $=1$
x : Don't care
(2) Slave device operation (slave address data reception)
(a) Start ~ Address ~ Data ~ Data ~ Stop
(i) When WTIM = 0

$\Delta 1$: IICS $=0001 \times 110 \mathrm{~B}$
42: IICS $=0001 \times 000 \mathrm{~B}$
43: IICS = 0001×000B
$\triangle 4: I I C S=00000001 B$

Remark 4: Always generated
Δ : Generated only when SPIE $=1$
x : Don't care
(ii) When WTIM = 1

A1: IICS = 0001×110B
42: IICS $=0001 \times 100 \mathrm{~B}$
43: IICS $=0001 \times \times 00 \mathrm{~B}$
$\triangle 4:$ IICS $=00000001 \mathrm{~B}$

Remark 4: Always generated
Δ : Generated only when SPIE $=1$
x: Don't care
(b) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop
(i) When WTIM = $\mathbf{0}$ (after restart, matches with SVA)

ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	SP
$\begin{array}{lllll}\mathbf{\Delta 1} & \Delta 2 & \Delta_{3} & \Delta 4\end{array}$												

41: IICS = 0001×110B
42: IICS $=0001 \times 000 \mathrm{~B}$
43: IICS $=0001 \times 110 \mathrm{~B}$
44: IICS $=0001 \times 000 \mathrm{~B}$
$\triangle 5: \mathrm{IICS}=00000001 \mathrm{~B}$

Remark
4: Always generated
Δ : Generated only when SPIE $=1$
x : Don't care
(ii) When WTIM = 1 (after restart, matches with SVA)

ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	SP

41: IICS = 0001×110B
42: IICS $=0001 \times \times 00 \mathrm{~B}$
43: IICS $=0001 \times 110 \mathrm{~B}$
44: IICS $=0001 \times \times 00 \mathrm{~B}$
$\triangle 5:$ IICS $=00000001 \mathrm{~B}$

Remark 4: Always generated
$\Delta: \quad$ Generated only when SPIE $=1$
x : Don't care
(c) Start ~ Address ~ Data ~ Start ~ Code ~ Data ~Stop
(i) When WTIM = $\mathbf{0}$ (after restart, does not match address (= extension code))

ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	SP

41: IICS = 0001×110B
42: IICS = 0001×000B
43: IICS $=0010 \times 010 \mathrm{~B}$
44: IICS = 0010×000B
$\triangle 5:$ IICS $=00000001 \mathrm{~B}$

Remark A: Always generated
$\Delta: \quad$ Generated only when SPIE $=1$
\times : Don't care
(ii) When WTIM = 1 (after restart, does not match address (= extension code))

ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	SP
			A1		-2			-3		④		-5

41: IICS = 0001×110B
42: IICS $=0001 \times \times 00 \mathrm{~B}$
43: IICS $=0010 \times 010 \mathrm{~B}$
44: IICS $=0010 \times 110 \mathrm{~B}$
45: IICS $=0010 \times \times 00 \mathrm{~B}$
$\triangle 6:$ IICS $=00000001 \mathrm{~B}$

Remark A: Always generated
$\Delta: \quad$ Generated only when SPIE $=1$
x : Don't care
(d) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop
(i) When WTIM = $\mathbf{0}$ (after restart, does not match address (= not extension code))

(ii) When WTIM = 1 (after restart, does not match address (= not extension code))

A1: IICS = 0001×110B
42: IICS $=0001 \times \times 00 \mathrm{~B}$
43: IICS = 00000110B
$\triangle 4$: IICS = 00000001B

Remark A: Always generated
Δ : Generated only when SPIE $=1$
x : Don't care

(3) Slave device operation (when receiving extension code)

The device is always participating in communication when it receives an extension code.
(a) Start ~ Code ~ Data ~ Data ~ Stop
(i) When WTIM = 0

$\Delta 1$: IICS $=0010 \times 010 \mathrm{~B}$
42: IICS $=0010 \times 000 \mathrm{~B}$
43: IICS $=0010 \times 000 \mathrm{~B}$
$\triangle 4:$ IICS $=00000001 \mathrm{~B}$

Remark A: Always generated
Δ : Generated only when SPIE $=1$
x : Don't care
(ii) When WTIM = $\mathbf{1}$

ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	SP

41: IICS = 0010×010B
42: IICS $=0010 \times 110 \mathrm{~B}$
43: IICS = 0010×100B
44: IICS $=0010 \times \times 00 \mathrm{~B}$
$\triangle 5:$ IICS $=00000001 \mathrm{~B}$

Remark A: Always generated
Δ : Generated only when SPIE $=1$
x : Don't care
(b) Start ~ Code ~ Data ~ Start ~ Address ~ Data ~ Stop
(i) When WTIM = $\mathbf{0}$ (after restart, matches SVA)

(ii) When WTIM = 1 (after restart, matches SVA)

41: IICS = 0010×010B
A2: IICS $=0010 \times 110 \mathrm{~B}$
43: IICS $=0010 \times \times 00 \mathrm{~B}$
44: IICS $=0001 \times 110 \mathrm{~B}$
45: IICS $=0001 \times \times 00 \mathrm{~B}$
$\triangle 6: I I C S=00000001 B$

Remark A: Always generated
Δ : Generated only when SPIE $=1$
x : Don't care
(c) Start \sim Code \sim Data \sim Start \sim Code \sim Data \sim Stop
(i) When WTIM = $\mathbf{0}$ (after restart, extension code reception)

41: IICS = 0010×010B
42: IICS $=0010 \times 000 \mathrm{~B}$
43: IICS $=0010 \times 010 \mathrm{~B}$
44: IICS = 0010×000B
$\triangle 5:$ IICS $=00000001 \mathrm{~B}$

Remark A: Always generated
$\Delta: \quad$ Generated only when SPIE $=1$
\times : Don't care
(ii) When WTIM = 1 (after restart, extension code reception)

41: IICS = 0010×010B
42: IICS $=0010 \times 110 \mathrm{~B}$
43: IICS $=0010 \times \times 00 \mathrm{~B}$
44: IICS $=0010 \times 010 \mathrm{~B}$
45: IICS $=0010 \times 110 \mathrm{~B}$
46: IICS $=0010 \times \times 00 \mathrm{~B}$
$\triangle 7$: IICS $=00000001 \mathrm{~B}$

Remark A: Always generated
Δ : Generated only when SPIE $=1$
x : Don't care
(d) Start ~ Code ~ Data ~ Start ~ Address ~ Data ~Stop
(i) When WTIM = $\mathbf{0}$ (after restart, does not match address (= not extension code))

-1: IICS $=00100010 \mathrm{~B}$
-2: IICS $=00100000 \mathrm{~B}$
43: IICS = 00000110B
$\triangle 4: \mathrm{IICS}=00000001 \mathrm{~B}$

Remark A: Always generated
Δ : Generated only when SPIE $=1$
\times : Don't care
(ii) When WTIM = 1 (after restart, does not match address (= not extension code))

$\Delta 1$: IICS = 00100010B
42: IICS = 00100110B
-3: IICS $=00100 \times 00 \mathrm{~B}$
44: IICS $=00000110 \mathrm{~B}$
$\triangle 5: I I C S=00000001 B$

Remark 4: Always generated
Δ : Generated only when SPIE $=1$
x: Don't care
(4) Operation without communication
(a) Start ~ Code ~ Data ~ Data ~ Stop

ST	AD6 to AD0	R $\overline{\mathrm{W}}$	$\overline{\mathrm{ACK}}$	D7 to D0	$\overline{\mathrm{ACK}}$	D7 to D0	$\overline{\mathrm{ACK}}$	SP

$\Delta 1$
$\triangle 1:$ IICS = 00000001B

Remark Δ : Generated only when SPIE $=1$
(5) Arbitration loss operation (operation as slave after arbitration loss)

When the device is used as a master in a multi-master system, read the MSTS bit each time interrupt request signal INTIICA has occurred to check the arbitration result.
(a) When arbitration loss occurs during transmission of slave address data
(i) When WTIM = $\mathbf{0}$

-1: IICS $=0101 \times 110 \mathrm{~B}$
-2: IICS $=0001 \times 000 \mathrm{~B}$
-3: IICS $=0001 \times 000 \mathrm{~B}$
$\triangle 4:$ IICS $=00000001 \mathrm{~B}$

Remark A: Always generated
Δ : Generated only when SPIE $=1$
x : Don't care
(ii) When WTIM = 1

(b) When arbitration loss occurs during transmission of extension code
(i) When WTIM = 0

41: IICS = $0110 \times 010 \mathrm{~B}$
42: IICS $=0010 \times 000 \mathrm{~B}$
43: IICS $=0010 \times 000 \mathrm{~B}$
$\triangle 4$: IICS = 00000001B

Remark 4: Always generated
Δ : Generated only when SPIE $=1$
\times : Don't care
(ii) When WTIM = 1

(6) Operation when arbitration loss occurs (no communication after arbitration loss)

When the device is used as a master in a multi-master system, read the MSTS bit each time interrupt request signal INTIICA has occurred to check the arbitration result.
(a) When arbitration loss occurs during transmission of slave address data (when WTIM =1)

ST	AD6 to AD0	R/ \bar{W}	$\overline{\text { AK }}$	D7 to D0	$\overline{\mathrm{ACK}}$	D7 to D0	$\overline{\mathrm{ACK}}$	SP
$\mathbf{\Delta 1}$								

41: IICS = 01000110B
$\Delta 2:$ IICS $=00000001 \mathrm{~B}$

Remark 4: Always generated
Δ : Generated only when SPIE $=1$
(b) When arbitration loss occurs during transmission of extension code

(c) When arbitration loss occurs during transmission of data
(i) When WTIM = $\mathbf{0}$

ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	SP
$\Delta 1$								

A1: IICS = 10001110B
A2: IICS = 01000000B
$\triangle 3: I I C S=00000001 B$

Remark 4: Always generated
Δ : Generated only when SPIE $=1$
(ii) When WTIM = 1

(d) When loss occurs due to restart condition during data transfer
(i) Not extension code (Example: unmatches with SVA)

ST	AD6 to AD0	R/W	ACK	D7 to Dn	ST	AD6 to AD0	R/W	ACK	D7 to D0	$\overline{\text { ACK }}$	SP

$\Delta 1$: IICS $=1000 \times 110 \mathrm{~B}$
42: IICS = 01000110B
$\triangle 3: I I C S=00000001 B$

Remark 4: Always generated
Δ : Generated only when SPIE $=1$
\times : Don't care
$\mathrm{n}=6$ to 0
(ii) Extension code

ST	AD6 to AD0	R/W	$\overline{\mathrm{ACK}}$	D7 to Dn	ST	AD6 to AD0	R / W	$\overline{\mathrm{ACK}}$	D7 to D0	$\overline{\text { ACK }}$	SP

A1: IICS $=1000 \times 110 B$
A2: IICS = 01100010B
Sets LREL = 1 by software
$\Delta 3$: IICS = 00000001B

Remark
4: Always generated
Δ : Generated only when SPIE $=1$
x : Don't care
$\mathrm{n}=6$ to 0
(e) When loss occurs due to stop condition during data transfer

$\Delta 1$ IICS = 10000110B
$\Delta 2:$ IICS $=01000001 \mathrm{~B}$

Remark A: Always generated
Δ : Generated only when SPIE $=1$
x : Don't care
$\mathrm{n}=6$ to 0
(f) When arbitration loss occurs due to low-level data when attempting to generate a restart condition
(i) When WTIM = $\mathbf{0}$

(ii) When WTIM = $\mathbf{1}$

$\underset{\downarrow}{\mathrm{STT}}=1$											
ST	AD6 to AD0	R/W	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	D7 to D0	$\overline{\text { ACK }}$	SP	
41							③		$\triangle 4$		
41: IICS $=1000 \times 110 \mathrm{~B}$											
-2: IICS $=1000 \times 100 \mathrm{~B}$ (Sets STT to 1)											
43: IICS $=01000100 \mathrm{~B}$											
$\triangle 4$ IICS $=00000001 \mathrm{~B}$											
Remark 4: Always generated											
Δ : Generated only when SPIE $=1$											
x : Don't care											

(g) When arbitration loss occurs due to a stop condition when attempting to generate a restart condition
(i) When WTIM = 0

(ii) When WTIM = 1
\square
(h) When arbitration loss occurs due to low-level data when attempting to generate a stop condition
(i) When WTIM = 0

(ii) When WTIM = 1

A1: IICS = $1000 \times 110 \mathrm{~B}$
42: IICS $=1000 \times 100 \mathrm{~B}$ (Sets SPT to 1)
43: IICS $=01000100 \mathrm{~B}$
$\triangle 4:$ IICS $=00000001 \mathrm{~B}$

Remark A: Always generated
Δ : Generated only when SPIE $=1$
x : Don't care

15.6 Timing Charts

When using the $I^{2} C$ bus mode, the master device outputs an address via the serial bus to select one of several slave devices as its communication partner.

After outputting the slave address, the master device transmits the TRC bit (bit 3 of the IICA status register (IICS)), which specifies the data transfer direction, and then starts serial communication with the slave device.

Figures 15-32 and 15-33 show timing charts of the data communication.
The IICA shift register (IICA)'s shift operation is synchronized with the falling edge of the serial clock (SCLO). The transmit data is transferred to the SO latch and is output (MSB first) via the SDA0 pin.

Data input via the SDAO pin is captured into IICA at the rising edge of SCLO.

Figure 15-32. Example of Master to Slave Communication (When 9-Clock Wait Is Selected for Master, 9-Clock Wait Is Selected for Slave) (1/4)
(1) Start condition ~ address ~ data

Notes 1. Write data to IICA, not setting the WREL bit, in order to cancel a wait state during master transmission.
2. Make sure that the time between the fall of the SDAO pin signal and the fall of the SCLO pin signal is at least 4.0μ s when specifying standard mode and at least $0.6 \mu \mathrm{~s}$ when specifying fast mode.
3. To cancel slave wait, write "FFH" to IICA or set the WREL bit.

The meanings of $<1>$ to $<6>$ in (1) Start condition \sim address \sim data in Figure 15-32 are explained below.
<1> The start condition trigger is set by the master device (STT = 1) and a start condition (SDA0 = 0 and SCL0 $=1$) is generated once the bus data line goes low (SDA0 = 0). When the start condition is subsequently detected, the master device enters the master device communication status (MSTS = 1). The master device is ready to communicate once the bus clock line goes low ($\mathrm{SCLO}=0$) after the hold time has elapsed.
$<2>$ The master device writes the address + W (transmission) to the IICA shift register (IICA) and transmits the slave address.
$<3>$ If the address received matches the address of a slave device ${ }^{\text {Note }}$, that slave device sends an ACK by hardware to the master device. The ACK is detected by the master device $(A C K D=1)$ at the rising edge of the 9th clock.
$<4>$ The master device issues an interrupt (INTIICA: end of address transmission) at the falling edge of the 9th clock, and the slave device whose address matched the transmitted slave address also issues an interrupt (INTIICA: address match). The master device and slave device also set a wait status $(S C L O=0)^{\text {Note }}$ when the addresses match.
$<5>$ The master device writes the data to transmit to the IICA register and releases the wait status that it set by the master device.
<6> If the slave device releases the wait status (WREL = 1), the master device starts transferring data to the slave device.

Note If the transmitted address does not match the address of the slave device, the slave device does not return an ACK to the master device (NACK: SDAO = 1). The slave device also does not issue the INTIICA interrupt (address match) and does not set a wait status. The master device, however, issues the INTIICA interrupt (end of address transmission) regardless of whether it receives an ACK or NACK.

Remark $<1>$ to $<15>$ in Figure 15-32 represent the entire procedure for communicating data using the $\mathrm{I}^{2} \mathrm{C}$ bus. Figure 15-32 (1) Start condition ~ address ~ data shows the processing from <1> to <6>, Figure 15-32 (2) Address ~ data ~ data shows the processing from <3> to <10>, and Figure 15-32 (3) Data ~ data ~ stop condition shows the processing from $<7>$ to $<15>$.

Figure 15-32. Example of Master to Slave Communication
(When 9-Clock Wait Is Selected for Master, 9-Clock Wait Is Selected for Slave) (2/4)
(2) Address ~ data ~ data

Notes 1. Write data to IICA, not setting the WREL bit, in order to cancel a wait state during master transmission.
2. To cancel slave wait, write "FFH" to IICA or set the WREL bit.

The meanings of $<3>$ to $<10>$ in (2) Address \sim data \sim data in Figure 15-32 are explained below.
<3> If the address received matches the address of a slave device ${ }^{\text {Note }}$, that slave device sends an ACK by hardware to the master device. The ACK is detected by the master device ($A C K D=1$) at the rising edge of the 9th clock.
<4> The master device issues an interrupt (INTIICA: end of address transmission) at the falling edge of the 9th clock, and the slave device whose address matched the transmitted slave address also issues an interrupt (INTIICA: address match). The master device and slave device also set a wait status $(S C L O=0)^{\text {Note }}$ when the addresses match.
<5> The master device writes the data to transmit to the IICA shift register (IICA) and releases the wait status that it set by the master device.
$<6>$ If the slave device releases the wait status (WREL = 1), the master device starts transferring data to the slave device.
<7> When data transfer is complete, the slave device sends an ACK by hardware to the master device. The ACK is detected by the master device $(A C K D=1)$ at the rising edge of the 9th clock.
$<8>$ The master device and slave device set a wait status $(S C L O=0)$ at the falling edge of the 9th clock, and both the master device and slave device issue an interrupt (INTIICA: end of transfer).
$<9>$ The master device writes the data to transmit to the IICA register and releases the wait status that it set by the master device.
<10> The slave device reads the received data and releases the wait status (WREL = 1). The master device then starts transferring data to the slave device.

Note If the transmitted address does not match the address of the slave device, the slave device does not return an ACK to the master device (NACK: SDAO $=1$). The slave device also does not issue the INTIICA interrupt (address match) and does not set a wait status. The master device, however, issues the INTIICA interrupt (end of address transmission) regardless of whether it receives an ACK or NACK.

Remark <1> to <15> in Figure 15-32 represent the entire procedure for communicating data using the $\mathrm{I}^{2} \mathrm{C}$ bus. Figure 15-32 (1) Start condition ~ address ~ data shows the processing from <1> to <6>, Figure 15-32 (2) Address \sim data \sim data shows the processing from $<3>$ to $<10>$, and Figure 15-32 (3) Data ~ data \sim stop condition shows the processing from <7> to <15>.

Figure 15-32. Example of Master to Slave Communication (When 9-Clock Wait Is Selected for Master, 9-Clock Wait Is Selected for Slave) (3/4)
(3) Data ~ data ~ Stop condition

Notes 1. Write data to IICA, not setting the WREL bit, in order to cancel a wait state during master transmission.
2. Make sure that the time between the rise of the SCLO pin signal and the generation of the stop condition after a stop condition has been issued is at least 4.0μ s when specifying standard mode and at least 0.6 μs when specifying fast mode.
3. To cancel slave wait, write "FFH" to IICA or set the WREL bit.

The meanings of $<7>$ to $<15>$ in (3) Data \sim data \sim stop condition in Figure 15-32 are explained below.
<7> When data transfer is complete, the slave device sends an ACK by hardware to the master device. The ACK is detected by the master device $(A C K D=1)$ at the rising edge of the 9 th clock.
$<8>$ The master device and slave device set a wait status ($\mathrm{SCLO}=0$) at the falling edge of the 9th clock, and both the master device and slave device issue an interrupt (INTIICA: end of transfer).
$<9>$ The master device writes the data to transmit to the IICA shift register (IICA) and releases the wait status that it set by the master device.
$<10>$ The slave device reads the received data and releases the wait status (WREL = 1). The master device then starts transferring data to the slave device.
<11> When data transfer is complete, the slave device sends an ACK by hardware to the master device. The ACK is detected by the master device $(A C K D=1)$ at the rising edge of the 9th clock.
<12> The master device and slave device set a wait status $(\mathrm{SCLO}=0)$ at the falling edge of the 9th clock, and both the master device and slave device issue an interrupt (INTIICA: end of transfer).
$<13>$ The slave device reads the received data and releases the wait status $(W R E L=1)$.
$<14>$ After a stop condition trigger is set, the bus data line is cleared (SDAO $=0$) and the bus clock line is set $(S C L O=1)$. The stop condition is then generated by setting the bus data line (SDAO $=1$) after the stop condition setup time has elapsed.
$<15>$ When a stop condition is generated, the slave device detects the stop condition and issues an interrupt (INTIICA: stop condition).

Remark <1> to <15> in Figure 15-32 represent the entire procedure for communicating data using the $\mathrm{I}^{2} \mathrm{C}$ bus. Figure 15-32 (1) Start condition ~ address ~ data shows the processing from $<1>$ to $<6>$, Figure 15-32 (2) Address \sim data \sim data shows the processing from $<3>$ to $<10>$, and Figure 15-32 (3) Data \sim data \sim stop condition shows the processing from $<7>$ to $<15>$.

Figure 15-32. Example of Master to Slave Communication (When 9-Clock Wait Is Selected for Master, 9-Clock Wait Is Selected for Slave) (4/4)
(4) Data ~ restart condition ~ address

Notes 1. Make sure that the time between the rise of the SCLO pin signal and the generation of the start condition after a restart condition has been issued is at least $4.7 \mu \mathrm{~s}$ when specifying standard mode and at least 0.6μ s when specifying fast mode.
2. To cancel slave wait, write "FFH" to IICA or set the WREL bit.

The following describes the operations in Figure 15-32 (4) Data ~ restart condition ~ address. After the operations in steps $<7>$ and $<8>$, the operations in steps $<1>$ to $<3>$ are performed. These steps return the processing to step $<3>$, the data transmission step.
<7> When data transfer is complete, the slave device sends an ACK by hardware to the master device. The ACK is detected by the master device ($\mathrm{ACKD}=1$) at the rising edge of the 9th clock.
$<8>$ The master device and slave device set a wait status $(S C L O=0)$ at the falling edge of the 9th clock, and both the master device and slave device issue an interrupt (INTIICA: end of transfer).
<i> The slave device reads the received data and releases the wait status (WREL = 1).
<ii> The start condition trigger is set again by the master device (STT =1) and a start condition (SDA0 = 0 and SCLO $=1$) is generated once the bus clock line goes high ($\operatorname{SCLO}=1$) and the bus data line goes low (SDA0 $=0$) after the restart condition setup time has elapsed. When the start condition is subsequently detected, the master device is ready to communicate once the bus clock line goes low (SCLO $=0$) after the hold time has elapsed.
<iii> The master device writes the address + R/W (transmission) to the IICA shift register (IICA) and transmits the slave address.

Figure 15-33. Example of Slave to Master Communication
(When 8-Clock Wait Is Selected for Master, 9-Clock Wait Is Selected for Slave) (1/3)
(1) Start condition ~ address ~ data

Notes 1. To cancel master wait, write "FFH" to IICA or set the WREL bit.
2. Make sure that the time between the fall of the SDAO pin signal and the fall of the SCLO pin signal is at least 4.0μ s when specifying standard mode and at least $0.6 \mu \mathrm{~s}$ when specifying fast mode.
3. Write data to IICA, not setting the WREL bit, in order to cancel a wait state during slave transmission.

The meanings of $<1>$ to $<7>$ in (1) Start condition \sim address \sim data in Figure 15-33 are explained below.
<1> The start condition trigger is set by the master device (STT = 1) and a start condition (SDA0 = 0 and SCL0 $=1$) is generated once the bus data line goes low (SDA0 = 0). When the start condition is subsequently detected, the master device enters the master device communication status (MSTS = 1). The master device is ready to communicate once the bus clock line goes low ($\mathrm{SCLO}=0$) after the hold time has elapsed.
$<2>$ The master device writes the address + W (transmission) to the IICA shift register (IICA) and transmits the slave address.
$<3>$ If the address received matches the address of a slave device ${ }^{\text {Note }}$, that slave device sends an ACK by hardware to the master device. The ACK is detected by the master device $(A C K D=1)$ at the rising edge of the 9th clock.
$<4>$ The master device issues an interrupt (INTIICA: end of address transmission) at the falling edge of the 9th clock, and the slave device whose address matched the transmitted slave address also issues an interrupt (INTIICA: address match). The master device and slave device also set a wait status $(S C L O=0)^{\text {Note }}$ when the addresses match.
$<5>$ The timing at which the master device sets the wait status changes to the 8th clock (WTIM $=0$).
$<6>$ The slave device writes the data to transmit to the IICA register and releases the wait status that it set by the slave device.
<7> If the master device releases the wait status (WREL = 1), the slave device starts transferring data to the master device.

Note If the transmitted address does not match the address of the slave device, the slave device does not return an ACK to the master device (NACK: SDAO $=1$). The slave device also does not issue the INTIICA interrupt (address match) and does not set a wait status. The master device, however, issues the INTIICA interrupt (end of address transmission) regardless of whether it receives an ACK or NACK.

Remark <1> to <19> in Figure 15-33 represent the entire procedure for communicating data using the $\mathrm{I}^{2} \mathrm{C}$ bus. Figure 15-33 (1) Start condition ~ address ~ data shows the processing from <1> to <7>, Figure 15-33 (2) Address \sim data \sim data shows the processing from $<3>$ to $<12>$, and Figure 15-33 (3) Data \sim data \sim stop condition shows the processing from $<8>$ to $<19>$.

Figure 15-33. Example of Slave to Master Communication (When 8-Clock Wait Is Selected for Master, 9-Clock Wait Is Selected for Slave) (2/3)
(2) Address ~ data ~ data

Notes 1. To cancel master wait, write "FFH" to IICA or set the WREL bit.
2. Write data to IICA, not setting the WREL bit, in order to cancel a wait state during slave transmission.

The meanings of $<3>$ to $<12>$ in (2) Address \sim data \sim data in Figure 15-33 are explained below.
<3> If the address received matches the address of a slave device ${ }^{\text {Note }}$, that slave device sends an ACK by hardware to the master device. The ACK is detected by the master device ($A C K D=1$) at the rising edge of the 9th clock.
<4> The master device issues an interrupt (INTIICA: end of address transmission) at the falling edge of the 9th clock, and the slave device whose address matched the transmitted slave address also issues an interrupt (INTIICA: address match). The master device and slave device also set a wait status $(S C L O=0)^{\text {Note }}$ when the addresses match.
$<5>$ The timing at which the master device sets the wait status changes to the 8th clock ($\mathrm{WTIM}=0$).
$<6>$ The slave device writes the data to transmit to the IICA shift register (IICA) and releases the wait status that it set by the slave device.
$<7>$ If the master device releases the wait status (WREL $=1$), the slave device starts transferring data to the master device.
$<8>$ The master device sets a wait status $(S C L O=0)$ at the falling edge of the 8th clock, and issues an interrupt (INTIICA: end of transfer). The master device then sends an ACK by hardware to the slave device.
<9> The master device reads the received data and releases the wait status ($\mathrm{WREL}=1$).
$<10>$ The ACK is detected by the slave device $(A C K D=1)$ at the rising edge of the 9th clock.
$<11>$ The slave device set a wait status $(S C L O=0)$ at the falling edge of the 9 th clock, and the slave device issue an interrupt (INTIICA: end of transfer).
<12> The slave device writes the data to transmit to the IICA register and releases the wait status that it set by the slave device. The slave device then starts transferring data to the master device.

Note If the transmitted address does not match the address of the slave device, the slave device does not return an ACK to the master device (NACK: SDAO $=1$). The slave device also does not issue the INTIICA interrupt (address match) and does not set a wait status. The master device, however, issues the INTIICA interrupt (end of address transmission) regardless of whether it receives an ACK or NACK.

Remark <1> to <19> in Figure 15-33 represent the entire procedure for communicating data using the $\mathrm{I}^{2} \mathrm{C}$ bus. Figure 15-33 (1) Start condition ~ address ~ data shows the processing from <1> to <7>, Figure 15-33 (2) Address \sim data \sim data shows the processing from $<3>$ to $<12>$, and Figure 15-33 (3) Data ~ data \sim stop condition shows the processing from $<8>$ to $<19>$.

Figure 15-33. Example of Slave to Master Communication (When 8-Clock and 9-Clock Wait Is Selected for Master, 9-Clock Wait Is Selected for Slave) (3/3)
(3) Data ~ data ~ stop condition

Notes 1. To cancel a wait state, write "FFH" to IICA or set the WREL bit.
2. Make sure that the time between the rise of the SCLO pin signal and the generation of the stop condition after a stop condition has been issued is at least 4.0μ s when specifying standard mode and at least 0.6 $\mu \mathrm{s}$ when specifying fast mode.
3. Write data to IICA, not setting the WREL bit, in order to cancel a wait state during slave transmission.
4. If a wait state during slave transmission is canceled by setting the WREL bit, the TRC bit will be cleared.

The meanings of $<8>$ to $<19>$ in (3) Data \sim data \sim stop condition in Figure 15-33 are explained below.
$<8>$ The master device sets a wait status $(S C L O=0)$ at the falling edge of the 8th clock, and issues an interrupt (INTIICA: end of transfer). The master device then sends an ACK by hardware to the slave device.
<9> The master device reads the received data and releases the wait status (WREL = 1).
$<10>$ The ACK is detected by the slave device (ACKD = 1) at the rising edge of the 9th clock.
$<11>$ The slave device set a wait status $(S C L O=0)$ at the falling edge of the 9 th clock, and the slave device issue an interrupt (INTIICA: end of transfer).
<12> The slave device writes the data to transmit to the IICA shift register (IICA) and releases the wait status that it set by the slave device. The slave device then starts transferring data to the master device.
<13> The master device issues an interrupt (INTIICA: end of transfer) at the falling edge of the 8th clock, and sets a wait status $(S C L 0=0)$. Because ACK control $(\operatorname{ACKE}=1)$ is performed, the bus data line is at the low level $(S D A 0=0)$ at this stage.
$<14>$ The master device sets NACK as the response $($ ACKE $=0)$ and changes the timing at which it sets the wait status to the 9th clock.
$<15>$ If the master device releases the wait status $(W R E L=1)$, the slave device detects the NACK $(\operatorname{ACK}=0)$ at the rising edge of the 9th clock.
$<16>$ The master device and slave device set a wait status $(S C L O=0)$ at the falling edge of the 9th clock, and both the master device and slave device issue an interrupt (INTIICA: end of transfer).
$<17>$ When the master device issues a stop condition (SPT $=1$), the bus data line is cleared (SDAO $=0$) and the master device releases the wait status. The master device then waits until the bus clock line is set (SCLO = 1).
$<18>$ The slave device acknowledges the NACK, halts transmission, and releases the wait status (WREL $=1$) to end communication. Once the slave device releases the wait status, the bus clock line is set (SCLO = 1).
$<19>$ Once the master device recognizes that the bus clock line is set $(S C L O=1)$ and after the stop condition setup time has elapsed, the master device sets the bus data line (SDAO $=1$) and issues a stop condition. The slave device detects the generated stop condition and both the master device and slave device issue an interrupt (INTIICA: stop condition).

Remark <1> to <19> in Figure 15-33 represent the entire procedure for communicating data using the $I^{2} \mathrm{C}$ bus.
Figure 15-33 (1) Start condition ~ address ~ data shows the processing from $<1>$ to $<7>$, Figure 15-33 (2) Address ~ data \sim data shows the processing from $<3>$ to $<12>$, and Figure 15-33 (3) Data \sim data \sim stop condition shows the processing from <8> to <19>.

CHAPTER 16 LCD CONTROLLER/DRIVER

<R>

Item	78K0R/LF3	78K0R/LG3	78K0R/LH3
	80 pins	100 pins	128 pins
LCD	Segment signal outputs: 31 Controller/driver	Segment signal outputs: 40 Common signal outputs: 8	Segment signal outputs: 54 Common signal outputs: 8

16.1 Functions of LCD Controller/Driver

The functions of the LCD controller/driver in the 78K0R/Lx3 microcontrollers are as follows.
(1) The LCD driver voltage generator can switch internal voltage boosting method, capacitor split method, and external resistance division method.
(2) Automatic output of segment and common signals based on automatic display data memory read
(3) Six different display modes:

- Static
- $1 / 2$ duty ($1 / 2$ bias)
- $1 / 3$ duty ($1 / 2$ bias)
- $1 / 3$ duty ($1 / 3$ bias)
- $1 / 4$ duty ($1 / 3$ bias)
- $1 / 8$ duty ($1 / 4$ bias)
(4) Six different frame frequencies, selectable in each display mode
(5) The reference voltage to be generated when operating the voltage boost circuit can be selected from 20 stages (contrast adjustment).
(6) The data display of the LCD display data memory can be selected from three types.
- Displaying an A-pattern area (lower four bits)
- Displaying a B-pattern area (higher four bits)
- Alternately displaying A-pattern and B-pattern areas (blinking display corresponding to the constant-period interrupt (INTRTC) timing of the real-time counter (RTC))
(7) 78K0R/LF3: Segment signal outputs: $31^{\text {Note }}$ (SEG0 to SEG30), Common signal outputs: $8^{\text {Note }}$ (COMO to COM7)
78K0R/LG3: Segment signal outputs: $40^{\text {Note }}$ (SEG0 to SEG39), Common signal outputs: $8^{\text {Note }}$ (COM0 to COM7)
78K0R/LH3: Segment signal outputs: $54^{\text {Note }}$ (SEG0 to SEG53), Common signal outputs: $8^{\text {Note }}$ (COMO to COM7)

Note The four segment signal outputs (SEG0 to SEG3) and four common signal outputs (COM4 to COM7) are alternate-function pins. COM4 to COM7 can be used only when eight-time-slice mode is selected by the setting of the LCD display mode register (LCDM).

Table 16-1 lists the maximum number of pixels that can be displayed in each display mode.

Table 16-1. Maximum Number of Pixels (1/3)
(a) 78KOR/LF3

LCD Driver Voltage Generator	Bias Mode	Number of Time Slices	Common Signals Used	Number of Segments	Maximum Number of Pixels
External resistance division	-	Static	COM0 (COM1 to COM3)	31	31 (31 segment signals, 1 common signal) ${ }^{\text {Note } 1}$
	1/2	2	COM0, COM1		62 (31 segment signals, 2 common signals) ${ }^{\text {Note } 2}$
		3	COM0 to COM2		93 (31 segment signals,
	1/3	3	COM0 to COM2		ommon signals)
		4	COM0 to COM3		124 (31 segment signals, 4 common signals) ${ }^{\text {Note } 4}$
	1/4	8	COM0 to COM7	27	216 (27 segment signals, 8 common signals) ${ }^{\text {Note } 5}$
Internal voltage boosting	1/3	3	COM0 to COM2	31	93 (31 segment signals, 3 common signals) ${ }^{\text {Note }}$
		4	COM0 to COM3		124 (31 segment signals, 4 common signals) ${ }^{\text {Note } 4}$
	1/4	8	COM0 to COM7	27	216 (27 segment signals, 8 common signals) ${ }^{\text {Note } 5}$
Capacitor Split	1/3	3	COM0 to COM2	31	93 (31 segment signals, 3 common signals) ${ }^{\text {Note3 }}$
		4	COM0 to COM3		124 (31 segment signals, 4 common signals) ${ }^{\text {Note } 4}$

Notes 1. 3-digit LCD panel, each digit having an 8-segment 日. configuration.
2. 7-digit LCD panel, each digit having a 4 -segment B . configuration.
3. 11-digit LCD panel, each digit having a 3 -segment B . configuration.
4. 15-digit LCD panel, each digit having a 2 -segment B . configuration.
5. 27-digit LCD panel, each digit having a 1 -segment B . configuration.

Table 16-1. Maximum Number of Pixels (2/3)
(b) $78 \mathrm{KOR} / \mathrm{LG} 3$

LCD Driver Voltage Generator	Bias Mode	Number of Time Slices	Common Signals Used	Number of Segments	Maximum Number of Pixels
External resistance division	-	Static	COM0 (COM1 to COM3)	40	$\begin{aligned} & 40 \text { (} 40 \text { segment signals, } \\ & 1 \text { common signal) }{ }^{\text {Note } 1} \end{aligned}$
	1/2	2	COM0, COM1		80 (40 segment signals, 2 common signals) ${ }^{\text {Note } 2}$
		3	COM0 to COM2		120 (40 segment signals,
	1/3	3	COM0 to COM2		mmon signals) ${ }^{\text {Notea }}$
		4	COM0 to COM3		160 (40 segment signals, 4 common signals) ${ }^{\text {Note } 4}$
	1/4	8	COM0 to COM7	36	288 (36 segment signals, 8 common signals) ${ }^{\text {Note } 5}$
Internal voltage boosting	1/3	3	COM0 to COM2	40	120 (40 segment signals, 3 common signals) ${ }^{\text {Note3 }}$
		4	COM0 to COM3		160 (40 segment signals, 4 common signals) ${ }^{\text {Note } 4}$
	1/4	8	COM0 to COM7	36	288 (36 segment signals, 8 common signals) ${ }^{\text {Note } 5}$
capacitor split	1/3	3	COM0 to COM2	40	120 (40 segment signals, 3 common signals) ${ }^{\text {Note }}$
		4	COM0 to COM3		160 (40 segment signals, 4 common signals) ${ }^{\text {Note } 4}$

Notes 1. 5-digit LCD panel, each digit having an 8-segment 8 . configuration.
2. 10-digit LCD panel, each digit having a 4 -segment B . configuration.
3. 15-digit LCD panel, each digit having a 3 -segment B . configuration.
4. 20-digit LCD panel, each digit having a 2 -segment E . configuration.
5. 36-digit LCD panel, each digit having a 1 -segment E . configuration.

Table 16-1. Maximum Number of Pixels (3/3)
(b) $78 \mathrm{KOR} / \mathrm{LG} 3$

LCD Driver Voltage Generator	Bias Mode	Number of Time Slices	Common Signals Used	Number of Segments	Maximum Number of Pixels
External resistance division	-	Static	COM0 (COM1 to COM3)	54	54 (54 segment signals, 1 common signal) ${ }^{\text {Note } 1}$
	1/2	2	COM0, COM1		108 (54 segment signals, 2 common signals) ${ }^{\text {Note } 2}$
		3	COM0 to COM2		162 (54 segment signals,
	1/3	3	COM0 to COM2		mmon signals) ${ }^{\text {Notea }}$
		4	COM0 to COM3		216 (54 segment signals, 4 common signals) ${ }^{\text {Note } 4}$
	1/4	8	COM0 to COM7	50	400 (50 segment signals, 8 common signals) ${ }^{\text {Note } 5}$
Internal voltage boosting	1/3	3	COM0 to COM2	54	162 (54 segment signals, 3 common signals) ${ }^{\text {Note3 }}$
		4	COM0 to COM3		216 (54 segment signals, 4 common signals) ${ }^{\text {Note } 4}$
	1/4	8	COM0 to COM7	50	400 (50 segment signals, 8 common signals) ${ }^{\text {Note } 5}$
Capacitor Split	1/3	3	COM0 to COM2	54	162 (54 segment signals, 3 common signals) ${ }^{\text {Note }}$
		4	COM0 to COM3		216 (54 segment signals, 4 common signals) ${ }^{\text {Note } 4}$

Notes 1. 6-digit LCD panel, each digit having an 8-segment 日. configuration.
2. 13-digit LCD panel, each digit having a 4 -segment E . configuration.
3. 20-digit LCD panel, each digit having a 3 -segment B . configuration.
4. 27-digit LCD panel, each digit having a 2 -segment E . configuration.
5. 50-digit LCD panel, each digit having a 1 -segment B . configuration.

16.2 Configuration of LCD Controller/Driver

The LCD controller/driver consists of the following hardware.

Table 16-2. Configuration of LCD Controller/Driver

Item	Configuration
Display outputs	$\begin{aligned} & \text { 78K0R/LF3: } 31 \text { segment signals }{ }^{\text {Note }} \text { (SEG0 to SEG30), } 8 \text { common signals }{ }^{\text {Note }} \text { (COM0 to COM7) } \\ & \text { 78K0R/LG3: } 40 \text { segment signals }{ }^{\text {Note }} \text { (SEG0 to SEG39), } 8 \text { common signals }{ }^{\text {Note }} \text { (COM0 to COM7) } \\ & \text { 78K0R/LH3: } 54 \text { segment signals }{ }^{\text {Note }} \text { (SEG0 to SEG53), } 8 \text { common signals }{ }^{\text {Note }} \text { (COM0 to COM7) } \end{aligned}$
Control registers	LCD mode register (LCDMD) LCD display mode register (LCDM) LCD clock control register 0 (LCDC0) LCD boost level control register (VLCD) Port function register (PFALL) Segment enable register (SEGEN) Input switch control register (ISC)

Note The four segment signal outputs (SEG0 to SEG3) and four common signal outputs (COM4 to COM7) are alternate-function pins. COM4 to COM7 can be used only when eight-time-slice mode is selected by the setting of the LCD display mode register (LCDM).

Figure 16－1．Block Diagram of LCD Controller／Driver

Remark 78K0R／LF3： 31 segment signals（SEG0 to SEG30）， 8 common signals（COM0 to COM7） 78K0R／LG3： 40 segment signals（SEG0 to SEG39）， 8 common signals（COM0 to COM7） 78K0R／LH3： 54 segment signals（SEG0 to SEG53）， 8 common signals（COM0 to COM7）

16.3 Registers Controlling LCD Controller/Driver

The following seven registers are used to control the LCD controller/driver.

- LCD mode register (LCDMD)
- LCD display mode register (LCDM)
- LCD clock control register 0 (LCDC0)
- LCD boost level control register (VLCD)
- Port function register (PFALL)
- Segment enable register (SEGEN)
- Input switch control register (ISC)
(1) LCD mode register (LCDMD)

LCDMD sets the LCD drive voltage generator.
LCDMD is set using a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets LCDMD to 00 H .

Figure 16-2. Format of LCD Mode Register (LCDMD)

Address		After reset: 00 H	W					
Symbol	7	6	5	4	3	2	1	0
LCDMD	0	0	MDSET1	MDSET0	0	0	0	0

MDSET1	MDSET0	LCD drive voltage generator selection
0	0	External resistance division method
0	1	Internal voltage boosting method
1	0	Capacitor split method
1	1	Setting prohibited

Caution Bits 0 to $\mathbf{3 , 6} \mathbf{6}$ and 7 must be set to 0 .
(2) LCD display mode register (LCDM)

LCDM is a register that enables/disables display operation, enables/disables voltage boost circuit or capacitor split circuit operation, and sets the display data area and the display mode.
LCDM is set using a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets LCDM to 00 H .

Figure 16-3. Format of LCD Display Mode Register (LCDM)

LCDON	SCOC	LCD display enable/disable
0	0	Output ground level to segment/common pin
0	1	Display off (all segment outputs are deselected.)
1	0	Output ground level to segment/common pin
1	1	Display on

VLCON	Voltage boost circuit or capacitor split circuit operation enable/disable
0	Stops voltage boost circuit or capacitor split circuit operation
1	Enables voltage boost circuit or capacitor split circuit operation

BLON	LCDSEL	Display data area control
0	0	Displaying an A-pattern area data (lower four bits of LCD display data memory)
0	1	Displaying a B-pattern area data (higher four bits of LCD display data memory)
1	0	Alternately displaying A-pattern and B-pattern area data (blinking display corresponding to
1	1	the constant-period interrupt (INTRTC) timing of the real-time counter (RTC))

LCDM2	LCDM1	LCDM0		LCD con	roller/driver	display mode	selection	
			External division	esistance method	Interna boosting	voltage method	Capacitor	plit method
			Number of time slices	Bias mode	Number of time slices	Bias mode	Number of time slices	Bias mode
0	0	0	4	1/3	4	1/3	4	1/3
0	0	1	3	1/3	3	1/3	3	1/3
0	1	0	2	1/2	4	1/3	4	1/3
0	1	1	3	1/2	4	1/3	4	1/3
1	0	0	Static		Setting prohibited			
1	1	1	8	1/4	8	1/4	4	1/3
Other than above			Setting prohibited					

Cautions 1. When LCD display is not performed or necessary, set SCOC and VLCON to 0 , in order to reduce power consumption.
2. When the external resistance division method has been set (MDSET1 = MDSET0 = 0), do not set VLCON to 1.
3. Set BLON and LCDSEL to 0 when 8 has been selected as the number of time slices for the display mode.
4. To use the internal voltage boosting method, specify the reference voltage by using the VLCD register (or perform a reset to use the default value of the reference voltage), wait for the reference voltage setup time (2 ms (min .)), and then set VLCON to 1.

Caution 5. To manipulate VLCON when using the internal voltage boosting method or capacitor split method, follow the procedure below.
A. To stop the operation of the voltage boosting/capacitor split circuit after switching display status from on to off:

1) Set to display off status by setting LCDON $=0$.
2) Disable outputs of all the segment buffers and common buffers by setting SCOC $=0$.
3) Stop the operation of the voltage boosting/capacitor split circuit by setting VLCON $=0$.
B. To stop the operation of the voltage boosting/capacitor split circuit during display on status: Setting prohibited. Be sure to stop the operation of the voltage boosting/capacitor split circuit after setting display off.
C. To set display on from stop status of the voltage boosting/capacitor split circuit:
4) Start the operation of the voltage boosting/capacitor split circuit by setting VLCON $=1$, then wait for the voltage boosting/capacitor split wait time (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).
5) Set all the segment buffers and common buffers to non-display output status by setting $S C O C=1$.
6) Set display on by setting LCDON $=1$.
(3) LCD clock control register (LCDC0)

LCDC0 specifies the LCD source clock and LCD clock.
The frame frequency is determined according to the LCD clock and the number of time slices.
LCDCO is set using an 8-bit memory manipulation instruction.
Reset signal generation sets LCDCO to 00 H .

Figure 16-4. Format of LCD Clock Control Register (LCDC0)

LCDC5	LCDC4	LCD source clock (fLCD) selection
0	0	fsus
0	1	fcL/ $/ 2^{6}$
1	0	fcLk $/ 2^{7}$
1	1	${\mathrm{fLLK} / 2^{8}}$

LCDC2	LCDC1	LCDC0	LCD clock (LCDCL) selection
0	0	0	flco $/ 2^{4}$
0	0	1	flcol 2^{5}
0	1	0	flcol 2^{6}
0	1	1	flcol2 ${ }^{7}$
1	0	0	flcol 2^{8}
1	0	1	flcol2 ${ }^{9}$
Other than above			Setting prohibited

Cautions 1. Bits 3, 6, and 7 must be set to 0 .
2. Set the LCD clock (LCDCL) to no more than 512 Hz when the internal voltage boost method has been set.
Remark fсLк: CPU/Peripheral hardware clock frequency
fsub: Subsystem clock frequency
(4) LCD boost level control register (VLCD)

This register is used to select the reference voltage that is to be generated when operating the voltage boost circuit (contrast adjustment). The reference voltage can be selected from 20 stages.
VLCD is set using an 8-bit memory manipulation instruction.
Reset signal generation sets VLCD to OFH.

Figure 16-5. Format of LCD Boost Level Control Register (VLCD)

Address: FFF43H After reset: 0FH R/W

Symbol	7	6	5	4	3	2	1	0
VLCD	0	0	0	VLCD4	VLCD3	VLCD2	VLCD1	VLCD0

VLCD4	VLCD3	VLCD2	VLCD1	VLCDO	Reference voltage selection (contrast adjustment)	V Lco voltage	
						1/3 bias	1/4 bias
0	0	0	0	0	1.75 V	5.25 V	Setting prohibited ${ }^{\text {Note }}$
0	0	0	0	1	1.70 V	5.10 V	
0	0	0	1	0	1.65 V	4.95 V	
0	0	0	1	1	1.60 V	4.80 V	
0	0	1	0	0	1.55 V	4.65 V	
0	0	1	0	1	1.50 V	4.50 V	
0	0	1	1	0	1.45 V	4.35 V	
0	0	1	1	1	1.40 V	4.20 V	
0	1	0	0	0	1.35 V	4.05 V	
0	1	0	0	1	1.30 V	3.90 V	5.20 V
0	1	0	1	0	1.25 V	3.75 V	5.00 V
0	1	0	1	1	1.20 V	3.60 V	4.80 V
0	1	1	0	0	1.15 V	3.45 V	4.60 V
0	1	1	0	1	1.10 V	3.30 V	4.40 V
0	1	1	1	0	1.05 V	3.15 V	4.20 V
0	1	1	1	1	1.00 V (default)	3.00 V	4.00 V
1	0	0	0	0	0.95 V	2.85 V	3.80 V
1	0	0	0	1	0.90 V	2.70 V	3.60 V
1	0	0	1	0	0.85 V	2.55 V	3.40 V
1	0	0	1	1	0.80 V	2.40 V	3.20 V
Other than above					Setting prohibited		

Note These settings are prohibited because VLco > 5.5 V.

Cautions 1. The VLCD setting is valid only when the voltage boost circuit is operating.
2. Bits 5 to 7 must be set to 0 .
3. Be sure to change the VLCD value after having stopped the operation of the voltage boost circuit (VLCON = 0).
4. These values above may change after device evaluation.
5. To use the internal voltage boosting method, specify the reference voltage by using the VLCD register (or perform a reset to use the default value of the reference voltage), wait for the reference voltage setup time (2 ms (min .)), and then set VLCON to 1 .
(5) Port function register (PFALL)

This register sets whether to use pins P50 to P57, P90 to P97, P100 to P102, and P140 to P147 as port pins (other than segment output pins) or segment output pins.
PFALL is set using a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation sets PFALL to 00 H .

Remark The port pins to be used alternatively with the segment output pins vary, depending on the product.

- 78K0R/LF3: P50 to P57, P90 to P92, P100, P140 to P147
- 78K0R/LG3: P50 to P57, P90 to P97, P100, P140 to P147
- 78K0R/LH3: P50 to P57, P90 to P97, P100 to P102, P140 to P147

Figure 16-6. Format of Port Function Register (PFALL) (1/2)

PF14H	Port/segment outputs specification of the P144 to P147 pins
0	Used the P144 to P147 pins as port (other than segment output)
1	Used the P144 to P147 pins as segment output

PF14L	Port/segment outputs specification of the P140 to P143 pins
0	Used the P140 to P143 pins as port (other than segment output)
1	Used the P140 to P143 pins as segment output

PF10	Port/segment outputs specification of the P100 to P102 pins
0	Used the P100 to P102 pins as port (other than segment output)
1	Used the P100 to P102 pins as segment output

PF9H	Port/segment outputs specification of the P94 to P97 pins
0	Used the P94 to P97 pins as port (other than segment output)
1	Used the P94 to P97 pins as segment output

PF9L	Port/segment outputs specification of P90 to P93 pins
0	Used the P90 to P93 pins as port (other than segment output)
1	Used the P90 to P93 pins as segment output

Note 78K0R/LG3, 78K0R/LH3 only

Figure 16-6. Format of Port Function Register (PFALL) (2/2)

PF5H	Port/segment outputs specification of the P54 to P57 pins
0	Used the P54 to P57 pins as port (other than segment output)
1	Used the P54 to P57 pins as segment output

PF5L	Port/segment outputs specification of P50 to P53 pins
0	Used the P50 to P53 pins as port (other than segment output)
1	Used the P50 to P53 pins as segment output

Caution For 78 K0R/LF3, bits 3 and 7 must be set to 0 . For $78 K 0 R / L G 3$ and $78 K 0 R / L H 3$, bit 7 must be set to 0 .
(6) Segment enable register (SEGEN)

SEGEN is a register that is used to enable or disable segment output to segment output only pins.
SEGEN is set using a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets SEGEN to 00 H .

Remark The segment output only pins vary, depending on the product.

- 78K0R/LF3: SEG8 to SEG10
- 78K0R/LG3: SEG8 to SEG14
- 78K0R/LH3: SEG8 to SEG26

Figure 16-7. Format of Segment Enable Register (SEGEN)

- 78K0R/LF3

Address: F0081H After reset: 00 H R/W

Symbol	7	6	5	4	3	2	1	0
SEGEN	0	0	0	0	0	0	0	SEGEN0

- 78K0R/LG3

Address: F0081H After reset: 00 H R/W

Symbol	7	6	5	4	3	2	1	0
SEGEN	0	0	0	0	0	0	SEGEN1	SEGEN0

- 78K0R/LH3

Address: $\mathrm{F0081H}$ After reset: 00 H R/W

Symbol	7	6	5	4	3	2	1	0
SEGEN	0	0	0	SEGEN4	SEGEN3	SEGEN2	SEGEN1	SEGEN0

SEGENn	Output enable/disable to segment output only pins ($\mathrm{n}=0$ to 4)
0	Disables segment output
1	Enables segment output

Cautions 1. SEGEN can be written only once after reset release.
2. For $78 \mathrm{KOR} / \mathrm{LF} 3$, bits 1 to 7 must be set to 0 . For $78 \mathrm{KOR} / \mathrm{LG} 3$, bits $\mathbf{2}$ to $\mathbf{7}$ must be set to 0 . For 78KOR/LH3, bits 5 to 7 must be set to 0 .

The segment output only pins operated by SEGEN4 to SEGEN0 are as follows.

SEGEN register	Segment output only pins		
	78K0R/LF3	78K0R/LG3	78K0R/LH3
SEGE4	-	-	SEG24 to SEG26 pins
SEGE3	-	-	SEG20 to SEG23 pins
SEGE2	-	-	SEG16 to SEG19 pins
SEGE1	-	SEG12 to SEG14 pins	SEG12 to SEG15 pins
SEGE0	SEG8 to SEG10 pins	SEG8 to SEG11 pins	SEG8 to SEG11 pins

(7) Input switch control register (ISC)

The segment output pins to be used alternatively with the TIO4, TIO2, and RxD3 pins are internally connected with a Schmitt trigger buffer. To use these pins as segment outputs, input to the Schmitt trigger buffer must be disabled, in order to prevent through-currents from entering.
ISC is set using a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets ISC to 00H.

Remark The segment output pins to be used alternatively with the TIO2, TIO4, and RxD3 pins vary, depending on the product.

- 78K0R/LF3: TI04/SEG27/P53, TI02/SEG28/P52, RxD3/SEG30/P50
- 78K0R/LG3: TI04/SEG36/P53, TIO2/SEG37/P52, RxD3/SEG39/P50
- 78K0R/LH3: TI04/SEG50/P53, TI02/SEG51/P52, RxD3/SEG53/P50

Figure 16-8. Format of Input Switch Control Register (ISC)

ISC4	
0	Disables input
1	Enables input

ISC3	
0	Disables input
1	Enables input

ISC2	
0	Disables input
1	Enables input

Caution Be sure to clear bits 5 to 7 to "0".

Remark Bits 0 and 1 of ISC are not used with the LCD controller driver.

To use the TI04/SEGxx/P53, TIO2/SEGxx/P52, and RxD3/SEGxx/P50 pins, set the PF5L and ISCn ($\mathrm{n}=2$ to 4) bits as follows, according to the function to be used.

PF5L	ISCn	Pin function
0	0	Port output (default)
0	1	Port input, timer input, or serial data input
1	0	Segment output
1	1	Setting prohibited

16.4 LCD Display Data Memory

The LCD display data memory is mapped at addresses F0400H to F041FH (78K0R/LF3), F0400H to F0427H (78K0R/LG3) or F0400H to F0435H (78K0R/LH3). Data in the LCD display data memory can be displayed on the LCD panel using the LCD controller/driver.

Figure 16-9 to $16-11$ show the relationship between the contents of the LCD display data memory and the segment/common outputs.

The areas not to be used for display can be used as normal RAM.

Figure 16-9. Relationship Between LCD Display Data Memory Contents and Segment/Common Outputs (78K0R/LF3)
(a) Static, 2-time-slice, 3-time-slice, and 4-time-slice

(b) 8-time-slice

Note The COM4 to COM7 pins and SEG0 to SEG3 pins are used alternatively. To use the LCD display data memory when the number of time slices is eight, the area of F 0400 H to F 0403 H can be used for a purpose other than display, because it is not used for LCD display.

Figure 16-10. Relationship Between LCD Display Data Memory Contents and Segment/Common Outputs (78K0R/LG3)
(a) Static, 2-time-slice, 3-time-slice, and 4-time-slice

(b) 8-time-slice

	b7	b6	b5	b4	b3	b2	b1	b0	SEG39
F0427H									
$\begin{aligned} & \text { F0426H } \\ & \text { F0425H } \end{aligned}$									SEG38
F0405H									SEG5
F0404H									SEG4
F0403H	Note	SEG3							
F0402H	Note	SEG2							
F0401H	Note	SEG1							
F0400H	Note	SEG0							
	COM7	COM6	COM5	COM4	COM3	COM2	COM1	COM0	

Note The COM4 to COM7 pins and SEG0 to SEG3 pins are used alternatively. To use the LCD display data memory when the number of time slices is eight, the area of F 0400 H to F 0403 H can be used for a purpose other than display, because it is not used for LCD display.

Figure 16-11. Relationship Between LCD Display Data Memory Contents and Segment/Common Outputs (78K0R/LH3)
(a) Static, 2-time-slice, 3-time-slice, and 4-time-slice

(b) 8-time-slice

	b7	b6	b5	b4	b3	b2	b1	b0	
F0435H									SEG53
F0434H									$\begin{aligned} & \text { SEG52 } \\ & \text { SEG51 } \end{aligned}$
F0433H									
F0405HF 0404 H									SEG5
									SEG4
F0403H	Note	SEG3							
F0402H	Note	SEG2							
F0401H	Note	SEG1							
F0400H	Note	SEG0							
	COM7	COM6	COM5	COM4	COM3	COM2	COM1	COMO	

Note The COM4 to COM7 pins and SEG0 to SEG3 pins are used alternatively. To use the LCD display data memory when the number of time slices is eight, the area of F 0400 H to F 0403 H can be used for a purpose other than display, because it is not used for LCD display.

To use the LCD display data memory when the number of time slices is static, two, three, or four, the lower four bits and higher four bits of each address of the LCD display data memory become an A-pattern area and a B-pattern area, respectively.

The correspondences between A-pattern area data and COM signals are as follows: bit $0 \Leftrightarrow$ COM0, bit $1 \Leftrightarrow$ COM1, bit $2 \Leftrightarrow \mathrm{COM} 2$, and bit $3 \Leftrightarrow \mathrm{COM} 3$.

The correspondences between B-pattern area data and COM signals are as follows: bit $4 \Leftrightarrow$ COM0, bit $5 \Leftrightarrow$ COM1, bit $6 \Leftrightarrow \mathrm{COM} 2$, and bit $7 \Leftrightarrow$ COM3.

A-pattern area data will be displayed on the LCD panel when BLON = LCDSEL = 0 has been selected, and B-pattern area data will be displayed on the LCD panel when BLON $=0$ and LCDSEL $=1$ have been selected.
When BLON = 1 has been selected, A-pattern and B-pattern areas will be alternately displayed, according to the constant-period interrupt (INTRTC) timing of the real-time counter (RTC).

Figure 16-12. Example of Display Data When Blinking Display Has Been Selected

16.5 Setting LCD Controller/Driver

Set the LCD controller/driver using the following procedure.

(1) External resistance division method

<1> Set the external resistance division method via the MDSET0 and MDSET1 bits (bits 4 and 5 of the LCDMD register) (MDSET0 = MDSET1 = 0).
<2> To use segment output only pins, use the SEGEN register to enable segment output to them.
To use segment output pins, which are alternatively used with port pins, use the PFALL register to set them to segment output. In addition, to use the segment output pins, which are alternatively used with the TIO4, TIO2, and RxD3 pins, use the ISC register to disable input to the Schmitt trigger buffer.
$<3>$ Set the display data in LCD display RAM.
<4> Set the number of time slices and the bias mode via the LCDM0 to LCDM2 bits (bits 0 to 2 of the LCDM register).

- When setting Static, 2-time-slice, 3-time-slice, or 4-time-slice \rightarrow Go to step <5>
- When setting 8 -time-slice \rightarrow Go to step $<6>$
$<5>$ Select the display data area via the LCDSEL and BLON bits (bits 3 and 4 of the LCDM register).
$<6>$ Set the LCD source clock and LCD clock via the LCDC0 register.
$<7>$ Set (SCOC = 1) the SCOC bit (bit 6 of the LCDM register).
Non-selected waveforms are output from all the segment and common pins, and the non-display status is entered.
<8> Start output corresponding to each data memory by setting (LCDON = 1) the LCDON bit (bit 7 of the LCDM register).
(2) Internal voltage boosting method
<1> Set the internal voltage boosting method via the MDSET0 and MDSET1 bits (bits 4 and 5 of the LCDMD register) $($ MDSETO $=1$, MDSET1 $=0)$.
<2> To use segment output only pins, use the SEGEN register to enable segment output to them.
To use segment output pins, which are alternatively used with port pins, use the PFALL register to set them to segment output. In addition, to use the segment output pins, which are alternatively used with the TIO4, TIO2, and RxD3 pins, use the ISC register to disable input to the Schmitt trigger buffer.
$<3>$ Set the display data in LCD display RAM.
$<4>$ Set the number of time slices and the bias mode via the LCDM0 to LCDM2 bits (bits 0 to 2 of the LCDM register).
- When setting Static, 2-time-slice, 3-time-slice, or 4-time-slice \rightarrow Go to step $<5>$
- When setting 8-time-slice \rightarrow Go to step <6>
(Only $1 / 3$ bias mode and $1 / 4$ bias mode can be set for the internal voltage boost method.)
$<5>$ Select the display data area via the LCDSEL and BLON bits (bits 3 and 4 of the LCDM register).
$<6>$ Set the LCD source clock and LCD clock via the LCDC0 register.
$<7>$ Set the reference voltage (adjust the contrast) via the VLCD register.
$<8>$ Wait for the reference voltage setup time (2 ms (min.)) after setting of the VLCD register.
<9> Set (VLCON = 1) the VLCON bit (bit 5 of the LCDM register) to start the voltage boost circuit operation.
<10> Wait for the voltage boost wait time after setting of VLCON (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).
<11> Set (SCOC = 1) the SCOC bit (bit 6 of the LCDM register).
Non-selected waveforms are output from all the segment and common pins, and the non-display status is entered.
<12> Start output corresponding to each data memory by setting (LCDON =1) the LCDON bit (bit 7 of the LCDM register).

Caution When stopping the operation of the voltage boost circuit, be sure to set SCOC and LCDON to 0 before setting VLCON to 0.

(3) Capacitor split method
<1> Set the capacitor split method via the MDSET0 and MDSET1 bits (bits 4 and 5 of the LCDMD register) (MDSET0 = 0, MDSET1 = 1) .
<2> To use segment output only pins, use the SEGEN register to enable segment output to them.
To use segment output pins, which are alternatively used with port pins, use the PFALL register to set them to segment output. In addition, to use the segment output pins, which are alternatively used with the TIO4, TI02, and RxD3 pins, use the ISC register to disable input to the Schmitt trigger buffer.
$<3>$ Set the display data in LCD display RAM.
<4> Set the number of time slices and the bias mode via the LCDM0 to LCDM2 bits (bits 0 to 2 of the LCDM register).
(Only $1 / 3$ bias mode can be set for the capacitor split method)
$<5>$ Select the display data area via the LCDSEL and BLON bits (bits 3 and 4 of the LCDM register).
$<6>$ Set the LCD source clock and LCD clock via the LCDC0 register.
$<7>$ Set (VLCON = 1) the VLCON bit (bit 5 of the LCDM register) to start the voltage reduction circuit operation.
<8> Wait for the voltage capacitor split wait time after setting of VLCON (see CHAPTER 31 ELECTRICAL
SPECIFICATIONS).
<9> Set (SCOC = 1) the SCOC bit (bit 6 of the LCDM register).
Non-selected waveforms are output from all the segment and common pins, and the non-display status is entered.
<10> Start output corresponding to each data memory by setting ($\mathrm{LCDON}=1$) the LCDON bit (bit 7 of the LCDM register).

Caution When stopping the operation of the capacitor split circuit, be sure to set SCOC and LCDON to 0 before setting VLCON to 0 .

16.6 Common and Segment Signals

Each pixel of the LCD panel turns on when the potential difference between the corresponding common and segment signals becomes higher than a specific voltage (LCD drive voltage, VLCD). The pixels turn off when the potential difference becomes lower than VLcd.

Applying DC voltage to the common and segment signals of an LCD panel causes deterioration. To avoid this problem, this LCD panel is driven by AC voltage.

(1) Common signals

Each common signal is selected sequentially according to a specified number of time slices at the timing listed in Table 16-3. In the static display mode, the same signal is output to COM0 to COM3.

In the two-time-slice mode, leave the COM2 and COM3 pins open. In the three-time-slice mode, leave the COM3 pin open.
Use the COM4 to COM7 pins other than in the eight-time-slice mode as open or segment pins.

Table 16-3. COM Signals

	COM0	COM1	COM2	COM3	COM4	COM5	COM6	COM7
Static display mode	\square	\square	\square	\longrightarrow	Note	Note	Note	Note
Two-time-slice mode	4	\checkmark	Open	Open	Note	Note	Note	Note
Three-time-slice mode	4		\checkmark	Open	Note	Note	Note	Note
Four-time-slice mode	4			\checkmark	Note	Note	Note	Note
Eight-time-slice mode	4							-

Note Use the pins as open or segment pins.

(2) Segment signals

The segment signals correspond to the LCD display data memory (refer to 16.4 LCD Display Data Memory). When the number of time slices is eight, bits 0 to 7 of each byte are read in synchronization with COMO to COM7, respectively. If a bit is 1 , it is converted to the select voltage, and if it is 0 , it is converted to the deselect voltage. The conversion results are output to the segment pins (SEG4 to SEG53).
When the number of time slices is number other than eight, bits 0 to 3 of each byte in A-pattern area are read in synchronization with COMO to COM3, and bits 4 to 7 of each byte in B-pattern area are read in synchronization with COMO to COM3, respectively. If a bit is 1 , it is converted to the select voltage, and if it is 0 , it is converted to the deselect voltage. The conversion results are output to the segment pins (SEG0 to SEG53).

Check, with the information given above, what combination of front-surface electrodes (corresponding to the segment signals) and rear-surface electrodes (corresponding to the common signals) forms display patterns in the LCD display data memory, and write the bit data that corresponds to the desired display pattern on a one-toone basis.

LCD display data memory bits 1 to 3 , bits 2 and 3 , bit 3 , and F0400H to F0403H are not used for LCD display in the static display, two-time slot, three-time slot, and eight-time slot modes, respectively. So these bits can be used for purposes other than display.

Remark The mounted segment output pins vary depending on the product.

- 78K0R/LF3: SEG0 to SEG30
- 78K0R/LG3: SEG0 to SEG39
- 78K0R/LH3: SEG0 to SEG53

(3) Output waveforms of common and segment signals

The voltages listed in Table 16-4 are output as common and segment signals.
When both common and segment signals are at the select voltage, a display on-voltage of $\pm \mathrm{V}$ LCD is obtained.
The other combinations of the signals correspond to the display off-voltage.

Table 16-4. LCD Drive Voltage
(a) Static display mode

Segment Signal Common Signal	Select Signal Level	Deselect Signal Level
	Vss/Vtco	Vıco/Vss
VLco/Vss	-VLCD/+VLCD	$0 \mathrm{~V} / 0 \mathrm{~V}$

(b) $1 / 2$ bias method

Segment Signal Common Signal		Select Signal Level	Deselect Signal Level
		Vss/Vıco	Vıco/Vss
Select signal level	V Lco/Vss	-VLCD/+VLCD	$0 \mathrm{~V} / 0 \mathrm{~V}$
Deselect signal level	$\mathrm{V}_{\mathrm{LC} 1}=\mathrm{V}_{\text {LC2 }}$	$-\frac{1}{2} V_{\text {LCD }} /+\frac{1}{2} V_{\text {LCD }}$	$+\frac{1}{2} V_{\text {LCD }} /-\frac{1}{2} V_{\text {LCD }}$

(c) $1 / 3$ bias method

Segment Signal Common Signal		Select Signal Level	Deselect Signal Level
		Vss/Vıco	VLC1/VLC2
Select signal level	Vıco/Vss	-VLCD/+VLCD	$-\frac{1}{3} V_{L C D} /+\frac{1}{3} V_{L C D}$
Deselect signal level	VLC2/VLC1	$-\frac{1}{3} V_{\text {LCD }} /+\frac{1}{3} \mathrm{~V}_{\text {LCD }}$	$+\frac{1}{3} V_{L C D} /-\frac{1}{3} V_{L C D}$

(d) 1/4 bias method

Segment Signal Common Signal		Select Signal Level	Deselect Signal Level
		Vıco/Vss	VLC1/VLC2
Select signal level	Vss/Vıco	+VLCD/-VLCD	$+\frac{1}{2} V_{L C D} /-\frac{1}{2} V_{L C D}$
Deselect signal level	VLC1/VLC3	$+\frac{1}{4} \mathrm{~V}_{\text {LCD }} /-\frac{1}{4} \mathrm{~V}_{\text {LCD }}$	$-\frac{1}{4} V_{\text {LCD }} /+\frac{1}{4} V_{\text {LCD }}$

Figure $16-13$ shows the common signal waveforms, and Figure $16-14$ shows the voltages and phases of the common and segment signals.

Figure 16-13. Common Signal Waveforms (1/2)
(a) Static display mode

T: One LCD clock period
TF: Frame frequency
(b) $\mathbf{1 / 2}$ bias method

T: One LCD clock period
TF: Frame frequency

Figure 16-13. Common Signal Waveforms (2/2)
(c) 1/3 bias method

T: One LCD clock period $\quad T_{F}$: Frame frequency
< Example of calculation of LCD frame frequency (When four-time slot mode is used) >
LCD clock: $\quad 32768 / 2^{8}=256 \mathrm{~Hz}$ (When setting to $\mathrm{LCDCO}=04 \mathrm{H}$)
LCD frame frequency: $\quad 64 \mathrm{~Hz}$
(d) $1 / 4$ bias method

T: One LCD clock period $\quad T_{F}$: Frame frequency
< Example of calculation of LCD frame frequency (When eight-time slot mode is used) >
LCD clock: $\quad 32768 / 2^{8}=256 \mathrm{~Hz}$ (When setting to LCDCO $=04 \mathrm{H}$)
LCD frame frequency: $\quad 32 \mathrm{~Hz}$

Figure 16-14. Voltages and Phases of Common and Segment Signals (1/2)
(a) Static display mode

T: One LCD clock period
(b) $\mathbf{1 / 2}$ bias method

T: One LCD clock period

Figure 16-14. Voltages and Phases of Common and Segment Signals (2/2)
(c) $1 / 3$ bias method

T: One LCD clock period
(d) 1/4 bias method

T: One LCD clock period

16.7 Display Modes

16.7.1 Static display example

Figure 16-16 shows how the three-digit LCD panel having the display pattern shown in Figure $16-15$ is connected to the segment signals (SEG0 to SEG23) and the common signal (COMO). This example displays data "12.3" in the LCD panel. The contents of the display data memory (F0400H to F0417H) correspond to this display.

The following description focuses on numeral "2." (ᄅ.) displayed in the second digit. To display "2." in the LCD panel, it is necessary to apply the select or deselect voltage to the SEG8 to SEG15 pins according to Table 16-5 at the timing of the common signal COMO; see Figure 16-15 for the relationship between the segment signals and LCD segments.

Table 16-5. Select and Deselect Voltages (COMO)

Common	Segment	SEG8	SEG9	SEG10	SEG11	SEG12	SEG13	SEG14
SEG15								
COM0	Select	Deselect	Select	Select	Deselect	Select	Select	Select

According to Table 16-5, it is determined that the bit-0 pattern of the display data memory locations (F0408H to F040FH) must be 10110111.

Figure 16-17 shows the LCD drive waveforms of SEG11 and SEG12, and COM0. When the select voltage is applied to SEG11 at the timing of COMO, an alternate rectangle waveform, +V LCD/-VLCD, is generated to turn on the corresponding LCD segment.

COM1 to COM3 are supplied with the same waveform as for COM0. So, COM0 to COM3 may be connected together to increase the driving capacity.

Figure 16-15. Static LCD Display Pattern and Electrode Connections

Remark 78K0R/LF3: $\mathrm{n}=0$ to 3
78K0R/LG3: $\mathrm{n}=0$ to 4
78K0R/LH3: $\mathrm{n}=0$ to 5

Figure 16-16. Example of Connecting Static LCD Panel
Data memory address

Figure 16-17. Static LCD Drive Waveform Examples

\qquad
$工-V_{\text {LCD }}$

16.7.2 Two-time-slice display example

Figure $16-19$ shows how the 6 -digit LCD panel having the display pattern shown in Figure $16-18$ is connected to the segment signals (SEG0 to SEG23) and the common signals (COMO and COM1). This example displays data "12345.6" in the LCD panel. The contents of the display data memory ($\mathrm{FO400H}$ to F 0417 H) correspond to this display.

The following description focuses on numeral "3" (\exists) displayed in the fourth digit. To display "3" in the LCD panel, it is necessary to apply the select or deselect voltage to the SEG12 to SEG15 pins according to Table 16-6 at the timing of the common signals COMO and COM1; see Figure 16-18 for the relationship between the segment signals and LCD segments.

Table 16-6. Select and Deselect Voltages (COM0 and COM1)

Common	Segment	SEG12	SEG13	SEG14
SEG15				
COM0	Select	Select	Deselect	Deselect
COM1	Deselect	Select	Select	Select

According to Table 16-6, it is determined that the display data memory location (F040FH) that corresponds to SEG15 must contain xx 10 .

Figure 16-20 shows examples of LCD drive waveforms between the SEG15 signal and each common signal. When the select voltage is applied to SEG15 at the timing of COM1, an alternate rectangle waveform, $+\mathrm{V}_{\text {LCD }} /-\mathrm{V}_{\text {LCD }}$, is generated to turn on the corresponding LCD segment.

Figure 16-18. Two-Time-Slice LCD Display Pattern and Electrode Connections

Remark 78K0R/LF3: $\mathrm{n}=0$ to 6
78K0R/LG3: $\mathrm{n}=0$ to 9
78K0R/LH3: $\mathrm{n}=0$ to 12

Figure 16-19. Example of Connecting Two-Time-Slice LCD Panel
Data memory address

LCD panel
x : Can always be used to store any data because the two-time-slice mode is being used.

Figure 16-20. Two-Time-Slice LCD Drive Waveform Examples (1/2 Bias Method)

16.7.3 Three-time-slice display example

Figure $16-22$ shows how the 8 -digit LCD panel having the display pattern shown in Figure $16-21$ is connected to the segment signals (SEGO to SEG23) and the common signals (COMO to COM2). This example displays data "123456.78" in the LCD panel. The contents of the display data memory (addresses F0400H to F0417H) correspond to this display.

The following description focuses on numeral "6." (5.) displayed in the third digit. To display "6." in the LCD panel, it is necessary to apply the select or deselect voltage to the SEG6 to SEG8 pins according to Table 16-7 at the timing of the common signals COMO to COM2; see Figure 16-21 for the relationship between the segment signals and LCD segments.

Table 16-7. Select and Deselect Voltages (COMO to COM2)

Common	Segment	SEG7	SEG8
COM0	Deselect	Select	Select
COM1	Select	Select	Select
COM2	Select	Select	-

According to Table 16-7, it is determined that the display data memory location (FO 0406 H) that corresponds to SEG6 must contain $\times 110$.

Figures 16-23 and 16-24 show examples of LCD drive waveforms between the SEG6 signal and each common signal in the $1 / 2$ and $1 / 3$ bias methods, respectively. When the select voltage is applied to SEG6 at the timing of COM1 or COM2, an alternate rectangle waveform, +V LCD/-VLCD, is generated to turn on the corresponding LCD segment.

Figure 16-21. Three-Time-Slice LCD Display Pattern and Electrode Connections

Remark $\begin{aligned} & \text { 78K0R/LF3: } \mathrm{n}=0 \text { to } 9 \\ & \text { 78K0R/LG3: } \mathrm{n}=0 \text { to } 12 \\ & \text { 78K0R/LH3: } \mathrm{n}=0 \text { to } 17\end{aligned}$

Figure 16-22. Example of Connecting Three-Time-Slice LCD Panel
Data memory address

pued 0 ๑า
x^{\prime} : Can be used to store any data because there is no corresponding segment in the LCD panel.
x : Can always be used to store any data because the three-time-slice mode is being used.

Figure 16-23. Three-Time-Slice LCD Drive Waveform Examples (1/2 Bias Method)

Figure 16-24. Three-Time-Slice LCD Drive Waveform Examples (1/3 Bias Method)

16.7.4 Four-time-slice display example

Figure $16-26$ shows how the 12 -digit LCD panel having the display pattern shown in Figure $16-25$ is connected to the segment signals (SEGO to SEG23) and the common signals (COMO to COM3). This example displays data "123456.789012" in the LCD panel. The contents of the display data memory (addresses F0400H to F0417H) correspond to this display.

The following description focuses on numeral "6." (Б) displayed in the seventh digit. To display "6." in the LCD panel, it is necessary to apply the select or deselect voltage to the SEG12 and SEG13 pins according to Table 16-8 at the timing of the common signals COMO to COM3; see Figure 16-25 for the relationship between the segment signals and LCD segments.

Table 16-8. Select and Deselect Voltages (COM0 to COM3)

Common	Segment	SEG12
SEG13		
COM0	Select	Select
COM1	Deselect	Select
COM2	Select	Select
COM3	Select	Select

According to Table 16-8, it is determined that the display data memory location (F040CH) that corresponds to SEG12 must contain 1101.

Figure 16-27 shows examples of LCD drive waveforms between the SEG12 signal and each common signal. When the select voltage is applied to SEG12 at the timing of COMO, an alternate rectangle waveform, +VLcD/-VLcd, is generated to turn on the corresponding LCD segment.

Figure 16-25. Four-Time-Slice LCD Display Pattern and Electrode Connections

SEG2n+1

Remark 78K0R/LF3: $\mathrm{n}=0$ to 14
78K0R/LG3: $\mathrm{n}=0$ to 19
78K0R/LH3: $\mathrm{n}=0$ to 26

Figure 16-26. Example of Connecting Four-Time-Slice LCD Panel
Data memory address

LCD panel

Figure 16-27. Four-Time-Slice LCD Drive Waveform Examples (1/3 Bias Method)

Remark The waveforms for COM2-SEG12 and COM3-SEG12 are omitted.

16.7.5 Eight-time-slice display example

Figure $16-29$ shows how the 15×8 dot LCD panel having the display pattern shown in Figure $16-28$ is connected to the segment signals (SEG4 to SEG18) and the common signals (COM0 to COM7). This example displays data "123" in the LCD panel. The contents of the display data memory (addresses F0404H to F0412H) correspond to this display.

The following description focuses on numeral "3." (\exists) displayed in the first digit. To display "3." in the LCD panel, it is necessary to apply the select or deselect voltage to the SEG4 to SEG8 pins according to Table 16-8 at the timing of the common signals COM0 to COM7; see Figure 16-28 for the relationship between the segment signals and LCD segments.

Table 16-9. Select and Deselect Voltages (COM0 to COM7)

Common	SEG4	SEG5	SEG6	SEG7	SEG8
COM0	Select	Select	Select	Select	Select
COM1	Deselect	Select	Deselect	Deselect	Deselect
COM2	Deselect	Deselect	Select	Deselect	Deselect
COM3	Deselect	Select	Deselect	Deselect	Deselect
COM4	Select	Deselect	Deselect	Deselect	Deselect
COM5	Deselect	Select	Select	Select	Deselect
COM6	Deselect	Deselect	Deselect	Deselect	Deselect
COM7			Deselect	Deselect	Select

According to Table 16-9, it is determined that the display data memory location (F0404H) that corresponds to SEG4 must contain 00110001.

Figure 16-30 shows examples of LCD drive waveforms between the SEG4 signal and each common signal. When the select voltage is applied to SEG4 at the timing of COMO, a waveform is generated to turn on the corresponding LCD segment.

Figure 18-28. Eight-Time-Slice LCD Display Pattern and Electrode Connections

Remark 78K0R/LF3: $\mathrm{n}=4$ to 26
78K0R/LG3: $\mathrm{n}=4$ to 35 78KOR/LH3: $\mathrm{n}=4$ to 49

Figure 18-29. Example of Connecting Eight-Time-Slice LCD Panel
Data memory address

LCD panel

Figure 16-30. Eight-Time-Slice LCD Drive Waveform Examples (1/4 Bias Method)

Remark The waveforms for COM3 to COM6, COM2-SEG4 to COM7-SEG4 are omitted.

16.8 Supplying LCD Drive Voltages Vlco, Vlc1, Vlc2, and Vlc3

With the 78KOR/Lx3 microcontrollers, a LCD drive power supply can be generated using either of three types of methods: external resistance division method, internal voltage boosting method, or capacitor split method.

16.8.1 External resistance division method

The 78KOR/Lx3 microcontrollers can also use external voltage divider resistors for generating LCD drive power supplies, without using internal resistors. Figure 16-31 shows examples of LCD drive voltage connection, corresponding to each bias method.

Figure 16-31. Examples of LCD Drive Power Connections (External Resistance Division Method) (1/2)
(a) Static display mode
(b) $1 / 2$ bias method

Notes 1. Connect VLC1 and VLC2 directly to GND or VLco. Note VLC3 can be used as port (P02).
2. VlC3 can be used as port (P02).

Caution To stabilize the potential of the VLco to VLC3 pins, it is recommended to connect a capacitor of about $0.1 \mu \mathrm{~F}$ between each of the pins from VLco to VLc3 and the GND pin as needed.

Figure 16-31. Examples of LCD Drive Power Connections (External Resistance Division Method) (2/2)
(c) $1 / 3$ bias method
(d) $1 / 4$ bias method

$V_{L C 0}=V_{D D}$

$V_{L C O}=V_{D D}$

Note VLC3 can be used as port (P02).

Caution To stabilize the potential of the Vlco to VLC3 pins, it is recommended to connect a capacitor of about $0.1 \mu \mathrm{~F}$ between each of the pins from VLco to VLc3 and the GND pin as needed.

16.8.2 Internal voltage boosting method

The 78KOR/Lx3 microcontrollers contain an internal voltage boost circuit for generating LCD drive power supplies. The internal voltage boost circuit and external capacitors ($0.47 \mu \mathrm{~F} \pm 30 \%$) are used to generate an LCD drive voltage. Only $1 / 3$ bias mode or $1 / 4$ bias mode can be set for the internal voltage boost method.

The LCD drive voltage of the internal voltage boost method can supply a constant voltage, regardless of changes in Vdd, because it is a power supply separate from the main unit.

In addition, a contrast can be adjusted by using the LCD boost level control register (VLCD).

Table 16-10. LCD Drive Voltages (Internal Voltage Boosting Method)

Bias Method LCD Drive Voltage Pin	1/3 Bias Method	1/4 Bias Method
V Lco	$3 \times \mathrm{VLC} 2$	$4 \times$ VLC3
VLC1	$2 \times \mathrm{VLC} 2$	$3 \times \mathrm{VLC3}$
VLC2	LCD reference voltage	$2 \times \mathrm{VLC3}$
VLC3	-	LCD reference voltage

Figure 16-32. Examples of LCD Drive Power Connections (Internal Voltage Boosting Method)
(a) $1 / 3$ bias method
(b) $1 / 4$ bias method

Note VLC3 can be used as port (P02).

Remark Use a capacitor with as little leakage as possible. In addition, make C1 a nonpolar capacitor.

Remark Use a capacitor with as little leakage as possible.
In addition, make C1 a nonpolar capacitor.

16.8.3 Capacitor split method

The 78K0R/Lx3 microcontrollers contain an internal voltage reduction circuit for generating LCD drive power supplies. The internal voltage reduction circuit and external capacitors ($0.47 \mu \mathrm{~F} \pm 30 \%$) are used to generate an LCD drive voltage. Only $1 / 3$ bias mode can be set for the capacitor split method.

Different from the external resistance division method, there is always no current flowing with the capacitor split method, so current consumption can be reduced.

Table 16-11. LCD Drive Voltages (Capacitor Split Method)

Bias Method LCD Drive Voltage Pin	1/3 Bias Method
VLCo	VdD
VLC1	$2 / 3 \times V \mathrm{DD}$
VLC2	$1 / 3 \times V_{\text {dD }}$
V $\mathrm{LC3}$	-

Figure 16-33. Examples of LCD Drive Power Connections (Internal Voltage Boosting Method)

- $1 / 3$ bias method

Note VLC3 can be used as port (P02).

Remark Use a capacitor with as little leakage as possible. In addition, make C1 a nonpolar capacitor.

16.9 Selection of LCD Display Data

With the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontroller, to use the LCD display data memory when the number of time slices is static, two, three, or four, the LCD display data can be selected from the following three types, according to the BLON and LCDSEL bit settings.

- Displaying an A-pattern area data (lower four bits of LCD display data memory)
- Displaying a B-pattern area data (higher four bits of LCD display data memory)
- Alternately displaying A-pattern and B-pattern area data (blinking display corresponding to the constant-period interrupt timing of the real-time counter (RTC))

Caution When the LCD display data memory is used when the number of time slices is eight, LCD display data (A-pattern, B-pattern, or blinking display) cannot be selected.

16.9.1 A-pattern area and B-pattern area data display

When BLON = LCDSEL = 0 , A-pattern area (lower four bits of the LCD display data memory) data will be output as the LCD display data.

When BLON $=0$, and LCDSEL $=1$, B-pattern area (higher four bits of the LCD display data memory) data will be output as the LCD display data.

Refer to 16.4 LCD Display Data Memory about the display area

16.9.2 Blinking display (Alternately displaying A-pattern and B-pattern area data)

When BLON = 1 has been set, A-pattern and B-pattern area data will be alternately displayed, according to the constant-period interrupt (INTRTC) timing of the real-time counter (RTC). Refer to CHAPTER 7 REAL-TIME COUNTER about the setting of the RTC constant-period interrupt (INTRTC) timing.

For blinking display of the LCD, set inverted values to the B-pattern area bits corresponding to the A-pattern area bits. (Example: Set 1 to bit 0 of 00 H , and set 0 to bit 4 of F 0400 H for blinking display.) When not setting blinking display of the LCD, set the same values. (Example: Set 1 to bit 2 of F0402H, and set 1 to bit 6 of F0402H for lighting display.)

Figure 16-34. Example of LCD Display Data Setting During Pattern-Switching Display

Refer to 16.4 LCD Display Data Memory about the display area.
Next, the timing operation of display switching is shown.

Figure 16-35. Switching Operation from A-Pattern Display to Blinking Display

Figure 16-36. Switching Operation from Blinking Display to A-Pattern Display

CHAPTER 17 MULTIPLIER/DIVIDER

17.1 Functions of Multiplier/Divider

The multiplier/divider is mounted onto all 78K0R/Lx3 microcontroller products.
The multiplier/divider has the following functions.

- 16 bits $\times 16$ bits $=32$ bits (multiplication)
- 32 bits $\div 32$ bits $=32$ bits, 32 -bit remainder (division)

17.2 Configuration of Multiplier/Divider

The multiplier/divider consists of the following hardware.

Table 17-1. Configuration of Multiplier/Divider

Item	
Registers	Configuration
	Multiplication/division data register A (L) (MDAL)
	Multiplication/division data register A (H) (MDAH)
	Multiplication/division data register B (L) (MDBL)
	Multiplication/division data register B (H) (MDBH)
	Multiplication/division data register C (L) (MDCL)
	Multiplication/division data register C (H) (MDCH)
Control register	Multiplication/division control register (MDUC)

Figure 17-1 shows a block diagram of the multiplier/divider.

Figure 17-1. Block Diagram of Multiplier/Divider

(1) Multiplication/division data register A (MDAH, MDAL)

The MDAH and MDAL registers set the values that are used for a multiplication or division operation and store the operation result. They set the multiplier and multiplicand data in the multiplication mode, and set the dividend data in the division mode. Furthermore, the operation result (quotient) is stored in the MDAH and MDAL registers in the division mode.
MDAH and MDAL can be set by a 16-bit manipulation instruction.
Reset signal generation clears these registers to 0000H.

Figure 17-2. Format of Multiplication/Division Data Register A (MDAH, MDAL)

Symbol

Cautions 1. Do not rewrite the MDAH and MDAL values during division operation processing (while the multiplication/division control register (MDUC) is $\mathbf{8 1 H}$). The operation will be executed in this case, but the operation result will be an undefined value.
2. The MDAH and MDAL values read during division operation processing (while MDUC is $\mathbf{8 1 H}$) will not be guaranteed.

The following table shows the functions of MDAH and MDAL during operation execution.

Table 17-2. Functions of MDAH and MDAL During Operation Execution

DIVMODE	Operation Mode	Setting	Operation Result
0	Multiplication mode	MDAH: Multiplier MDAL: Multiplicand	-
1	Division mode	MDAH: Divisor (higher 16 bits) MDAL: Dividend (lower 16 bits)	MDAH: Division result (quotient) Higher 16 bits MDAL: Division result (quotient) Lower 16 bits

Remark DIVMODE: Bit 7 of the multiplication/division control register (MDUC)
(2) Multiplication/division data register B (MDBL, MDBH)

The MDBH and MDBL registers set the values that are used for multiplication or division operation and store the operation result. They store the operation result (product) in the multiplication mode and set the divisor data in the division mode.
MDBH and MDBL can be set by a 16-bit manipulation instruction.
Reset signal generation clears these registers to 0000H.

Figure 17-3. Format of Multiplication/Division Data Register B (MDBH, MDBL)

Address: FFFF4H, FFFF5H, FFFF6H, FFFF7H After reset: $0000 \mathrm{H}, 0000 \mathrm{H}$ R/W

Cautions 1. Do not rewrite the MDBH and MDBL values during division operation processing (while the multiplication/division control register (MDUC) is 81 H). The operation result will be an undefined value.
2. Do not set MDBH and MDBL to 0000 H in the division mode. If they are set, the operation result will be an undefined value.

The following table shows the functions of MDBH and MDBL during operation execution.

Table 17-3. Functions of MDBH and MDBL During Operation Execution

DIVMODE	Operation Mode	Setting	Operation Result
0	Multiplication mode	-	MDBH: Multiplication result (product) Higher 16 bits
			MDBL: Multiplication result (product) Lower 16 bits
1	Division mode	MDBH: Divisor (higher 16 bits) MDBL: Dividend (lower 16 bits)	-

Remark DIVMODE: Bit 7 of the multiplication/division control register (MDUC)
(3) Multiplication/division data register C (MDCL, MDCH)

The MDCH and MDCL registers store remainder value of the operation result in the division mode. They are not used in the multiplication mode.
MDCH and MDCL can be read by a 16-bit manipulation instruction.
Reset signal generation clears these registers to 0000H.

Figure 17-4. Format of Multiplication/Division Data Register C (MDCH, MDCL)

Address: FOOEOH, FOOE1H, FOOE2H, FOOE3H After reset: $0000 \mathrm{H}, 0000 \mathrm{H}$ R

Caution The MDCH and MDCL values read during division operation processing (while the multiplication/division control register (MDUC) is $\mathbf{8 1 H}$) will not be guaranteed.

Table 17-4. Functions of MDCH and MDCL During Operation Execution

DIVMODE	Operation Mode	Setting	Operation Result
0	Multiplication mode	-	-
1	Division mode	-	MDCH: Remainder (higher 16 bits) MDCL: Remainder (lower 16 bits)

Remark DIVMODE: Bit 7 of the multiplication/division control register (MDUC)

The register configuration differs between when multiplication is executed and when division is executed, as follows.

- Register configuration during multiplication
<Multiplier A> <Multiplier B> <Product>
MDAL (bits 15 to 0) \times MDAH (bits 15 to 0) $=$ [MDBH (bits 15 to 0), MDBL (bits 15 to 0)]
- Register configuration during division
<Dividend> <Divisor>
[MDAH (bits 15 to 0), MDAL (bits 15 to 0)] \div [MDBH (bits 15 to 0), MDBL (bits 15 to 0)] =
<Quotient> <Remainder>
[MDAH (bits 15 to 0), MDAL (bits 15 to 0)] \cdots [MDCH (bits 15 to 0), MDCL (bits 15 to 0)]

17.3 Register Controlling Multiplier/Divider

The multiplier/divider is controlled by using the multiplication/division control register (MDUC).

(1) Multiplication/division control register (MDUC)

MDUC is an 8-bit register that controls the operation of the multiplier/divider.
MDUC can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 17-5. Format of Multiplication/Division Control Register (MDUC)

Address: F	0E8H A	et:						
Symbol	<7>	6	5	4	3	2	1	<0>
MDUC	DIVMODE	0	0	0	0	0	0	DIVST

| DIVMODE | Operation mode (multiplication/division) selection |
| :---: | :--- | :--- |
| 0 | Multiplication mode |
| 1 | Division mode |

DIVST $^{\text {Note }}$	Division operation start/stop
0	Division operation processing complete
1	Starts division operation/division operation processing in progress

Note DIVST can only be set (1) in the division mode. In the division mode, division operation is started by setting (1) DIVST. DIVST is automatically cleared (0) when the operation ends. In the multiplication mode, operation is automatically started by setting the multiplier and multiplicand to MDAH and MDAL, respectively.

Cautions 1. Do not rewrite DIVMODE during operation processing (while DIVST is 1). If it is rewritten, the operation result will be an undefined value.
2. DIVST cannot be cleared (0) by using software during division operation processing (while DIVST is 1).

17.4 Operations of Multiplier/Divider

17.4.1 Multiplication operation

- Initial setting
<1> Set bit 7 (DIVMODE) of the multiplication/division control register (MDUC) to 0.
<2> Set the multiplicand to the multiplication/division data register A (L) (MDAL).
<3> Set the multiplier to the multiplication/division data register A (H) (MDAH).
(There is no preference in the order of executing steps $<2>$ and $<3>$. Multiplication operation is automatically started when the multiplier and multiplicand are set to MDAH and MDAL, respectively.)
- During operation processing
<4> Wait for at least one clock. The operation will end when one clock has been issued.
- Operation end
$<5>$ Read the product (lower 16 bits) from the multiplication/division data register B (L) (MDBL).
<6> Read the product (higher 16 bits) from the multiplication/division data register $B(H)$ (MDBH).
(There is no preference in the order of executing steps <5> and <6>.)
- Next operation
<7> To execute multiplication operation next, start from the "Initial setting" for multiplication operation.
<8> To execute division operation next, start from the "Initial setting" in 17.4.2 Division operation.

Remark Steps <1> to $<7>$ correspond to $<1>$ to $<7>$ in Figure 17-6.

Figure 17-6. Timing Diagram of Multiplication Operation ($0003 \mathrm{H} \times 0002 \mathrm{H}$)

17.4.2 Division operation

- Initial setting
<1> Set bit 7 (DIVMODE) of the multiplication/division control register (MDUC) to 1.
<2> Set the dividend (higher 16 bits) to the multiplication/division data register A (H) (MDAH).
$<3>$ Set the dividend (lower 16 bits) to the multiplication/division data register A (L) (MDAL).
$<4>$ Set the divisor (higher 16 bits) to the multiplication/division data register B (H) (MDBH).
<5> Set the divisor (lower 16 bits) to the multiplication/division data register B (L) (MDBL).
<6> Set bit 0 (DIVST) of MDUC to 1 .
(There is no preference in the order of executing steps <2> to <5>.)
- During operation processing
$<7>$ The operation will end when one of the following processing is completed.
- A wait of at least 16 clocks (The operation will end when 16 clocks have been issued.)
- A check whether DIVST has been cleared
- Generation of a division completion interrupt (INTMD)
(The read values of MDBL, MDBH, MDCH, and MDCL during operation processing are not guaranteed.)
- Operation end
<8> DIVST is cleared (0) and an interrupt request signal (INTMD) is generated (end of operation).
<9> Read the quotient (lower 16 bits) from MDAL.
<10> Read the quotient (higher 16 bits) from MDAH.
$<11>$ Read the remainder (lower 16 bits) from multiplication/division data register C (L) (MDCL).
<12> Read the remainder (higher 16 bits) from the multiplication/division data register C (H) (MDCH).
(There is no preference in the order of executing steps $<9>$ to $<12>$.)
- Next operation
<13> To execute multiplication operation next, start from the "Initial setting" in 17.4.1 Multiplication operation.
<14> To execute division operation next, start from the "Initial setting" for division operation.

Remark Steps <1> to <12> correspond to <1> to <12> in Figure 17-7.

CHAPTER 18 DMA CONTROLLER

The DMA (Direct Memory Access) controller is mounted onto all 78K0R/Lx3 microcontroller products.
Data can be automatically transferred between the peripheral hardware supporting DMA, SFRs, and internal RAM without via CPU.

As a result, the normal internal operation of the CPU and data transfer can be executed in parallel with transfer between the SFR and internal RAM, and therefore, a large capacity of data can be processed. In addition, real-time control using communication, timer, and A/D can also be realized.

18.1 Functions of DMA Controller

O Number of DMA channels: 2
O Transfer unit: 8 or 16 bits
O Maximum transfer unit: 1024 times
O Transfer type: 2-cycle transfer (One transfer is processed in 2 clocks and the CPU stops during that processing.)
O Transfer mode: Single-transfer mode
O Transfer target: Between SFR and internal RAM
O Transfer request: Selectable from the following peripheral hardware interrupts

Peripheral hardware		78K0R/LF3 (μ PD78F150nA: $\mathrm{n}=0$ to 2)	78K0R/LG3 (μ PD78F150nA: $\mathrm{n}=3$ to 5)	78K0R/LH3 (μ PD78F150nA: $\mathrm{n}=6$ to 8)
		80 pins	100 pins	128 pins
Timer array unit 0	Channel 0	\checkmark	\checkmark	\checkmark
	Channel 1	\checkmark	\checkmark	\checkmark
	Channel 4	\checkmark	\checkmark	\checkmark
	Channel 5	\checkmark	\checkmark	\checkmark
Serial array unit 0	CSIOO	-	\checkmark	\checkmark
	CSIO1	-	-	\checkmark
	CSI10	\checkmark	\checkmark	\checkmark
	UART0	-	\checkmark	\checkmark
	UART1	\checkmark	\checkmark	\checkmark
	IIC10	\checkmark	\checkmark	\checkmark
Serial array unit 1	UART3	\checkmark	\checkmark	\checkmark
A/D converter		\checkmark	\checkmark	\checkmark

V: Supported, -: Not supported

Here are examples of functions using DMA.

- Successive transfer of serial interface
- Batch transfer of analog data
- Capturing A/D conversion result at fixed interval
- Capturing port value at fixed interval

18.2 Configuration of DMA Controller

The DMA controller includes the following hardware.

Table 18-1. Configuration of DMA Controller

Item	Configuration
Address registers	•DMA SFR address registers 0,1 (DSA0, DSA1)
•DMA RAM address registers 0,1 (DRA0, DRA1)	

(1) DMA SFR address register n (DSAn)

This is an 8-bit register that is used to set an SFR address that is the transfer source or destination of DMA channel n.

Set the lower 8 bits of the SFR addresses FFFOOH to FFFFFH ${ }^{\text {Note }}$.
This register is not automatically incremented but fixed to a specific value.
In the 16-bit transfer mode, the least significant bit is ignored and is treated as an even address.
DSAn can be read or written in 8 -bit units. However, it cannot be written during DMA transfer.
Reset signal generation clears this register to 00 H .

Note Except for address FFFFEH because the PMC register is allocated there.

Figure 18-1. Format of DMA SFR Address Register n (DSAn)

Address: FFFB0H (DSA0), FFFB1H (DSA1) After reset: 00H R/W

DSAn

Remark n : DMA channel number $(\mathrm{n}=0,1)$

(2) DMA RAM address register n (DRAn)

This is a 16-bit register that is used to set a RAM address that is the transfer source or destination of DMA channel n .
Addresses of the internal RAM area other than the general-purpose registers (FEFOOH to FFEDFH in the case of the μ PD78F1500A, 78F1503A, and 78F1506A) can be set to this register.
Set the lower 16 bits of the RAM address.
This register is automatically incremented when DMA transfer has been started. It is incremented by +1 in the 8 bit transfer mode and by +2 in the 16 -bit transfer mode. DMA transfer is started from the address set to this DRAn register. When the data of the last address has been transferred, DRAn stops with the value of the last address +1 in the 8 -bit transfer mode, and the last address +2 in the 16 -bit transfer mode.
In the 16-bit transfer mode, the least significant bit is ignored and is treated as an even address.
DRAn can be read or written in 8 -bit or 16 -bit units. However, it cannot be written during DMA transfer.
Reset signal generation clears this register to 0000 H .

Figure 18-2. Format of DMA RAM Address Register n (DRAn)

($\mathrm{n}=0,1$)

Remark n : DMA channel number $(\mathrm{n}=0,1)$
(3) DMA byte count register n (DBCn)

This is a 10-bit register that is used to set the number of times DMA channel n executes transfer. Be sure to set the number of times of transfer to this DBCn register before executing DMA transfer (up to 1024 times).

Each time DMA transfer has been executed, this register is automatically decremented. By reading this DBCn register during DMA transfer, the remaining number of times of transfer can be learned.

DBCn can be read or written in 8 -bit or 16-bit units. However, it cannot be written during DMA transfer.
Reset signal generation clears this register to 0000 H .

Figure 18-3. Format of DMA Byte Count Register n (DBCn)

($\mathrm{n}=0,1$)

DBCn[9:0]	Number of Times of Transfer (When DBCn is Written)	Remaining Number of Times of Transfer (When DBCn is Read)
000H	1024	Completion of transfer or waiting for 1024 times of DMA transfer
001H	1	Waiting for remaining one time of DMA transfer
002H	2	Waiting for remaining two times of DMA transfer
003H	3	Waiting for remaining three times of DMA transfer
-	-	-
3FEH	1022	Waiting for remaining 1022 times of DMA transfer
3FFH	1023	Waiting for remaining 1023 times of DMA transfer

Cautions 1. Be sure to clear bits $\mathbf{1 5}$ to $\mathbf{1 0}$ to " 0 ".
2. If the general-purpose register is specified or the internal RAM space is exceeded as a result of continuous transfer, the general-purpose register or SFR space are written or read, resulting in loss of data in these spaces. Be sure to set the number of times of transfer that is within the internal RAM space.

Remark n : DMA channel number $(\mathrm{n}=0,1)$

18.3 Registers Controlling DMA Controller

DMA controller is controlled by the following registers.

- DMA mode control register n (DMCn)
- DMA operation control register n (DRCn)

Remark n : DMA channel number $(\mathrm{n}=0,1)$
(1) DMA mode control register n (DMCn)

DMCn is a register that is used to set a transfer mode of DMA channel n. It is used to select a transfer direction, data size, setting of pending, and start source. Bit 7 (STGn) is a software trigger that starts DMA.
Rewriting bits 6,5 , and 3 to 0 of DMCn is prohibited during operation (when DSTn = 1).
DMCn can be set by a 1-bit or 8 -bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 18-4. Format of DMA Mode Control Register n (DMCn) (1/2)

Address: FFFBAH (DMC0), FFFBBH (DMC1)			After reset: 00 H R/W			2	1	0
Symbol	<7>	<6>	<5>	<4>	3			
DMCn	STGn	DRSn	DSn	DWAITn	IFCn3	IFCn2	IFCn1	IFCn0
	STGn ${ }^{\text {Note } 1}$	DMA transfer start software trigger						
	0	No trigger operation						
	1	DMA transfer is started when DMA operation is enabled ($\mathrm{DENn}=1$).						
	DMA transfer is started by writing 1 to STGn when DMA operation is enabled (DENn $=1$). When this bit is read, 0 is always read.							

DRSn		Selection of DMA transfer direction
0	SFR to internal RAM	
1	Internal RAM to SFR	

DSn	Specification of transfer data size for DMA transfer	
0	8 bits	
1	16 bits	

DWAITn ${ }^{\text {Note } 2}$	Pending of DMA transfer
0	Executes DMA transfer upon DMA start request (not held pending).
1	Holds DMA start request pending if any.
DMA transfer that has been held pending can be started by clearing the value of DWAITn to 0. It takes 2 clocks to actually hold DMA transfer pending when the value of DWAITn is set to 1.	

Notes 1. The software trigger (STGn) can be used regardless of the IFCn0 to IFCn3 bits values.
2. When DMA transfer is held pending while using both DMA channels, be sure to hold the DMA transfer pending for both channels (by setting the DWAIT0 and DWAIT1 bits to 1).

Remark n : DMA channel number $(\mathrm{n}=0,1)$

Figure 18-4. Format of DMA Mode Control Register n (DMCn) (2/2)

Address: FFFBAH (DMC0), FFFBBH (DMC1)) After reset: 00 H R/W						
Symbol	<7>		<6>		<5>	<4>	3	2	1		0
DMCn	STGn		DRSn		DSn	DWAITn	IFCn3	IFCn2	IFC	IFCn0	
	IFCn	IFCn	IFCn	IFCn	Selection of DMA start source ${ }^{\text {Note }}$				LF3	LG3	LH3
	3	2	1	0	Trigger signal	Trigger contents					
	0	0	0	0	-	Disables DMA transfer by interrupt. (Only software trigger is enabled.)			\checkmark	\checkmark	$\sqrt{ }$
	0	0	1	0	INTTM00	Timer channel 0 interrupt			\checkmark	V	\checkmark
	0	0	1	1	INTTM01	Timer channel 1 interrupt			$\sqrt{ }$	\checkmark	\checkmark
	0	1	0	0	INTTM04	Timer channel 4 interrupt			$\sqrt{ }$	\checkmark	\checkmark
	0	1	0	1	INTTM05	Timer channel 5 interrupt			\checkmark	\checkmark	\checkmark
	0	1	1	0	INTSTO	UART0 transmission end interrupt			-	\checkmark	$\sqrt{ }$
					INTCSIOO	CSIOO transfer end interrupt			-	\checkmark	\checkmark
	0	1	1	1	INTSR0	UART0 reception end interrupt			-	\checkmark	\checkmark
					INTCSI01	CSI01 transfer end interrupt			-	-	$\sqrt{ }$
	1	0	0	0	INTST1	UART1 transmission end interrupt			\checkmark	\checkmark	\checkmark
					INTCSI10	CSI10 transfer end interrupt			\checkmark	\checkmark	\checkmark
					INTIIC10	IIC10 transfer end interrupt			\checkmark	\checkmark	\checkmark
	1	0	0	1	INTSR1	UART1 reception end interrupt			\checkmark	\checkmark	\checkmark
	1	0	1	0	INTST3	UART3 transmission end interrupt			\checkmark	\checkmark	\checkmark
	1	0	1	1	INTSR3	UART3 reception end interrupt			\checkmark	\checkmark	\checkmark
	1	1	0	0	INTAD	A/D conversion end interrupt			\checkmark	\checkmark	$\sqrt{ }$
	Other than above					Setting prohibited					

Note The software trigger (STGn) can be used regardless of the IFCn0 to IFCn3 values.

Remarks 1. n : DMA channel number $(\mathrm{n}=0,1)$
2. $\sqrt{ }$: Supported, -: Not supported
(2) DMA operation control register n (DRCn)

DRCn is a register that is used to enable or disable transfer of DMA channel n.
Rewriting bit 7 (DENn) of this register is prohibited during operation (when DSTn = 1).
DRCn can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 18-5. Format of DMA Operation Control Register n (DRCn)

Address: FFFBCH (DRC0), FFFBDH (DRC1)			After reset: 00 H R/W			2	1	<0>
Symbol	<7>	6	5	4	3			
DRCn	DENn	0	0	0	0	0	0	DSTn
	DENn	DMA operation enable flag						
	0	Disables operation of DMA channel n (stops operating cock of DMA).						
	1	Enables operation of DMA channel n.						
	DMAC waits for a DMA trigger when DSTn = 1 after DMA operation is enabled (DENn = 1).							
	DSTn	DMA transfer mode flag						
	0	DMA transfer of DMA channel n is completed.						
	1	DMA transfer of DMA channel n is not completed (still under execution).						
	DMAC waits for a DMA trigger when DSTn = 1 after DMA operation is enabled (DENn =1). When a software trigger (STGn) or the start source trigger set by IFCn3 to IFCn0 is input, DMA transfer is started. When DMA transfer is completed after that, this bit is automatically cleared to 0 . Write 0 to this bit to forcibly terminate DMA transfer under execution.							

Cautions 1. The DSTn flag is automatically cleared to 0 when a DMA transfer is completed. Writing the DENn flag is enabled only when DSTn $=0$. When a DMA transfer is terminated without waiting for generation of the interrupt (INTDMAn) of DMAn, therefore, set DSTn to 0 and then DENn to 0 (for details, refer to 18.5.7 Forced termination by software).
2. When the FSEL bit of the OSMC register has been set to 1 , do not enable (DENn = 1) DMA operation for at least three clocks after the setting.

Remark $\mathrm{n}:$ DMA channel number $(\mathrm{n}=0,1)$

18.4 Operation of DMA Controller

18.4.1 Operation procedure

<1> The DMA controller is enabled to operate when DENn = 1. Before writing the other registers, be sure to set DENn to 1. Use 80H to write with an 8-bit manipulation instruction.
<2> Set an SFR address, a RAM address, the number of times of transfer, and a transfer mode of DMA transfer to the DSAn, DRAn, DBCn, and DMCn registers.
<3> The DMA controller waits for a DMA trigger when DSTn $=1$. Use 81 H to write with an 8 -bit manipulation instruction.
<4> When a software trigger (STGn) or a start source trigger specified by IFCn3 to IFCn0 is input, a DMA transfer is started.
<5> Transfer is completed when the number of times of transfer set by the DBCn register reaches 0 , and transfer is automatically terminated by occurrence of an interrupt (INTDMAn).
$<6>$ Stop the operation of the DMA controller by clearing DENn to 0 when the DMA controller is not used.

Figure 18-6. Operation Procedure

Remark n : DMA channel number $(\mathrm{n}=0,1)$

18.4.2 Transfer mode

The following four modes can be selected for DMA transfer by using bits 6 and 5 (DRSn and DSn) of the DMCn register.

DRSn	DSn	DMA Transfer Mode
0	0	Transfer from SFR of 1-byte data (fixed address) to RAM (address is incremented by +1)
0	1	Transfer from SFR of 2-byte data (fixed address) to RAM (address is incremented by +2)
1	0	Transfer from RAM of 1-byte data (address is incremented by +1) to SFR (fixed address)
1	1	Transfer from RAM of 2-byte data (address is incremented by +2) to SFR (fixed address)

By using these transfer modes, up to 1024 bytes of data can be consecutively transferred by using the serial interface, data resulting from A / D conversion can be consecutively transferred, and port data can be scanned at fixed time intervals by using a timer.

18.4.3 Termination of DMA transfer

When $\mathrm{DBCn}=00 \mathrm{H}$ and DMA transfer is completed, the DSTn bit is automatically cleared to 0 . An interrupt request (INTDMAn) is generated and transfer is terminated.

When the DSTn bit is cleared to 0 to forcibly terminate DMA transfer, the DBCn and DRAn registers hold the value when transfer is terminated.

The interrupt request (INTDMAn) is not generated if transfer is forcibly terminated.

Remark n : DMA channel number $(\mathrm{n}=0,1)$

18.5 Example of Setting of DMA Controller

18.5.1 CSI consecutive transmission

A flowchart showing an example of setting for CSI consecutive transmission is shown below.

- Consecutive transmission of CSI10
- DMA channel 0 is used for DMA transfer.
- DMA start source: INTCSI10 (software trigger (STG0) only for the first start source)
- Interrupt of CSI10 is specified by IFC03 to IFC00 (bits 3 to 0 of the DMC0 register) $=1000 \mathrm{~B}$.
- Transfers FFB00H to FFBFFH (256 bytes) of RAM to FFF44H of the transmit buffer (SIO10) of CSI.

Figure 18-7. Example of Setting for CSI Consecutive Transmission

Hardware operation

Note The DSTO flag is automatically cleared to 0 when a DMA transfer is completed.
Writing the DENO flag is enabled only when DSTO $=0$. To terminate a DMA transfer without waiting for occurrence of the interrupt of DMAO (INTDMAO), set DSTO to 0 and then DENO to 0 (for details, refer to 18.5.7 Forced termination by software)

The fist trigger for consecutive transmission is not started by the interrupt of CSI. In this example, it start by a software trigger.

CSI transmission of the second time and onward is automatically executed.
A DMA interrupt (INTDMAO) occurs when the last transmit data has been written to the data register.

18.5.2 CSI master reception

A flowchart showing an example of setting for CSI master reception is shown below.

- Master reception (256 bytes) of CSIOO
- DMA channel 0 is used to read received data and DMA channel 1 is used to write dummy data.
- DMA start source: INTCSIOO (If the same start source is specified for DMA channels 0 and 1 , the data of channel 0 is transferred, and then that of channel 1.)
- Interrupt of CSI00 is specified by IFC03 to IFC00 = IFC13 to IFC10 (bits 3 to 0 of the DMCn register) = 0110B.
- Data is transferred (received) from FFF10H of the CSI data register (SIO00) to FF100H to FF1FFH of RAM (256 bytes). (In successive reception mode, the data that is to be received when the first buffer empty interrupt occurs is invalid because the data has not been received.)
- Transfers dummy data FF101H to FF1FFH (255 bytes) of RAM to FFF10H of the data register (SIO00) of CSI. (Dummy data is written to the first byte by using software (an instruction).)

Figure 18-8. Example of Setting of Consecutively Capturing A/D Conversion Results

Note The DSTn flag is automatically cleared to 0 when a DMA transfer is completed.
Writing the DENn flag is enabled only when DSTn $=0$. To terminate a DMA transfer without waiting for occurrence of the interrupt of DMAn (INTDMAn), set DSTn to 0 and then DENn to 0 (for details, refer to 18.5.7 Forcible termination by software).

Because no CSI interrupt is generated when reception starts during CSI master reception, dummy data is written using software in this example.

The received data is automatically transferred from the first byte (In successive reception mode, the data that is to be received when the first buffer empty interrupt occurs is invalid because the valid data has not been received.).

A DMA interrupt (INTDMA1) occurs when the last dummy data has been writing to the data register. A DMA interrupt (INTDMAO) occurs when the last received data has been read from the data register. To restart the DMA transfer, the CSI transfer must be completed.

18.5.3 CSI transmission/reception

A flowchart showing an example of setting for CSI transmission/reception is shown below.

- Transmission/reception (256 bytes) of CSIOO
- DMA channel 0 is used to read received data and DMA channel 1 is used to write transmit data.
- DMA start source: INTCSIOO (If the same start source is specified for DMA channels 0 and 1 , the data of channel 0 is transferred, and then that of channel 1)
- Interrupt of CSI00 is specified by IFC03 to IFC00 = IFC13 to IFC10 (bits 3 to 0 of the DMCn register) $=0110 \mathrm{~B}$.
- Data is transferred (received) from FFF10H of the CSI data register (SIO00) to FF100H to FF1FFH of RAM (256 bytes). (In successive transmission/reception mode, the data that is to be received when the first buffer empty interrupt occurs is invalid because the data has not been received.)
- Transfers FF201H to FF2FFH (255 bytes) of RAM to FFF10H of the data register (SIO00) of CSI (transmission) (Transmit data is written to the first byte by using software (an instruction).)

Figure 18-9. Setting Example of CSI Transmission/reception

Note The DSTn flag is automatically cleared to 0 when a DMA transfer is completed.
Writing the DENn flag is enabled only when DSTn $=0$. To terminate a DMA transfer without waiting for occurrence of the interrupt of DMAn (INTDMAn), set DSTn to 0 and then DENn to 0 (for details, refer to 18.5.7 Forcible termination by software).

During CSI transfers, no CSI interrupt is generated when the transmitted data of the first byte is written. Therefore, the transmitted data is written using software in this example. The data of the second and following bytes is automatically transmitted.

The received data is automatically transferred from the first byte. (In successive transmission/reception, the data that is to be received when the first buffer empty interrupt occurs is invalid because the valid data has not been received.)

A DMA interrupt (INTDMA1) occurs when the last transmit data has been writing to the data register. A DMA interrupt (INTDMAO) occurs when the last received data has been read from the data register. To restart the DMA transfer, the CSI transfer must be completed.

18.5.4 Consecutive capturing of A / D conversion results

A flowchart of an example of setting for consecutively capturing A/D conversion results is shown below.

- Consecutive capturing of A / D conversion results.
- DMA channel 1 is used for DMA transfer.
- DMA start source: INTAD
- Interrupt of A/D is specified by IFC13 to IFC10 (bits 3 to 0 of the DMC1 register) $=1100 \mathrm{~B}$.
- Transfers FFF1EH and FFF1FH (2 bytes) of the 12-bit A/D conversion result register to 512 bytes of FFCEOH to FFEDFH of RAM.

Figure 18-10. Example of Setting of Consecutively Capturing A/D Conversion Results

Note The DST1 flag is automatically cleared to 0 when a DMA transfer is completed.
Writing the DEN1 flag is enabled only when DST1 = 0 . To terminate a DMA transfer without waiting for occurrence of the interrupt of DMA1 (INTDMA1), set DST1 to 0 and then DEN1 to 0 (for details, refer to 18.5.7 Forced termination by software).

18.5.5 UART consecutive reception + ACK transmission

A flowchart illustrating an example of setting for UART consecutive reception + ACK transmission is shown below.

- Consecutively receives data from UART0 and outputs ACK to P10 on completion of reception.
- DMA channel 0 is used for DMA transfer.
- DMA start source: Software trigger (DMA transfer on occurrence of an interrupt is disabled.)
- Transfers FFF12H of UART receive data register 0 (RXD0) to 64 bytes of FFEOOH to FFE3FH of RAM.

Figure 18-11. Example of Setting for UART Consecutive Reception + ACK Transmission

Note The DSTO flag is automatically cleared to 0 when a DMA transfer is completed.
Writing the DENO flag is enabled only when DSTO = 0. To terminate a DMA transfer without waiting for occurrence of the interrupt of DMAO (INTDMAO), set DSTO to 0 and then DENO to 0 (for details, refer to 18.5.7 Forced termination by software).

Remark This is an example where a software trigger is used as a DMA start source.
If ACK is not transmitted and if only data is consecutively received from UART, the UART reception end interrupt (INTSRO) can be used to start DMA for data reception.

18.5.6 Holding DMA transfer pending by DWAITn

When DMA transfer is started, transfer is performed while an instruction is executed. At this time, the operation of the CPU is stopped and delayed for the duration of 2 clocks. If this poses a problem to the operation of the set system, a DMA transfer can be held pending by setting the DWAITn bit to 1. The DMA transfer for a transfer trigger that occurred while DMA transfer was held pending is executed after the pending status is canceled. However, because only one transfer trigger can be held pending for each channel, even if multiple transfer triggers occur for one channel during the pending status, only one DMA transfer is executed after the pending status is canceled.

To output a pulse with a width of 10 clocks of the operating frequency from the P10 pin, for example, the clock width increases to 12 if a DMA transfer is started midway. In this case, the DMA transfer can be held pending by setting the DWAITn bit to 1 .

After setting the DWAITn bit to 1 , it takes two clocks until a DMA transfer is held pending.

Figure 18-12. Example of Setting for Holding DMA Transfer Pending by DWAITn

Caution When DMA transfer is held pending while using both DMA channels, be sure to held the DMA transfer pending for both channels (by setting DWAITO and DWAIT1 to 1). If the DMA transfer of one channel is executed while that of the other channel is held pending, DMA transfer might not be held pending for the latter channel.

Remarks 1. n : DMA channel number $(\mathrm{n}=0,1)$
2. 1 clock: $1 /$ fclk (fclk: CPU clock)

18.5.7 Forced termination by software

After DSTn is set to 0 by software, it takes up to 2 clocks until a DMA transfer is actually stopped and DSTn is set to 0 . To forcibly terminate a DMA transfer by software without waiting for occurrence of the interrupt (INTDMAn) of DMAn, therefore, perform either of the following processes.
<When using one DMA channel>

- Set the DSTn bit to 0 (use DRCn $=80 \mathrm{H}$ to write with an 8 -bit manipulation instruction) by software, confirm by polling that the DSTn bit has actually been cleared to 0 , and then set the DENn bit to 0 (use $\mathrm{DRCn}=00 \mathrm{H}$ to write with an 8bit manipulation instruction).
- Set the DSTn bit to 0 (use DRCn $=80 \mathrm{H}$ to write with an 8 -bit manipulation instruction) by software and then set the DENn bit to 0 (use $\mathrm{DRCn}=00 \mathrm{H}$ to write with an 8-bit manipulation instruction) two or more clocks after.
<When using both DMA channels>
- To forcibly terminate DMA transfer by software when using both DMA channels (by setting DSTn to 0), clear the DSTn bit to 0 after the DMA transfer is held pending by setting the DWAITO and DWAIT1 bits of both channels to 1 . Next, clear the DWAIT0 and DWAIT1 bits of both channels to 0 to cancel the pending status, and then clear the DENn bit to 0 .

Figure 18-13. Forced Termination of DMA Transfer (1/2)

Example 1

Example 2

Remarks 1. n : DMA channel number $(\mathrm{n}=0,1)$
2. 1 clock: $1 /$ fclk (fclk: CPU clock)

Figure 18-13. Forced Termination of DMA Transfer (2/2)

Example 3

- Procedure for forcibly terminating the DMA
transfer for one channel if both channels are used
- Procedure for forcibly terminating the DMA transfer for both channels if both channels are used

Caution In example 3, the system is not required to wait two clock cycles after the DWAITn bit is set to 1. In addition, the system does not have to wait two clock cycles after clearing the DSTn bit to 0 , because more than two clock cycles elapse from when the DSTn bit is cleared to 0 to when the DENn bit is cleared to 0 .

Remarks 1. n : DMA channel number $(\mathrm{n}=0,1)$
2. 1 clock: $1 /$ fclk (fclk: CPU clock)

18.6 Cautions on Using DMA Controller

(1) Priority of DMA

During DMA transfer, a request from the other DMA channel is held pending even if generated. The pending DMA transfer is started after the ongoing DMA transfer is completed. If two DMA requests are generated at the same time, however, DMA channel 0 takes priority over DMA channel 1.
If a DMA request and an interrupt request are generated at the same time, the DMA transfer takes precedence, and then interrupt servicing is executed.
(2) DMA response time

The response time of DMA transfer is as follows.

Table 17-2. Response Time of DMA Transfer

	Minimum Time	Maximum Time
Response time	3 clocks	10 clocks $^{\text {Note }}$

Note The maximum time necessary to execute an instruction from internal RAM is 16 clock cycles.

Cautions 1. The above response time does not include the two clock cycles required for a DMA transfer.
2. When executing a DMA pending instruction (see 18.6 (4)), the maximum response time is extended by the execution time of that instruction to be held pending.
3. Do not specify successive transfer triggers for a channel within a period equal to the maximum response time plus one clock cycle, because they might be ignored.

Remark 1 clock: 1 /fclk (fclk: CPU clock)

(3) Operation in standby mode

The DMA controller operates as follows in the standby mode.

Table 18-3. DMA Operation in Standby Mode

Status	DMA Operation
HALT mode	Normal operation
STOP mode	Stops operation. If DMA transfer and STOP instruction execution contend, DMA transfer may be damaged. Therefore, stop DMA before executing the STOP instruction.

(4) DMA pending instruction

Even if a DMA request is generated, DMA transfer is held pending immediately after the following instructions.

- CALL !addr16
- CALL \$!addr20
- CALL !!addr20
- CALL rp
- CALLT [addr5]
- BRK
- Bit manipulation instructions for registers IFOL, IFOH, IF1L, IF1H, IF2L, IF2H, MKOL, MKOH, MK1L, MK1H, MK2L, MK2H, PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H and PSW each.
(5) Operation if address in general-purpose register area or other than those of internal RAM area is specified The address indicated by DRAOn is incremented during DMA transfer. If the address is incremented to an address in the general-purpose register area or exceeds the area of the internal RAM, the following operation is performed.
- In mode of transfer from SFR to RAM

The data of that address is lost.

- In mode of transfer from RAM to SFR Undefined data is transferred to SFR.

In either case, malfunctioning may occur or damage may be done to the system. Therefore, make sure that the address is within the internal RAM area other than the general-purpose register area.

CHAPTER 19 INTERRUPT FUNCTIONS

<R>

		78K0R/LF3	78K0R/FG3	78K0R/LH3
		80 pins	100 pins	128 pins
Maskable interrupts	External	30	33	33
	internal	8	12	13

19.1 Interrupt Function Types

The following two types of interrupt functions are used.

(1) Maskable interrupts

These interrupts undergo mask control. Maskable interrupts can be divided into four priority groups by setting the priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H).
Multiple interrupt servicing can be applied to low-priority interrupts when high-priority interrupts are generated. If two or more interrupt requests, each having the same priority, are simultaneously generated, then they are processed according to the priority of vectored interrupt servicing. For the priority order, see Table 19-1.
A standby release signal is generated and STOP and HALT modes are released.
External interrupt requests and internal interrupt requests are provided as maskable interrupts.

(2) Software interrupt

This is a vectored interrupt generated by executing the BRK instruction. It is acknowledged even when interrupts are disabled. The software interrupt does not undergo interrupt priority control.

19.2 Interrupt Sources and Configuration

The interrupt sources consist of maskable interrupts and software interrupts. In addition, they also have up to five reset sources (see Table 19-1). The vector codes that store the program start address when branching due to the generation of a reset or various interrupt requests are two bytes each, so interrupts jump to a 64 K address of 00000 H to 0 FFFFFH.

Table 19-1. Interrupt Source List (1/3)

Interrupt Type	Internal/ External	Basic Configuration Type Note 1	Default Priority ${ }^{\text {Note } 2}$	Interrupt Source		Vector Table Address	$\begin{gathered} \mathrm{LF} \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{LG} \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{LH} \\ 3 \end{gathered}$
				Name	Trigger				
Maskable	Internal	(A)	0	INTWDTI	Watchdog timer interval ${ }^{\text {Note } 3}$ (75\% of overflow time)	00004H	\checkmark	\checkmark	\checkmark
			1	INTLVI	Low-voltage detection ${ }^{\text {Note } 4}$	00006H	\checkmark	\checkmark	\checkmark
	External	(B)	2	INTPO	Pin input edge detection	00008H	\checkmark	\checkmark	\checkmark
			3	INTP1		0000AH	\checkmark	\checkmark	\checkmark
			4	INTP2		0000CH	\checkmark	\checkmark	\checkmark
			5	INTP3		0000EH	\checkmark	\checkmark	\checkmark
			6	INTP4		00010H	\checkmark	\checkmark	\checkmark
			7	INTP5		00012H	\checkmark	\checkmark	\checkmark
	Internal	(A)	8	INTST3	End of UART3 transmission	00014H	\checkmark	\checkmark	\checkmark
			9	INTSR3	End of UART3 reception	00016H	\checkmark	\checkmark	\checkmark
			10	INTSRE3	UART3 reception error occurrence	00018H	\checkmark	\checkmark	\checkmark
			11	INTDMAO	End of DMAO transfer	0001AH	\checkmark	\checkmark	\checkmark
			12	INTDMA1	End of DMA1 transfer	0001CH	\checkmark	\checkmark	\checkmark
			13	INTSTO	End of UARTO transmission	0001EH	-	\checkmark	\checkmark
				INTCSIOO	End of CSIOO communication		-	\checkmark	\checkmark
			14	INTSR0	End of UARTO reception	00020H	-	\checkmark	\checkmark
				INTCSI01	End of CSI01 communication		-	-	\checkmark
			15	INTSRE0	CSI01/UART0 reception error occurrence	00022H	\checkmark	\checkmark	\checkmark
			16	INTST1	End of UART1 transmission	00024H	\checkmark	\checkmark	\checkmark
				INTCSI10	End of CSI10 communication		\checkmark	\checkmark	\checkmark
				INTIIC10	End of IIC10 communication		\checkmark	\checkmark	\checkmark
			17	INTSR1	End of UART1 reception	00026H	\checkmark	\checkmark	\checkmark
			18	INTSRE1	UART1 reception error occurrence	00028H	\checkmark	\checkmark	\checkmark
			19	INTIICA	End of IICA communication	0002AH	-	\checkmark	\checkmark
			20	INTTM00	End of timer channel 0 count or capture	0002CH	\checkmark	\checkmark	\checkmark

Notes 1. The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 45 indicates the lowest priority.
2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 19-1.
3. When bit 7 (WDTINT) of the option byte $(000 \mathrm{COH})$ is set to 1 .
4. When bit 1 (LVIMD) of the low-voltage detection register (LVIM) is cleared to 0 .

Table 19-1. Interrupt Source List (2/3)

Interrupt Type	Internal/ External	Basic Configuration Type Note 1	Default Priority ${ }^{\text {Note } 2}$	Interrupt Source		Vector Table Address	$\begin{gathered} \text { LF } \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{LG} \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{LH} \\ 3 \end{gathered}$
				Name	Trigger				
Maskable	Internal	(A)	21	INTTM01	End of timer channel 1 count or capture	0002EH	\checkmark	\checkmark	\checkmark
			22	INTTM02	End of timer channel 2 count or capture	00030H	$\sqrt{ }$	\checkmark	$\sqrt{ }$
			23	INTTM03	End of timer channel 3 count or capture	00032H	$\sqrt{ }$	\checkmark	$\sqrt{ }$
			24	INTAD	End of A / D conversion	00034H	\checkmark	\checkmark	\checkmark
			25	INTRTC	Fixed-cycle signal of real-time counter/alarm match detection	00036H	$\sqrt{ }$	$\sqrt{ }$	\checkmark
			26	INTRTCI	Interval signal detection of real-time counter	00038H	\checkmark	\checkmark	\checkmark
	External	(C)	27	INTKR	Key return signal detection	0003AH	-	-	\checkmark
	Internal	(A)	28	INTST2	End of UART2 transmission/	0003CH	\checkmark	\checkmark	\checkmark
				INTCSI20	End of CSI20 communication/		\checkmark	\checkmark	\checkmark
				INTIIC20	End of IIC20 communication		$\sqrt{ }$	\checkmark	\checkmark
			29	INTSR2	End of UART2 reception	0003EH	\checkmark	\checkmark	\checkmark
			30	INTSRE2	UART2 reception error occurrence	00040H	$\sqrt{ }$	\checkmark	\checkmark
			31	INTTM04	End of timer channel 4 count or capture	00042H	\checkmark	\checkmark	\checkmark
			32	INTTM05	End of timer channel 5 count or capture	00044H	\checkmark	\checkmark	\checkmark
			33	INTTM06	End of timer channel 6 count or capture	00046H	\checkmark	\checkmark	\checkmark
			34	INTTM07	End of timer channel 7 count or capture	00048H	$\sqrt{ }$	\checkmark	\checkmark
	External	(B)	35	INTP6	Pin input edge detection	0004AH	\checkmark	\checkmark	\checkmark
			36	INTP7		0004 CH	$\sqrt{ }$	\checkmark	$\sqrt{ }$
			37	INTP8		0004EH	-	\checkmark	\checkmark
			38	INTP9		00050H	-	\checkmark	$\sqrt{ }$
			39	INTP10		00052H	-	\checkmark	$\sqrt{ }$
			40	INTP11		00054H	-	\checkmark	\checkmark

Notes 1. The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 45 indicates the lowest priority.
2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 19-1.

Table 19-1. Interrupt Source List (3/3)

Interrupt Type	Internal/ External	Basic Configuration Type Note 1	Default Priority ${ }^{\text {Note } 2}$	Interrupt Source		Vector Table Address	$\begin{gathered} \mathrm{LF} \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{LG} \\ 3 \end{gathered}$	LH3
				Name	Trigger				
Maskable	Internal	(A)	41	INTTM10	End of timer channel 10 count or capture	00056H	\checkmark	\checkmark	\checkmark
			42	INTTM11	End of timer channel 11 count or capture	00058H	\checkmark	\checkmark	\checkmark
			43	INTTM12	End of timer channel 12 count or capture	0005AH	\checkmark	\checkmark	\checkmark
			44	INTTM13	End of timer channel 13 count or capture	0005 CH	\checkmark	\checkmark	\checkmark
			45	INTMD	End of multiply/divide operation	0005EH	\checkmark	\checkmark	$\sqrt{ }$
Software	-	(D)	-	BRK	Execution of BRK instruction	0007EH	\checkmark	\checkmark	\checkmark
Reset	-	-	-	RESET	$\overline{\text { RESET }}$ pin input	00000H	\checkmark	\checkmark	\checkmark
				POC	Power-on-clear		\checkmark	$\sqrt{ }$	\checkmark
				LVI	Low-voltage detection ${ }^{\text {Note } 3}$		\checkmark	\checkmark	\checkmark
				WDT	Overflow of watchdog timer		\checkmark	\checkmark	\checkmark
				TRAP	Execution of illegal instruction ${ }^{\text {Note } 4}$		\checkmark	\checkmark	\checkmark

Notes 1. The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 45 indicates the lowest priority.
2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 19-1.
3. When bit 1 (LVIMD) of the low-voltage detection register (LVIM) is set to 1 .
4. When the instruction code in FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Figure 19-1. Basic Configuration of Interrupt Function (1/2)
(A) Internal maskable interrupt

(B) External maskable interrupt (INTPn)

IF: \quad Interrupt request flag
IE: \quad Interrupt enable flag
ISPO: In-service priority flag 0
ISP1: In-service priority flag 1
MK: Interrupt mask flag
PRO: Priority specification flag 0
PR1: Priority specification flag 1

Figure 19-1. Basic Configuration of Interrupt Function (2/2)
(C) External maskable interrupt (INTKR)

(D) Software interrupt

IF: Interrupt request flag
IE: Interrupt enable flag
ISPO: In-service priority flag 0
ISP1: In-service priority flag 1
MK: Interrupt mask flag
PRO: Priority specification flag 0
PR1: Priority specification flag 1

19.3 Registers Controlling Interrupt Functions

The following 6 types of registers are used to control the interrupt functions.

- Interrupt request flag registers (IF0L, IFOH, IF1L, IF1H, IF2L, IF2H)
- Interrupt mask flag registers (MK0L, MKOH, MK1L, MK1H, MK2L, MK2H)
- Priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H)
- External interrupt rising edge enable registers (EGPO, EGP1)
- External interrupt falling edge enable registers (EGNO, EGN1)
- Program status word (PSW)

Table 19-2 shows a list of interrupt request flags, interrupt mask flags, and priority specification flags corresponding to interrupt request sources.

Table 19-2. Flags Corresponding to Interrupt Request Sources (1/2)

LF3	LG3	LH3	Interrupt Source	Interrupt Request Flag		Interrupt Mask Flag		Priority Specification Flag	
					Register		Register		Register
\checkmark	\checkmark	\checkmark	INTWDTI	WDTIIF	IFOL	WDTIMK	MKOL	WDTIPR0, WDTIPR1	PROOL, PR10L
\checkmark	\checkmark	\checkmark	INTLVI	LVIIF		LVIMK		LVIPRO, LVIPR1	
\checkmark	\checkmark	\checkmark	INTPO	PIFO		PMKO		PPR00, PPR10	
\checkmark	\checkmark	\checkmark	INTP1	PIF1		PMK1		PPR01, PPR11	
\checkmark	\checkmark	\checkmark	INTP2	PIF2		PMK2		PPR02, PPR12	
\checkmark	\checkmark	\checkmark	INTP3	PIF3		PMK3		PPR03, PPR13	
\checkmark	\checkmark	\checkmark	INTP4	PIF4		PMK4		PPR04, PPR14	
\checkmark	\checkmark	\checkmark	INTP5	PIF5		PMK5		PPR05, PPR15	
\checkmark	\checkmark	\checkmark	INTST3	STIF3	IFOH	STMK3	MKOH	STPR03, STPR13	PROOH, PR10H
\checkmark	\checkmark	\checkmark	INTSR3	SRIF3		SRMK3		SRPR03, SRPR13	
\checkmark	\checkmark	\checkmark	INTSRE3	SREIF3		SREMK3		SREPR03, SREPR13	
\checkmark	\checkmark	\checkmark	INTDMAO	DMAIFO		DMAMK0		DMAPR00, DMAPR10	
\checkmark	\checkmark	\checkmark	INTDMA1	DMAIF1		DMAMK1		DMAPR01, DMAPR11	
-	\checkmark	\checkmark	INTSTO ${ }^{\text {Note }} 1$	STIFO ${ }^{\text {Note } 1}$		STMKO Note 1		STPR00, STPR10 ${ }^{\text {Note } 1}$	
-	\checkmark	\checkmark	INTCSIOO ${ }^{\text {Note } 1}$	CSIIFOO ${ }^{\text {Note } 1}$		CSIMK00 ${ }^{\text {Note } 1}$		CSIPR000, CSIPR100 ${ }^{\text {New }}$	
-	\checkmark	\checkmark	INTSRO ${ }^{\text {Note } 2}$	SRIFO Note 2		SRMKO Note ${ }^{\text {2 }}$		SRPR00, SRPR10 ${ }^{\text {Note } 2}$	
-	-	\checkmark	INTCSI01 ${ }^{\text {Nole } 2}$	CSIIF01 ${ }^{\text {Note } 2}$		CSIMK01 ${ }^{\text {Noie } 2}$		CSIPR001, CSIPR101 ${ }^{\text {Ne2 } 2}$	
\checkmark	\checkmark	\checkmark	INTSREO	SREIFO		SREMKO		SREPR00, SREPR10	

Notes 1. Do not use UARTO and CSIOO at the same time because they share flags for the interrupt request sources. If one of the interrupt sources INTST0 and INTCSIOO is generated, bit 5 of IF1H is set to 1 . Bit 5 of MKOH, PR00H, and PR10H supports these two interrupt sources.
2. Do not use UARTO and CSIO1 at the same time because they share flags for the interrupt request sources. If one of the interrupt sources INTSRO and INTCSIO1 is generated, bit 6 of IFOH is set to 1 . Bit 6 of MKOH, PR 00 H , and PR10H supports these two interrupt sources.

Table 19-2. Flags Corresponding to Interrupt Request Sources (2/2)

LF3	LG3	LH3	Interrupt Source	Interrupt Request Flag		Interrupt Mask Flag		Priority Specification Flag	
					Register		Register		Register
\checkmark	\checkmark	\checkmark	INTST1 ${ }^{\text {Note } 1}$	STIF1 ${ }^{\text {Note } 1}$	IF1L	STMK1 ${ }^{\text {Note } 1}$	MK1L	STPR01, STPR11 ${ }^{\text {Note } 1}$	PR01L, PR11L
\checkmark	\checkmark	\checkmark	INTCSI10 ${ }^{\text {Note } 1}$	CSIIF10 ${ }^{\text {Note } 1}$		CSIMK10 ${ }^{\text {Note } 1}$		CSIPR010, CSIPR110 ${ }^{\text {nete } 1}$	
\checkmark	\checkmark	$\sqrt{ }$	INTIIC10 ${ }^{\text {Note } 1}$	IICIF10 ${ }^{\text {Note } 1}$		IICMK10 ${ }^{\text {Note } 1}$		IICPR010, IICPR110 ${ }^{\text {Note } 1}$	
\checkmark	\checkmark	\checkmark	INTSR1	SRIF1		SRMK1		SRPR01, SRPR11	
\checkmark	\checkmark	\checkmark	INTSRE1	SREIF1		SREMK1		SREPR01, SREPR11	
-	$\sqrt{ }$	\checkmark	INTIICA	IICAIF		IICAMK		IICAPR0, IICAPR1	
$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	INTTM00	TMIF00		TMMK00		TMPR000, TMPR100	
\checkmark	\checkmark	\checkmark	INTTM01	TMIF01		TMMK01		TMPR001, TMPR101	
\checkmark	\checkmark	\checkmark	INTTM02	TMIF02		TMMK02		TMPR002, TMPR102	
\checkmark	$\sqrt{ }$	\checkmark	INTTM03	TMIF03		TMMK03		TMPR003, TMPR103	
\checkmark	\checkmark	\checkmark	INTAD	ADIF	IF1H	ADMK	MK1H	ADPR0, ADPR1	PR01H, PR11H
\checkmark	$\sqrt{ }$	\checkmark	INTRTC	RTCIF		RTCMK		RTCPR0, RTCPR1	
\checkmark	\checkmark	\checkmark	INTRTCI	RTCIIF		RTCIMK		RTCIPR0, RTCIPR1	
-	-	\checkmark	INTKR	KRIF		KRMK		KRPR0, KRPR1	
\checkmark	\checkmark	\checkmark	INTST2 ${ }^{\text {Note } 2}$	STIF2 ${ }^{\text {Note } 2}$		STMK2 ${ }^{\text {Note } 2}$		STPR02, STPR12 ${ }^{\text {Note } 2}$	
\checkmark	$\sqrt{ }$	\checkmark	INTCSI20 ${ }^{\text {Note } 2}$	CSIIF20 ${ }^{\text {Note } 2}$		CSIMK20 ${ }^{\text {Note } 2}$		CSIPR020, CSIPR120 ${ }^{\text {Nobe } 2}$	
$\sqrt{ }$	$\sqrt{ }$	\checkmark	INTIIC20 ${ }^{\text {Note } 2}$	IICIF20 ${ }^{\text {Note } 2}$		IICMK20 ${ }^{\text {Note } 2}$		IICPR020, IICPR120 ${ }^{\text {Nole2 }}$	
\checkmark	\checkmark	\checkmark	INTSR2	SRIF2		SRMK2		SRPR02, SRPR12	
\checkmark	\checkmark	\checkmark	INTSRE2	SREIF2		SREMK2		SREPR02, SREPR12	
\checkmark	\checkmark	\checkmark	INTTM04	TMIF04		TMMK04		TMPR004, TMPR104	
\checkmark	\checkmark	\checkmark	INTTM05	TMIF05	IF2L	TMMK05	MK2L	TMPR005, TMPR105	$\begin{aligned} & \text { PR02L, } \\ & \text { PR12L } \end{aligned}$
\checkmark	\checkmark	$\sqrt{ }$	INTTM06	TMIF06		TMMK06		TMPR006, TMPR106	
\checkmark	\checkmark	\checkmark	INTTM07	TMIF07		TMMK07		TMPR007, TMPR107	
\checkmark	\checkmark	\checkmark	INTP6	PIF6		PMK6		PPR06, PPR16	
\checkmark	$\sqrt{ }$	\checkmark	INTP7	PIF7		PMK7		PPR07, PPR17	
-	$\sqrt{ }$	$\sqrt{ }$	INTP8	PIF8		PMK8		PPR08, PPR18	
-	$\sqrt{ }$	\checkmark	INTP9	PIF9		PMK9		PPR09, PPR19	
-	\checkmark	\checkmark	INTP10	PIF10		PMK10		PPR010, PPR110	
-	\checkmark	\checkmark	INTP11	PIF11	IF2H	PMK11	MK2H	PPR011, PPR111	$\begin{aligned} & \text { PR02H, } \\ & \text { PR12H } \end{aligned}$
\checkmark	\checkmark	\checkmark	INTTM10	TMIF10		TMMK10		TMPR010, TMPR110	
\checkmark	\checkmark	\checkmark	INTTM11	TMIF11		TMMK11		TMPR011, TMPR111	
\checkmark	$\sqrt{ }$	$\sqrt{ }$	INTTM12	TMIF12		TMMK12		TMPR012, TMPR112	
\checkmark	\checkmark	\checkmark	INTTM13	TMIF13		TMMK13		TMPR013, TMPR113	
\checkmark	\checkmark	\checkmark	INTMD	MDIF		MDMK		MDPR0, MDPR1	

Notes 1. Do not use UART1, CSI10, and IIC10 at the same time because they share flags for the interrupt request sources. If one of the interrupt sources INTST1, INTCSI10, and INTIIC10 is generated, bit 0 of IF1L is set to 1. Bit 0 of MK1L, PR01L, and PR11L supports these three interrupt sources.
2. Do not use UART2, CSI20, and IIC20 at the same time because they share flags for the interrupt request sources. If one of the interrupt sources INTST2, INTCSI20, and INTIIC20 is generated, bit 4 of IF1H is set to 1. Bit 4 of MK1H, PR01H, and PR11H supports these three interrupt sources.
(1) Interrupt request flag registers (IF0L, IFOH, IF1L, IF1H, IF2L, IF2H)

The interrupt request flags are set to 1 when the corresponding interrupt request is generated or an instruction is executed. They are cleared to 0 when an instruction is executed upon acknowledgment of an interrupt request or upon reset signal generation.
When an interrupt is acknowledged, the interrupt request flag is automatically cleared and then the interrupt routine is entered.
IFOL, IFOH, IF1L, IF1H, IF2L, and IF2H can be set by a 1 -bit or 8 -bit memory manipulation instruction. When IFOL and IFOH, IF1L and IF1H, and IF2L and IF2H are combined to form 16-bit registers IF0, IF1, and IF2, they can be set by a 16 -bit memory manipulation instruction.

Reset signal generation clears these registers to 00 H .

Cautions 1. When operating a timer, serial interface, or A/D converter after standby release, operate it once after clearing the interrupt request flag. An interrupt request flag may be set by noise.
2. When manipulating a flag of the interrupt request flag register, use a 1-bit memory manipulation instruction (CLR1). When describing in C language, use a bit manipulation instruction such as "IFOL. $0=0$;" or "_asm("clr1 IFOL, 0 ");" because the compiled assembler must be a 1-bit memory manipulation instruction (CLR1).

If a program is described in C language using an 8-bit memory manipulation instruction such as "IFOL \&= 0xfe;" and compiled, it becomes the assembler of three instructions.
mov a, IFOL
and a, \#OFEH
mov IFOL, a

In this case, even if the request flag of another bit of the same interrupt request flag register (IFOL) is set to 1 at the timing between "mov a, IFOL" and "mov IFOL, a", the flag is cleared to 0 at "mov IFOL, a". Therefore, care must be exercised when using an 8-bit memory manipulation instruction in C language.

Remark If an instruction that writes data to this register is executed, the number of instruction execution clocks increases by 2 clocks.

Figure 19-2. Format of Interrupt Request Flag Registers (IFOL, IF0H, IF1L, IF1H, IF2L, IF2H) (78K0R/LF3)

Address: FFFEOH After reset: 00 H R/W								
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IFOL	PIF5	PIF4	PIF3	PIF2	PIF1	PIFO	LVIIF	WDTIIF

Address: FFFE1H After reset: 00 H R/W

Symbol	<7>	6	5	<4>	<3>	<2>	<1>	<0>
IFOH	SREIFO	0	0	DMAIF1	DMAIF0	SREIF3	SRIF3	STIF3

Address: FFFE2H After reset: 00 H R/W

Symbol	$<7>$		$<6>$	$<5>$	$<4>$	3	$<2>$	$<1>$	$<0>$
IF1L	TMIF03	TMIF02	TMIF01	TMIF00	0	SREIF1	SRIF1	CSIIF10	
IICIF10									

Address: FFFE3H After reset: 00 H R/W

Symbol	$<7>$	$<6>$	$<5>$	$<4>$	3	$<2>$	$<1>$	$<0>$	
	IF1H	TMIF04	SREIF2	SRIF2	CSIIF20 IICIF20 STIF2	0	RTCIIF	RTCIF	ADIF

Address: FFFDOH After reset: 00 H R/W

Symbol	7	6	5	<4>	<3>	<2>	<1>	<0>
IF2L	0	0	0	PIF7	PIF6	TMIF07	TMIF06	TMIF05

Address: FFFD1H After reset: 00 H R/W

Symbol	7	6	<5>	<4>	<3>	<2>	<1>	0
IF2H	0	0	MDIF	TMIF13	TMIF12	TMIF11	TMIF10	0

XXIFX	
0	No interrupt request signal is generated
1	Interrupt request is generated, interrupt request status

Caution Be sure to clear bits 5, 6 of IFOH, bit 3 of IF1L, bit 3 of IF1H, bits 5 to 7 of IF2L, bits $\mathbf{0 , 6}, 7$ of IF2H to 0.

Figure 19-3. Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L, IF1H, IF2L, IF2H) (78K0R/LG3)

Caution Be sure to clear bit 3 of IF1H, bits 6,7 of IF2H to 0 .

Figure 19-4. Format of Interrupt Request Flag Registers (IFOL, IF0H, IF1L, IF1H, IF2L, IF2H) (78K0R/LH3)

Address: FFFE2H After reset: 00 H R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IF1L	TMIF03	TMIF02	TMIF01	TMIF00	IICAIF	SREIF1	SRIF1	CSIIF10 IICIF10 STIF1

Address: FFFE3H After reset: 00 H R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IF1H	TMIF04	SREIF2	SRIF2	CSIIF20 IICIF20 STIF2	KRIF	RTCIIF	RTCIF	ADIF

Address: FFFDOH After reset: 00 H R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IF2L	PIF10	PIF9	PIF8	PIF7	PIF6	TMIF07	TMIF06	TMIF05

Address: FFFD1H After reset: 00H R/W

Symbol	7	6	<5>	<4>	<3>	<2>	<1>	<0>
IF2H	0	0	MDIF	TMIF13	TMIF12	TMIF11	TMIF10	PIF11

XXIFX	
0	No interrupt request signal is generated
1	Interrupt request is generated, interrupt request status

Caution Be sure to clear bits 6, 7 of IF2H to 0 .

(2) Interrupt mask flag registers (MK0L, MK0H, MK1L, MK1H, MK2L, MK2H)

The interrupt mask flags are used to enable/disable the corresponding maskable interrupt servicing.
MK0L, MK0H, MK1L, MK1H, MK2L, and MK2H can be set by a 1-bit or 8-bit memory manipulation instruction. When MK0L and MK0H, MK1L and MK1H, and MK2L and MK2H are combined to form 16-bit registers MK0, MK1, and MK2, they can be set by a 16-bit memory manipulation instruction.
Reset signal generation sets these registers to FFH.

Remark If an instruction that writes data to this register is executed, the number of instruction execution clocks increases by 2 clocks.

Figure 19-5. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L, MK1H, MK2L, MK2H) (78K0R/LF3)

Address:	Af	et: FF						
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MKOL	PMK5	PMK4	PMK3	PMK2	PMK1	PMKO	LVIMK	WDTIMK

Address: FFFE5H After reset: FFH R/W

| Symbol | $<7>$ | 6 | 5 | $<4>$ | $<3>$ | $<2>$ | $<1>$ | $<0>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MKOH | SREMK0 | 1 | 1 | DMAMK1 | DMAMK0 | SREMK3 | SRMK3 | STMK3 |
| | | | | | | | | |

Address: FFFE6H After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>
MK1L	TMMK03	TMMK02	TMMK01	TMMK00	1	SREMK1	SRMK1	CSIMK10 IICMK10 STMK1

Address: FFFE7H After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>
MK1H	TMMK04	SREMK2	SRMK2	CSIMK20 IICMK20 STMK2	1	RTCIMK	RTCMK	ADMK

Address: FFFD4H After reset: FFH R/W								
Symbol MK2L	7	6	5	<4>	<3>	<2>	<1>	<0>
	1	1	1	PMK7	PMK6	TMMK07	TMMK06	TMMK05

XXMKX		Interrupt servicing control
0	Interrupt servicing enabled	
1	Interrupt servicing disabled	

Caution Be sure to set bits 5 , 6 of MKOH, bit 3 of MK1L, bit 3 of MK1H, bits 5 to 7 of MK2L, bits $\mathbf{0}, 6,7$ of MK2H to 1.

Figure 19-6. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L, MK1H, MK2L, MK2H) (78K0R/LG3)
Address: FFFE4H After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MKOL	PMK5	PMK4	PMK3	PMK2	PMK1	PMK0	LVIMK	WDTIMK

Address: FFFE5H After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MKOH	SREMKO	SRMKO	CSIMKOO STMKO	DMAMK1	DMAMK0	SREMK3	SRMK3	STMK3

Address: FFFE6H After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MK1L	TMMK03	TMMK02	TMMK01	TMMK00	IICAMK	SREMK1	SRMK1	CSIMK10
								IICMK10
								STMK1

Address: FFFE7H After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>
MK1H	TMMK04	SREMK2	SRMK2	$\begin{gathered} \text { CSIMK20 } \\ \text { IICMK20 } \\ \text { STMK2 } \end{gathered}$	1	RTCIMK	RTCMK	ADMK

Address: FFFD4H After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MK2L	PMK10	PMK9	PMK8	PMK7	PMK6	TMMK07	TMMK06	TMMK05

Address: FFFD5H After reset: FFH R/W								
Symbol	7	6	<5>	<4>	<3>	<2>	<1>	<0>
MK2H	1	1	MDMK	TMMK13	TMMK12	TMMK11	TMMK10	PMK11
	XXMKX	Interrupt servicing control						
	0	Interrupt servicing enabled						
	1	Interrupt servicing disabled						

Caution Be sure to set bit 3 of MK1H, bits 6, 7 of MK2H to 1.

Figure 19-7. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L, MK1H, MK2L, MK2H) (78K0R/LH3)
Address: FFFE4H After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MKOL	PMK5	PMK4	PMK3	PMK2	PMK1	PMK0	LVIMK	WDTIMK

Address: FFFE5H After reset: FFH R/W

Symbol	$<7>$	$<6>$	$<5>$	$<4>$	$<3>$	$<2>$	$<1>$	$<0>$	
	MKOH	SREMK0	CSIMK01 SRMK0	CSIMK00 STMK0	DMAMK1	DMAMK0	SREMK3	SRMK3	STMK3

Address: FFFE6H After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MK1L	TMMK03	TMMK02	TMMK01	TMMK00	IICAMK	SREMK1	SRMK1	CSIMK10 IICMK10 STMK1

Address: FFFE7H After reset: FFH R/W

| Symbol | $<7>$ | | $<6>$ | $<5>$ | $<4>$ | $<3>$ | $<2>$ | $<1>$ | $<0>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | MK1H | TMMK04 | SREMK2 | SRMK2 | CSIMK20
 IICMK20
 STMK2 | KRMK | RTCIMK | RTCMK | ADMK |

Address: FFFD4H After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MK2L	PMK10	PMK9	PMK8	PMK7	PMK6	TMMK07	TMMK06	TMMK05

Address: FFFD5H After reset: FFH R/W								
Symbol	7	6	<5>	<4>	<3>	<2>	<1>	<0>
MK2H	1	1	MDMK	TMMK13	TMMK12	TMMK11	TMMK10	PMK11
	XXMKX	Interrupt servicing control						
	0	Interrupt servicing enabled						
	1	Interrupt servicing disabled						

Caution Be sure to set bits 6, 7 of MK2H to 1.

(3) Priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H)
The priority specification flag registers are used to set the corresponding maskable interrupt priority level.
A priority level is set by using the PR0xy and PR1xy registers in combination ($x y=0 \mathrm{~L}, 0 \mathrm{H}, 1 \mathrm{~L}, 1 \mathrm{H}, 2 \mathrm{~L}$, or 2 H). PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, and PR12H can be set by a 1-bit or 8-bit memory manipulation instruction. If PR00L and PR00H, PR01L and PR01H, PR02L and PR02H, PR10L and PR10H, PR11L and PR11H, and PR12L and PR12H are combined to form 16-bit registers PR00, PR01, PR02, PR10, PR11, and PR12, they can be set by a 16-bit memory manipulation instruction.
Reset signal generation sets these registers to FFH.

Remark If an instruction that writes data to this register is executed, the number of instruction execution clocks increases by 2 clocks.

Figure 19-8. Format of Priority Specification Flag Registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H) (78K0R/LF3) (1/2)

Address: FFFE8H After reset: FFH			R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR00L	PPR05	PPR04	PPR03	PPR02	PPR01	PPR00	LVIPR0	WDTIPR0

Address: FFFECH After reset: FFH			R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR10L	PPR15	PPR14	PPR13	PPR12	PPR11	PPR10	LVIPR1	WDTIPR1

Address: FFFE9H After reset: FFH R/W

Symbol	$<7>$	6	5	$<4>$	$<3>$	$<2>$	$<1>$		
	PROOH	SREPR00	1	1	DMAPR01	DMAPR00	SREPR03	SRPR03	STPR03

Address: FFFEDH After reset: FFH			R/W					
Symbol	<7>	6	5	<4>	<3>	<2>	<1>	<0>
PR10H	SREPR10	1	1	DMAPR11	DMAPR10	SREPR13	SRPR13	STPR13

Address: FFFEAH After reset: FFH R/W

| Symbol | $<7>$ | | $<6>$ | $<5>$ | $<4>$ | 3 | $<2>$ | $<1>$ | $<0>$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | PR01L | TMPR003 | TMPR002 | TMPR001 | TMPR000 | 1 | SREPR01 | SRPR01 | CSIPR010 |
| IICPR010 | | | | | | | | | |
| STPR01 | | | | | | | | | |

Address: FFFEEH After reset: FFH R/W

| Symbol | $<7>$ | | $<6>$ | $<5>$ | $<4>$ | 3 | $<2>$ | $<1>$ | $<0>$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | PR11L | TMPR103 | TMPR102 | TMPR101 | TMPR100 | 1 | SREPR11 | SRPR11 | CSIPR110 |
| IICPR110 | | | | | | | | | |
| STPR11 | | | | | | | | | |

Caution Be sure to set bits 5, 6 of PR00H and PR10H, bit 3 of PR01L and PR11L to 1.

Figure 19-8. Format of Priority Specification Flag Registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H) (78K0R/LF3) (2/2)

Address: FI	EBH After	eset: FFH	R/W					
Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>
PR01H	TMPR004	SREPR02	SRPR02	CSIPR020 IICPRO20 STPR02	1	RTCIPRO	RTCPRO	ADPRO

Address: FFFEFH After reset: FFH R/W

Symbol	$<7>$		$<6>$	$<5>$	$<4>$	3	$<2>$	$<1>$	$<0>$
	PR11H	TMPR104	SREPR12	SRPR12	CSIPR120 IICPR120 STPR12	1	RTCIPR1	RTCPR1	ADPR1

Address: FFFDCH After reset: FFH R/W

Address: Fr	After reset: FFH		R/W					
Symbol	7	6	<5>	<4>	<3>	<2>	<1>	0
PR02H	1	1	MDPR0	TMPR013	TMPR012	TMPR011	TMPR010	1

Address: FFFDDH After reset: FFH R/W

XXPR1X	XXPROX	
0	0	Specify level 0 (high priority level)
0	1	Specify level 1
1	0	Specify level 2
1	1	Specify level 3 (low priority level)

[^4]Figure 19-9. Format of Priority Specification Flag Registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H) (78K0R/LG3) (1/2)

Address: FFFECH After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR10L	PPR15	PPR14	PPR13	PPR12	PPR11	PPR10	LVIPR1	WDTIPR1

Address: FFFE9H After reset: FFH R/W
Symbol
PROOH

$<7>$	$<6>$	$<5>$	$<4>$	$<3>$	$<2>$	$<1>$	$<0>$
SREPR00	SRPR00	CSIPR000 STPR00	DMAPR01	DMAPR00	SREPR03	SRPR03	STPR03

Address: FFFEDH After reset: FFH R/W

Symbol	$<7>$				$<6>$	$<5>$	$<4>$	$<3>$	$<2>$
PR10H	SREPR10	SRPR10	CSIPR100 STPR10	DMAPR11	DMAPR10	SREPR13	SRPR13	STPR13	

Address: FFFEAH After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR01L	TMPR003	TMPR002	TMPR001	TMPR000	IICAPRO	SREPR01	SRPR01	CSIPR010 IICPR010 STPR01

Address: FFFEEEH After reset: FFH R/W
Symbol
PR11L

<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
TMPR103	TMPR102	TMPR101	TMPR100	IICAPR1	SREPR11	SRPR11	CSIPR110 IICPR110 STPR11

Figure 19-9. Format of Priority Specification Flag Registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H) (78K0R/LG3) (2/2)

Address: FF	BH Afte	reset: FFH	R/W					
Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>
PR01H	TMPR004	SREPR02	SRPR02	CSIPR020 IICPR020 STPR02	1	RTCIPRO	RTCPR0	ADPR0

Address: FFFEFH After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>
PR11H	TMPR104	SREPR12	SRPR12	CSIPR120 IICPR120 STPR12	1	RTCIPR1	RTCPR1	ADPR1

Address: FFFD8H After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR02L	PPR010	PPR09	PPR08	PPR07	PPR06	TMPR007	TMPR006	TMPR005

Address: FFFDCH After reset: FFH R/W

Address: FF	After reset: FFH		R/W					
Symbol	7	6	<5>	<4>	<3>	<2>	<1>	<0>
PR02H	1	1	MDPRO	TMPR013	TMPR012	TMPR011	TMPR010	PPR011

Address: FFFDDH After reset: FFH R/W

Symbol	7	6	$<5>$	$<4>$	$<3>$	$<2>$	$<1>$	$<0>$
	PR12H	1	1	MDPR1	TMPR113	TMPR112	TMPR111	TMPR110
	PPR111							

XXPR1X	XXPROX	
0	0	Specify level 0 (high priority level)
0	1	Specify level 1
1	0	Specify level 2
1	1	Specify level 3 (low priority level)

Caution Be sure to set bit 3 of PR01H and PR11H, bits 6, 7 of PR02H and PR12H to 1.

Figure 19-10. Format of Priority Specification Flag Registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H) (78K0R/LH3) (1/2)

Address: FFFECH After reset: FFH R/W

Symbol	$<7>$		$<6>$	$<5>$	$<4>$	$<3>$	$<2>$	$<1>$	
	PR10L	PPR15	PPR14	PPR13	PPR12	PPR11	PPR10	LVIPR1	WDTIPR1

Address: FFFE9H After reset: FFH R/W
Symbol
PROOH

$<7>$	$<6>$	$<5>$	$<4>$	$<3>$	$<2>$	$<1>$	$<0>$
SREPR00	CSIPR001	CSIPR000	DMAPR01	DMAPR00	SREPR03	SRPR03	STPR03
	SRPR00						

Address: FFFEDH After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR10H	SREPR10	CSIPR101 SRPR10	CSIPR100 STPR10	DMAPR11	DMAPR10	SREPR13	SRPR13	STPR13

Address: FFFEAH After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR01L	TMPR003	TMPR002	TMPR001	TMPR000	IICAPRO	SREPR01	SRPR01	CSIPR010 IICPR010 STPR01

Address: FFFEEH After reset: FFH R/W
Symbol

$<7>$	$<6>$		$<5>$	$<4>$	$<3>$	$<2>$	$<1>$
TMPR103	TMPR102	TMPR101	TMPR100	IICAPR1	SREPR11	SRPR11	CSIPR110
IICPR110							
STPR11							

Figure 19-10. Format of Priority Specification Flag Registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H) (78K0R/LH3) (2/2)

Address: FF	EBH Afte	reset: FFH	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR01H	TMPR004	SREPR02	SRPR02	CSIPRO20 IICPRO20 STPR02	KRPRO	RTCIPRO	RTCPRO	ADPRO

Address: FFFDCH After reset: FFH R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR12L	PPR110	PPR19	PPR18	PPR17	PPR16	TMPR107	TMPR106	TMPR105

Address: FFFDDH After reset: FFH R/W

XXPR1X	XXPROX	
0	0	Specify level 0 (high priority level)
0	1	Specify level 1
1	0	Specify level 2
1	1	Specify level 3 (low priority level)

Caution Be sure to set bits 6, 7 of PR02H and PR12H to 1.

(4) External interrupt rising edge enable registers (EGPO, EGP1), external interrupt falling edge enable registers (EGNO, EGN1)
These registers specify the valid edge for INTP0 to INTP11.
EGP0, EGP1, EGN0, and EGN1 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears these registers to 00 H .

Figure 19-11. Format of External Interrupt Rising Edge Enable Registers (EGP0, EGP1) and External Interrupt Falling Edge Enable Registers (EGNO, EGN1) (78K0R/LF3)

Addres	Af	et: 00 H						
Symbo	7	6	5	4	3	2	1	0
EGP0	EGP7	EGP6	EGP5	EGP4	EGP3	EGP2	EGP1	EGP0

Address: FFF39H After reset: 00 H R/W
Symbol
EGNO

7	6	5	4	3	2	1	0
EGN7	EGN6	EGN5	EGN4	EGN3	EGN2	EGN1	EGN0

EGPn	EGNn	INTPn pin valid edge selection ($\mathrm{n}=0$ to 7)
0	0	Edge detection disabled
0	1	Falling edge
1	0	Rising edge
1	1	Both rising and falling edges

Figure 19-12. Format of External Interrupt Rising Edge Enable Registers (EGP0, EGP1) and External Interrupt Falling Edge Enable Registers (EGN0, EGN1) (78K0R/LG3, 78K0R/LH3)

Address: FFF38H After reset: 00 H R/W

Symbol	7	6	5	4	3	2	1	0
EGPO	EGP7	EGP6	EGP5	EGP4	EGP3	EGP2	EGP1	EGP0

Address: FFF39H After reset: 00 H R/W
Symbol
EGNO

7	6	5	4	3	2	1	0
EGN7	EGN6	EGN5	EGN4	EGN3	EGN2	EGN1	EGN0

Address: FFF3AH After reset: 00 H R/W
Symbol
EGP1

7	6	5	4	3	2	1	0
0	0	0	0	EGP11	EGP10	EGP9	EGP8

Address: FFF3BH After reset: 00H R/W
Symbol
EGN1

7	6	5	4	3	2	1	0
0	0	0	0	EGN11	EGN10	EGN9	EGN8

EGPn	EGNn	\quad INTPn pin valid edge selection ($\mathrm{n}=0$ to 11)
0	0	Edge detection disabled
0	1	Falling edge
1	0	Rising edge
1	1	Both rising and falling edges

Table 19-3 shows the ports corresponding to EGPn and EGNn.

Table 19-3. Ports Corresponding to EGPn and EGNn

Detection Enable Register		Edge Detection Port	Interrupt Request Signal	LF3	LG3	LH3
EGP0	EGN0	P120	INTP0	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
EGP1	EGN1	P30	INTP1	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
EGP2	EGN2	P31	INTP2	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
EGP3	EGN3	P33	INTP3	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
EGP4	EGN4	P14	INTP4	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
EGP5	EGN5	P32	INTP5	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
EGP6	EGN6	P11	INTP6	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
EGP7	EGN7	P15	INTP7	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
EGP8	EGN8	P34	INTP8	-	$\sqrt{ }$	$\sqrt{ }$
EGP9	EGN9	P81	INTP9	-	$\sqrt{ }$	$\sqrt{ }$
EGP10	EGN10	P16	INTP10	-	$\sqrt{ }$	$\sqrt{ }$
EGP11	EGN11	P80	INTP11	-	$\sqrt{ }$	$\sqrt{ }$

Caution Select the port mode by clearing EGPn and EGNn to 0 because an edge may be detected when the external interrupt function is switched to the port function.

Remark $\mathrm{n}=0$ to 11

(5) Program status word (PSW)

The program status word is a register used to hold the instruction execution result and the current status for an interrupt request. The IE flag that sets maskable interrupt enable/disable and the ISP0 and ISP1 flags that controls multiple interrupt servicing are mapped to the PSW.
Besides 8 -bit read/write, this register can carry out operations using bit manipulation instructions and dedicated instructions (EI and DI). When a vectored interrupt request is acknowledged, if the BRK instruction is executed, the contents of the PSW are automatically saved into a stack and the IE flag is reset to 0 . If a maskable interrupt request is acknowledged, the contents of the priority specification flag of the acknowledged interrupt are transferred to the ISP0 and ISP1 flags. The PSW contents are also saved into the stack with the PUSH PSW instruction. They are restored from the stack with the RETI, RETB, and POP PSW instructions.
Reset signal generation sets PSW to 06H.

Figure 19-13. Configuration of Program Status Word

19.4 Interrupt Servicing Operations

19.4.1 Maskable interrupt acknowledgment

A maskable interrupt becomes acknowledgeable when the interrupt request flag is set to 1 and the mask (MK) flag corresponding to that interrupt request is cleared to 0 . A vectored interrupt request is acknowledged if interrupts are in the interrupt enabled state (when the IE flag is set to 1). However, a low-priority interrupt request is not acknowledged during servicing of a higher priority interrupt request.

The times from generation of a maskable interrupt request until vectored interrupt servicing is performed are listed in Table 19-4 below.

For the interrupt request acknowledgment timing, see Figures 19-15 and 19-16.

Table 19-4. Time from Generation of Maskable Interrupt Until Servicing

	Minimum Time	Maximum Time $^{\text {Note }}$
Servicing time	9 clocks	14 clocks

Note If an interrupt request is generated just before the RET instruction, the wait time becomes longer.

Remark 1 clock: $1 /$ fclk (fclk: CPU clock)

If two or more maskable interrupt requests are generated simultaneously, the request with a higher priority level specified in the priority specification flag is acknowledged first. If two or more interrupts requests have the same priority level, the request with the highest default priority is acknowledged first.

An interrupt request that is held pending is acknowledged when it becomes acknowledgeable.
Figure 19-14 shows the interrupt request acknowledgment algorithm.
If a maskable interrupt request is acknowledged, the contents are saved into the stacks in the order of PSW, then PC, the IE flag is reset (0), and the contents of the priority specification flag corresponding to the acknowledged interrupt are transferred to the ISP1 and ISP0 flags. The vector table data determined for each interrupt request is the loaded into the PC and branched.

Restoring from an interrupt is possible by using the RETI instruction.

Figure 19-14. Interrupt Request Acknowledgment Processing Algorithm

$x \times$ IF: Interrupt request flag
$\times \times$ MK: Interrupt mask flag
$x \times$ PRO: Priority specification flag 0
$\times \times$ PR1: Priority specification flag 1
IE: \quad Flag that controls acknowledgment of maskable interrupt request ($1=$ Enable, $0=$ Disable)
ISP0, ISP1: Flag that indicates the priority level of the interrupt currently being serviced (see Figure 19-8)

Note For the default priority, refer to Table 19-1 Interrupt Source List.

Figure 19-15. Interrupt Request Acknowledgment Timing (Minimum Time)

Remark 1 clock: 1/fclk (fclk: CPU clock)

Figure 19-16. Interrupt Request Acknowledgment Timing (Maximum Time)

Remark 1 clock: 1/fclk (fclk: CPU clock)

19.4.2 Software interrupt request acknowledgment

A software interrupt acknowledge is acknowledged by BRK instruction execution. Software interrupts cannot be disabled.

If a software interrupt request is acknowledged, the contents are saved into the stacks in the order of the program status word (PSW), then program counter (PC), the IE flag is reset (0), and the contents of the vector table (0007EH, 0007 FH) are loaded into the PC and branched.

Restoring from a software interrupt is possible by using the RETB instruction.

Caution Do not use the RETI instruction for restoring from the software interrupt.

19.4.3 Multiple interrupt servicing

Multiple interrupt servicing occurs when another interrupt request is acknowledged during execution of an interrupt.
Multiple interrupt servicing does not occur unless the interrupt request acknowledgment enabled state is selected (IE = 1). When an interrupt request is acknowledged, interrupt request acknowledgment becomes disabled ($\mathrm{IE}=0$). Therefore, to enable multiple interrupt servicing, it is necessary to set (1) the IE flag with the El instruction during interrupt servicing to enable interrupt acknowledgment.

Moreover, even if interrupts are enabled, multiple interrupt servicing may not be enabled, this being subject to interrupt priority control. Two types of priority control are available: default priority control and programmable priority control. Programmable priority control is used for multiple interrupt servicing.

In the interrupt enabled state, if an interrupt request with a priority equal to or higher than that of the interrupt currently being serviced is generated, it is acknowledged for multiple interrupt servicing. If an interrupt with a priority lower than that of the interrupt currently being serviced is generated during interrupt servicing, it is not acknowledged for multiple interrupt servicing. Interrupt requests that are not enabled because interrupts are in the interrupt disabled state or because they have a lower priority are held pending. When servicing of the current interrupt ends, the pending interrupt request is acknowledged following execution of at least one main processing instruction execution.

Table 19-5 shows relationship between interrupt requests enabled for multiple interrupt servicing and Figure 19-17 shows multiple interrupt servicing examples.

Table 19-5. Relationship Between Interrupt Requests Enabled for Multiple Interrupt Servicing During Interrupt Servicing

		Maskable Interrupt Request								Software Interrupt Request
		Priority Level 0$(\mathrm{PR}=00)$		Priority Level 1$(\mathrm{PR}=01)$		Priority Level 2$(P R=10)$		Priority Level 3$(P R=11)$		
		$\mathrm{IE}=1$	$\mathrm{IE}=0$	$\mathrm{IE}=1$	$\mathrm{IE}=0$	$\mathrm{IE}=1$	$\mathrm{IE}=0$	$\mathrm{IE}=1$	IE = 0	
Maskable interrupt	$\begin{aligned} & \text { ISP1 }=0 \\ & \text { ISP0 }=0 \end{aligned}$	\bigcirc	\times	\bigcirc						
	$\begin{aligned} & \text { ISP1 }=0 \\ & \text { ISP0 }=1 \end{aligned}$	\bigcirc	\times	\bigcirc	\times	\times	\times	\times	\times	\bigcirc
	$\begin{aligned} & \text { ISP1 }=1 \\ & \text { ISP0 }=0 \end{aligned}$	\bigcirc	\times	\bigcirc	\times	\bigcirc	\times	\times	\times	\bigcirc
	$\begin{aligned} & \text { ISP1 }=1 \\ & \text { ISP0 }=1 \end{aligned}$	\bigcirc	\times	\bigcirc	\times	\bigcirc	\times	\bigcirc	\times	\bigcirc
Software interrupt		\bigcirc	\times	\bigcirc	\times	\bigcirc	\times	\bigcirc	\times	\bigcirc

Remarks 1. O: Multiple interrupt servicing enabled
2. \times : Multiple interrupt servicing disabled
3. ISPO, ISP1, and IE are flags contained in the PSW.

ISP1 $=0$, ISP0 $=0:$ An interrupt of level 1 or level 0 is being serviced.
ISP1 = $0, I S P 0=1:$ An interrupt of level 2 is being serviced.
ISP1 = 1, ISP0 = 0 : An interrupt of level 3 is being serviced.
ISP1 = 1, ISP0 = 1: Wait for An interrupt acknowledgment.
$\mathrm{IE}=0$: Interrupt request acknowledgment is disabled.
IE = 1: Interrupt request acknowledgment is enabled.
4. PR is a flag contained in PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, and PR12H.
$P R=00$: Specify level 0 with $\times \times P R 1 \times=0, \times x$ PR $0 \times=0$ (higher priority level)
$P R=01$: Specify level 1 with $\times \times$ PR1 $\times=0, x \times P R 0 \times=1$
$P R=10$: Specify level 2 with $x \times P R 1 \times=1, x \times P R 0 \times=0$
$P R=11$: Specify level 1 with $\times \times P R 1 \times=1, \times \times P R 0 \times=1$ (lower priority level)

Figure 19-17. Examples of Multiple Interrupt Servicing (1/2)

Example 1. Multiple interrupt servicing occurs twice

During servicing of interrupt INTxx, two interrupt requests, INTyy and INTzz, are acknowledged, and multiple interrupt servicing takes place. Before each interrupt request is acknowledged, the El instruction must always be issued to enable interrupt request acknowledgment.

Example 2. Multiple interrupt servicing does not occur due to priority control

Interrupt request INTyy issued during servicing of interrupt INTxx is not acknowledged because its priority is lower than that of INTxx, and multiple interrupt servicing does not take place. The INTyy interrupt request is held pending, and is acknowledged following execution of one main processing instruction.

```
\(P R=00\) : Specify level 0 with \(\times \times P R 1 \times=0, \times \times P R 0 \times=0\) (higher priority level)
\(P R=01\) : Specify level 1 with \(x \times P R 1 x=0, x \times P R 0 x=1\)
\(P R=10\) : Specify level 2 with \(x \times P R 1 \times=1, x \times P R 0 x=0\)
\(P R=11\) : Specify level 1 with \(\times \times\) PR1 \(\times=1, \times \times\) PR0 \(\times=1\) (lower priority level)
\(\mathrm{IE}=0\) : Interrupt request acknowledgment is disabled
IE =1: Interrupt request acknowledgment is enabled
```

Figure 19-17. Examples of Multiple Interrupt Servicing (2/2)

Example 3. Multiple interrupt servicing does not occur because interrupts are not enabled

Interrupts are not enabled during servicing of interrupt INTxx (El instruction is not issued), therefore, interrupt request INTyy is not acknowledged and multiple interrupt servicing does not take place. The INTyy interrupt request is held pending, and is acknowledged following execution of one main processing instruction.

```
\(P R=00\) : Specify level 0 with \(\times \times P R 1 \times=0, x \times P R 0 \times=0\) (higher priority level)
PR = 01: Specify level 1 with \(x \times\) PR1 \(x=0, x \times\) PR \(0 x=1\)
\(P R=10\) : Specify level 2 with \(\times \times\) PR1 \(\times=1, x \times\) PR \(0 \times=0\)
\(\mathrm{PR}=11\) : Specify level 1 with \(\times \times \mathrm{PR} 1 \times=1, \times \times\) PRO \(\times=1\) (lower priority level)
\(\mathrm{IE}=0\) : Interrupt request acknowledgment is disabled
IE =1: Interrupt request acknowledgment is enabled.
```


19.4.4 Interrupt request hold

There are instructions where, even if an interrupt request is issued for them while another instruction is being executed, request acknowledgment is held pending until the end of execution of the next instruction. These instructions (interrupt request hold instructions) are listed below.

- MOV PSW, \#byte
- MOV PSW, A
- MOV1 PSW. bit, CY
- SET1 PSW. bit
- CLR1 PSW. bit
- RETB
- RETI
- POP PSW
- BTCLR PSW. bit, \$addr8
- El
- DI
- SKC
- SKNC
- SKZ
- SKNZ
- Manipulation instructions for the IF0L, IF0H, IF1L, IF1H, IF2L, IF2H, MK0L, MK0H, MK1L, MK1H, MK2L, MK2H, PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, and PR12H registers.

Caution The BRK instruction is not one of the above-listed interrupt request hold instructions. However, the software interrupt activated by executing the BRK instruction causes the IE flag to be cleared. Therefore, even if a maskable interrupt request is generated during execution of the BRK instruction, the interrupt request is not acknowledged.

Figure 19-18 shows the timing at which interrupt requests are held pending.
Figure 19-18. Interrupt Request Hold

CPU processing \begin{tabular}{ll|l|l|l}

\cline { 2 - 4 } \& Instruction N \& Instruction M \& | PSW and PC saved, jump |
| :--- |
| to interrupt servicing | \& | Interrupt servicing |
| :--- |
| program |

\hline
\end{tabular}

x×IF \square

Remarks 1. Instruction N: Interrupt request hold instruction
2. Instruction M: Instruction other than interrupt request hold instruction
3. The $\times \times \mathrm{PR}$ (priority level) values do not affect the operation of $x \times \mathrm{FF}$ (interrupt request).

CHAPTER 20 KEY INTERRUPT FUNCTION

Item	78KOR/LF3	78K0R/LG3	78K0R/LH3		
	80 pins	100 pins	128 pins		
Key interrupt					8 ch

20.1 Functions of Key Interrupt

A key interrupt (INTKR) can be generated by setting the key return mode register (KRM) and inputting a falling edge to the key interrupt input pins (KR0 to KR7).

Table 20-1. Assignment of Key Interrupt Detection Pins

Flag	Description
KRM0	Controls KR0 signal in 1-bit units.
KRM1	Controls KR1 signal in 1-bit units.
KRM2	Controls KR2 signal in 1-bit units.
KRM3	Controls KR3 signal in 1-bit units.
KRM4	Controls KR4 signal in 1-bit units.
KRM5	Controls KR5 signal in 1-bit units.
KRM6	Controls KR6 signal in 1-bit units.
KRM7	Controls KR7 signal in 1-bit units.

20.2 Configuration of Key Interrupt

The key interrupt includes the following hardware.

Table 20-2. Configuration of Key Interrupt

Item	Configuration
Control register	Key return mode register (KRM)

Figure 20-1. Block Diagram of Key Interrupt

20.3 Register Controlling Key Interrupt

(1) Key return mode register (KRM)

This register controls the KRM0 to KRM7 bits using the KR0 to KR7 signals, respectively.
KRM can be set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 20-2. Format of Key Return Mode Register (KRM)
Address: FFF37H After reset: 00 H R/W

Symbol	7	6	5	4	3	2	1	0
	KRM	KRM7	KRM6	KRM5	KRM4	KRM3	KRM2	KRM1
	KRM0							

KRMn	Key interrupt mode control
0	Does not detect key interrupt signal
1	Detects key interrupt signal

Cautions 1. If any of the KRMO to KRM7 bits used is set to 1 , set bits 0 to 7 (PU70 to PU77) of the corresponding pull-up resistor register 7 (PU7) to 1.
2. An interrupt will be generated if the target bit of the KRM register is set while a low level is being input to the key interrupt input pin. To ignore this interrupt, set the KRM register after disabling interrupt servicing by using the interrupt mask flag. Afterward, clear the interrupt request flag and enable interrupt servicing after waiting for the key interrupt input low-level width (250 ns or more).
3. The bits not used in the key interrupt mode can be used as normal ports.

Remark $\mathrm{n}=0$ to 7

CHAPTER 21 STANDBY FUNCTION

21.1 Standby Function and Configuration

21.1.1 Standby function

The standby function is mounted onto all 78K0R/Lx3 microcontroller products.
The standby function reduces the operating current of the system, and the following two modes are available.

(1) HALT mode

HALT instruction execution sets the HALT mode. In the HALT mode, the CPU operation clock is stopped. If the highspeed system clock oscillator, internal high-speed oscillator, 20 MHz internal high-speed oscillator, or subsystem clock oscillator is operating before the HALT mode is set, oscillation of each clock continues. In this mode, the operating current is not decreased as much as in the STOP mode, but the HALT mode is effective for restarting operation immediately upon interrupt request generation and carrying out intermittent operations frequently.

(2) STOP mode

STOP instruction execution sets the STOP mode. In the STOP mode, the high-speed system clock oscillator and internal high-speed oscillator stop, stopping the whole system, thereby considerably reducing the CPU operating current.
Because this mode can be cleared by an interrupt request, it enables intermittent operations to be carried out. However, because a wait time is required to secure the oscillation stabilization time after the STOP mode is released when the X 1 clock is selected, select the HALT mode if it is necessary to start processing immediately upon interrupt request generation.

In either of these two modes, all the contents of registers, flags and data memory just before the standby mode is set are held. The I/O port output latches and output buffer statuses are also held.

Cautions 1. The STOP mode can be used only when the CPU is operating on the main system clock. The STOP mode cannot be set while the CPU operates with the subsystem clock. The HALT mode can be used when the CPU is operating on either the main system clock or the subsystem clock.
2. When shifting to the STOP mode, be sure to stop the peripheral hardware operation operating with main system clock before executing STOP instruction.
3. The following sequence is recommended for operating current reduction of the A/D converter when the standby function is used: First clear bit 7 (ADCS) and bit 0 (ADCE) of the A/D converter mode register (ADM) to 0 to stop the A/D conversion operation, and then execute the STOP instruction.
4. It can be selected by the option byte whether the internal low-speed oscillator continues oscillating or stops in the HALT or STOP mode. For details, see CHAPTER 26 OPTION BYTE.
5. The STOP instruction cannot be executed when the CPU operates on the $\mathbf{2 0} \mathbf{~ M H z}$ internal highspeed oscillation clock. Be sure to execute the STOP instruction after shifting to internal highspeed oscillation clock operation.

21.1.2 Registers controlling standby function

The standby function is controlled by the following two registers.

- Oscillation stabilization time counter status register (OSTC)
- Oscillation stabilization time select register (OSTS)

Remark For the registers that start, stop, or select the clock, see CHAPTER 5 CLOCK GENERATOR.

(1) Oscillation stabilization time counter status register (OSTC)

This is the register that indicates the count status of the X1 clock oscillation stabilization time counter.
The X1 clock oscillation stabilization time can be checked in the following case,

- If the X 1 clock starts oscillation while the internal high-speed oscillation clock or subsystem clock is being used as the CPU clock.
- If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock with the X1 clock oscillating.

OSTC can be read by a 1 -bit or 8-bit memory manipulation instruction.
When reset is released (reset by $\overline{\text { RESET input, POC, LVI, WDT, and executing an illegal instruction), the STOP }}$ instruction and MSTOP (bit 7 of CSC register) = 1 clear this register to 00 H .

Figure 21-1. Format of Oscillation Stabilization Time Counter Status Register (OSTC)

Address: FFFA2H After reset: 00 H R

Symbol	7	6	5	4	3	2	1	0
OSTC	MOST							
	8	9	10	11	13	15	17	18

MOST	Oscillation stabilization time status									
8	9	10	11	13	15	17	18		$\mathrm{fx}_{\mathrm{x}}=10 \mathrm{MHz}$	$\mathrm{fx}=20 \mathrm{MHz}$
0	0	0	0	0	0	0	0	$2^{8} / \mathrm{fx}$ max.	25.6μ s max.	$12.8 \mu \mathrm{~s}$ max.
1	0	0	0	0	0	0	0	$2^{8} / \mathrm{fx}$ min.	$25.6 \mu \mathrm{~s}$ min.	$12.8 \mu \mathrm{~s} \mathrm{~min}$.
1	1	0	0	0	0	0	0	$2^{9} / \mathrm{fx}$ min.	$51.2 \mu \mathrm{~s}$ min.	$25.6 \mu \mathrm{~s} \mathrm{~min}$.
1	1	1	0	0	0	0	0	$2^{10} / \mathrm{fx}$ min.	$102.4 \mu \mathrm{~s} \mathrm{~min}$.	$51.2 \mu \mathrm{~s} \mathrm{~min}$.
1	1	1	1	0	0	0	0	$2^{11} / \mathrm{fx} \mathrm{min}$.	$204.8 \mu \mathrm{~s} \mathrm{~min}$.	$102.4 \mu \mathrm{~s} \mathrm{~min}$.
1	1	1	1	1	0	0	0	$2^{13} / \mathrm{fx}$ min.	$819.2 \mu \mathrm{~s} \mathrm{~min}$.	$409.6 \mu \mathrm{~s} \mathrm{~min}$.
1	1	1	1	1	1	0	0	$2^{15} / \mathrm{fx}$ min.	3.27 ms min .	1.64 ms min .
1	1	1	1	1	1	1	0	$2^{17} / \mathrm{fx}$ min.	13.11 ms min .	6.55 ms min .
1	1	1	1	1	1	1	1	$2^{18} / \mathrm{fx} \mathrm{min}$.	26.21 ms min .	13.11 ms min .

Cautions 1. After the above time has elapsed, the bits are set to 1 in order from MOST8 and remain 1.
2. The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows.

- Desired OSTC oscillation stabilization time \leq Oscillation stabilization time set by OSTS
Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released.

3. The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).

Remark fx: X1 clock oscillation frequency

(2) Oscillation stabilization time select register (OSTS)

This register is used to select the X 1 clock oscillation stabilization wait time when the STOP mode is released.
When the X 1 clock is selected as the CPU clock, the operation waits for the time set using OSTS after the STOP mode is released.

When the internal high-speed oscillation clock is selected as the CPU clock, confirm with OSTC that the desired oscillation stabilization time has elapsed after the STOP mode is released. The oscillation stabilization time can be checked up to the time set using OSTC.
OSTS can be set by an 8-bit memory manipulation instruction.
Reset signal generation sets this register to 07 H .
Figure 21-2. Format of Oscillation Stabilization Time Select Register (OSTS)

Address:		t:						
Symbol	7	6	5	4	3	2	1	0
OSTS	0	0	0	0	0	OSTS2	OSTS1	OSTS0

OSTS2	OSTS1	OSTS0	Oscillation stabilization time selection		
				$\mathrm{fx}=10 \mathrm{MHz}$	$\mathrm{fx}_{\mathrm{x}}=20 \mathrm{MHz}$
0	0	0	$2^{8} / \mathrm{fx}$	$25.6 \mu \mathrm{~s}$	Setting prohibited
0	0	1	$2^{9} / \mathrm{fx}$	$51.2 \mu \mathrm{~s}$	$25.6 \mu \mathrm{~s}$
0	1	0	$2^{10} / \mathrm{fx}$	$102.4 \mu \mathrm{~s}$	$51.2 \mu \mathrm{~s}$
0	1	1	$2^{11 / f x}$	$204.8 \mu \mathrm{~s}$	$102.4 \mu \mathrm{~s}$
1	0	0	$2^{13} / \mathrm{fx}$	$819.2 \mu \mathrm{~s}$	$409.6 \mu \mathrm{~s}$
1	0	1	$2^{15} / \mathrm{fx}$	3.27 ms	1.64 ms
1	1	0	$2^{17} / \mathrm{fx}$	13.11 ms	6.55 ms
1	1	1	$2^{18} / \mathrm{fx}$	26.21 ms	13.11 ms

Cautions 1. To set the STOP mode when the X1 clock is used as the CPU clock, set OSTS before executing the STOP instruction.
2. Setting the oscillation stabilization time to 20μ s or less is prohibited.
3. Before changing the setting of the OSTS register, confirm that the count operation of the OSTC register is completed.
4. Do not change the value of the OSTS register during the X1 clock oscillation stabilization time.
5. The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows.

- Desired OSTC oscillation stabilization time \leq Oscillation stabilization time set by OSTS Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released.

6. The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).

Remark fx: X1 clock oscillation frequency

21.2 Standby Function Operation

21.2.1 HALT mode

(1) HALT mode

The HALT mode is set by executing the HALT instruction. HALT mode can be set regardless of whether the CPU clock before the setting was the high-speed system clock, internal high-speed oscillation clock, 20 MHz internal highspeed oscillation clock, or subsystem clock.
The operating statuses in the HALT mode are shown below.

Table 21-1. Operating Statuses in HALT Mode (1/3)

		When HALT Instruction Is Executed While CPU Is Operating on Main System Clock		
		When CPU Is Operating on Internal High-Speed Oscillation Clock (fiн) or 20 MHz Internal High-Speed Oscillation Clock (fiHzo)	When CPU Is Operating on X1 Clock (fx)	When CPU Is Operating on External Main System Clock (fEx)
System clock		Clock supply to the CPU is stopped		
Main system clock	$\mathrm{fiH}^{\text {I }}$	Operation continues (cannot be stopped)	Status before HALT mode was set is retained	
	fx	Status before HALT mode was set is retained	Operation continues (cannot be stopped)	Cannot operate
	fex		Cannot operate	Operation continues (cannot be stopped)
Subsystem clock	fxt	Status before HALT mode was set is retained		
fil		Set by bits 0 (WDSTBYON) and 4 (WTON) of option byte $(000 \mathrm{COH})$ - $\mathrm{WTON}=0$: Stops - $\mathrm{WTON}=1$ and $\mathrm{WDSTBYON}=1$: Oscillates - $W T O N=1$ and WDSTBYON = 0 : Stops		
CPU		Operation stopped		
Flash memory		Operation stopped		
RAM		Status before HALT mode was set is retained at voltage higher than POC detection voltage.		
Port (latch)		Status before HALT mode was set is retained		
Timer array unit (TAU)		Operable		
Real-time counter (RTC)				
Watchdog timer		Set by bits 0 (WDSTBYON) and 4 (WTON) of option byte (000 COH) - $\mathrm{WTON}=0$: Stops - $\mathrm{WTON}=1$ and $\mathrm{WDSTBYON}=1$: Operates - $\mathrm{WTON}=1$ and $\mathrm{WDSTBYON}=0$: Stops		
Clock output/buzzer output		Operable		
A/D converter				
D/A converter				
Operational amplifier				
Voltage reference				
Serial array unit (SAU)				
Serial interface (IICA)				
LCD controller/driver				
Multiplier/divider				
DMA controller				
Power-on-clear function				
Low-voltage detection function				
External interrupt				
Key interrupt				

Remarks 1. fiH: Internal high-speed oscillation clock, $\mathrm{fiH2O}^{\mathrm{f}} \mathrm{\int} \mathbf{2 0} \mathrm{MHz}$ internal high-speed oscillation clock
fx: X1 oscillation clock,
fxT : XT1 oscillation clock,
fex: External main system clock
fil: Internal low-speed oscillation clock
2. The functions mounted depend on the product. Refer to 1.4 Block Diagram and 1.5 Outline of Functions.

Table 21-1. Operating Statuses in HALT Mode (2/3)

Remarks 1. fiH: Internal high-speed oscillation clock, fiH2O: 20 MHz internal high-speed oscillation clock
$\mathrm{fx}: \mathrm{X} 1$ oscillation clock, fex: External main system clock
fxt: XT1 oscillation clock, fiL: Internal low-speed oscillation clock
2. The functions mounted depend on the product. Refer to 1.4 Block Diagram and 1.5 Outline of Functions.

Table 21-1. Operating Statuses in HALT Mode (3/3)

Remarks 1. fiH: Internal high-speed oscillation clock, fiH2O: 20 MHz internal high-speed oscillation clock
$\mathrm{fx}: \mathrm{X} 1$ oscillation clock, $\quad \mathrm{fEx}$: External main system clock
fxt: XT1 oscillation clock, fll: Internal low-speed oscillation clock
2. RTCLPC: Bit 7 of the operation speed mode control register (OSMC).
3. The functions mounted depend on the product. Refer to 1.4 Block Diagram and $\mathbf{1 . 5}$ Outline of Functions.

(2) HALT mode release

The HALT mode can be released by the following two sources.
(a) Release by unmasked interrupt request

When an unmasked interrupt request is generated, the HALT mode is released. If interrupt acknowledgment is enabled, vectored interrupt servicing is carried out. If interrupt acknowledgment is disabled, the next address instruction is executed.

Figure 21-3. HALT Mode Release by Interrupt Request Generation
 internal high-speed oscillation clock, 20 MHz internal high-speed oscillation clock, or subsystem clock

Note The wait time is as follows:

- When vectored interrupt servicing is carried out When main system clock is used: 10 to 12 clocks When subsystem clock is used: 8 to 10 clocks
- When vectored interrupt servicing is not carried out

When main system clock is used: 5 or 6 clocks
When subsystem clock is used: 3 or 4 clocks

Remark The broken lines indicate the case when the interrupt request which has released the standby mode is acknowledged.
(b) Release by reset signal generation

When the reset signal is generated, HALT mode is released, and then, as in the case with a normal reset operation, the program is executed after branching to the reset vector address.

Figure 21-4. HALT Mode Release by Reset
(1) When high-speed system clock is used as CPU clock

(2) When internal high-speed oscillation clock or $\mathbf{2 0 ~ M H z}$ internal high-speed oscillation clock is used as CPU clock

(3) When subsystem clock is used as CPU clock

Remark fx: X1 clock oscillation frequency

21.2.2 STOP mode

(1) STOP mode setting and operating statuses

The STOP mode is set by executing the STOP instruction, and it can be set only when the CPU clock before the setting was the main system clock.

Cautions 1. Because the interrupt request signal is used to clear the standby mode, if there is an interrupt source with the interrupt request flag set and the interrupt mask flag reset, the standby mode is immediately cleared if set. Thus, the STOP mode is reset to the HALT mode immediately after execution of the STOP instruction and the system returns to the operating mode as soon as the wait time set using the oscillation stabilization time select register (OSTS) has elapsed.
2. The STOP instruction cannot be executed when the CPU operates on the 20 MHz internal highspeed oscillation clock. Be sure to execute the STOP instruction after shifting to internal highspeed oscillation clock operation.

The operating statuses in the STOP mode are shown below.

Table 21-2. Operating Statuses in STOP Mode

STOP Mode Setting Item		When STOP Instruction Is Executed While CPU Is Operating on Main System Clock		
		When CPU Is Operating on Internal High-Speed Oscillation Clock ($\mathrm{fiH}_{\mathrm{H}}$)	When CPU Is Operating on X1 Clock (fx)	When CPU Is Operating on External Main System Clock (fEx)
System clock		Clock supply to the CPU is stopped		
Main system clock	$\mathrm{fiH}^{\text {H }}$	Stopped		
	fx			
	fex			
Subsystem clock	fxt	Status before STOP mode was set is retained		
fil		Set by bits 0 (WDSTBYON) and 4 (WTON) of option byte (000 COH) - WTON = 0: Stops - $\mathrm{WTON}=1$ and $\mathrm{WDSTBYON}=1$: Oscillates - $W T O N=1$ and $W D S T B Y O N=0$: Stops		
CPU		Operation stopped		
Flash memory				
RAM		Status before STOP mode was set is retained at voltage higher than POC detection voltage.		
Port (latch)		Status before STOP mode was set is retained		
Timer array unit (TAU)		Cannot operate		
Real-time counter (RTC)		Operable		
Watchdog timer		Set by bits 0 (WDSTBYON) and 4 (WTON) of option byte (000 COH) - $\mathrm{WTON}=0$: Stops - $\mathrm{WTON}=1$ and $\mathrm{WDSTBYON}=1$: Operates - $\mathrm{WTON}=1$ and $\mathrm{WDSTBYON}=0$: Stops		
Clock output/buzzer output		Operable only when subsystem clock is selected as the count clock		
A/D converter		Operation stopped		
D/A converter		Operable		
Operational amplifier				
Voltage reference				
Serial array unit (SAU)		Cannot operate		
Serial interface (IICA)		Wake-up by address match operable		
LCD controller/driver		Operable only when subsystem clock is selected as LCD source clock		
Multiplier/divider		Cannot operate		
DMA controller				
Power-on-clear function		Operable		
Low-voltage detection function				
External interrupt				
Key interrupt				

Remarks 1. fiH: Internal high-speed oscillation clock,
fex: External main system clock,
flL: Internal low-speed oscillation clock
2. The functions mounted depend on the product. Refer to 1.4 Block Diagram and 1.5 Outline of Functions.

Cautions 1. To use the peripheral hardware that stops operation in the STOP mode, and the peripheral hardware for which the clock that stops oscillating in the STOP mode after the STOP mode is released, restart the peripheral hardware.
2. To stop the internal low-speed oscillation clock in the STOP mode, use an option byte to stop the watchdog timer operation in the HALT/STOP mode (bit 0 (WDSTBYON) of $000 \mathrm{COH}=0$), and then execute the STOP instruction.
3. To shorten oscillation stabilization time after the STOP mode is released when the CPU operates with the high-speed system clock (X1 oscillation), temporarily switch the CPU clock to the internal high-speed oscillation clock before the next execution of the STOP instruction. Before changing the CPU clock from the internal high-speed oscillation clock to the high-speed system clock (X1 oscillation) after the STOP mode is released, check the oscillation stabilization time with the oscillation stabilization time counter status register (OSTC).
4. The STOP instruction cannot be executed when the CPU operates on the $\mathbf{2 0} \mathbf{~ M H z}$ internal high-speed oscillation clock. Be sure to execute the STOP instruction after shifting to internal high-speed oscillation clock operation.
(2) STOP mode release

Figure 21-5. Operation Timing When STOP Mode Is Released (When Unmasked Interrupt Request Is Generated)

Note When the oscillation stabilization time set by OSTS is equal to or shorter than $61 \mu \mathrm{~s}$, the HALT status is retained to a maximum of " $61 \mu \mathrm{~s}+$ wait time."

The STOP mode can be released by the following two sources.

(a) Release by unmasked interrupt request

When an unmasked interrupt request is generated, the STOP mode is released. After the oscillation stabilization time has elapsed, if interrupt acknowledgment is enabled, vectored interrupt servicing is carried out. If interrupt acknowledgment is disabled, the next address instruction is executed.

Figure 21-6. STOP Mode Release by Interrupt Request Generation (1/2)
(1) When high-speed system clock (X1 oscillation) is used as CPU clock

(2) When high-speed system clock (external clock input) is used as CPU clock

Remark The broken lines indicate the case when the interrupt request that has released the standby mode is acknowledged.

Figure 21-6. STOP Mode Release by Interrupt Request Generation (2/2)
(3) When internal high-speed oscillation clock is used as CPU clock

Remark The broken lines indicate the case when the interrupt request that has released the standby mode is acknowledged.

(b) Release by reset signal generation

When the reset signal is generated, STOP mode is released, and then, as in the case with a normal reset operation, the program is executed after branching to the reset vector address.

Figure 21-7. STOP Mode Release by Reset
(1) When high-speed system clock is used as CPU clock

(2) When internal high-speed oscillation clock is used as CPU clock

Remark fx: X1 clock oscillation frequency

CHAPTER 22 RESET FUNCTION

The following five operations are available to generate a reset signal.
(1) External reset input via $\overline{\operatorname{RESET}}$ pin
(2) Internal reset by watchdog timer program loop detection
(3) Internal reset by comparison of supply voltage and detection voltage of power-on-clear (POC) circuit
(4) Internal reset by comparison of supply voltage of the low-voltage detector (LVI) or input voltage (EXLVI) from external input pin, and detection voltage
(5) Internal reset by execution of illegal instruction ${ }^{\text {Note }}$

External and internal resets start program execution from the address at 0000 H and 0001 H when the reset signal is generated.

A reset is effected when a low level is input to the RESET pin, the watchdog timer overflows, or by POC and LVI circuit voltage detection or execution of illegal instruction ${ }^{\text {Note }}$, and each item of hardware is set to the status shown in Tables 22-1 and 22-2. Each pin is high impedance during reset signal generation or during the oscillation stabilization time just after a reset release, except for P130, which is low-level output.

When a low level is input to the $\overline{\text { RESET }}$ pin, the device is reset. It is released from the reset status when a high level is input to the $\overline{R E S E T}$ pin and program execution is started with the internal high-speed oscillation clock after reset processing. A reset by the watchdog timer is automatically released, and program execution starts using the internal highspeed oscillation clock (see Figures 22-2 to 22-4) after reset processing. Reset by POC and LVI circuit power supply detection is automatically released when $V_{D D} \geq V_{P O R}$ or $V_{D D} \geq V_{\text {LVI }}$ after the reset, and program execution starts using the internal high-speed oscillation clock (see CHAPTER 23 POWER-ON-CLEAR CIRCUIT and CHAPTER 24 LOWVOLTAGE DETECTOR) after reset processing.

Note The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Cautions 1. For an external reset, input a low level for $10 \mu \mathrm{~s}$ or more to the $\overline{\operatorname{RESET}}$ pin
(To perform an external reset upon power application, a low level of at least $10 \mu \mathrm{~s}$ must be continued during the period in which the supply voltage is within the operating range ($\mathrm{V}_{\mathrm{DD}} \geq 1.8$ V)).
2. During reset input, the X1 clock, XT1 clock, internal high-speed oscillation clock, and internal low-speed oscillation clock stop oscillating. External main system clock input becomes invalid.
3. When the STOP mode is released by a reset, the RAM contents in the STOP mode are held during reset input.
4. When reset is effected, port pin P140 is set to low-level output and other port pins become highimpedance, because each SFR and 2nd SFR are initialized.

Remark VPOR: POC power supply rise detection voltage
VLvI: LVI detection voltage

Figure 22-2. Timing of Reset by $\overline{\text { RESET }}$ Input

Note Set P130 to high-level output by software.
Remark When reset is effected, P130 outputs a low level. If P130 is set to output a high level before reset is effected, the output signal of P130 can be dummy-output as the CPU reset signal.

Figure 22-3. Timing of Reset Due to Watchdog Timer Overflow

Note Set P130 to high-level output by software.
Caution A watchdog timer internal reset resets the watchdog timer.
Remark When reset is effected, P130 outputs a low level. If P130 is set to output a high level before reset is effected, the output signal of P130 can be dummy-output as the CPU reset signal.

Figure 22-4. Timing of Reset in STOP Mode by $\overline{\text { RESET }}$ Input

Note Set P130 to high-level output by software.

Remarks 1. When reset is effected, P130 outputs a low level. If P130 is set to output a high level before reset is effected, the output signal of P130 can be dummy-output as the CPU reset signal.
2. For the reset timing of the power-on-clear circuit and low-voltage detector, see CHAPTER 23 POWER-ON-CLEAR CIRCUIT and CHAPTER 24 LOW-VOLTAGE DETECTOR.

Table 22-1. Operation Statuses During Reset Period

Item		During Reset Period
System clock		Clock supply to the CPU is stopped.
Main system clock	$\mathrm{fiH}^{\text {I }}$	Operation stopped
	fx	Operation stopped (X1 and X2 pins are input port mode)
	fex	Clock input invalid (pin is input port mode)
Subsystem clock	fxt	Operation stopped (XT1 and XT2 pins are input port mode)
fil		Operation stopped
CPU		
Flash memory		
RAM		Operation stopped (The value, however, is retained when the voltage is at least the power-onclear detection voltage.)
Port (latch)		Set P130 to low-level output. The port pins except for P130 become high impedance.
Timer array unit (TAU)		Operation stopped
Real-time counter (RTC)		
Watchdog timer		
Clock output/buzzer output		
A/D converter		
D/A converter		
Operational amplifier		
Voltage reference		
Serial array unit (SAU)		
Serial interface (IICA)		
LCD controller/driver		Operation stopped (COM only pin, SEG only pin, COM/SEG alternate pin: GND output, SEG/general-purpose port alternate pin: input port, Vlco to VLc2 pins: high-impedance output, VLc3/P02 pin, CAPH/P00 pin, CAPL/P01 pin: input port)
Multiplier/divider		Operation stopped
DMA controller		
Power-on-clear function		Detection operation possible
Low-voltage detection function		Operation stopped (however, operation continues at LVI reset)
External interrupt		Operation stopped
Key interrupt		
$B C D$ correction circuit (BCD)		

Remarks 1. f_{IH} : Internal high-speed oscillation clock,
fex: External main system clock,
flL: Internal low-speed oscillation clock
2. The functions mounted depend on the product. Refer to 1.4 Block Diagram and 1.5 Outline of Functions.

Table 22-2. Hardware Statuses After Reset Acknowledgment (1/4)

Hardware		After Reset Acknowledgment ${ }^{\text {Note } 1}$
Program counter (PC)		The contents of the reset vector table (0000H, 0001H) are set.
Stack pointer (SP)		Undefined
Program status word (PSW)		06H
RAM	Data memory	Undefined ${ }^{\text {Note } 2}$
	General-purpose registers	Undefined ${ }^{\text {Note } 2}$
Port registers (P0 to P15) (output latches)		OOH
Port mode registers (PM0 to PM12, PM14, PM15)		FFH
Port input mode registers 1, 7 (PIM1, PIM7)		OOH
Port output mode registers 1, 7, 8 (POM1, POM7, POM8)		OOH
Pull-up resistor option registers (PU0, PU1, PU3 to PU5, PU7 to PU10, PU12, PU14)		OOH
Clock operation mode control register (CMC)		OOH
Clock operation status control register (CSC)		COH
Processor mode control register (PMC)		OOH
System clock control register (CKC)		09H
20 MHz internal high-speed oscillation control register (DSCCTL)		OOH
Oscillation stabilization time counter status register (OSTC)		00H
Oscillation stabilization time select register (OSTS)		07H
Noise filter enable registers 0, 1 (NFEN0, NFEN1)		OOH
Peripheral enable registers 0 (PER0)		OOH
Operation speed mode control register (OSMC)		OOH
Input switch control register (ISC)		OOH
Timer array units 0, 1 (TAU0, TAU1)	Timer data registers $00,01,02,03,04,05,06,07,10,11,12,13$ (TDR00, TDR01, TDR02, TDR03, TDR04, TDR05, TDR06, TDR07, TDR10, TDR11, TDR12, TDR13)	0000H
	Timer mode registers $00,01,02,03,04,05,06,07,10,11,12,13$ (TMR00, TMR01, TMR02, TMR03, TMR04, TMR05, TMR06, TMR07, TMR10, TMR11, TMR12, TMR13)	0000H
	Timer status registers 00, 01, 02, 03, 04, 05, 06, 07, 10, 11, 12, 13 (TSR00, TSR01, TSR02, TSR03, TSR04, TSR05, TSR06, TSR07, TSR10, TSR11, TSR12, TSR13)	0000H
	Timer input select register 0, 1 (TIS0, TIS1)	OOH
	Timer channel counter registers $00,01,02,03,04,05,06,07,10,11,12,13$ (TCR00, TCR01, TCR02, TCR03, TCR04, TCR05, TCR06, TCR07, TCR10, TCR11, TCR12, TCR13)	FFFFH
	Timer channel enable status registers 0, 1 (TE0, TE1)	0000H
	Timer channel start trigger registers 0,1 (TS0, TS1)	0000H

Notes 1. During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.
2. When a reset is executed in the standby mode, the pre-reset status is held even after reset.

Remark The SFR and 2nd SFR provided differ depending on the product. Refer to 3.2.4 Special function registers (SFRs) and 3.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers).

Table 22-2. Hardware Statuses After Reset Acknowledgment (2/4)

Hardware		Status After Reset Acknowledgment ${ }^{\text {Note } 1}$
Timer array units 0,1 (TAU0, TAU1)	Timer channel stop trigger registers 0, 1 (TT0, TT1)	0000H
	Timer clock select registers 0, 1 (TPS0, TPS1)	0000H
	Timer channel output registers 0, 1 (TO0, TO1)	0000H
	Timer channel output enable registers 0, 1 (TOE0, TOE1)	0000H
	Timer channel output level registers 0,1 (TOL0, TOL1)	0000H
	Timer channel output mode registers 0, 1 (TOM0, TOM1)	0000H
Real-time counter	Sub-count register (RSUBC)	0000H
	Second count register (SEC)	OOH
	Minute count register (MIN)	OOH
	Hour count register (HOUR)	12H
	Week count register (WEEK)	00H
	Day count register (DAY)	01H
	Month count register (MONTH)	01H
	Year count register (YEAR)	OOH
	Watch error correction register (SUBCUD)	OOH
	Alarm minute register (ALARMWM)	00H
	Alarm hour register (ALARMWH)	12H
	Alarm week register (ALARMWW)	OOH
	Real-time counter control register 0 (RTCCO)	00H
	Real-time counter control register 1 (RTCC1)	OOH
	Real-time counter control register 2 (RTCC2)	00H
Clock output/buzzer output controller	Clock output select registers 0, 1 (CKS0, CKS1)	OOH
Watchdog timer	Enable register (WDTE)	1AH/9AH ${ }^{\text {Note } 2}$
A/D converter	10-bit A/D conversion result register (ADCR)	0000H
	8-bit A/D conversion result register (ADCRH)	00H
	A/D converter mode register (ADM)	OOH
	A/D converter mode register 1 (ADM1)	00H
	Analog reference voltage control register (ADVRC)	00H
	Analog input channel specification register (ADS)	OOH
	A/D port configuration register (ADPC)	10H
D/A converter	D/A conversion value setting registers W0, W1 (DACSW0, DACSW1)	0000H
	8-bit D/A conversion value setting registers 0, 1 (DACS0, DACS1)	00H
	D/A converter mode register (DAM)	OOH
Operational amplifier	Operational amplifier control register (OAC)	OOH
Voltage reference	Analog reference voltage control register (ADVRC)	OOH

Notes 1. During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.
2. The reset value of WDTE is determined by the option byte setting.

Remark The SFR and 2nd SFR mounted depend on the product. Refer to 3.2.4 Special function registers (SFRs) and 3.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers).

Table 22-2. Hardware Statuses After Reset Acknowledgment (3/4)

	Hardware	Status After Reset Acknowledgment ${ }^{\text {Note }}$
Serial array units 0,1 (SAU0, SAU1)	Serial data registers 00, 01, 02, 03, 10, 11, 12, 13 (SDR00, SDR01, SDR02, SDR03, SDR10, SDR11, SDR12, SDR13)	0000H
	Serial status registers 00, 01, 02, 03, 10, 11, 12, 13 (SSR00, SSR01, SSR02, SSR03, SSR10, SSR11, SSR12, SSR13)	0000H
	Serial flag clear trigger registers 00, 01, 02, 03, 10, 11, 13 (SIR00, SIR01, SIR02, SIR03, SIR10, SIR11, SIR13)	0000H
	Serial mode registers $00,01,02,03,10,11,12,13$ (SMR00, SMR01, SMR02, SMR03, SMR10, SMR11, SMR12, SMR13)	0020H
	Serial communication operation setting registers $00,01,02,03,10,11,12$, 13 (SCR00, SCR01, SCR02, SCR03, SCR10, SCR11, SCR12, SCR13)	0087H
	Serial channel enable status registers 0, 1 (SE0, SE1)	0000H
	Serial channel start trigger registers 0, 1 (SS0, SS1)	0000H
	Serial channel stop trigger registers 0, 1 (ST0, ST1)	0000H
	Serial clock select registers 0,1 (SPS0, SPS1)	0000H
	Serial output registers 0, 1 (SO0, SO1)	0FOFH
	Serial output enable registers 0, 1 (SOE0, SOE1)	0000H
Serial interface IICA	Shift register (IICA)	OOH
	Control register 0 (IICCTLO)	OOH
	Control register 1 (IICCTL1)	OOH
	Slave address register (SVA)	OOH
	IICA low-level width setting register 0 (IICWL)	FFH
	IICA high-level width setting register 0 (IICWH)	FFH
	Status register (IICS)	OOH
	Flag register (IICF)	OOH
LCD controller/driver	LCD mode register (LCDMD)	OOH
	LCD display mode register (LCDM)	OOH
	LCD clock control register 0 (LCDC0)	OOH
	LCD boost level control register (VLCD)	OFH
	Port function register (PFALL)	00H
	Segment enable register (SEGEN)	OOH
	Input switch control register (ISC)	00H
Multiplier/divider	Multiplication/division data register A (MDAL, MDAH)	0000H
	Multiplication/division data register B (MDBL, MDBH)	0000H
	Multiplication/division data register C (MDCL, MDCH)	0000H
	Multiplication/division control register (MDUC)	OOH
Key interrupt	Key return mode register (KRM)	OOH

Note During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.

Remark The SFR and 2nd SFR mounted depend on the product. Refer to 3.2.4 Special function registers (SFRs) and 3.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers).

Table 22-2. Hardware Statuses After Reset Acknowledgment (4/4)

Hardware		Status After Reset Acknowledgment ${ }^{\text {Note } 1}$
Reset function	Reset control flag register (RESF)	Undefined ${ }^{\text {Note } 2}$
Low-voltage detector	Low-voltage detection register (LVIM)	$00 \mathrm{H}^{\text {Note } 3}$
	Low-voltage detection level select register (LVIS)	$0 \mathrm{EH}^{\text {Note } 2}$
DMA controller	SFR address registers 0,1 (DSAO, DSA1)	OOH
	RAM address registers 0L, 0H, 1L, 1H (DRA0L, DRA0H, DRA1L, DRA1H)	OOH
	Byte count registers 0L, 0H, 1L, 1H (DBC0L, DBC0H, DBC1L, DBC1H)	OOH
	Mode control registers 0, 1 (DMC0, DMC1)	OOH
	Operation control registers 0, 1 (DRC0, DRC1)	OOH
Interrupt	Request flag registers 0L, 0H, 1L, 1H, 2L, 2H (IF0L, IF0H, IF1L, IF1H, IF2L, IF2H)	OOH
	Mask flag registers 0L, 0H, 1L, 1H, 2L, 2H (MKOL, MKOH, MK1L, MK1H, MK2L, MK2H)	FFH
	Priority specification flag registers $00 \mathrm{~L}, 00 \mathrm{H}, 01 \mathrm{~L}, 01 \mathrm{H}, 02 \mathrm{~L}, 02 \mathrm{H}, 10 \mathrm{~L}$, 10H, 11L, 11H, 12L, 12H (PR00L, PR00H, PR01L, PR01H, PR10L, PR10H, PR11L, PR11H, PR02L, PR02H, PR12L, PR12H)	FFH
	External interrupt rising edge enable registers 0, 1 (EGP0, EGP1)	OOH
	External interrupt falling edge enable registers 0, 1 (EGN0, EGN1)	OOH
Regulator	Regulator mode control register (RMC)	OOH
BCD correction circuit (BCD)	BCD correction result register (BCDADJ)	Undefined

Notes 1. During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.
2. These values vary depending on the reset source.

Reset Source Register		$\overline{\text { RESET Input }}$	Reset by POC	Reset by Execution of Illegal Instruction	Reset by WDT	Reset by LVI
RESF	TRAP bit	Cleared (0)	Cleared (0)	Set (1)	Held	Held
	WDRF bit			Held	Set (1)	Held
	LVIRF bit			Held	Held	Set (1)
LVIS		Cleared (0EH)	Cleared (0EH)	Cleared (0EH)	Cleared (0EH)	Held

3. This value varies depending on the reset source and the option byte.

Remark The SFR and 2nd SFR mounted depend on the product. Refer to 3.2.4 Special function registers (SFRs) and 3.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers).

22.1 Register for Confirming Reset Source

Many internal reset generation sources exist in the 78K0R/Lx3 microcontrollers. The reset control flag register (RESF) is used to store which source has generated the reset request.

RESF can be read by an 8-bit memory manipulation instruction.

Figure 22-5. Format of Reset Control Flag Register (RESF)

Address: Symbol RESF	After reset: Undefined			4	3	2	1	0
	7	6	5					
	TRAP ${ }^{\text {Note } 1}$	Undefined	Undefined	WDRF $^{\text {Note } 1}$	Undefined	Undefined	Undefined	LVIRF $^{\text {Note } 1}$
	TRAP	Internal reset request by execution of illegal instruction ${ }^{\text {Note } 2}$						
	0	Internal reset request is not generated, or RESF is cleared.						
	1	Internal reset request is generated.						
	WDRF	Internal reset request by watchdog timer (WDT)						
	0	Internal reset request is not generated, or RESF is cleared.						
	1	Internal reset request is generated.						
	LVIRF	Internal reset request by low-voltage detector (LVI)						
	0	Internal reset request is not generated, or RESF is cleared.						
	1	Internal reset request is generated.						

Notes 1. The value after reset varies depending on the reset source.
2. The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Cautions 1. Do not read data by a 1-bit memory manipulation instruction.
2. Do not make a judgment based on only the read value of the RESF register 8-bit data, because bits other than TRAP, WDRF, and LVIRF become undefined.
3. When the LVI default start function (bit 0 (LVIOFF) of $000 \mathrm{C} 1 \mathrm{H}=0$) is used, LVIRF flag may become 1 from the beginning depending on the power-on waveform.

The status of RESF when a reset request is generated is shown in Table 22-3.

Table 22-3. RESF Status When Reset Request Is Generated

Reset Source Flag	$\overline{\mathrm{RESET}}$ Input	Reset by POC	Reset by Execution of Illegal Instruction	Reset by WDT	Reset by LVI
TRAP	Cleared (0)	Cleared (0)	Set (1)	Held	Held
WDRF			Held	Set (1)	Held
LVIRF			Held	Held	Set (1)

CHAPTER 23 POWER-ON-CLEAR CIRCUIT

23.1 Functions of Power-on-Clear Circuit

The power-on-clear circuit (POC) is mounted onto all 78K0R/Lx3 microcontroller products.
The power-on-clear circuit has the following functions.

- Generates internal reset signal at power on

The reset signal is released when the supply voltage ($\mathrm{VDD}_{\mathrm{DD}}$) exceeds $1.61 \mathrm{~V} \pm 0.09 \mathrm{~V}$.

Caution If the low-voltage detector (LVI) is set to ON by an option byte by default, the reset signal is not released until the supply voltage (Vdd) exceeds $2.07 \mathrm{~V} \pm 0.2 \mathrm{~V}$.

- Compares supply voltage (V DD) and detection voltage (V PDR $=1.59 \mathrm{~V} \pm 0.09 \mathrm{~V}$), generates internal reset signal when VdD < VPdr.

Caution If an internal reset signal is generated in the POC circuit, the reset control flag register (RESF) is cleared to 00 H .

Remark This product incorporates multiple hardware functions that generate an internal reset signal. A flag that indicates the reset source is located in the reset control flag register (RESF) for when an internal reset signal is generated by the watchdog timer (WDT), low-voltage-detector (LVI), or illegal instruction execution. RESF is not cleared to 00 H and the flag is set to 1 when an internal reset signal is generated by WDT or LVI.
For details of RESF, see CHAPTER 22 RESET FUNCTION.

23.2 Configuration of Power-on-Clear Circuit

The block diagram of the power-on-clear circuit is shown in Figure 23-1.

Figure 23-1. Block Diagram of Power-on-Clear Circuit

23.3 Operation of Power-on-Clear Circuit

- An internal reset signal is generated on power application. When the supply voltage (Vdd) exceeds the detection voltage (V PDR $=1.61 \mathrm{~V} \pm 0.09 \mathrm{~V}$), the reset status is released.

Caution If the low-voltage detector (LVI) is set to ON by an option byte by default, the reset signal is not released until the supply voltage (Vdo) exceeds $2.07 \mathrm{~V} \pm 0.2 \mathrm{~V}$.

- The supply voltage (V DD) and detection voltage (V PDR $=1.59 \mathrm{~V} \pm 0.09 \mathrm{~V}$) are compared. When Vdd $<\mathrm{V}_{\mathrm{PdR}}$, the internal reset signal is generated.

The timing of generation of the internal reset signal by the power-on-clear circuit and low-voltage detector is shown below.

Figure 23-2. Timing of Generation of Internal Reset Signal by Power-on-Clear Circuit and Low-Voltage Detector (1/2)
(1) When LVI is OFF upon power application (option byte: LVIOFF = 1)

Notes 1. The operation guaranteed range is $1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$. To make the state at lower than 1.8 V reset state when the supply voltage falls, use the reset function of the low-voltage detector, or input the low level to the RESET pin.
2. If the rate at which the voltage rises to 1.8 V after power application is slower than $0.5 \mathrm{~V} / \mathrm{ms}$ (MIN.), input a low level to the $\overline{\text { RESET }}$ pin before the voltage reaches to 1.8 V , or set LVI to ON by default by using an option byte (option byte: LVIOFF = 0).
3. The reset processing time, such as when waiting for internal voltage stabilization, includes the oscillation accuracy stabilization time of the internal high-speed oscillation clock.
4. The internal reset processing time includes the oscillation accuracy stabilization time of the internal highspeed oscillation clock.
5. The internal high-speed oscillation clock and a high-speed system clock or subsystem clock can be selected as the CPU clock. To use the X1 clock, use the OSTC register to confirm the lapse of the oscillation stabilization time. To use the XT1 clock, use the timer function for confirmation of the lapse of the stabilization time.

Caution Set the low-voltage detector by software after the reset status is released (see CHAPTER 24 LOWVOLTAGE DETECTOR).

Remark VLvi: LVI detection voltage
Vpor: POC power supply rise detection voltage
VPDR: POC power supply fall detection voltage

Figure 23-2. Timing of Generation of Internal Reset Signal by Power-on-Clear Circuit and Low-Voltage Detector (2/2)
(2) When LVI is ON upon power application (option byte: LVIOFF = 0)

Notes 1. The operation guaranteed range is $1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$. To make the state at lower than 1.8 V reset state when the supply voltage falls, use the reset function of the low-voltage detector, or input the low level to the RESET pin.
2. The internal high-speed oscillation clock and a high-speed system clock or subsystem clock can be selected as the CPU clock. To use the X1 clock, use the OSTC register to confirm the lapse of the oscillation stabilization time. To use the XT1 clock, use the timer function for confirmation of the lapse of the stabilization time.
3. The internal reset processing time includes the oscillation accuracy stabilization time of the internal highspeed oscillation clock.
4. The following times are required between reaching the POC detection voltage (1.59 V (TYP.)) and starting normal operation.

- When the time to reach 2.07 V (TYP.) from 1.59 V (TYP.) is less than 5.8 ms :

A POC processing time of about 2.1 to 6.2 ms is required between reaching 1.59 V (TYP.) and starting normal operation.

- When the time to reach 2.07 V (TYP.) from 1.59 V (TYP.) is greater than 5.8 ms :

A reset processing time of about 195 to $322 \mu \mathrm{~s}$ is required between reaching 2.07 V (TYP.) and starting normal operation.

Caution Set the low-voltage detector by software after the reset status is released (see CHAPTER 24 LOWVOLTAGE DETECTOR).

Remark VLvi: LVI detection voltage
VPOR: POC power supply rise detection voltage
VPDR: POC power supply fall detection voltage

23.4 Cautions for Power-on-Clear Circuit

In a system where the supply voltage (VDD) fluctuates for a certain period in the vicinity of the POC detection voltage (VPOR, VPDR), the system may be repeatedly reset and released from the reset status. In this case, the time from release of reset to the start of the operation of the microcontroller can be arbitrarily set by taking the following action.

<Action>

After releasing the reset signal, wait for the supply voltage fluctuation period of each system by means of a software counter that uses a timer, and then initialize the ports.

Figure 23-3. Example of Software Processing After Reset Release (1/2)

- If supply voltage fluctuation is 50 ms or less in vicinity of POC detection voltage

Notes 1. If reset is generated again during this period, initialization processing $<2>$ is not started.
2. A flowchart is shown on the next page.

Remark $\mathrm{n}=0$ to 7

Figure 23-3. Example of Software Processing After Reset Release (2/2)

- Checking reset source

Note The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

CHAPTER 24 LOW-VOLTAGE DETECTOR

24.1 Functions of Low-Voltage Detector

The low-voltage detector (LVI) is mounted onto all 78K0R/Lx3 microcontroller products.
The low-voltage detector has the following functions.

- The LVI circuit compares the supply voltage (VDD) with the detection voltage (VLvi) or the input voltage from an external input pin (EXLVI) with the detection voltage (V EXLVI $=1.21 \mathrm{~V} \pm 0.1 \mathrm{~V}$), and generates an internal reset or internal interrupt signal.
- The low-voltage detector (LVI) can be set to ON by an option byte by default. If it is set to ON to raise the power supply from the POC detection voltage (VPOR $=1.61 \mathrm{~V}$ (TYP.)) or lower, the internal reset signal is generated when the supply voltage ($\mathrm{V} D \mathrm{D}$) < detection voltage ($\mathrm{V} \mathrm{LV}=2.07 \mathrm{~V} \pm 0.2 \mathrm{~V}$). After that, the internal reset signal is generated when the supply voltage (VDD) < detection voltage ($\mathrm{VLVI}=2.07 \mathrm{~V} \pm 0.1 \mathrm{~V}$).
- The supply voltage (VDD) or the input voltage from the external input pin (EXLVI) can be selected to be detected by software.
- A reset or an interrupt can be selected to be generated after detection by software.
- Detection levels (VLvi,16 levels) of supply voltage can be changed by software.
- Operable in STOP mode.

The reset and interrupt signals are generated as follows depending on selection by software.

Selection of Level Detection of Supply Voltage (VDD)(LVISEL = 0)		Selection Level Detection of Input Voltage from External Input Pin (EXLVI) (LVISEL = 1)	
Selects reset (LVIMD = 1).	Selects interrupt (LVIMD $=0$).	Selects reset (LVIMD = 1).	Selects interrupt (LVIMD = 0).
Generates an internal reset signal when VDd < VLvi and releases the reset signal when VDD \geq VLVI.	Generates an internal interrupt signal when Vod drops lower than VLvi (VDd < VLvi) or when Vdd becomes VLvi or higher ($\left.\mathrm{V}_{\mathrm{DD}} \geq \mathrm{V}_{\mathrm{LVI}}\right)$.	Generates an internal reset signal when EXLVI < VExLvi and releases the reset signal when EXLVI \geq VexLvI.	Generates an internal interrupt signal when EXLVI drops lower than Vexlvi (EXLVI < Vexlvi) or when EXLVI becomes Vexivi or higher (EXLVI \geq VEXLVI).

Remark LVISEL: Bit 2 of low-voltage detection register (LVIM) LVIMD: Bit 1 of LVIM

While the low-voltage detector is operating, whether the supply voltage or the input voltage from an external input pin is more than or less than the detection level can be checked by reading the low-voltage detection flag (LVIF: bit 0 of LVIM).

When the low-voltage detector is used to reset, bit 0 (LVIRF) of the reset control flag register (RESF) is set to 1 if reset occurs. For details of RESF, see CHAPTER 22 RESET FUNCTION.

24.2 Configuration of Low-Voltage Detector

The block diagram of the low-voltage detector is shown in Figure 24-1.

Figure 24-1. Block Diagram of Low-Voltage Detector

24.3 Registers Controlling Low-Voltage Detector

The low-voltage detector is controlled by the following registers.

- Low-voltage detection register (LVIM)
- Low-voltage detection level select register (LVIS)
- Port mode register 12 (PM12)
(1) Low-voltage detection register (LVIM)

This register sets low-voltage detection and the operation mode.
This register can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation clears this register to 00 H .

Figure 24-2. Format of Low-Voltage Detection Register (LVIM)
Address: FFFA9H After reset: $00 \mathrm{H}^{\text {Note } 1} \quad \mathrm{R} / \mathrm{W}^{\text {Note } 2}$

| Symbol
 LVIM$\quad<7>$ | 6 | 5 | 4 | 3 | $<2>$ | | $<1>$ | $<0>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | LVION | 0 | 0 | 0 | 0 | LVISEL | LVIMD | LVIF |

LVION $^{\text {Notes } 3,4}$		Enables low-voltage detection operation
0	Disables operation	
1	Enables operation	

LVISEL $^{\text {Note } 3}$	Voltage detection selection
0	Detects level of supply voltage (VDD)
1	Detects level of input voltage from external input pin (EXLVI)

LVIMD ${ }^{\text {Note } 3}$	Low-voltage detection operation mode (interrupt/reset) selection
0	- LVISEL = 0: Generates an internal interrupt signal when the supply voltage (VDD) drops lower than the detection voltage (VLvI) (VDD < VLvi) or when Vdd becomes VLvi or higher (Vdd $\geq V_{\text {LvII }}$). - LVISEL = 1: Generates an interrupt signal when the input voltage from an external input pin (EXLVI) drops lower than the detection voltage (VExLvI) (EXLVI < VexLvi) or when EXLVI becomes $\mathrm{V}_{\text {exlvi }}$ or higher (EXLVI $\geq \mathrm{VexLvI}^{\prime}$).
1	- LVISEL = 0: Generates an internal reset signal when the supply voltage (VDD) < detection voltage (V_{Lv}) and releases the reset signal when $\mathrm{V}_{\mathrm{dd}} \geq \mathrm{V}_{\mathrm{Lv}}$. - LVISEL = 1: Generates an internal reset signal when the input voltage from an external input pin (EXLVI) < detection voltage (VExLvI) and releases the reset signal when EXLVI $\geq \mathrm{V}_{\text {ExLvI. }}$

LVIF	Low-voltage detection flag
0	- LVISEL $=0$: Supply voltage $(\mathrm{VDD}) \geq$ detection voltage (VLVI), or when LVI operation is disabled - LVISEL = 1: Input voltage from external input pin (EXLVI) \geq detection voltage (VExLv) , or when LVI operation is disabled
1	- LVISEL $=0$: Supply voltage (VDD) < detection voltage (VLVI) - LVISEL = 1: Input voltage from external input pin (EXLVI) < detection voltage (VExLvI)

Notes 1. The reset value changes depending on the reset source and the setting of the option byte.
This register is not cleared $(00 \mathrm{H})$ by LVI reset.
It is set to " 82 H " when a reset signal other than LVI is applied if option byte LVIOFF $=0$, and to " 00 H " if option byte LVIOFF $=1$.
2. Bit 0 is read-only.
3. LVION, LVIMD, and LVISEL are cleared to 0 in the case of a reset other than an LVI reset. These are not cleared to 0 in the case of an LVI reset.

Note 4. When LVION is set to 1 , operation of the comparator in the LVI circuit is started. Use software to wait for the following periods of time, between when LVION is set to 1 and when the voltage is confirmed with LVIF.

- Operation stabilization time (10 $\mu \mathrm{s}$ (MAX.))
- Minimum pulse width (200 $\mu \mathrm{s}$ (MIN.))

The LVIF value for these periods may be set/cleared regardless of the voltage level, and can therefore not be used. Also, the LVIIF interrupt request flag may be set to 1 in these periods.

Cautions 1. To stop LVI, be sure to clear (0) LVION by using a 1-bit memory manipulation instruction.
2. Input voltage from external input pin (EXLVI) must be EXLVI < VDD.
3. When LVI is used in interrupt mode (LVIMD $=0$) and LVISEL is set to 0 , an interrupt request signal (INTLVI) that disables LVI operation (clears LVION) when the supply voltage (VDD) is less than or equal to the detection voltage (VLvI) (if LVISEL $=1$, input voltage of external input pin (EXLVI) is less than or equal to the detection voltage (VExLvi)) is generated and LVIIF may be set to 1 .

(2) Low-voltage detection level select register (LVIS)

This register selects the low-voltage detection level.
This register can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation input sets this register to OEH.

Figure 24-3. Format of Low-Voltage Detection Level Select Register (LVIS)

Address: FFFAAH After reset: 0 EH Note R/W
Symbol
LVIS

7	6	5	4	3	2	1	0
0	0	0	0	LVIS3	LVIS2	LVIS1	LVIS0

LVIS3	LVIS2	LVIS1	LVISO	Detection level
0	0	0	0	$\mathrm{V}_{\text {Lvio }}(4.22 \pm 0.1 \mathrm{~V}$)
0	0	0	1	V LVII ($4.07 \pm 0.1 \mathrm{~V}$)
0	0	1	0	V LVİ ($3.92 \pm 0.1 \mathrm{~V}$)
0	0	1	1	$\mathrm{V}_{\text {LVII }}(3.76 \pm 0.1 \mathrm{~V})$
0	1	0	0	V $\mathrm{LVI4}(3.61 \pm 0.1 \mathrm{~V}$)
0	1	0	1	VLVI5 ($3.45 \pm 0.1 \mathrm{~V}$)
0	1	1	0	$\mathrm{V}_{\text {LVI6 }}(3.30 \pm 0.1 \mathrm{~V})$
0	1	1	1	$\mathrm{V}_{\text {LVII }}(3.15 \pm 0.1 \mathrm{~V})$
1	0	0	0	V LVıI ($2.99 \pm 0.1 \mathrm{~V}$)
1	0	0	1	V Lvig ($2.84 \pm 0.1 \mathrm{~V}$)
1	0	1	0	$\mathrm{V}_{\text {LV110 }}(2.68 \pm 0.1 \mathrm{~V})$
1	0	1	1	$\mathrm{V}_{\text {LV111 }}(2.53 \pm 0.1 \mathrm{~V})$
1	1	0	0	$\mathrm{V}_{\text {LV112 }}(2.38 \pm 0.1 \mathrm{~V})$
1	1	0	1	$\mathrm{V}_{\text {LV113 }}(2.22 \pm 0.1 \mathrm{~V})$
1	1	1	0	V LV114 (2.07 $\pm 0.1 \mathrm{~V})$
1	1	1	1	V Lv115 (1.91 $\pm 0.1 \mathrm{~V})$

Note The reset value changes depending on the reset source.
If the LVIS register is reset by LVI, it is not reset but holds the current value. The value of this register is reset to " $0 E H$ " if a reset other than by LVI is effected.

Cautions 1. Be sure to clear bits 4 to 7 to " 0 ".

Cautions 2. Change the LVIS value with either of the following methods.

- When changing the value after stopping LVI
<1> Stop LVI (LVION = 0).
<2> Change the LVIS register.
$<3>$ Set to the mode used as an interrupt (LVIMD = 0).
<4> Mask LVI interrupts (LVIMK = 1).
$<5>$ Enable LVI operation (LVION = 1).
<6> Before cancelling the LVI interrupt mask (LVIMK = 0), clear it with software because an LVIIF flag may be set when LVI operation is enabled.
- When changing the value after setting to the mode used as an interrupt (LVIMD = 0)
<1> Mask LVI interrupts (LVIMK = 1).
$<2>$ Set to the mode used as an interrupt (LVIMD = 0).
$<3>$ Change the LVIS register.
<4> Before cancelling the LVI interrupt mask (LVIMK = 0), clear it with software because an LVIIF flag may be set when the LVIS register is changed.

3. When an input voltage from the external input pin (EXLVI) is detected, the detection voltage (VExLvi) is fixed. Therefore, setting of LVIS is not necessary.
(3) Port mode register 12 (PM12)

When using the P120/EXLVI/INTP0 pin for external low-voltage detection potential input, set PM120 to 1. At this time, the output latch of P120 may be 0 or 1.
PM12 can be set by a 1-bit or 8-bit memory manipulation instruction.
Reset signal generation sets this register to FFH.

Figure 24-4. Format of Port Mode Register 12 (PM12)

24.4 Operation of Low-Voltage Detector

The low-voltage detector can be used in the following two modes.

(1) Used as reset (LVIMD = 1)

- If LVISEL $=0$, compares the supply voltage ($\mathrm{V} D \mathrm{D}$) and detection voltage (V Lv) , generates an internal reset signal when $V_{D D}<V_{\text {LvI }}$, and releases internal reset when VdD \geq VLvi.
- If LVISEL = 1, compares the input voltage from external input pin (EXLVI) and detection voltage (VExLv), generates an internal reset signal when EXLVI < VExLvi, and releases internal reset when EXLVI \geq VExLVI.

Remark The low-voltage detector (LVI) can be set to ON by an option byte by default. If it is set to ON to raise the power supply from the POC detection voltage ($\mathrm{V}_{\mathrm{POR}}=1.61 \mathrm{~V}$ (TYP.)) or lower, the internal reset signal is generated when the supply voltage (V do) < detection voltage (V Lvi $=2.07 \mathrm{~V} \pm 0.2 \mathrm{~V}$). After that, the internal reset signal is generated when the supply voltage (V DD) < detection voltage (VLvi $=2.07 \mathrm{~V}$ $\pm 0.1 \mathrm{~V}$).
(2) Used as interrupt (LVIMD =0)

- If LVISEL $=0$, compares the supply voltage ($V_{D D}$) and detection voltage ($\mathrm{V}_{\mathrm{LVI}}$). When VDD drops lower than VLVI ($V_{D D}<V_{L V I}$) or when $V_{D D}$ becomes $V_{L V I}$ or higher ($\left.V_{D D} \geq V_{L V I}\right)$, generates an interrupt signal (INTLVI).
- If LVISEL $=1$, compares the input voltage from external input pin (EXLVI) and detection voltage (VExLVI $=1.21 \mathrm{~V}$ $\pm 0.1 \mathrm{~V}$). When EXLVI drops lower than Vexlvi (EXLVI < VexLvi) or when EXLVI becomes Vexlvi or higher (EXLVI \geq VExLvI), generates an interrupt signal (INTLVI).

While the low-voltage detector is operating, whether the supply voltage or the input voltage from an external input pin is more than or less than the detection level can be checked by reading the low-voltage detection flag (LVIF: bit 0 of LVIM).

Remark LVIMD: Bit 1 of low-voltage detection register (LVIM)
LVISEL: Bit 2 of LVIM

24.4.1 When used as reset

(1) When detecting level of supply voltage (VDD)
(a) When LVI default start function stopped is set (LVIOFF = 1)

- When starting operation
<1> Mask the LVI interrupt (LVIMK = 1).
<2> Clear bit 2 (LVISEL) of the low-voltage detection register (LVIM) to 0 (detects level of supply voltage (VDD)) (default value).
$<3>$ Set the detection voltage using bits 3 to 0 (LVIS3 to LVISO) of the low-voltage detection level selection register (LVIS).
<4> Set bit 7 (LVION) of LVIM to 1 (enables LVI operation).
$<5>\quad$ Use software to wait for the following periods of time (Total $210 \mu \mathrm{~s}$).
- Operation stabilization time ($10 \mu \mathrm{~s}$ (MAX.))
- Minimum pulse width ($200 \mu \mathrm{~s}$ (MIN.))
$<6>\quad$ Wait until it is checked that (supply voltage (Vod) \geq detection voltage (VLvI)) by bit 0 (LVIF) of LVIM.
$<7>$ Set bit 1 (LVIMD) of LVIM to 1 (generates reset when the level is detected).

Figure 24-5 shows the timing of the internal reset signal generated by the low-voltage detector. The numbers in this timing chart correspond to $<1>$ to $<7>$ above.

Cautions 1. Be sure to execute <1>. When LVIMK $=0$, an interrupt may occur immediately after the processing in <4>.
2. If supply voltage (V_{DD}) \geq detection voltage ($\mathrm{V}_{\mathrm{LvI}}$) when LVIMD is set to 1 , an internal reset signal is not generated.

- When stopping operation

Be sure to clear (0) LVIMD and then LVION by using a 1-bit memory manipulation instruction.

Figure 24-5. Timing of Low-Voltage Detector Internal Reset Signal Generation
(Bit: LVISEL = 0, Option Byte: LVIOFF = 1)

Notes 1. The LVIMK flag is set to " 1 " by reset signal generation.
2. The LVIIF flag of the interrupt request flag registers and the LVIF flag may be set (1).
3. LVIRF is bit 0 of the reset control flag register (RESF). For details of RESF, see CHAPTER 22 RESET FUNCTION.

Remarks 1. <1> to <7> in Figure 24-5 above correspond to <1> to <7> in the description of "When starting operation" in 24.4.1 (1) (a) When LVI default start function stopped is set (LVIOFF = 1).
2. Vpor: POC power supply rise detection voltage

VPDR: POC power supply fall detection voltage
(b) When LVI default start function enabled is set (LVIOFF $=0$)

- When starting operation

Start in the following initial setting state.

- Set bit 7 (LVION) of LVIM to 1 (enables LVI operation)
- Clear bit 2 (LVISEL) of the low-voltage detection register (LVIM) to 0 (detects level of supply voltage (VDD))
- Set the low-voltage detection level selection register (LVIS) to 0 EH (default value: V Lvi $=2.07 \mathrm{~V} \pm 0.1 \mathrm{~V}$).
- Set bit 1 (LVIMD) of LVIM to 1 (generates reset when the level is detected)
- Set bit 0 (LVIF) of LVIM to 0 ("Supply voltage (Vdo) \geq detection voltage (VLvI)")

Figure 24-6 shows the timing of the internal reset signal generated by the low-voltage detector.

- When stopping operation

Be sure to clear (0) LVIMD and then LVION by using a 1-bit memory manipulation instruction.

Caution Even when the LVI default start function is used, if it is set to LVI operation prohibition by the software, it operates as follows:

- Does not perform low-voltage detection during LVION $=0$.
- If a reset is generated while LVION $=0$, LVION will be re-set to 1 when the CPU starts after reset release. There is a period when low-voltage detection cannot be performed normally, however, when a reset occurs due to WDT and illegal instruction execution. This is due to the fact that while the pulse width detected by LVI must be $200 \mu \mathrm{~s}$ max., LVION = 1 is set upon reset occurrence, and the CPU starts operating without waiting for the LVI stabilization time.

Figure 24-6. Timing of Low-Voltage Detector Internal Reset Signal Generation
(Bit: LVISEL = 0, Option Byte: LVIOFF = 0)

Notes 1. The LVIMK flag is set to " 1 " by reset signal generation.
2. LVIRF is bit 0 of the reset control flag register (RESF).

When the LVI default start function (bit 0 (LVIOFF) of $000 \mathrm{C} 1 \mathrm{H}=0$) is used, the LVIRF flag may become 1 from the beginning due to the power-on waveform.
For details of RESF, see CHAPTER 22 RESET FUNCTION.

Remark Vpor: POC power supply rise detection voltage
VPDR: POC power supply fall detection voltage
(2) When detecting level of input voltage from external input pin (EXLVI)

- When starting operation
<1> Mask the LVI interrupt (LVIMK = 1).
<2> Set bit 2 (LVISEL) of the low-voltage detection register (LVIM) to 1 (detects level of input voltage from external input pin (EXLVI)).
<3> Set bit 7 (LVION) of LVIM to 1 (enables LVI operation).
$<4>$ Use software to wait for the following periods of time (Total $210 \mu \mathrm{~s}$).
- Operation stabilization time (10 $\mu \mathrm{s}$ (MAX.))
- Minimum pulse width ($200 \mu \mathrm{~s}$ (MIN.))
$<5>$ Wait until it is checked that (input voltage from external input pin (EXLVI) \geq detection voltage $\left(\mathrm{V}_{\text {ExLVI }}=1.21 \mathrm{~V}\right.$ (TYP.))) by bit 0 (LVIF) of LVIM.
<6> Set bit 1 (LVIMD) of LVIM to 1 (generates reset signal when the level is detected).

Figure 24-7 shows the timing of the internal reset signal generated by the low-voltage detector. The numbers in this timing chart correspond to <1> to $<6>$ above.

Cautions 1. Be sure to execute <1>. When LVIMK $=0$, an interrupt may occur immediately after the processing in <3>.
2. If input voltage from external input pin (EXLVI) \geq detection voltage ($\mathrm{V}_{\mathrm{ExLVI}}=1.21 \mathrm{~V}$ (TYP.)) when LVIMD is set to 1 , an internal reset signal is not generated.
3. Input voltage from external input pin (EXLVI) must be EXLVI < Vdo.

- When stopping operation

Be sure to clear (0) LVIMD and then LVION by using a 1-bit memory manipulation instruction.

Figure 24-7. Timing of Low-Voltage Detector Internal Reset Signal Generation
(Bit: LVISEL = 1)

Notes 1. The LVIMK flag is set to " 1 " by reset signal generation.
2. The LVIIF flag of the interrupt request flag registers and the LVIF flag may be set (1).
3. LVIRF is bit 0 of the reset control flag register (RESF). For details of RESF, see CHAPTER 22 RESET FUNCTION.

Remark <1> to <6> in Figure 24-7 above correspond to <1> to <6> in the description of "When starting operation" in 24.4.1 (2) When detecting level of input voltage from external input pin (EXLVI).

24.4.2 When used as interrupt

(1) When detecting level of supply voltage (VDD)
(a) When LVI default start function stopped is set (LVIOFF = 1)

- When starting operation
<1> Mask the LVI interrupt (LVIMK = 1).
<2> Clear bit 2 (LVISEL) of the low-voltage detection register (LVIM) to 0 (detects level of supply voltage (VDD)) (default value). Clear bit 1 (LVIMD) of LVIM to 0 (generates interrupt signal when the level is detected) (default value).
$<3>$ Set the detection voltage using bits 3 to 0 (LVIS3 to LVISO) of the low-voltage detection level selection register (LVIS).
$<4>\quad$ Set bit 7 (LVION) of LVIM to 1 (enables LVI operation).
<5> Use software to wait for the following periods of time (Total $210 \mu \mathrm{~s}$).
- Operation stabilization time ($10 \mu \mathrm{~s}$ (MAX.))
- Minimum pulse width ($200 \mu \mathrm{~s}$ (MIN.))
$<6>$ Confirm that "supply voltage (VDD) \geq detection voltage (V_{Lv})" when detecting the falling edge of V_{DD}, or "supply voltage (VDD) < detection voltage (VLvI)" when detecting the rising edge of $V_{D D}$, at bit 0 (LVIF) of LVIM.
$<7>\quad$ Clear the interrupt request flag of LVI (LVIIF) to 0.
<8> Release the interrupt mask flag of LVI (LVIMK).
<9> Execute the El instruction (when vector interrupts are used).

Figure $24-8$ shows the timing of the interrupt signal generated by the low-voltage detector. The numbers in this timing chart correspond to <1> to <8> above.

- When stopping operation

Be sure to clear (0) LVION by using a 1-bit memory manipulation instruction.

Figure 24-8. Timing of Low-Voltage Detector Interrupt Signal Generation (Bit: LVISEL = 0, Option Byte: LVIOFF = 1)

Notes 1. The LVIMK flag is set to " 1 " by reset signal generation.
2. The interrupt request signal (INTLVI) is generated and the LVIF and LVIIF flags may be set (1).
3. If LVI operation is disabled when the supply voltage (V DD) is less than or equal to the detection voltage (VLvI), an interrupt request signal (INTLVI) is generated and LVIIF may be set to 1 .

Remarks 1. <1> to <8> in Figure $24-8$ above correspond to <1> to <8> in the description of "When starting operation" in 24.4.2 (1) (a) When LVI default start function stopped is set (LVIOFF = 1).
2. Vpor: POC power supply rise detection voltage

VPDR: POC power supply fall detection voltage
(b) When LVI default start function enabled is set (LVIOFF $=0$)

- When starting operation
$<1>$ Start in the following initial setting state.
- Set bit 7 (LVION) of LVIM to 1 (enables LVI operation)
- Clear bit 2 (LVISEL) of the low-voltage detection register (LVIM) to 0 (detects level of supply voltage (Vdd))
- Set the low-voltage detection level selection register (LVIS) to 0 EH (default value: $\mathrm{V}_{\mathrm{Lv}}=2.07 \mathrm{~V} \pm 0.1$ V).
- Set bit 1 (LVIMD) of LVIM to 1 (generates reset when the level is detected)
- Set bit 0 (LVIF) of LVIM to 0 (Detects falling edge "Supply voltage (VDD) \geq detection voltage (VLvI)")
$<2>\quad$ Clear bit 1 (LVIMD) of LVIM to 0 (generates interrupt signal when the level is detected) (default value).
<3> Release the interrupt mask flag of LVI (LVIMK).
<4> Execute the El instruction (when vector interrupts are used).

Figure 24-9 shows the timing of the interrupt signal generated by the low-voltage detector. The numbers in this timing chart correspond to < $1>$ to $<3>$ above

- When stopping operation

Be sure to clear (0) LVION by using a 1-bit memory manipulation instruction.

Cautions 1. Even when the LVI default start function is used, if it is set to LVI operation prohibition by the software, it operates as follows:

- Does not perform low-voltage detection during LVION $=0$.
- If a reset is generated while LVION $=0$, LVION will be re-set to 1 when the CPU starts after reset release. There is a period when low-voltage detection cannot be performed normally, however, when a reset occurs due to WDT and illegal instruction execution.

This is due to the fact that while the pulse width detected by LVI must be $200 \mu \mathrm{~s}$ max., LVION = 1 is set upon reset occurrence, and the CPU starts operating without waiting for the LVI stabilization time.
2. When the LVI default start function (bit 0 (LVIOFF) of $000 \mathrm{C} 1 \mathrm{H}=0$) is used, the LVIRF flag may become 1 from the beginning due to the power-on waveform.
For details of RESF, see CHAPTER 22 RESET FUNCTION.

Figure 24-9. Timing of Low-Voltage Detector Interrupt Signal Generation (Bit: LVISEL = 0, Option Byte: LVIOFF = 0)

Notes 1. The LVIMK flag is set to " 1 " by reset signal generation.
2. If LVI operation is disabled when the supply voltage ($\mathrm{V} D \mathrm{D}$) is less than or equal to the detection voltage (VLvI), an interrupt request signal (INTLVI) is generated and LVIIF may be set to 1 .
3. The LVIIF flag may be set when the LVI detection voltage is changed.

Remarks 1. <1> to <3> in Figure 24-9 above correspond to $<1>$ to $<3>$ in the description of "When starting operation" in 24.4.2 (1) (b) When LVI default start function enabled is set (LVIOFF = 0).
2. VPor: POC power supply rise detection voltage
$V_{\text {PDR: }}$ POC power supply fall detection voltage

(2) When detecting level of input voltage from external input pin (EXLVI)

- When starting operation
<1> Mask the LVI interrupt (LVIMK = 1).
$<2>$ Set bit 2 (LVISEL) of the low-voltage detection register (LVIM) to 1 (detects level of input voltage from external input pin (EXLVI)).

Clear bit 1 (LVIMD) of LVIM to 0 (generates interrupt signal when the level is detected) (default value).
$<3>$ Set bit 7 (LVION) of LVIM to 1 (enables LVI operation).
<4> Use software to wait for the following periods of time (Total $210 \mu \mathrm{~s}$).

- Operation stabilization time (10 $\mu \mathrm{s}$ (MAX.))
- Minimum pulse width (200 $\mu \mathrm{s}$ (MIN.))
$<5>$ Confirm that "input voltage from external input pin (EXLVI) \geq detection voltage (VExLvI = 1.21 V (TYP.))" when detecting the falling edge of EXLVI, or "input voltage from external input pin (EXLVI) < detection voltage (VExLVI = 1.21 V (TYP.))" when detecting the rising edge of EXLVI, at bit 0 (LVIF) of LVIM.
<6> Clear the interrupt request flag of LVI (LVIIF) to 0.
<7> Release the interrupt mask flag of LVI (LVIMK).
<8> Execute the El instruction (when vector interrupts are used).

Figure 24-10 shows the timing of the interrupt signal generated by the low-voltage detector. The numbers in this timing chart correspond to <1> to <7> above.

Caution Input voltage from external input pin (EXLVI) must be EXLVI < Vdd.

- When stopping operation

Be sure to clear (0) LVION by using a 1-bit memory manipulation instruction.

Figure 24-10. Timing of Low-Voltage Detector Interrupt Signal Generation (Bit: LVISEL = 1)

Notes 1. The LVIMK flag is set to " 1 " by reset signal generation.
2. The interrupt request signal (INTLVI) is generated and the LVIF and LVIIF flags may be set (1).
3. If LVI operation is disabled when the input voltage of external input pin (EXLVI) is less than or equal to the detection voltage (VExLVI), an interrupt request signal (INTLVI) is generated and LVIIF may be set to 1 .

Remark <1> to <7> in Figure 24-10 above correspond to $<1>$ to $<7>$ in the description of "When starting operation" in 24.4.2 (2) When detecting level of input voltage from external input pin (EXLVI).

24.5 Cautions for Low-Voltage Detector

(1) Measures method when supply voltage (VDD) frequently fluctuates in the vicinity of the LVI detection voltage (V.vi)

In a system where the supply voltage (VDD) fluctuates for a certain period in the vicinity of the LVI detection voltage (VLvI), the operation is as follows depending on how the low-voltage detector is used.

Operation example 1: When used as reset

The system may be repeatedly reset and released from the reset status.
The time from reset release through microcontroller operation start can be set arbitrarily by the following action.

<Action>

After releasing the reset signal, wait for the supply voltage fluctuation period of each system by means of a software counter that uses a timer, and then initialize the ports (see Figure 24-11).

Remark If bit 2 (LVISEL) of the low voltage detection register (LVIM) is set to " 1 ", the meanings of the above words change as follows.

- Supply voltage (VDD) \rightarrow Input voltage from external input pin (EXLVI)
- Detection voltage (VLvi) \rightarrow Detection voltage (VExLvi $=1.21 \mathrm{~V}$)

Figure 24-11. Example of Software Processing After Reset Release (1/2)

- If supply voltage fluctuation is 50 ms or less in vicinity of LVI detection voltage

Note A flowchart is shown on the next page.

Remarks 1. If bit 2 (LVISEL) of the low voltage detection register (LVIM) is set to " 1 ", the meanings of the above words change as follows.

- Supply voltage (VDD) \rightarrow Input voltage from external input pin (EXLVI)
- Detection voltage (VLvI) \rightarrow Detection voltage (VExLVI $=1.21 \mathrm{~V}$)

2. $\mathrm{n}=0$ to 7

Figure 24-11. Example of Software Processing After Reset Release (2/2)

- Checking reset source

Note When instruction code FFH is executed.
Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Remark If bit 2 (LVISEL) of the low voltage detection register (LVIM) is set to "1", the meanings of the above words change as follows.

- Supply voltage (VDD) \rightarrow Input voltage from external input pin (EXLVI)
- Detection voltage (VLvi) \rightarrow Detection voltage (VExLVI $=1.21 \mathrm{~V}$)

Operation example 2: When used as interrupt

Interrupt requests may be generated frequently.
Take the following action.

<Action>

Confirm that "supply voltage (Vdd) \geq detection voltage (VLvi)" when detecting the falling edge of Vdd, or "supply voltage (VDD) < detection voltage (VLVI)" when detecting the rising edge of VDD, in the servicing routine of the LVI interrupt by using bit 0 (LVIF) of the low-voltage detection register (LVIM). Clear bit 1 (LVIIF) of interrupt request flag register OL (IFOL) to 0 .
For a system with a long supply voltage fluctuation period near the LVI detection voltage, take the above action after waiting for the supply voltage fluctuation time.

Remark If bit 2 (LVISEL) of the low voltage detection register (LVIM) is set to "1", the meanings of the above words change as follows.

- Supply voltage (VDD) \rightarrow Input voltage from external input pin (EXLVI)
- Detection voltage (VLvI) \rightarrow Detection voltage ($\mathrm{V}_{\mathrm{ExLVI}}=1.21 \mathrm{~V}$)
(2) Delay from the time LVI reset source is generated until the time LVI reset has been generated or released

There is some delay from the time supply voltage (VDD) < LVI detection voltage (VLVI) until the time LVI reset has been generated.
In the same way, there is also some delay from the time LVI detection voltage (VLvi) \leq supply voltage (Vdd) until the time LVI reset has been released (see Figure 24-12).

Figure 24-12. Delay from the time LVI reset source is generated until the time LVI reset has been generated or released

[^5]
CHAPTER 25 REGULATOR

25.1 Regulator Overview

All 78K0R/Lx3 microcontroller products contain a circuit for operating the device with a constant voltage. At this time, in order to stabilize the regulator output voltage, connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Also, use a capacitor with good characteristics, since it is used to stabilize internal voltage.
The regulator output voltage is normally 2.4 V (TYP.), and in the low-power consumption mode, 1.8 V (TYP.).

25.2 Registers Controlling Regulator

(1) Regulator mode control register (RMC)

This register sets the output voltage of the regulator.
RMC is set with an 8-bit memory manipulation instruction.
Reset input sets this register to 00 H .

Figure 25-1. Format of Regulator Mode Control Register (RMC)

Cautions 1. The RMC register can be rewritten only in the low-power consumption mode (refer to Table 25-1). In other words, rewrite this register during CPU operation with the subsystem clock (fxT) while the high-speed system clock (fmx), the high-speed internal oscillation clock, and the 20 MHz internal high-speed oscillation clock ($\mathbf{f} \mathbf{1} \mathbf{2 0}$) are both stopped.
2. When using the setting fixed to the low consumption current mode, the RMC register can be used in the following cases.
<When the high-speed internal oscillation clock (fir = 8 MHz (TYP.) or fiн = 1 MHz (TYP.)) is selected as the CPU clock>
fcLk $\leq 1 \mathrm{MHz}$ and external oscillator (X 1 clock (fx), external main system clock (fex)) stop.
<When the X1 clock (fx) or external main system clock (f_{Ex}) is selected as the CPU clock>
fclk $\leq 1 \mathrm{MHz}, \mathrm{fx} / \mathrm{fEx} \leq 5 \mathrm{MHz}$ and the internal high-speed oscillator stop.
<When the subsystem clock (fsub) is selected as the CPU clock>
Both the internal high-speed oscillator and external oscillator (fx/fex $\leq 5 \mathrm{MHz}$) stop or either one stops.

Cautions 3. In low-power consumption mode, use the regulator with fack fixed to 1 MHz when executing self programming.
4. A wait is required to change the operation speed mode control register (OSMC) after changing the RMC register. Wait for 2 ms by software when setting to low-power consumption mode and 10μ s when setting to normal power mode, as described in the procedure shown below.

- When setting to low-power consumption mode
<1> Select a frequency of 1 MHz for fcLk.
<2> Set RMC to 5AH (set the regulator to low-power consumption mode).
<3> Wait for 2 ms .
<4> Set FLPC and FSEL of OSMC to 1 and 0 , respectively.
- When setting to normal power mode
<1> Set RMC to 00H (set the regulator to normal power mode).
<2> Wait for 10μ s.
<3> Change FLPC and FSEL of OSMC.
<4> Change the fcLk frequency.

Table 25-1. Regulator Output Voltage Conditions

Mode	Output Voltage	Condition
Low-power consumption mode	1.8 V	In STOP mode (except during OCD mode)
		When both the high-speed system clock (fmx), the high-speed internal oscillation clock (fir), and the 20 MHz internal high-speed oscillation clock (fiH20) are stopped during CPU operation with the subsystem clock (fsub)
		When both the high-speed system clock (fmx), the high-speed internal oscillation clock (fit), and the 20 MHz internal high-speed oscillation clock (fiH20) are stopped during the HALT mode when the CPU operation with the subsystem clock (fsub) has been set
Normal power mode	2.4 V	Other than above

CHAPTER 26 OPTION BYTE

26.1 Functions of Option Bytes

Addresses 000 C 0 H to 000 C 3 H of the flash memory of the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers form an option byte area.
Option bytes consist of user option byte $(000 \mathrm{C} 0 \mathrm{H}$ to 000 C 2 H$)$ and on-chip debug option byte $(000 \mathrm{C} 3 \mathrm{H})$.
Upon power application or resetting and starting, an option byte is automatically referenced and a specified function is set. When using the product, be sure to set the following functions by using the option bytes.

To use the boot swap operation during self programming, 000 C 0 H to 000 C 3 H are replaced by 010 C 0 H to 010 C 3 H . Therefore, set the same values as 000 C 0 H to 000 C 3 H to 010 C 0 H to 010 C 3 H .

Caution Be sure to set FFH to $000 \mathrm{C} 2 \mathrm{H}(000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H}$ when the boot swap operation is used).

26.1.1 User option byte (000 COH to $000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{COH}$ to 010 C 2 H)

(1) $000 \mathrm{COH} / 010 \mathrm{COH}$

O Operation of watchdog timer

- Operation is stopped or enabled in the HALT or STOP mode.

O Setting of interval time of watchdog timer
O Operation of watchdog timer

- Operation is stopped or enabled.

O Setting of window open period of watchdog timer
O Setting of interval interrupt of watchdog timer

- Used or not used

Caution Set the same value as 000 COH to 010 COH when the boot swap operation is used because 000 COH is replaced by 010 COH .
(2) $000 \mathrm{C} 1 \mathrm{H} / 010 \mathrm{C} 1 \mathrm{H}$

O Setting of LVI upon reset release (upon power application)

- LVI is ON or OFF by default upon reset release (reset by $\overline{\text { RESET }}$ pin excluding LVI, POC, WDT, or illegal instructions).
O Setting of internal high-speed oscillator frequency
- Select from $1 \mathrm{MHz}, 8 \mathrm{MHz}$, or 20 MHz .

Caution Set the same value as 000 C 1 H to 010 C 1 H when the boot swap operation is used because 000 C 1 H is replaced by 010 C 1 H .
(3) $000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H}$

O Be sure to set FFH, as these addresses are reserved areas.

Caution Set FFH to 010 C 2 H when the boot swap operation is used because 000 C 2 H is replaced by 010 C 2 H .

26.1.2 On-chip debug option byte (000C3H/ 010C3H)

O Control of on-chip debug operation

- On-chip debug operation is disabled or enabled.

O Handling of data of flash memory in case of failure in on-chip debug security ID authentication

- Data of flash memory is erased or not erased in case of failure in on-chip debug security ID authentication.

Caution Set the same value as 000 C 3 H to 010 C 3 H when the boot swap operation is used because 000 C 3 H is replaced by 010 C 3 H .

26.2 Format of User Option Byte

The format of user option byte is shown below.

Figure 26-1. Format of User Option Byte (000COH/010COH) (1/2)

Address: $000 \mathrm{C} 0 \mathrm{H} / 010 \mathrm{COH}^{\text {Note } 1}$

7	6	5	4	3	2	1	0
WDTINIT	WINDOW1	WINDOW0	WDTON	WDCS2	WDCS1	WDCS0	WDSTBYON

WDTINIT	\quad Use of interval interrupt of watchdog timer
0	Interval interrupt is not used.
1	Interval interrupt is generated when 75% of the overflow time is reached.

WINDOW1	WINDOW0	Watchdog timer window open period $^{\text {Note } 2}$
0	0	Setting prohibited
0	1	50%
1	0	75%
1	1	100%

WDTON	Operation control of watchdog timer counter
0	Counter operation disabled (counting stopped after reset)
1	Counter operation enabled (counting started after reset)

WDCS2	WDCS1	WDCS0	Watchdog timer overflow time $\text { (fil = } 33 \mathrm{kHz}(\text { MAX.) })$
0	0	0	$2^{7} / \mathrm{fiL}(3.88 \mathrm{~ms})$
0	0	1	$2^{8} / \mathrm{fLL}$ (7.76 ms)
0	1	0	$2^{9} /$ fil (15.52 ms)
0	1	1	$2^{10} / \mathrm{fIL}$ (31.03 ms)
1	0	0	$2^{12} / \mathrm{fIL}(124.12 \mathrm{~ms})$
1	0	1	$2^{14 / f f L}(496.48 \mathrm{~ms})$
1	1	0	$2^{15} / \mathrm{fLL}(992.97 \mathrm{~ms})$
1	1	1	$2^{17} / \mathrm{fiL}$ (3971.88 ms)

Figure 26-1. Format of User Option Byte ($000 \mathrm{C} 0 \mathrm{H} / 010 \mathrm{COH}$) (2/2)
Address: $000 \mathrm{C} 0 \mathrm{H} / 010 \mathrm{C} 0 \mathrm{H}^{\text {Note } 1}$

7	6	5	4	3	2	1	0
WDTINIT	WINDOW1	WINDOW0	WDTON	WDCS2	WDCS1	WDCS0	WDSTBYON

WDSTBYON	Operation control of watchdog timer counter (HALT/STOP mode)
0	Counter operation stopped in HALT/STOP mode ${ }^{\text {Note } 2}$
1	Counter operation enabled in HALT/STOP mode

Notes 1. Set the same value as 000 COH to 010 COH when the boot swap operation is used because 000 C 0 H is replaced by 010 C 0 H .
2. The window open period is 100% when $W D S T B Y O N ~=0$, regardless the value of WINDOW1 and WINDOWO.

Caution The watchdog timer continues its operation during self-programming of the flash memory and EEPROM emulation. During processing, the interrupt acknowledge time is delayed. Set the overflow time and window size taking this delay into consideration.

Remark fiL: Internal low-speed oscillation clock frequency

Figure 26-2. Format of User Option Byte (000C1H/010C1H)
Address: $000 \mathrm{C} 1 \mathrm{H} / 010 \mathrm{C} 1 \mathrm{H}^{\text {Note } 1}$

7	6	5	4	3	2	1	0
1	1	1	1	1	FRQSEL2	FRQSEL1	LVIOFF

FRQSEL2	FRQSEL1	\quad Internal high-speed oscillator frequency
0	1	$8 \mathrm{MHz} / 20 \mathrm{MHz}$ Note 2
1	0	$1 \mathrm{MHz}^{\text {Note } 3}$
1	1	8 MHz
Other than the above		Setting prohibited

LVIOFF	Setting of LVI on power application
0	LVI is ON by default (LVI default start function enabled) upon reset release (upon power application)
1	LVI is OFF by default (LVI default start function stopped) upon reset release (upon power application)

Notes 1. Set the same value as 000 C 1 H to 010 C 1 H when the boot swap operation is used because 000 C 1 H is replaced by 010C1H.
2. When 8 MHz or 20 MHz has been selected, the 8 MHz internal high-speed oscillator automatically starts oscillating after reset release. To use the 20 MHz internal high-speed oscillator to operate the microcontroller, oscillation is started by setting bit 0 (DSCON) of the 20 MHz internal high-speed oscillation control register (DSCCTL) to 1 with $V_{D D} \geq 2.7 \mathrm{~V}$. The circuit cannot be changed to a 1 MHz internal highspeed oscillator while the microcontroller operates.
3. When 1 MHz has been selected, the microcontroller operates on the 1 MHz internal high-speed oscillator after reset release. The circuit cannot be changed to an 8 MHz or 20 MHz internal high-speed oscillator while the microcontroller operates.
(Cautions are listed on the next page.)

Cautions 1. Be sure to set bits 7 to 3 to " 1 ".
2. Even when the LVI default start function is used, if it is set to LVI operation prohibition by the software, it operates as follows:

- Does not perform low-voltage detection during LVION $=0$.
- If a reset is generated while LVION = 0 , LVION will be re-set to 1 when the CPU starts after reset release. There is a period when low-voltage detection cannot be performed normally, however, when a reset occurs due to WDT and illegal instruction execution.
This is due to the fact that while the pulse width detected by LVI must be $200 \mu \mathrm{~s}$ max., LVION = 1 is set upon reset occurrence, and the CPU starts operating without waiting for the LVI stabilization time.

Figure 26-3. Format of Option Byte (000C2H/010C2H)
Address: $000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H}^{\text {Note }}$

7	6	5	4	3	2	1	0
1	1	1	1	1	1	1	1

Note Be sure to set FFH to 000 C 2 H , as these addresses are reserved areas. Also set FFH to 010 C 2 H when the boot swap operation is used because 000 C 2 H is replaced by 010 C 2 H .

26.3 Format of On-chip Debug Option Byte

The format of on-chip debug option byte is shown below.
Figure 26-4. Format of On-chip Debug Option Byte (000C3H/010C3H)
Address: $000 \mathrm{C} 3 \mathrm{H} / 010 \mathrm{C} 3 \mathrm{H}^{\text {Note }}$

7	6	5	4	3	2	1	0
OCDENSET	0	0	0	0	1	0	OCDERSD

OCDENSET	OCDERSD	Control of on-chip debug operation
0	0	Disables on-chip debug operation.
0	1	Setting prohibited
1	0	Erases data of flash memory in case of failures in enabling on-chip debugging and authenticating on-chip debug security ID.
1	1	Does not erases data of flash memory in case of failures in enabling on-chip debugging and authenticating on-chip debug security ID.

Note Set the same value as 000 C 3 H to 010 C 3 H when the boot swap operation is used because 000 C 3 H is replaced by 010 C 3 H .

Caution Bits 7 and 0 (OCDENSET and OCDERSD) can only be specified a value.
Be sure to set 000010B to bits 6 to 1 .

Remark The value on bits 3 to 1 will be written over when the on-chip debug function is in use and thus it will become unstable after the setting.
However, be sure to set the default values (0,1 , and 0) to bits 3 to 1 at setting.

26.4 Setting of Option Byte

The user option byte and on-chip debug option byte can be set using the RA78K0R or PM+ linker option, in addition to describing to the source. When doing so, the contents set by using the linker option take precedence, even if descriptions exist in the source, as mentioned below.

See the RA78K0R Assembler Package User's Manual for how to set the linker option.
A software description example of the option byte setting is shown below.

OPT	CSEG	OPT_BYTE		
	DB	36 H		Does not use interval interrupt of watchdog timer,
				Enables watchdog timer operation,
				Window open period of watchdog timer is 50\%,
				Overflow time of watchdog timer is $2^{10} / \mathrm{fIL}$,
				Stops watchdog timer operation during HALT/STOP mode
	DB	OFBH		Select 8 MHz or 20 MHz for internal high-speed oscillator
			;	Stops LVI default start function
	DB	OFFH	;	Reserved area
	DB	85H		Enables on-chip debug operation, does not erase flash memory
				data when security ID authorization fails

When the boot swap function is used during self programming, 000 COH to 000 C 3 H is switched to 010 C 0 H to 010 C 3 H . Describe to 010 COH to 010 C 3 H , therefore, the same values as 000 C 0 H to 000 C 3 H as follows.

OPT2	CSEG	AT	010 COH	
	DB		36 H	; Does not use interval interrupt of watchdog timer,
				; Enables watchdog timer operation,
				; Window open period of watchdog timer is 50%,
				; Overflow time of watchdog timer is $2^{10} / \mathrm{fIL}$,
				; Stops watchdog timer operation during HALT/STOP mode
	DB		0 FBH	; Select 8 MHz or 20 MHz for internal high-speed oscillator
				; Stops LVI default start function
	DB		OFFH	; Reserved area
	DB		85 H	; Enables on-chip debug operation, does not erase flash memory
				; data when security ID authorization fails

Caution To specify the option byte by using assembly language, use OPT_BYTE as the relocation attribute name of the CSEG pseudo instruction. To specify the option byte to 010 COH to 010 C 3 H in order to use the boot swap function, use the relocation attribute AT to specify an absolute address.

CHAPTER 27 FLASH MEMORY

The 78K0R/Lx3 microcontrollers incorporate the flash memory to which a program can be written, erased, and overwritten while mounted on the board.

27.1 Writing with Flash Memory Programmer

Data can be written to the flash memory on-board or off-board, by using a dedicated flash memory programmer.

(1) On-board programming

The contents of the flash memory can be rewritten after the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers have been mounted on the target system. The connectors that connect the dedicated flash memory programmer must be mounted on the target system.

(2) Off-board programming

Data can be written to the flash memory with a dedicated program adapter (FA series) before the 78K0R/Lx3 microcontrollers are mounted on the target system.

Remark The FA series is a product of Naito Densei Machida Mfg. Co., Ltd.

27.2 Programming Environment

The environment required for writing a program to the flash memory of the $78 \mathrm{~K} 0 \mathrm{R} / \mathrm{Lx} 3$ microcontrollers are illustrated below.

Figure 27-1. Environment for Writing Program to Flash Memory

A host machine that controls the dedicated flash memory programmer is necessary.
To interface between the dedicated flash memory programmer and the 78KOR/Lx3 microcontrollers, the TOOLO pin is used for manipulation such as writing and erasing via a dedicated single-line UART. To write the flash memory off-board, a dedicated program adapter (FA series) is necessary.

27.3 Communication Mode

Communication between the dedicated flash memory programmer and the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers is established by serial communication using the TOOLO pin via a dedicated single-line UART of the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers.

Transfer rate: 115,200 bps to 1,000,000 bps

Figure 27-2. Communication with Dedicated Flash Memory Programmer

When using the FlashPro5 as the dedicated flash memory programmer, the FlashPro5 generates the following signals for the 78K0R/Lx3 microcontrollers. For details, refer to the user's manual for the FlashPro5.

Table 27-1. Pin Connection

FlashPro5			78K0R/Lx3 microcontrollers	Connection
Signal Name	I/O	Pin Function	Pin Name	
FLMD0	Output	Mode signal	FLMD0	(
Vdo	I/O	VDD voltage generation/power monitoring	Vdd, EVdd, $A V_{\text {dDo }}, ~ A V_{\text {dD }}$	($)$
GND	-	Ground	Vss, EVss, AVss	($)$
CLK	Output	Clock output	-	\times
/RESET	Output	Reset signal	RESET	(
SI/RxD	Input	Receive signal	TOOLO	()
SO/TxD	Output	Transmit signal		
SCK	Output	Transfer clock	-	\times

Remark ©: Be sure to connect the pin.
\times : The pin does not have to be connected.

Examples of the recommended connection (μ PD78F1508A) when using the adapter for flash memory writing are shown below.

Figure 27-3. Example of Wiring Adapter for Flash Memory Writing (μ PD78F1508A)

Notes 1. This pin is not required to be connected when using PG-FP5 or FL-PR5.
2. Connect SI/RxD or SO/TxD when using QB-MINI2.

27.4 Connection of Pins on Board

To write the flash memory on-board, connectors that connect the dedicated flash memory programmer must be provided on the target system. First provide a function that selects the normal operation mode or flash memory programming mode on the board.

When the flash memory programming mode is set, all the pins not used for programming the flash memory are in the same status as immediately after reset. Therefore, if the external device does not recognize the state immediately after reset, the pins must be handled as described below.

27.4.1 FLMDO pin

(1) In flash memory programming mode

Directly connect this pin to a flash memory programmer when data is written by the flash memory programmer. This supplies a writing voltage of the Vod level to the FLMDO pin.
The FLMDO pin does not have to be pulled down externally because it is internally pulled down by reset. To pull it down externally, use a resistor of $1 \mathrm{k} \Omega$ to $200 \mathrm{k} \Omega$.
(2) In normal operation mode

It is recommended to leave this pin open during normal operation.
The FLMDO pin must always be kept at the Vss level before reset release but does not have to be pulled down externally because it is internally pulled down by reset. However, pulling it down must be kept selected (i.e., FLMDPUP = "0", default value) by using bit 7 (FLMDPUP) of the background event control register (BECTL) (see 27.5
(1) Back ground event control register). To pull it down externally, use a resistor of $200 \mathrm{k} \Omega$ or smaller.

Self programming and the rewriting of flash memory with the programmer can be prohibited using hardware, by directly connecting this pin to the Vss pin.
(3) In self programming mode

It is recommended to leave this pin open when using the self programming function. To pull it down externally, use a resistor of $100 \mathrm{k} \Omega$ to $200 \mathrm{k} \Omega$.
In the self programming mode, the setting is switched to pull up in the self programming library.

Figure 27-4. FLMDO Pin Connection Example

78K0R/Lx3 microcontrollers

Dedicated flash memory programmer connection pin
FLMDO

27.4.2 TOOLO pin

In the flash memory programming mode, connect this pin directly to the dedicated flash memory programmer or pull it up by connecting it to EVDD via an external resistor.

When on-chip debugging is enabled in the normal operation mode, pull this pin up by connecting it to Vod via an external resistor, and be sure to keep inputting the Vod level to the TOOLO pin before reset is released (pulling down this pin is prohibited).

Remark The SAU and IICA pins are not used for communication between the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers and dedicated flash memory programmer, because single-line UART is used.

27.4.3 $\overline{\text { RESET }}$ pin

Signal conflict will occur if the reset signal of the dedicated flash memory programmer is connected to the $\overline{\text { RESET }}$ pin that is connected to the reset signal generator on the board. To prevent this conflict, isolate the connection with the reset signal generator.

The flash memory will not be correctly programmed if the reset signal is input from the user system while the flash memory programming mode is set. Do not input any signal other than the reset signal of the dedicated flash memory programmer.

Figure 27-5. Signal Conflict ($\overline{\text { RESET }}$ Pin)

27.4.4 Port pins

When the flash memory programming mode is set, all the pins not used for flash memory programming enter the same status as that immediately after reset. If external devices connected to the ports do not recognize the port status immediately after reset, the port pin must be connected to VDD or Vss via a resistor.

27.4.5 REGC pin

Connect the REGC pin to GND via a capacitor (0.47 to $1 \mu \mathrm{~F}$) in the same manner as during normal operation.
Also, use a capacitor with good characteristics, since it is used to stabilize internal voltage.

27.4.6 X1 and X2 pins

Connect X 1 and X 2 in the same status as in the normal operation mode.

Remark In the flash memory programming mode, the internal high-speed oscillation clock (f IH) is used.

27.4.7 Power supply

To use the supply voltage output of the flash memory programmer, connect the VDD pin to VDD of the flash memory programmer, and the Vss pin to GND of the flash memory programmer.

To use the on-board supply voltage, connect in compliance with the normal operation mode.
However, when using the on-board supply voltage, be sure to connect the Vdd and Vss pins to Vdd and GND of the flash memory programmer to use the power monitor function with the flash memory programmer.

Supply the same other power supplies (EVdd, EVss, AVdDo, AVDD1, and $A V s s)$ as those in the normal operation mode.

27.5 Registers Controlling Flash Memory

(1) Background event control register (BECTL)

Even if the FLMDO pin is not controlled externally, it can be controlled by software with the BECTL register to set the self-programming mode.
However, depending on the processing of the FLMD0 pin, it may not be possible to set the self-programming mode by software. When using BECTL, leaving the FLMD0 pin open is recommended. When pulling it down externally, use a resistor with a resistance of $100 \mathrm{k} \Omega$ or more. In addition, in the normal operation mode, use BECTL with the pull down selection. In the self-programming mode, the setting is switched to pull up in the self- programming library.
The BECTL register is set by a 1 -bit or 8 -bit memory manipulation instruction.
Reset input sets this register to 00 H .

Figure 27-6. Format of Background Event Control Register (BECTL)

Address: F	H After reset: 00H			R/W					
Symbol		7	6	5	4	3	2	1	0
BECTL	FLM	DPUP	0	0	0	0	0	0	0

FLMDPUP	
0	Selects pull-down
1	Selects pull-up

27.6 Programming Method

27.6.1 Controlling flash memory

The following figure illustrates the procedure to manipulate the flash memory.
Figure 27-7. Flash Memory Manipulation Procedure

27.6.2 Flash memory programming mode

To rewrite the contents of the flash memory by using the dedicated flash memory programmer, set the 78K0R/Lx3 microcontrollers in the flash memory programming mode. To set the mode, set the FLMDO pin and TOOLO pin to VdD and clear the reset signal.

Change the mode by using a jumper when writing the flash memory on-board.
Figure 27-8. Flash Memory Programming Mode

Table 27-2. Relationship Between FLMDO Pin and Operation Mode After Reset Release

FLMD0	Operation Mode
0	Normal operation mode
$V_{D D}$	Flash memory programming mode

27.6.3 Selecting communication mode

Communication mode of the $78 \mathrm{~K} 0 \mathrm{R} / \mathrm{Lx} 3$ microcontrollers as follows.

Table 27-3. Communication Modes

Communication Sode	Standard Setting ${ }^{\text {Note } 1}$				Pins Used
	UART-ch0	$1 \mathrm{Mbps}^{\text {Note 2 }}$	Frequency	Multiply Rate	

Notes 1. Selection items for Standard settings on GUI of the flash memory programmer.
2. Because factors other than the baud rate error, such as the signal waveform slew, also affect UART communication, thoroughly evaluate the slew as well as the baud rate error.

27.6.4 Communication commands

The 78K0R/Lx3 microcontrollers communicate with the dedicated flash memory programmer by using commands. The signals sent from the flash memory programmer to the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers are called commands, and the signals sent from the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers to the dedicated flash memory programmer are called response.

Figure 27-9. Communication Commands

The flash memory control commands of the 78K0R/Lx3 microcontrollers are listed in the table below. All these commands are issued from the programmer, and the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers perform processing corresponding to the respective commands.

Table 27-4. Flash Memory Control Commands

Classification	Command Name	Function
Verify	Verify	Compares the contents of a specified area of the flash memory with data transmitted from the programmer.
Erase	Chip Erase	Erases the entire flash memory.
	Block Erase	Erases a specified area in the flash memory.
Blank check	Block Blank Check	Checks if a specified block in the flash memory has been correctly erased.
Write	Programming	Writes data to a specified area in the flash memory.
Getting information	Silicon Signature	Gets 78K0R/Lx3 microcontrollers information (such as the part number and flash memory configuration).
	Version Get	Gets the 78K0R/Lx3 microcontrollers firmware version.
	Checksum	Gets the checksum data for a specified area.
Security	Security Set	Sets security information.
Others	Reset	Used to detect synchronization status of communication.
	Baud Rate Set	Sets baud rate when UART communication mode is selected.

The 78K0R/Lx3 microcontrollers return a response for the command issued by the dedicated flash memory programmer. The response names sent from the 78K0R/Lx3 microcontrollers are listed below.

Table 27-5. Response Names

Response Name	Function
ACK	Acknowledges command/data.
NAK	Acknowledges illegal command/data.

27.7 Security Settings

The 78K0R/Lx3 microcontrollers support a security function that prohibits rewriting the user program written to the internal flash memory, so that the program cannot be changed by an unauthorized person.

The operations shown below can be performed using the Security Set command. The security setting is valid when the programming mode is set next.

- Disabling batch erase (chip erase)

Execution of the block erase and batch erase (chip erase) commands for entire blocks in the flash memory is prohibited by this setting during on-board/off-board programming. Once execution of the batch erase (chip erase) command is prohibited, all of the prohibition settings (including prohibition of batch erase (chip erase)) can no longer be cancelled.

Caution After the security setting for the batch erase is set, erasure cannot be performed for the device. In addition, even if a write command is executed, data different from that which has already been written to the flash memory cannot be written, because the erase command is disabled.

- Disabling block erase

Execution of the block erase command for a specific block in the flash memory is prohibited during on-board/off-board programming. However, blocks can be erased by means of self programming.

- Disabling write

Execution of the write and block erase commands for entire blocks in the flash memory is prohibited during on-board/off-board programming. However, blocks can be written by means of self programming.

- Disabling rewriting boot cluster 0

Execution of the batch erase (chip erase) command, block erase command, and write command on boot cluster 0 (00000 H to 00FFFH) in the flash memory is prohibited by this setting.

Caution If a security setting that rewrites boot cluster 0 has been applied, boot cluster 0 of that device will not be rewritten, and the entire flash memory of the device will not be erased in batch.

The batch erase (chip erase), block erase, write commands, and rewriting boot cluster 0 are enabled by the default setting when the flash memory is shipped. Security can be set by on-board/off-board programming and self programming. Each security setting can be used in combination.

All the security settings are cleared by executing the batch erase (chip erase) command.
Table 27-6 shows the relationship between the erase and write commands when the 78K0R/Lx3 microcontrollers security function is enabled.

Remark To prohibit writing and erasing during self-programming, use the flash sealed window function (see $\mathbf{2 7 . 8} \mathbf{2}$ for detail).

Table 27-6. Relationship Between Enabling Security Function and Command

(1) During on-board/off-board programming

Valid Security	Executed Command		
	Batch Erase (Chip Erase)	Block Erase	Write
Prohibition of batch erase (chip erase)	Cannot be erased in batch	Blocks cannot be erased.	Can be performed ${ }^{\text {Note }}$.
Prohibition of block erase	Can be erased in batch.		Can be performed.
Prohibition of writing			Cannot be performed.
Prohibition of rewriting boot cluster 0	Cannot be erased in batch	Boot cluster 0 cannot be erased.	Boot cluster 0 cannot be written.

Note Confirm that no data has been written to the write area. Because data cannot be erased after batch erase (chip erase) is prohibited, do not write data if the data has not been erased.

(2) During self programming

Valid Security	Executed Command	
	Block Erase	Write
Prohibition of batch erase (chip erase)	Blocks can be erased.	Can be performed.
Prohibition of block erase		
Prohibition of writing		
Prohibition of rewriting boot cluster 0	Boot cluster 0 cannot be erased.	Boot cluster 0 cannot be written.

Remark To prohibit writing and erasing during self-programming, use the flash sealed window function (see 27.8.2 for detail).

Table 27-7. Setting Security in Each Programming Mode

(1) On-board/off-board programming

Security	Security Setting	How to Disable Security Setting
Prohibition of batch erase (chip erase)	Set via GUI of dedicated flash memory programmer, etc.	Cannot be disabled after set.
Prohibition of block erase		Execute batch erase (chip erase) command
Prohibition of writing		Cannot be disabled after set.
Prohibition of rewriting boot cluster 0		

(2) Self programming

Security	Security Setting	How to Disable Security Setting
Prohibition of batch erase (chip erase)	Set by using information library.	Cannot be disabled after set.
Prohibition of block erase		Execute batch erase (chip erase) command during on-board/off-board programming (cannot be disabled during self programming)
Prohibition of writing		Prohibition of rewriting boot cluster 0

27.8 Flash Memory Programming by Self-Programming

The 78K0R/Lx3 microcontrollers support a self-programming function that can be used to rewrite the flash memory via a user program. Because this function allows a user application to rewrite the flash memory by using the 78K0R/Lx3 microcontrollers self-programming library, it can be used to upgrade the program in the field.

If an interrupt occurs during self-programming, self-programming can be temporarily stopped and interrupt servicing can be executed. If an unmasked interrupt request is generated in the El state, the request branches directly from the self-programming library to the interrupt routine. After the self-programming mode is later restored, self-programming can be resumed. However, the interrupt response time is different from that of the normal operation mode.

Cautions 1. The self-programming function cannot be used when the CPU operates with the subsystem clock.
2. In the self-programming mode, call the self-programming start library (FlashStart).
3. To prohibit an interrupt during self-programming, in the same way as in the normal operation mode, execute the self-programming library in the state where the IE flag is cleared (0) by the DI instruction. To enable an interrupt, clear (0) the interrupt mask flag to accept in the state where the IE flag is set (1) by the El instruction, and then execute the self-programming library.
4. In low-power-consumption mode, use the regulator with fcLk fixed to 1 MHz when executing self programming. For details of the low-power-consumption mode, see CHAPTER 25 REGULATOR.
5. Disable DMA operation ($\mathrm{DENn}=0$) during the execution of self programming library functions.

The following figure illustrates a flow of rewriting the flash memory by using a self programming library.

Figure 27-10. Flow of Self Programming (Rewriting Flash Memory)

27.8.1 Boot swap function

If rewriting the boot area failed by temporary power failure or other reasons, restarting a program by resetting or overwriting is disabled due to data destruction in the boot area.

The boot swap function is used to avoid this problem.
Before erasing boot cluster $0^{\text {Note }}$, which is a boot program area, by self-programming, write a new boot program to boot cluster 1 in advance. When the program has been correctly written to boot cluster 1, swap this boot cluster 1 and boot cluster 0 by using the set information function of the firmware of the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers, so that boot cluster 1 is used as a boot area. After that, erase or write the original boot program area, boot cluster 0 .

As a result, even if a power failure occurs while the boot programming area is being rewritten, the program is executed correctly because it is booted from boot cluster 1 to be swapped when the program is reset and started next.

Note A boot cluster is a 4 KB area and boot clusters 0 and 1 are swapped by the boot swap function.

Figure 27-11. Boot Swap Function

In an example of above figure, it is as follows.
Boot cluster 0: Boot program area before boot swap
Boot cluster 1: Boot program area after boot swap

Figure 27-12. Example of Executing Boot Swapping

27.8.2 Flash shield window function

The flash shield window function is provided as one of the security functions for self programming. It disables writing to and erasing areas outside the range specified as a window only during self programming.

The window range can be set by specifying the start and end blocks. The window range can be set or changed during both on-board/off-board programming and self programming.

Writing to and erasing areas outside the window range are disabled during self programming. During on-board/offboard programming, however, areas outside the range specified as a window can be written and erased.

Figure27-13. Flash Shield Window Setting Example
(Target Devices: μ PD78F1500A, Start Block: 04H, End Block: 06H)

Caution If the rewrite-prohibited area of the boot cluster 0 overlaps with the flash shield window range, prohibition to rewrite the boot cluster 0 takes priority.

Table 27-8. Relationship between Flash Shield Window Function Setting/Change Methods and Commands

Programming conditions	Window Range Setting/Change Methods	Execution Commands	
	Block erase	Write	
Self-programming	Specify the starting and ending blocks by the set information library.	Block erasing is enabled only within the window range.	Writing is enabled only within the range of window range.
On-board/Off-board programming	Specify the starting and ending blocks on GUI of dedicated flash memory programmer, etc.	Block erasing is enabled also outside the window range.	Writing is enabled also outside the window range.

Remark See 27.7 Security Settings to prohibit writing/erasing during on-board/off-board programming.

27.9 Creating ROM Code to Place Order for Previously Written Product

Before placing an order with Renesas Electronics for a previously written product, the ROM code for the order must be created.

To create the ROM code, use the Hex Consolidation Utility (hereafter abbreviated to HCU) on the finished programs (hex files) and optional data (such as security settings for flash memory programs).

The HCU is a software tool that includes functions required for creating ROM code.
The HCU can be downloaded at the Renesas Electronics website.

(1) Website

http://www2.renesas.com/micro/en/ods/ \rightarrow Click Version-up Service.
(2) Downloading the HCU

To download the HCU, click Software for previously written flash products and then HCU_GUI.

Remark For details about how to install and use the HCU, see the materials (the user's manual) that comes with the HCU at the above website.

27.9.1 Procedure for using ROM code to place an order

Use the HCU to create the ROM code by following the procedure below, and then place your order with Renesas Electronics. For details, see the ROM Code Ordering Method Information (C10302J).

CHAPTER 28 ON-CHIP DEBUG FUNCTION

28.1 Connecting QB-MINI2 to 78K0R/Lx3 microcontrollers

 the host machine via an on-chip debug emulator (QB-MINI2).

Caution The 78K0R/Lx3 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

Figure 28-1. Connection Example of QB-MINI2 and 78KOR/Lx3 microcontrollers

Notes 1. Connection is not required for communication in 1 -line mode but required for communication in 2 -line mode. At this time, perform necessary connections according to Table 2-2 Connection of Unused Pins since TOOL1 is an unused pin when QB-MINI2 is unconnected.
2. Connecting the dotted line is not necessary since RXD and TXD are shorted within QB-MIN2. When using the other flash memory programmer, RXD and TXD may not be shorted within the programmer. In this case, they must be shorted on the target system.

Remark The FLMDO pin is recommended to be open for self-programming in on-chip debugging. To pull down externally, use a resistor of $100 \mathrm{k} \Omega$ or more.

1-line mode (single line UART) using the TOOLO pin or 2-line mode using the TOOLO and TOOL1 pins is used for serial communication For flash memory programming, 1 -line mode is used. 1-line mode or 2 -line mode is used for on-chip debugging. Table 28-1 lists the differences between 1 -line mode and 2 -line mode.

Table 28-1. Lists the Differences Between 1-line Mode and 2-line Mode.

Communicat ion mode	Flash memory programming function	Debugging function
1-line mode	Available	- Pseudo real-time RAM monitor (RRM) function not supported. - DMM function (rewriting memory in RUN) not supported. - The debugger speed is two to four times slower than 2-line mode.
2-line mode	None	- Pseudo real-time RAM monitor (RRM) function supported - DMM function (rewriting memory in RUN) supported

Remark 2-line mode is not used for flash programming, however, even if TOOL1 pin is connected with CLK_IN of QBMINI2, writing is performed normally with no problem.

28.2 On-Chip Debug Security ID

The 78K0R/Lx3 microcontrollers have an on-chip debug operation control bit in the flash memory at 000C3H (see CHAPTER 26 OPTION BYTE) and an on-chip debug security ID setting area at 000 C 4 H to 000 CDH , to prevent third parties from reading memory content.

When the boot swap function is used, also set a value that is the same as that of 010 C 3 H and 010 C 4 H to 010 CDH in advance, because $000 \mathrm{C} 3 \mathrm{H}, 000 \mathrm{C} 4 \mathrm{H}$ to 000 CDH and 010 C 3 H , and 010 C 4 H to 010 CDH are switched.

For details on the on-chip debug security ID, refer to the QB-MINI2 On-Chip Debug Emulator with Programming Function User's Manual (U18371E).

Table 28-2. On-Chip Debug Security ID

Address	On-Chip Debug Security ID
000 C 4 H to 000 CDH	Any ID code of 10 bytes
010 C 4 H to 010 CDH	

28.3 Securing of User Resources

To perform communication between the 78KOR/Lx3 microcontrollers and QB-MINI2, as well as each debug function, the securing of memory space must be done beforehand.

If Renesas Electronics assembler RA78K0R or compiler CC78K0R is used, the items can be set by using linker options.

(1) Securement of memory space

The shaded portions in Figure 28-2 are the areas reserved for placing the debug monitor program, so user programs or data cannot be allocated in these spaces. When using the on-chip debug function, these spaces must be secured so as not to be used by the user program. Moreover, this area must not be rewritten by the user program.

Figure 28-2. Memory Spaces Where Debug Monitor Programs Are Allocated

Notes 1. Address differs depending on products as follows.

Products	Internal ROM	Address
μ PD78F1500A, 78F1503A, 78F1506A, 78F1510A, 78F1513A, 78F1516A	64 KB	0 0FC00H to 0FFFFH
μ PD78F1501A, 78F1504A, 78F1507A	96 KB	$17 \mathrm{C00H}$ to 17FFFH
μ PD78F1502A, 78F1505A, 78F1508A, 78F1512A, 78F1515A, 78F1518A	128 KB	$1 F C 00 H$ to 1FFFFH

2. In debugging, reset vector is rewritten to address allocated to a monitor program.
3. Since this area is allocated immediately before the stack area, the address of this area varies depending on the stack increase and decrease. That is, 6 extra bytes are consumed for the stack area used.

For details of the way to secure of the memory space, refer to the QB-MINI2 On-Chip Debug Emulator with Programming Function User's Manual (U18371E).

CHAPTER 29 BCD CORRECTION CIRCUIT

29.1 BCD Correction Circuit Function

The BCD correction circuit is mounted onto all 78K0R/Lx3 microcontroller products.
The result of addition/subtraction of the BCD (binary-coded decimal) code and BCD code can be obtained as BCD code with this circuit.

The decimal correction operation result is obtained by performing addition/subtraction having the A register as the operand and then adding/ subtracting the BCDADJ register.

29.2 Registers Used by BCD Correction Circuit

The BCD correction circuit uses the following registers.

- BCD correction result register (BCDADJ)
(1) BCD correction result register (BCDADJ)

The BCDADJ register stores correction values for obtaining the add/subtract result as $B C D$ code through add/subtract instructions using the A register as the operand.

The value read from the BCDADJ register varies depending on the value of the A register when it is read and those of the CY and AC flags.
BCDADJ is read by an 8-bit memory manipulation instruction.
Reset input sets this register to undefined.

Figure 29-1. Format of BCD Correction Result Register (BCDADJ)

29.3 BCD Correction Circuit Operation

The basic operation of the BCD correction circuit is as follows.
(1) Addition: Calculating the result of adding a BCD code value and another BCD code value by using a $B C D$ code value
$<1>$ The BCD code value to which addition is performed is stored in the A register.
$<2>$ By adding the value of the A register and the second operand (value of one more BCD code to be added) as are in binary, the binary operation result is stored in the A register and the correction value is stored in the BCDADJ register.
$<3>$ Decimal correction is performed by adding in binary the value of the A register (addition result in binary) and the BCDADJ register (correction value), and the correction result is stored in the A register and CY register.

Caution The value read from the BCDADJ register varies depending on the value of the A register when it is read and those of the CY and AC flags. Therefore, execute the instruction <3> after the instruction <2> instead of executing any other instructions. To perform BCD correction in the interrupt enabled state, saving and restoring the A register is required within the interrupt function. PSW (CY flag and AC flag) is restored by the RETI instruction.

An example is shown below.

Examples 1: $99+89=188$

Instruction		A Register	CY Register	AC Flag	BCDADJ Register
MOV A, \#99H	$;<1>$	99 H	-	-	-
ADD A, \#89H	$; \ll 2>$	22 H	1	1	66 H
ADD A, ! BCDADJ	$;<3>$	88 H	1	0	-

Examples 2: $85+15=100$

Instruction		A Register	CY Register	AC Flag	BCDADJ Register
MOV A, \#85H	$;<1>$	85 H	-	-	-
ADD A, \#15H $;<2>$ ADD A, ! BCDADJ $;<3>$	9 H	0	0	66 H	
		00 H	1	1	-

Examples 3: $80+80=160$

Instruction		A Register	CY Register	AC Flag	$\begin{aligned} & \text { BCDADJ } \\ & \text { Register } \end{aligned}$
MOV A, \#80H	; <1>	80H	-	-	-
ADD A, \#80H	; <2>	00H	1	0	60H
ADD A, ! bCDADJ	; <3>	60H	1	0	-

(2) Subtraction: Calculating the result of subtracting a BCD code value from another BCD code value by using a BCD code value
$<1>$ The BCD code value from which subtraction is performed is stored in the A register.
$<2>$ By subtracting the value of the second operand (value of BCD code to be subtracted) from the A register as is in binary, the calculation result in binary is stored in the A register, and the correction value is stored in the BCDADJ register.
$<3>$ Decimal correction is performed by subtracting the value of the BCDADJ register (correction value) from the A register (subtraction result in binary) in binary, and the correction result is stored in the A register and CY register.

Caution The value read from the BCDADJ register varies depending on the value of the A register when it is read and those of the CY and AC flags. Therefore, execute the instruction <3> after the instruction <2> instead of executing any other instructions. To perform BCD correction in the interrupt enabled state, saving and restoring the A register is required within the interrupt function. PSW (CY flag and AC flag) is restored by the RETI instruction.

An example is shown below.

Example: 91 - $52=39$

Instruction		A Register	CY Register	AC Flag	BCDADJ Register
MOV A, \#91H	$;<1>$	91 H	-	-	-
SUB A, \#52H	$;<2>$	3 FH	0	1	06 H
SUB A, !BCDADJ	$;<3>$	39 H	0	0	-

CHAPTER 30 INSTRUCTION SET

This chapter lists the instructions in the 78K0R microcontroller instruction set. For details of each operation and operation code, refer to the separate document 78K0R Microcontrollers Instructions User's Manual (U17792E).

Remark The shaded parts of the tables in Table 30-5 Operation List indicate the operation or instruction format that is newly added for the 78K0R microcontrollers.

30.1 Conventions Used in Operation List

30.1.1 Operand identifiers and specification methods

Operands are described in the "Operand" column of each instruction in accordance with the description method of the instruction operand identifier (refer to the assembler specifications for details). When there are two or more description methods, select one of them. Alphabetic letters in capitals and the symbols, \#, !, !!, \$, \$!, [], and ES: are keywords and are described as they are. Each symbol has the following meaning.

- \#: Immediate data specification
- !: 16-bit absolute address specification
- !!: 20-bit absolute address specification
- \$: 8-bit relative address specification
- \$!: 16-bit relative address specification
- []: Indirect address specification
- ES: Extension address specification

In the case of immediate data, describe an appropriate numeric value or a label. When using a label, be sure to describe the \#, !, !!, \$, \$!, [], and ES: symbols.

For operand register identifiers, r and r, either function names (X, A, C, etc.) or absolute names (names in parentheses in the table below, R0, R1, R2, etc.) can be used for description.

Table 30-1. Operand Identifiers and Specification Methods

Identifier	Description Method
rp sfr sfrp	$X(R 0), A(R 1), C(R 2), B(R 3), E(R 4), D(R 5), L(R 6), H(R 7)$ AX (RP0), BC (RP1), DE (RP2), HL (RP3) Special-function register symbol (SFR symbol) Special-function register symbols (16-bit manipulatable SFR symbol. Even addresses only ${ }^{\text {Note }}$)
saddr saddrp	FFE20H to FFF1FH Immediate data or labels FFE20H to FF1FH Immediate data or labels (even addresses only ${ }^{\text {Note }}$)
addr20 addr16 addr5	00000H to FFFFFFH Immediate data or labels 0000 H to FFFFH Immediate data or labels (only even addresses for 16-bit data transfer instructions ${ }^{\text {Note }}$) 0080H to 00BFH Immediate data or labels (even addresses only)
word byte bit	16-bit immediate data or label 8-bit immediate data or label 3-bit immediate data or label
RBn	RB0 to RB3

Note Bit $0=0$ when an odd address is specified.

30.1.2 Description of operation column

The operation when the instruction is executed is shown in the "Operation" column using the following symbols.

Table 30-2. Symbols in "Operation" Column

Symbol	Function
A	A register; 8-bit accumulator
X	X register
B	B register
C	C register
D	D register
E	E register
H	H register
L	L register
ES	ES register
CS	CS register
AX	AX register pair; 16-bit accumulator
BC	BC register pair
DE	DE register pair
HL	HL register pair
PC	Program counter
SP	Stack pointer
PSW	Program status word
CY	Carry flag
AC	Auxiliary carry flag
Z	Zero flag
RBS	Register bank select flag
IE	Interrupt request enable flag
()	Memory contents indicated by address or register contents in parentheses
$\begin{array}{\|l} X_{H}, X_{L} \\ X_{s,}, X_{H}, X_{L} \end{array}$	16-bit registers: $X_{H}=$ higher 8 bits, $X_{L}=$ lower 8 bits 20-bit registers: $X_{s}=\left(\right.$ bits 19 to 16), $X_{H}=$ (bits 15 to 8), $X_{L}=($ bits 7 to 0)
\wedge	Logical product (AND)
\checkmark	Logical sum (OR)
\forall	Exclusive logical sum (exclusive OR)
-	Inverted data
addr5	16-bit immediate data (even addresses only in 0080H to 00BFH)
addr16	16-bit immediate data
addr20	20-bit immediate data
jdisp8	Signed 8-bit data (displacement value)
jdisp16	Signed 16-bit data (displacement value)

30.1.3 Description of flag operation column

The change of the flag value when the instruction is executed is shown in the "Flag" column using the following symbols.

Table 30-3. Symbols in "Flag" Column

Symbol	Change of Flag Value
(Blank)	Unchanged
0	Cleared to 0
1	Set to 1
\times	Set/cleared according to the result
R	Previously saved value is restored

30.1.4 PREFIX instruction

Instructions with "ES:" have a PREFIX operation code as a prefix to extend the accessible data area to the 1 MB space $(00000 \mathrm{H}$ to FFFFFH), by adding the ES register value to the 64 KB space from F0000H to FFFFFH. When a PREFIX operation code is attached as a prefix to the target instruction, only one instruction immediately after the PREFIX operation code is executed as the addresses with the ES register value added.

Table 30-4. Use Example of PREFIX Operation Code

Instruction	Opcode								
	1	2	3	4	5				
MOV !addr16, \#byte	CFH	!addr16						\#byte	-
MOV ES:!addr16, \#byte	11 H	CFH	!addr16		\#byte				
MOV A, [HL]	8 BH	-	-	-	-				
MOV A, ES:[HL]	11 H	$8 B H$	-	-	-				

Caution Set the ES register value with MOV ES, A, etc., before executing the PREFIX instruction.

30.2 Operation List

Table 30-5. Operation List (1/17)

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.
2. When the program memory area is accessed.
3. Except $r=A$

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the system clock control register (CKC).
2. This number of clocks is for when the program is in the internal ROM (flash memory) area.

Table 30-5. Operation List (2/17)

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag
				Note 1	Note 2		Z AC CY
8-bit data transfer	MOV	A, [HL + byte]	2	1	4	$\mathrm{A} \leftarrow(\mathrm{HL}+$ byte $)$	
		[HL + byte], A	2	1	-	$(\mathrm{HL}+$ byte $) \leftarrow \mathrm{A}$	
		A, $[H L+B]$	2	1	4	$A \leftarrow(H L+B)$	
		[$\mathrm{HL}+\mathrm{B}$], A	2	1	-	$(\mathrm{HL}+\mathrm{B}) \leftarrow \mathrm{A}$	
		A, [$\mathrm{HL}+\mathrm{C}$]	2	1	4	$\mathrm{A} \leftarrow(\mathrm{HL}+\mathrm{C})$	
		[HL + C], A	2	1	-	$(\mathrm{HL}+\mathrm{C}) \leftarrow \mathrm{A}$	
		word[B], \#byte	4	1	-	$(\mathrm{B}+$ word) \leftarrow byte	
		A, word[B]	3	1	4	$A \leftarrow(B+$ word $)$	
		word[B], A	3	1	-	$(B+$ word $) \leftarrow A$	
		word[C], \#byte	4	1	-	$(\mathrm{C}+$ word) \leftarrow byte	
		A, word[C]	3	1	4	$A \leftarrow(C+$ word $)$	
		word[C], A	3	1	-	$(\mathrm{C}+$ word $) \leftarrow \mathrm{A}$	
		word[BC], \#byte	4	1	-	(BC + word) \leftarrow byte	
		A, word[BC]	3	1	4	$A \leftarrow(B C+$ word $)$	
		word[BC], A	3	1	-	$(\mathrm{BC}+$ word $) \leftarrow \mathrm{A}$	
		[SP + byte], \#byte	3	1	-	$(\mathrm{SP}+$ byte $) \leftarrow$ byte	
		A, [SP + byte]	2	1	-	$\mathrm{A} \leftarrow(\mathrm{SP}+$ byte $)$	
		[SP + byte], A	2	1	-	$(\mathrm{SP}+$ byte $) \leftarrow \mathrm{A}$	
		B, saddr	2	1	-	$\mathrm{B} \leftarrow$ (saddr)	
		B, !addr16	3	1	4	$\mathrm{B} \leftarrow$ (addr16)	
		C, saddr	2	1	-	$\mathrm{C} \leftarrow$ (saddr)	
		C, !addr16	3	1	4	$\mathrm{C} \leftarrow($ addr 16$)$	
		X, saddr	2	1	-	$\mathrm{X} \leftarrow$ (saddr)	
		X, !addr16	3	1	4	$X \leftarrow$ (addr16)	
		ES:!addr16, \#byte	5	2	-	$($ ES, addr16) \leftarrow byte	
		A, ES:!addr16	4	2	5	$\mathrm{A} \leftarrow(\mathrm{ES}, \mathrm{addr16})$	
		ES:!addr16, A	4	2	-	(ES, addr16) $\leftarrow \mathrm{A}$	
		A, ES:[DE]	2	2	5	$A \leftarrow(E S, D E)$	
		ES:[DE], A	2	2	-	$(\mathrm{ES}, \mathrm{DE}) \leftarrow \mathrm{A}$	
		ES:[DE + byte],\#byte	4	2	-	$(($ ES, DE) + byte $) \leftarrow$ byte	
		A, ES:[DE + byte]	3	2	5	$A \leftarrow((E S, D E)+$ byte $)$	
		ES:[DE + byte], A	3	2	-	$(($ ES, DE) + byte $) \leftarrow$ A	

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.
2. When the program memory area is accessed.

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the system clock control register (CKC).
2. This number of clocks is for when the program is in the internal ROM (flash memory) area.

Table 30-5. Operation List (3/17)

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag
				Note 1	Note 2		Z AC CY
8-bit data transfer	MOV	A, ES:[HL]	2	2	5	$A \leftarrow(E S, H L)$	
		ES:[HL], A	2	2	-	$(\mathrm{ES}, \mathrm{HL}) \leftarrow \mathrm{A}$	
		ES:[HL + byte],\#byte	4	2	-	$((\mathrm{ES}, \mathrm{HL})+$ byte $) \leftarrow$ byte	
		A, ES:[HL + byte]	3	2	5	$\mathrm{A} \leftarrow((\mathrm{ES}, \mathrm{HL})+$ byte $)$	
		ES:[HL + byte], A	3	2	-	$((\mathrm{ES}, \mathrm{HL})+$ byte $) \leftarrow \mathrm{A}$	
		A, ES:[HL + B]	3	2	5	$A \leftarrow((E S, H L)+B)$	
		ES:[HL + B], A	3	2	-	$((\mathrm{ES}, \mathrm{HL})+\mathrm{B}) \leftarrow \mathrm{A}$	
		A, ES:[HL + C]	3	2	5	$\mathrm{A} \leftarrow((\mathrm{ES}, \mathrm{HL})+\mathrm{C})$	
		ES:[HL + C], A	3	2	-	$((E S, H L)+C) \leftarrow A$	
		ES:word[B], \#byte	5	2	-	$(($ ES, B $)+$ word $) \leftarrow$ byte	
		A, ES:word[B]	4	2	5	$A \leftarrow((E S, B)+$ word $)$	
		ES:word[B], A	4	2	-	$((E S, B)+$ word $) \leftarrow A$	
		ES:word[C], \#byte	5	2	-	$((E S, C)+$ word $) \leftarrow$ byte	
		A, ES:word[C]	4	2	5	A $\leftarrow(($ ES, C) + word $)$	
		ES:word[C], A	4	2	-	$((\mathrm{ES}, \mathrm{C})+$ word $) \leftarrow \mathrm{A}$	
		ES:word[BC], \#byte	5	2	-	$(($ ES, BC $)+$ word $) \leftarrow$ byte	
		A, ES:word[BC]	4	2	5	$\mathrm{A} \leftarrow((\mathrm{ES}, \mathrm{BC})+$ word $)$	
		ES:word[BC], A	4	2	-	$((E S, B C)+$ word $) \leftarrow A$	
		B, ES:!addr16	4	2	5	$\mathrm{B} \leftarrow$ (ES, addr16)	
		C, ES:!addr16	4	2	5	$\mathrm{C} \leftarrow(\mathrm{ES}, \mathrm{addr16})$	
		X, ES:!addr16	4	2	5	$\mathrm{X} \leftarrow$ (ES, addr16)	
	XCH	A, r Note 3	$\begin{array}{\|l\|} \hline 1(r=X) \\ 2(\text { other } \\ \text { than } r=X) \end{array}$	1	-	$A \longleftrightarrow r$	
		A, saddr	3	2	-	A \longleftrightarrow (saddr)	
		A, sfr	3	2	-	$\mathrm{A} \longleftrightarrow \mathrm{sfr}$	
		A, !addr16	4	2	-	$\mathrm{A} \longleftrightarrow$ (addr16)	
		A, [DE]	2	2	-	$A \longleftrightarrow$ (DE)	
		A, [DE + byte]	3	2	-	A \longleftrightarrow (DE + byte)	
		A, [HL]	2	2	-	$A \longleftrightarrow(H L)$	
		A, [HL + byte]	3	2	-	$\mathrm{A} \longleftrightarrow(\mathrm{HL}+$ byte $)$	
		A, [HL + B]	2	2	-	$\mathrm{A} \longleftrightarrow(\mathrm{HL}+\mathrm{B})$	
		A, $[\mathrm{HL}+\mathrm{C}]$	2	2	-	$\mathrm{A} \longleftrightarrow(\mathrm{HL}+\mathrm{C})$	

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.
2. When the program memory area is accessed.
3. Except $r=A$

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the system clock control register (CKC).
2. This number of clocks is for when the program is in the internal ROM (flash memory) area.

Table 30-5. Operation List (4/17)

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag
				Note 1	Note 2		Z AC CY
8-bit data transfer	XCH	A, ES:!addr16	5	3	-	$\mathrm{A} \longleftrightarrow$ (ES, addr16)	
		A, ES:[DE]	3	3	-	$A \longleftrightarrow(E S, D E)$	
		A, ES:[DE + byte]	4	3	-	$A \longleftrightarrow($ (ES, DE) + byte)	
		A, ES:[HL]	3	3	-	$\mathrm{A} \longleftrightarrow(\mathrm{ES}, \mathrm{HL})$	
		A, ES:[HL + byte]	4	3	-	$A \longleftrightarrow($ (ES, HL) + byte)	
		A, ES:[HL + B]	3	3	-	$\mathrm{A} \longleftrightarrow((\mathrm{ES}, \mathrm{HL})+\mathrm{B})$	
		A, ES:[HL + C]	3	3	-	$\mathrm{A} \longleftrightarrow((\mathrm{ES}, \mathrm{HL})+\mathrm{C})$	
	ONEB	A	1	1	-	$\mathrm{A} \leftarrow 01 \mathrm{H}$	
		X	1	1	-	$X \leftarrow 01 \mathrm{H}$	
		B	1	1	-	$\mathrm{B} \leftarrow 01 \mathrm{H}$	
		C	1	1	-	$\mathrm{C} \leftarrow 01 \mathrm{H}$	
		saddr	2	1	-	(saddr) $\leftarrow 01 \mathrm{H}$	
		!addr16	3	1	-	(addr16) $\leftarrow 01 \mathrm{H}$	
		ES:!addr16	4	2	-	$($ ES, addr 16$) \leftarrow 01 \mathrm{H}$	
	CLRB	A	1	1	-	$\mathrm{A} \leftarrow \mathrm{OOH}$	
		X	1	1	-	$\mathrm{X} \leftarrow 00 \mathrm{H}$	
		B	1	1	-	$\mathrm{B} \leftarrow 00 \mathrm{H}$	
		C	1	1	-	$\mathrm{C} \leftarrow \mathrm{OOH}$	
		saddr	2	1	-	(saddr) $\leftarrow 00 \mathrm{H}$	
		!addr16	3	1	-	(addr16) $\leftarrow 00 \mathrm{H}$	
		ES:!addr16	4	2	-	$($ ES, addr16 $) \leftarrow 00 \mathrm{H}$	
	MOVS	[HL + byte], X	3	1	-	$(\mathrm{HL}+$ byte $) \leftarrow \mathrm{X}$	$x \quad x$
		ES:[HL + byte], X	4	2	-	$($ ES, $\mathrm{HL}+$ byte $) \leftarrow \mathrm{X}$	$x \quad \times$
16-bit data transfer	MOVW	rp, \#word	3	1	-	$\mathrm{rp} \leftarrow$ word	
		saddrp, \#word	4	1	-	(saddrp) \leftarrow word	
		sfrp, \#word	4	1	-	sfrp \leftarrow word	
		AX, saddrp	2	1	-	AX \leftarrow (saddrp)	
		saddrp, AX	2	1	-	(saddrp) $\leftarrow A X$	
		AX, sfrp	2	1	-	$\mathrm{AX} \leftarrow \mathrm{sfrp}$	
		sfrp, AX	2	1	-	$\operatorname{sfrp} \leftarrow \mathrm{AX}$	
		AX, rp Note 3	1	1	-	$A X \leftarrow r p$	
		rp, AX Note 3	1	1	-	$\mathrm{rp} \leftarrow \mathrm{AX}$	

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.
2. When the program memory area is accessed.
3. Except $r p=A X$

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the system clock control register (CKC).
2. This number of clocks is for when the program is in the internal ROM (flash memory) area.

Table 30-5. Operation List (5/17)

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag
				Note 1	Note 2		Z AC CY
16-bit data transfer	MOVW	AX, !addr16	3	1	4	$\mathrm{AX} \leftarrow$ (addr16)	
		!addr16, AX	3	1	-	(addr16) $\leftarrow \mathrm{AX}$	
		AX, [DE]	1	1	4	$A X \leftarrow(D E)$	
		[DE], AX	1	1	-	$(\mathrm{DE}) \leftarrow \mathrm{AX}$	
		AX, [DE + byte]	2	1	4	$A X \leftarrow$ (DE + byte)	
		[DE + byte], AX	2	1	-	$($ DE + byte $) \leftarrow A X$	
		AX, [HL]	1	1	4	$\mathrm{AX} \leftarrow(\mathrm{HL})$	
		[HL], AX	1	1	-	$(\mathrm{HL}) \leftarrow \mathrm{AX}$	
		AX, [HL + byte]	2	1	4	$A X \leftarrow(H L+$ byte $)$	
		[HL + byte], AX	2	1	-	$(\mathrm{HL}+$ byte $) \leftarrow A X$	
		AX, word[B]	3	1	4	$A X \leftarrow(B+$ word $)$	
		word[B], AX	3	1	-	$(B+$ word $) \leftarrow A X$	
		AX, word[C]	3	1	4	$A X \leftarrow(C+$ word $)$	
		word[C], AX	3	1	-	$(\mathrm{C}+$ word $) \leftarrow A X$	
		AX, word[BC]	3	1	4	$A X \leftarrow(B C+$ word $)$	
		word[BC], AX	3	1	-	$(\mathrm{BC}+$ word $) \leftarrow \mathrm{AX}$	
		AX, [SP + byte]	2	1	-	$\mathrm{AX} \leftarrow(\mathrm{SP}+$ byte $)$	
		[SP + byte], AX	2	1	-	$(\mathrm{SP}+$ byte $) \leftarrow \mathrm{AX}$	
		BC, saddrp	2	1	-	$\mathrm{BC} \leftarrow$ (saddrp)	
		BC, !addr16	3	1	4	$\mathrm{BC} \leftarrow($ addr16)	
		DE, saddrp	2	1	-	DE \leftarrow (saddrp)	
		DE, !addr16	3	1	4	DE $\leftarrow($ addr16)	
		HL, saddrp	2	1	-	$\mathrm{HL} \leftarrow$ (saddrp)	
		HL, !addr16	3	1	4	$\mathrm{HL} \leftarrow$ (addr16)	
		AX, ES:!addr16	4	2	5	$A X \leftarrow(E S$, addr16)	
		ES:!addr16, AX	4	2	-	(ES, addr16) \leftarrow AX	
		AX, ES:[DE]	2	2	5	$A X \leftarrow(E S, D E)$	
		ES:[DE], AX	2	2	-	$(E S, D E) \leftarrow A X$	
		AX, ES:[DE + byte]	3	2	5	$A X \leftarrow((E S, D E)+$ byte $)$	
		ES:[DE + byte], AX	3	2	-	$((\mathrm{ES}, \mathrm{DE})+$ byte $) \leftarrow \mathrm{AX}$	
		AX, ES:[HL]	2	2	5	$\mathrm{AX} \leftarrow(\mathrm{ES}, \mathrm{HL})$	
		ES:[HL], AX	2	2	-	$(\mathrm{ES}, \mathrm{HL}) \leftarrow \mathrm{AX}$	

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.
2. When the program memory area is accessed.

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the system clock control register (CKC).
2. This number of clocks is for when the program is in the internal ROM (flash memory) area.

Table 30-5. Operation List (6/17)

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag		
				Note 1	Note 2		Z		CY
16-bit data transfer	MOVW	AX, ES:[HL + byte]	3	2	5	$A X \leftarrow((E S, H L)+$ byte $)$			
		ES:[HL + byte], AX	3	2	-	$((\mathrm{ES}, \mathrm{HL})+$ byte $) \leftarrow \mathrm{AX}$			
		AX, ES:word[B]	4	2	5	$A X \leftarrow((E S, B)+$ word $)$			
		ES:word[B], AX	4	2	-	$((E S, B)+$ word $) \leftarrow A X$			
		AX, ES:word[C]	4	2	5	$A X \leftarrow((E S, C)+$ word $)$			
		ES:word[C], AX	4	2	-	$((E S, C)+$ word $) \leftarrow A X$			
		AX, ES:word[BC]	4	2	5	$\mathrm{AX} \leftarrow((\mathrm{ES}, \mathrm{BC})+$ word $)$			
		ES:word[BC], AX	4	2	-	$(($ ES, BC $)+$ word $) \leftarrow A X$			
		BC, ES:!addr16	4	2	5	$\mathrm{BC} \leftarrow(\mathrm{ES}$, addr16)			
		DE, ES:!addr16	4	2	5	$D E \leftarrow(E S, ~ a d d r 16)$			
		HL, ES:!addr16	4	2	5	$\mathrm{HL} \leftarrow(\mathrm{ES}$, addr16)			
	XCHW	AX, rp Note 3	1	1	-	AX $\longleftrightarrow r p$			
	ONEW	AX	1	1	-	$\mathrm{AX} \leftarrow 0001 \mathrm{H}$			
		BC	1	1	-	$\mathrm{BC} \leftarrow 0001 \mathrm{H}$			
	CLRW	AX	1	1	-	$\mathrm{AX} \leftarrow 0000 \mathrm{H}$			
		BC	1	1	-	$\mathrm{BC} \leftarrow 0000 \mathrm{H}$			
8-bit operation	ADD	A, \#byte	2	1	-	A, CY $\leftarrow \mathrm{A}+$ byte	\times	\times	\times
		saddr, \#byte	3	2	-	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + byte	\times	\times	\times
		A, r Note 4	2	1	-	$A, C Y \leftarrow A+r$	\times	\times	\times
		r, A	2	1	-	$r, C Y \leftarrow r+A$	\times	\times	\times
		A, saddr	2	1	-	A, CY $\leftarrow A+$ (saddr)	\times	\times	\times
		A, !addr16	3	1	4	A, CY $\leftarrow \mathrm{A}+($ addr16)	\times	\times	\times
		A, [HL]	1	1	4	$A, C Y \leftarrow A+(H L)$	\times	\times	\times
		A, [HL + byte]	2	1	4	$A, C Y \leftarrow A+(H L+$ byte $)$	\times	\times	\times
		A, [HL + B]	2	1	4	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{HL}+\mathrm{B})$	\times	\times	\times
		A, [$\mathrm{HL}+\mathrm{C}$]	2	1	4	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{HL}+\mathrm{C})$	\times	\times	\times
		A, ES:!addr16	4	2	5	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{ES}$, addr16)	\times	\times	\times
		A, ES:[HL]	2	2	5	$A, C Y \leftarrow A+(E S, H L)$	\times	\times	\times
		A, ES:[HL + byte]	3	2	5	$A, C Y \leftarrow A+((E S, H L)+$ byte $)$	\times	\times	\times
		A, ES:[HL + B]	3	2	5	$A, C Y \leftarrow A+((E S, H L)+B)$	\times	\times	\times
		A, ES:[HL + C]	3	2	5	$A, C Y \leftarrow A+((E S, H L)+C)$	\times	\times	\times

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.
2. When the program memory area is accessed.
3. Except $r p=A X$
4. Except $r=A$

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the system clock control register (CKC).
2. This number of clocks is for when the program is in the internal ROM (flash memory) area.

Table 30-5. Operation List (7/17)

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag		
				Note 1	Note 2		Z		CY
8-bit operation	ADDC	A, \#byte	2	1	-	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ byte + CY	\times	\times	\times
		saddr, \#byte	3	2	-	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + byte + CY	\times	\times	\times
		A, r Note 3	2	1	-	$A, C Y \leftarrow A+r+C Y$	\times	\times	\times
		r, A	2	1	-	$r, C Y \leftarrow r+A+C Y$	\times	\times	\times
		A, saddr	2	1	-	A, CY $\leftarrow \mathrm{A}+$ (saddr) + CY	\times	\times	\times
		A, !addr16	3	1	4	A, CY $\leftarrow \mathrm{A}+($ addr16) +CY	\times	\times	\times
		A, [HL]	1	1	4	A, CY $\leftarrow \mathrm{A}+(\mathrm{HL})+\mathrm{CY}$	\times	\times	\times
		A, [HL + byte]	2	1	4	$A, C Y \leftarrow A+(H L+$ byte $)+C Y$	\times	\times	\times
		A, [HL + B]	2	1	4	$A, C Y \leftarrow A+(H L+B)+C Y$	\times	\times	\times
		A, [$\mathrm{HL}+\mathrm{C}$]	2	1	4	$A, C Y \leftarrow A+(H L+C)+C Y$	\times	\times	\times
		A, ES:!addr16	4	2	5	$A, C Y \leftarrow A+(E S$, addr16) $+C Y$	\times	\times	\times
		A, ES:[HL]	2	2	5	$A, C Y \leftarrow A+(E S, H L)+C Y$	\times	\times	\times
		A, ES:[HL + byte]	3	2	5	$A, C Y \leftarrow A+((E S, H L)+$ byte $)+C Y$	\times	\times	\times
		A, ES:[HL + B]	3	2	5	$A, C Y \leftarrow A+((E S, H L)+B)+C Y$	\times	\times	\times
		A, ES:[HL + C]	3	2	5	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+((\mathrm{ES}, \mathrm{HL})+\mathrm{C})+\mathrm{CY}$	\times	\times	\times
	SUB	A, \#byte	2	1	-	A, CY \leftarrow A - byte	\times	\times	\times
		saddr, \#byte	3	2	-	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - byte	\times	\times	\times
		A, r Note 3	2	1	-	$A, C Y \leftarrow A-r$	\times	\times	\times
		r, A	2	1	-	$\mathrm{r}, \mathrm{CY} \leftarrow \mathrm{r}-\mathrm{A}$	\times	\times	\times
		A, saddr	2	1	-	A, CY $\leftarrow A-$ (saddr)	\times	\times	\times
		A, !addr16	3	1	4	A, CY \leftarrow A - (addr16)	\times	\times	\times
		A, [HL]	1	1	4	$A, C Y \leftarrow A-(H L)$	\times	\times	\times
		A, [HL + byte]	2	1	4	$A, C Y \leftarrow A-(H L+$ byte $)$	\times	\times	\times
		A, [$\mathrm{HL}+\mathrm{B}$]	2	1	4	$A, C Y \leftarrow A-(H L+B)$	\times	\times	\times
		A, [HL + C]	2	1	4	$A, C Y \leftarrow A-(H L+C)$	\times	\times	\times
		A, ES:!addr16	4	2	5	A, CY \leftarrow A - (ES:addr16)	\times	\times	\times
		A, ES:[HL]	2	2	5	A, CY \leftarrow A - (ES:HL)	\times	\times	\times
		A, ES:[HL + byte]	3	2	5	A, $\mathrm{CY} \leftarrow \mathrm{A}-((\mathrm{ES}: \mathrm{HL})+$ byte $)$	\times	\times	\times
		A, ES:[HL + B]	3	2	5	$A, C Y \leftarrow A-((E S: H L)+B)$	\times	\times	\times
		A, ES:[HL + C]	3	2	5	A, CY \leftarrow A - ((ES:HL) + C)	\times	\times	\times

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.
2. When the program memory area is accessed.
3. Except $r=A$

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the system clock control register (CKC).
2. This number of clocks is for when the program is in the internal ROM (flash memory) area.

Table 30-5. Operation List (8/17)

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag		
				Note 1	Note 2		Z		CY
8-bit operation	SUBC	A, \#byte	2	1	-	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}$ - byte - CY	\times	\times	\times
		saddr, \#byte	3	2	-	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - byte - CY	\times	\times	\times
		A, r Note 3	2	1	-	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-\mathrm{r}-\mathrm{CY}$	\times	\times	\times
		r, A	2	1	-	r, CY $\leftarrow r-A-C Y$	\times	\times	\times
		A, saddr	2	1	-	A, CY $\leftarrow \mathrm{A}-$ (saddr) - CY	\times	\times	\times
		A, !addr16	3	1	4	A, CY $\leftarrow \mathrm{A}$ - (addr16) - CY	\times	\times	\times
		A, [HL]	1	1	4	$A, C Y \leftarrow A-(H L)-C Y$	\times	\times	\times
		A, [HL + byte]	2	1	4	$A, C Y \leftarrow A-(H L+$ byte $)-C Y$	\times	\times	\times
		A, [HL + B]	2	1	4	$A, C Y \leftarrow A-(H L+B)-C Y$	\times	\times	\times
		A, [$\mathrm{HL}+\mathrm{C}$]	2	1	4	$A, C Y \leftarrow A-(H L+C)-C Y$	\times	\times	\times
		A, ES:!addr16	4	2	5	A, CY $\leftarrow \mathrm{A}-(\mathrm{ES}:$ addr16) - CY	\times	\times	\times
		A, ES:[HL]	2	2	5	$A, C Y \leftarrow A-(E S: H L)-C Y$	\times	\times	\times
		A, ES:[HL + byte]	3	2	5	$A, C Y \leftarrow A-((E S: H L)+$ byte $)-C Y$	\times	\times	\times
		A, ES:[HL + B]	3	2	5	$A, C Y \leftarrow A-((E S: H L)+B)-C Y$	\times	\times	\times
		A, ES:[HL + C]	3	2	5	A, CY $\leftarrow \mathrm{A}-((\mathrm{ES}: \mathrm{HL})+\mathrm{C})-\mathrm{CY}$	\times	\times	\times
	AND	A, \#byte	2	1	-	$\mathrm{A} \leftarrow \mathrm{A} \wedge$ byte	\times		
		saddr, \#byte	3	2	-	(saddr) \leftarrow (saddr) \wedge byte	\times		
		A, r Note 3	2	1	-	$A \leftarrow A \wedge r$	\times		
		r, A	2	1	-	$r \leftarrow r \wedge A$	\times		
		A, saddr	2	1	-	$A \leftarrow A \wedge$ (saddr)	\times		
		A, !addr16	3	1	4	$\mathrm{A} \leftarrow \mathrm{A} \wedge($ addr16)	\times		
		A, [HL]	1	1	4	$A \leftarrow A \wedge(H L)$	\times		
		A, [HL + byte]	2	1	4	$A \leftarrow A \wedge(H L+$ byte $)$	\times		
		A, [HL + B]	2	1	4	$A \leftarrow A \wedge(H L+B)$	\times		
		A, [HL + C]	2	1	4	$A \leftarrow A \wedge(H L+C)$	\times		
		A, ES:!addr16	4	2	5	$A \leftarrow A \wedge(E S: a d d r 16)$	\times		
		A, ES:[HL]	2	2	5	$A \leftarrow A \wedge(E S: H L)$	\times		
		A, ES:[HL + byte]	3	2	5	$A \leftarrow A \wedge((E S: H L)+$ byte $)$	\times		
		A, ES:[HL + B]	3	2	5	$A \leftarrow A \wedge((E S: H L)+B)$	\times		
		A, ES:[HL + C]	3	2	5	$A \leftarrow A \wedge((E S: H L)+C)$	\times		

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.
2. When the program memory area is accessed.
3. Except $r=A$

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the system clock control register (CKC).
2. This number of clocks is for when the program is in the internal ROM (flash memory) area.

Table 30-5. Operation List (9/17)

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag
				Note 1	Note 2		Z AC CY
8-bit operation	OR	A, \#byte	2	1	-	$A \leftarrow A \vee$ byte	\times
		saddr, \#byte	3	2	-	(saddr) \leftarrow (saddr) \vee byte	\times
		A, r Note 3	2	1	-	$A \leftarrow A \vee r$	\times
		r, A	2	1	-	$r \leftarrow r \vee A$	\times
		A, saddr	2	1	-	$A \leftarrow A \vee$ (saddr)	\times
		A, !addr16	3	1	4	$A \leftarrow A \vee$ (addr16)	\times
		A, [HL]	1	1	4	$A \leftarrow A \vee(H L)$	\times
		A, [HL + byte]	2	1	4	$A \leftarrow A \vee(H L+$ byte $)$	\times
		A, [HL + B]	2	1	4	$A \leftarrow A \vee(H L+B)$	\times
		A, [$\mathrm{HL}+\mathrm{C}]$	2	1	4	$A \leftarrow A \vee(H L+C)$	\times
		A, ES:!addr16	4	2	5	$A \leftarrow A \vee(E S: a d d r 16)$	\times
		A, ES:[HL]	2	2	5	$A \leftarrow A \vee(E S: H L)$	\times
		A, ES:[HL + byte]	3	2	5	$A \leftarrow A \vee((E S: H L)+$ byte $)$	\times
		A, ES:[HL + B]	3	2	5	$A \leftarrow A \vee((E S: H L)+B)$	\times
		A, ES:[HL + C]	3	2	5	$A \leftarrow A \vee((E S: H L)+C)$	\times
	XOR	A, \#byte	2	1	-	$A \leftarrow A \forall$ byte	\times
		saddr, \#byte	3	2	-	(saddr) \leftarrow (saddr) \forall byte	\times
		A, r Note 3	2	1	-	$A \leftarrow A \forall r$	\times
		r, A	2	1	-	$r \leftarrow r * A$	\times
		A, saddr	2	1	-	$A \leftarrow A \forall$ (saddr)	\times
		A, !addr16	3	1	4	$\mathrm{A} \leftarrow \mathrm{A} \forall$ (addr16)	\times
		A, [HL]	1	1	4	$A \leftarrow A \forall(H L)$	\times
		A, [HL + byte]	2	1	4	$A \leftarrow A \forall(H L+$ byte $)$	\times
		A, [$\mathrm{HL}+\mathrm{B}$]	2	1	4	$A \leftarrow A \forall(H L+B)$	\times
		A, [HL + C]	2	1	4	$A \leftarrow A \forall(H L+C)$	\times
		A, ES:!addr16	4	2	5	$A \leftarrow A *$ (ES:addr16)	\times
		A, ES:[HL]	2	2	5	$A \leftarrow A \forall(E S: H L)$	\times
		A, ES:[HL + byte]	3	2	5	$A \leftarrow A \forall((E S: H L)+$ byte $)$	\times
		A, ES:[HL + B]	3	2	5	$A \leftarrow A \forall((E S: H L)+B)$	\times
		A, ES:[HL + C]	3	2	5	$A \leftarrow A *((E S: H L)+C)$	\times

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.
2. When the program memory area is accessed.
3. Except $r=A$

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the system clock control register (CKC).
2. This number of clocks is for when the program is in the internal ROM (flash memory) area.

Table 30-5. Operation List (10/17)

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag		
				Note 1	Note 2		Z	AC	CY
8-bit operation	CMP	A, \#byte	2	1	-	A - byte	\times	\times	\times
		saddr, \#byte	3	1	-	(saddr) - byte	\times	\times	\times
		A, r Note 3	2	1	-	A - r	\times	\times	\times
		r, A	2	1	-	$r-A$	\times	\times	\times
		A, saddr	2	1	-	A - (saddr)	\times	\times	\times
		A, !addr16	3	1	4	A - (addr16)	\times	\times	\times
		A, [HL]	1	1	4	A - (HL)	\times	\times	\times
		A, [HL + byte]	2	1	4	A - (HL + byte)	\times	\times	\times
		A, [HL + B]	2	1	4	A - (HL + B)	\times	\times	\times
		A, [$\mathrm{HL}+\mathrm{C}$]	2	1	4	A - (HL + C)	\times	\times	\times
		!addr16, \#byte	4	1	4	(addr16) - byte	\times	\times	\times
		A, ES:!addr16	4	2	5	A - (ES:addr16)	\times	\times	\times
		A, ES:[HL]	2	2	5	A - (ES:HL)	\times	\times	\times
		A, ES:[HL + byte]	3	2	5	A - ((ES:HL) + byte)	\times	\times	\times
		A, ES:[HL + B]	3	2	5	A - ((ES:HL) + B)	\times	\times	\times
		A, ES:[HL + C]	3	2	5	A - ((ES:HL) + C)	\times	\times	\times
		ES:!addr16, \#byte	5	2	5	(ES:addr16) - byte	\times	\times	\times
	CMPO	A	1	1	-	A -00 H	\times	\times	\times
		X	1	1	-	X -00 H	\times	\times	\times
		B	1	1	-	$\mathrm{B}-00 \mathrm{H}$	\times	\times	\times
		C	1	1	-	$\mathrm{C}-\mathrm{OOH}$	\times	\times	\times
		saddr	2	1	-	(saddr) - 00H	\times	\times	\times
		!addr16	3	1	4	(addr16) - 00H	\times	\times	\times
		ES:!addr16	4	2	5	(ES:addr16) - 00H	\times	\times	\times
	CMPS	X, [HL + byte]	3	1	4	X - (HL + byte)	\times	\times	\times
		X, ES:[HL + byte]	4	2	5	X - ((ES:HL) + byte)	\times	\times	\times

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.
2. When the program memory area is accessed.
3. Except $r=A$

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the system clock control register (CKC).
2. This number of clocks is for when the program is in the internal ROM (flash memory) area.

Table 30-5. Operation List (11/17)

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag		
				Note 1	Note 2		Z	AC	CY
16-bit operation	ADDW	AX, \#word	3	1	-	$A X, C Y \leftarrow A X+$ word	\times	\times	\times
		AX, AX	1	1	-	$A X, C Y \leftarrow A X+A X$	\times	\times	\times
		AX, BC	1	1	-	$A X, C Y \leftarrow A X+B C$	\times	\times	\times
		AX, DE	1	1	-	$A X, C Y \leftarrow A X+D E$	\times	\times	\times
		AX, HL	1	1	-	$A X, C Y \leftarrow A X+H L$	\times	\times	\times
		AX, saddrp	2	1	-	$A X, C Y \leftarrow A X+$ (saddrp)	\times	\times	\times
		AX, !addr16	3	1	4	$A X, C Y \leftarrow A X+$ (addr16)	\times	\times	\times
		AX, [HL+byte]	3	1	4	$A X, C Y \leftarrow A X+(H L+$ byte $)$	\times	\times	\times
		AX, ES:!addr16	4	2	5	$A X, C Y \leftarrow A X+$ (ES:addr16)	\times	\times	\times
		AX, ES: [HL+byte]	4	2	5	$A X, C Y \leftarrow A X+((E S: H L)+$ byte $)$	\times	\times	\times
	SUBW	AX, \#word	3	1	-	$A X, C Y \leftarrow A X$ - word	\times	\times	\times
		AX, BC	1	1	-	$A X, C Y \leftarrow A X-B C$	\times	\times	\times
		AX, DE	1	1	-	$A X, C Y \leftarrow A X-D E$	\times	\times	\times
		AX, HL	1	1	-	$A X, C Y \leftarrow A X-H L$	\times	\times	\times
		AX, saddrp	2	1	-	$A X, C Y \leftarrow A X-$ (saddrp)	\times	\times	\times
		AX, !addr16	3	1	4	$A X, C Y \leftarrow A X-$ (addr16)	\times	\times	\times
		AX, [HL+byte]	3	1	4	$A X, C Y \leftarrow A X-(H L+$ byte $)$	\times	\times	\times
		AX, ES:!addr16	4	2	5	$A X, C Y \leftarrow A X-$ (ES:addr16)	\times	\times	\times
		AX, ES: [HL+byte]	4	2	5	$A X, C Y \leftarrow A X-((E S: H L)+$ byte $)$	\times	\times	\times
	CMPW	AX, \#word	3	1	-	AX - word	\times	\times	\times
		AX, BC	1	1	-	AX - BC	\times	\times	\times
		AX, DE	1	1	-	AX - DE	\times	\times	\times
		AX, HL	1	1	-	AX - HL	\times	\times	\times
		AX, saddrp	2	1	-	AX - (saddrp)	\times	\times	\times
		AX, !addr16	3	1	4	AX - (addr16)	\times	\times	\times
		AX, [HL+byte]	3	1	4	$A X-(H L+$ byte $)$	\times	\times	\times
		AX, ES:!addr16	4	2	5	AX - (ES:addr16)	\times	\times	\times
		AX, ES: [HL+byte]	4	2	5	AX - ((ES:HL) + byte)	\times	\times	\times
Multiply	MULU	X	1	1	-	$A X \leftarrow A \times X$			

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.
2. When the program memory area is accessed.

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the system clock control register (CKC).
2. This number of clocks is for when the program is in the internal ROM (flash memory) area.

Table 30-5. Operation List (12/17)

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag	
				Note 1	Note 2		Z	AC CY
Increment/ decrement	INC	r	1	1	-	$r \leftarrow r+1$	\times	\times
		saddr	2	2	-	(saddr) \leftarrow (saddr) +1	\times	\times
		!addr16	3	2	-	$($ addr16 $) \leftarrow($ addr16 $)+1$	\times	\times
		[HL+byte]	3	2	-	$(\mathrm{HL}+$ byte $) \leftarrow(\mathrm{HL}+$ byte $)+1$	\times	\times
		ES:!addr16	4	3	-	$($ ES, addr16 $) \leftarrow($ ES, addr16) +1	\times	\times
		ES: [HL+byte]	4	3	-	$((\mathrm{ES}: \mathrm{HL})+$ byte $) \leftarrow(($ ES: HL$)+$ byte $)+1$	\times	\times
	DEC	r	1	1	-	$\mathrm{r} \leftarrow \mathrm{r}-1$	\times	\times
		saddr	2	2	-	(saddr) \leftarrow (saddr) - 1	\times	\times
		!addr16	3	2	-	(addr16) \leftarrow (addr16) - 1	\times	\times
		[HL+byte]	3	2	-	$(\mathrm{HL}+$ byte $) \leftarrow(\mathrm{HL}+$ byte $)-1$	\times	\times
		ES:!addr16	4	3	-	$($ ES, addr16) $\leftarrow($ ES, addr16) - 1	\times	\times
		ES: [HL+byte]	4	3	-	$(($ ES:HL) + byte $) \leftarrow(($ ES: HL $)+$ byte $)-1$	\times	\times
	INCW	rp	1	1	-	$\mathrm{rp} \leftarrow \mathrm{rp}+1$		
		saddrp	2	2	-	(saddrp) \leftarrow (saddrp) +1		
		!addr16	3	2	-	(addr16) $\leftarrow($ addr16 $)+1$		
		[HL+byte]	3	2	-	$(\mathrm{HL}+$ byte $) \leftarrow(\mathrm{HL}+$ byte $)+1$		
		ES:!addr16	4	3	-	$($ ES, addr16 $) \leftarrow($ ES, addr16 $)+1$		
		ES: [HL+byte]	4	3	-	$((\mathrm{ES}: \mathrm{HL})+$ byte $) \leftarrow(($ ES: HL$)+$ byte $)+1$		
	DECW	rp	1	1	-	$\mathrm{rp} \leftarrow \mathrm{rp}-1$		
		saddrp	2	2	-	(saddrp) \leftarrow (saddrp) - 1		
		!addr16	3	2	-	(addr16) \leftarrow (addr16) - 1		
		[HL+byte]	3	2	-	(HL+byte) $\leftarrow\left(\begin{array}{l}\text { HL+byte })-1\end{array}\right.$		
		ES:!addr16	4	3	-	$($ ES, addr16) $\leftarrow($ ES, addr16) - 1		
		ES: [HL+byte]	4	3	-	$((\mathrm{ES}: \mathrm{HL})+$ byte $) \leftarrow(($ ES: HL$)+$ byte $)-1$		
Shift	SHR	A, cnt	2	1	-	$\left(C Y \leftarrow A_{0}, A_{m-1} \leftarrow A_{m} A_{7} \leftarrow 0\right) \times \mathrm{cnt}$		\times
	SHRW	AX, cnt	2	1	-	$\left(C Y \leftarrow A X_{0}, A X_{m-1} \leftarrow A X_{m}, A X_{15} \leftarrow 0\right) \times \mathrm{cnt}$		\times
	SHL	A, cnt	2	1	-	$\left(C Y \leftarrow A_{7}, A_{m} \leftarrow A_{m-1}, A_{0} \leftarrow 0\right) \times \mathrm{cnt}$		\times
		B, cnt	2	1	-	$\left(C Y \leftarrow B_{7}, B_{m} \leftarrow B_{m-1}, B_{0} \leftarrow 0\right) \times \mathrm{cnt}$		\times
		C, cnt	2	1	-	$\left(\mathrm{CY} \leftarrow \mathrm{C}_{7}, \mathrm{C}_{\mathrm{m}} \leftarrow \mathrm{C}_{\mathrm{m}-1}, \mathrm{C}_{0} \leftarrow 0\right) \times \mathrm{cnt}$		\times
	SHLW	AX, cnt	2	1	-	$\left(\mathrm{CY} \leftarrow \mathrm{AX}{ }_{15}, A X_{m} \leftarrow A X_{m-1}, A X_{0} \leftarrow 0\right) \times \mathrm{cnt}$		\times
		BC, cnt	2	1	-	$\left(\mathrm{CY} \leftarrow \mathrm{BC}_{15}, \mathrm{BC}_{\mathrm{m}} \leftarrow \mathrm{BC}_{\mathrm{m}-1}, \mathrm{BC}_{0} \leftarrow 0\right) \times \mathrm{cnt}$		\times
	SAR	A, cnt	2	1	-	$\left(C Y \leftarrow A_{0}, A_{m-1} \leftarrow A_{m}, A_{7} \leftarrow A_{7}\right) \times \mathrm{cnt}$		\times
	SARW	AX, cnt	2	1	-	$\left(C Y \leftarrow A X_{0}, A X_{m-1} \leftarrow A X_{m}, A X_{15} \leftarrow A X_{15}\right) \times \mathrm{cnt}$		\times

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.
2. When the program memory area is accessed.

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the system clock control register (CKC).
2. This number of clocks is for when the program is in the internal ROM (flash memory) area.
3. cnt indicates the bit shift count.

Table 30-5. Operation List (13/17)

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.
2. When the program memory area is accessed.

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the system clock control register (CKC).
2. This number of clocks is for when the program is in the internal ROM (flash memory) area.

Table 30-5. Operation List (14/17)

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag	
				Note 1	Note 2		Z	AC CY
Bit manipulate	XOR1	CY, saddr.bit	3	1	-	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ (saddr). bit		\times
		CY, sfr.bit	3	1	-	$C Y \leftarrow C Y *$ sfr.bit		\times
		CY, A.bit	2	1	-	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ A.bit		\times
		CY, PSW.bit	3	1	-	$C Y \leftarrow C Y * P S W$.bit		\times
		CY, [HL].bit	2	1	4	$C Y \leftarrow C Y *(H L)$.bit		\times
		CY, ES:[HL].bit	3	2	5	$C Y \leftarrow C Y \forall(E S, H L)$. bit		\times
	SET1	saddr.bit	3	2	-	(saddr). bit $\leftarrow 1$		
		sfr.bit	3	2	-	sfr.bit $\leftarrow 1$		
		A.bit	2	1	-	A.bit $\leftarrow 1$		
		!addr16.bit	4	2	-	(addr16). bit $\leftarrow 1$		
		PSW.bit	3	4	-	PSW.bit $\leftarrow 1$	\times	$\times \times$
		[HL].bit	2	2	-	(HL).bit $\leftarrow 1$		
		ES:laddr16.bit	5	3	-	(ES, addr16).bit $\leftarrow 1$		
		ES:[HL].bit	3	3	-	(ES, HL). bit $\leftarrow 1$		
	CLR1	saddr.bit	3	2	-	(saddr.bit) $\leftarrow 0$		
		sfr.bit	3	2	-	sfr.bit $\leftarrow 0$		
		A.bit	2	1	-	A.bit $\leftarrow 0$		
		!addr16.bit	4	2	-	(addr16). bit $\leftarrow 0$		
		PSW.bit	3	4	-	PSW.bit $\leftarrow 0$	\times	$\times \times$
		[HL].bit	2	2	-	(HL).bit $\leftarrow 0$		
		ES:!addr16.bit	5	3	-	(ES, addr16). bit $\leftarrow 0$		
		ES:[HL].bit	3	3	-	(ES, HL). bit $\leftarrow 0$		
	SET1	CY	2	1	-	$\mathrm{CY} \leftarrow 1$		1
	CLR1	CY	2	1	-	$\mathrm{CY} \leftarrow 0$		0
	NOT1	CY	2	1	-	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$		\times

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.
2. When the program memory area is accessed.

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the system clock control register (CKC).
2. This number of clocks is for when the program is in the internal ROM (flash memory) area.

Table 30-5. Operation List (15/17)

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag	
				Note 1	Note 2		Z	AC CY
Call/ return	CALL	rp	2	3	-	$\begin{aligned} & (S P-2) \leftarrow(P C+2) s,(S P-3) \leftarrow(P C+2) \mathrm{H}, \\ & (S P-4) \leftarrow(P C+2)\llcorner, P C \leftarrow C S, r p, \\ & S P \leftarrow S P-4 \end{aligned}$		
		\$!addr20	3	3	-	$\begin{aligned} & (\mathrm{SP}-2) \leftarrow(\mathrm{PC}+3) \mathrm{s},(\mathrm{SP}-3) \leftarrow(\mathrm{PC}+3) \mathrm{н}, \\ & (\mathrm{SP}-4) \leftarrow(\mathrm{PC}+3)\llcorner, \mathrm{PC} \leftarrow \mathrm{PC}+3+ \\ & \text { jdisp16, } \\ & \mathrm{SP} \leftarrow \mathrm{SP}-4 \end{aligned}$		
		!addr16	3	3	-	$\begin{aligned} & (S P-2) \leftarrow(P C+3) s,(S P-3) \leftarrow(P C+3) н \\ & (S P-4) \leftarrow(P C+3)\llcorner, P C \leftarrow 0000, \text { addr16 } \\ & S P \leftarrow S P-4 \end{aligned}$		
		!!addr20	4	3	-	$\begin{aligned} & (S P-2) \leftarrow(P C+4) s,(S P-3) \leftarrow(P C+4) \mathrm{H}, \\ & (S P-4) \leftarrow(P C+4)\llcorner, P C \leftarrow \text { addr20 } \\ & S P \leftarrow S P-4 \end{aligned}$		
	CALLT	[addr5]	2	5	-	$\begin{aligned} & (S P-2) \leftarrow(P C+2) s,(S P-3) \leftarrow(P C+2) н, \\ & (S P-4) \leftarrow(P C+2)\llcorner, P C s \leftarrow 0000, \\ & P C H \leftarrow(0000, \text { addr5 }+1), \\ & P C L \leftarrow(0000, \text { addr5 }), \\ & \mathrm{SP} \leftarrow \mathrm{SP}-4 \end{aligned}$		
	BRK	-	2	5	-	$\begin{aligned} & (S P-1) \leftarrow P S W,(S P-2) \leftarrow(P C+2) s, \\ & (S P-3) \leftarrow(P C+2) н,(S P-4) \leftarrow(P C+2)\llcorner \\ & P C s \leftarrow 0000 \\ & P C H \leftarrow(0007 F H), P C L \leftarrow(0007 E H) \\ & S P \leftarrow S P-4, I E \leftarrow 0 \end{aligned}$		
	RET	-	1	6	-	$\begin{aligned} & \mathrm{PCL} \leftarrow(\mathrm{SP}), \mathrm{PCH} \leftarrow(\mathrm{SP}+1), \\ & \mathrm{PCs} \leftarrow(\mathrm{SP}+2), \mathrm{SP} \leftarrow \mathrm{SP}+4 \end{aligned}$		
	RETI	-	2	6	-	$\begin{aligned} & \mathrm{PCL} \leftarrow(\mathrm{SP}), \mathrm{PC} H \leftarrow(\mathrm{SP}+1), \\ & \mathrm{PCs} \leftarrow(\mathrm{SP}+2), \mathrm{PSW} \leftarrow(\mathrm{SP}+3), \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4 \end{aligned}$		$R \quad \mathrm{R}$
	RETB	-	2	6	-	$\begin{aligned} & \mathrm{PCL} \leftarrow(\mathrm{SP}), \mathrm{PC} H \leftarrow(\mathrm{SP}+1), \\ & \mathrm{PCs} \leftarrow(\mathrm{SP}+2), \mathrm{PSW} \leftarrow(\mathrm{SP}+3), \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4 \end{aligned}$	R	$R \quad \mathrm{R}$

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.
2. When the program memory area is accessed.

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the system clock control register (CKC).
2. This number of clocks is for when the program is in the internal ROM (flash memory) area.

Table 30-5. Operation List (16/17)

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.
2. When the program memory area is accessed.
3. This indicates the number of clocks "when condition is not met/when condition is met".

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcpu) selected by the system clock control register (CKC).
2. This number of clocks is for when the program is in the internal ROM (flash memory) area.

Table 30-5. Operation List (17/17)

Instruction Group	Mnemonic	Operands	Bytes	Clocks		Operation	Flag
				Note 1	Note 2		Z AC CY
Condition al branch	BF	saddr.bit, \$addr20	4	$3 / 5^{\text {Note } 3}$	-	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if (saddr) . $\mathrm{bit}=0$	
		sfr.bit, \$addr20	4	$3 / 5^{\text {Note } 3}$	-	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if sfr.bit $=0$	
		A.bit, \$addr20	3	$3 / 5^{\text {Note } 3}$	-	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if $\mathrm{A} . \mathrm{bit}=0$	
		PSW.bit, \$addr20	4	$3 / 5^{\text {Note } 3}$	-	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if PSW. $\mathrm{bit}=0$	
		[HL].bit, \$addr20	3	$3 / 5^{\text {Note } 3}$	6/7	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if (HL). bit $=0$	
		ES:[HL].bit, \$addr20	4	$4 / 6^{\text {Note } 3}$	7/8	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if (ES, HL) .bit $=0$	
	BTCLR	saddr.bit, \$addr20	4	$3 / 5^{\text {Note } 3}$	-	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if (saddr).bit $=1$ then reset (saddr).bit	
		sfr.bit, \$addr20	4	$3 / 5^{\text {Note } 3}$	-	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if sfr.bit $=1$ then reset sfr.bit	
		A.bit, \$addr20	3	$3 / 5^{\text {Note } 3}$	-	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if A.bit $=1$ then reset A.bit	
		PSW.bit, \$addr20	4	$3 / 5^{\text {Note } 3}$	-	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if PSW.bit $=1$ then reset PSW.bit	$\times \times \times$
		[HL].bit, \$addr20	3	$3 / 5^{\text {Note } 3}$	-	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if (HL).bit $=1$ then reset (HL).bit	
		ES:[HL].bit, \$addr20	4	$4 / 6^{\text {Note } 3}$	-	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if (ES, HL).bit $=1$ then reset (ES, HL).bit	
Conditional skip	SKC	-	2	1	-	Next instruction skip if $C Y=1$	
	SKNC	-	2	1	-	Next instruction skip if $\mathrm{CY}=0$	
	SKZ	-	2	1	-	Next instruction skip if $Z=1$	
	SKNZ	-	2	1	-	Next instruction skip if $Z=0$	
	SKH	-	2	1	-	Next instruction skip if ($Z \vee C Y$) $=0$	
	SKNH	-	2	1	-	Next instruction skip if $(Z \vee C Y)=1$	
CPU control	SEL	RBn	2	1	-	$\mathrm{RBS}[1: 0] \leftarrow \mathrm{n}$	
	NOP	-	1	1	-	No Operation	
	El	-	3	4	-	$\mathrm{IE} \leftarrow 1$ (Enable Interrupt)	
	DI	-	3	4	-	IE $\leftarrow 0$ (Disable Interrupt)	
	HALT	-	2	3	-	Set HALT Mode	
	STOP	-	2	3	-	Set STOP Mode	

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.
2. When the program memory area is accessed.
3. This indicates the number of clocks "when condition is not met/when condition is met".

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the system clock control register (CKC).
2. This number of clocks is for when the program is in the internal ROM (flash memory) area.
3. n indicates the number of register banks ($\mathrm{n}=0$ to 3)

CHAPTER 31 ELECTRICAL SPECIFICATIONS

Cautions 1. The 78KOR/Lx3 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
2. The pins mounted depend on the product. Refer to 1.3 Pin Configuration (Top View) and CHAPTER 2 PIN FUNCTIONS.

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)(1 / 3)$

Notes 1. Must be 6.5 V or lower.
2. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Absolute Maximum Ratings ($\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) (2/3)

Parameter	Symbols	Conditions			Ratings	Unit
Output voltage	Vo1	P00 to P02, P10 to P17, P30 to P34, P40, P41, P50 to P57, P60, P61, P70 to P77, P80 to P87, P90 to P97, P100 to P102, P120, P130, P140 to P147			-0.3 to EVDD +0.3	V
	Vo2	P20 to P27, P150 to P152, P157			-0.3 to $A V_{\text {ddo }}+0.3$	V
	Vo3	P110, P111			-0.3 to AV dD1 + 0.3	V
	Vo4	SEG0 to SEG53, COM0 to COM7		External resistance division method, capacitor split method	-0.3 to $\mathrm{V}_{\text {dD }}+0.3^{\text {Note }}$	V
				Internal voltage boosting method	-0.3 to VLCO $+0.3{ }^{\text {Note }}$	V
Analog input voltage	$\mathrm{V}_{\text {AI }}$	ANI0 to ANI10, ANI15, AMPO+, AMP1+, AMP2+, AMP0-, AMP1-, AMP2- (μ PD78F150xA)			$\begin{gathered} -0.3 \text { to } A V_{D D O}+0.3 \\ \text { and }-0.3 \text { to } V_{\text {DD }}+0.3^{\text {Note }} \end{gathered}$	V
		ANI0 to ANI10, ANI15 (μ PD78F151xA)			$\begin{aligned} & -0.3 \text { to } A V_{D D}+0.3 \\ & \text { and }-0.3 \text { to } V_{D D}+0.3^{\text {Note }} \end{aligned}$	V
Analog output voltage	$\mathrm{V}_{\text {AO1 }}$	ANO0, ANO1			-0.3 to AV DD1 $+0.3^{\text {Note }}$	V
	$\mathrm{V}_{\text {AO2 }}$	AMP00, AMP10, AMP2O			-0.3 to $A V_{\text {dDo }}+0.3^{\text {Note }}$	V
Analog input reference voltage	AVref	μ PD78F151xA			-0.3 to AV dD $+0.3^{\text {Note }}$	V
	AV ${ }_{\text {Refp }}$	μ PD78F150xA			-0.3 to AVddo $+0.3^{\text {Note }}$	V
	AVrefm	μ PD78F150xA			$\begin{aligned} & -0.3 \text { to } A V_{D D O}+0.3^{\text {Note }} \\ & \text { and } A V_{\text {REFM }} \leq A V_{\text {REFP }} \end{aligned}$	V
Output current, high	$\mathrm{loH1}$	Per pin	P00 to P02, P10-P17, P30 to P34, P40, P41, P70 to P77, P80 to P87, P120, P130		-10	mA
			P50 to P57, P90 to P97, P100 to P102, P140 to P147		-10	mA
		Total of all pins -50 mA	P00 to P40, P87,	P02, P10-P17, P30 to P34, 1, P70 to P77, P80 to 20, P130	-25	mA
			$\begin{aligned} & \text { P50 to } \\ & \text { P102, } \end{aligned}$	P57, P90 to P97, P100 to P140 to P147	-25	mA
	IoH2	Per pin	P20 to P27, P150 to P152, P157, P110, P111		-0.5	mA
		Total of all pins			-2	mA
	Іонз	Per pin	AMP0	, AMP1O, AMP2O	-1	mA
		Total of all pins			-3	mA

Note Must be 6.5 V or lower.

Cautions 1. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
2. The value of the current that can be run per pin must satisfy the value of the current per pin and the total value of the currents of all pins.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) (3/3)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, low	loL1	Per pin	P00 to P02, P10-P17, P30 to P34, P40, P41, P70 to P77, P80 to P87, P120, P130	30	mA
			P60, P61	30	mA
			P50 to P57, P90 to P97, P100 to P102, P140 to P147	10	mA
		Total of all pins 165 mA	P00 to P02, P10-P17, P30 to P34, P40, P41, P70 to P77, P80 to P87, P120, P130	80	mA
			P60, P61	60	mA
			P50 to P57, P90 to P97, P100 to P102, P140 to P147	25	mA
	loc2	Per pin	P20 to P27, P150 to P152, P157, P110, P111	1	mA
		Total of all pins		5	mA
	IoL3	Per pin	AMP00, AMP1O, AMP2O	1	mA
		Total of all pins		3	mA
Operating ambient temperature	T_{A}	In normal operation mode		-40 to +85	${ }^{\circ} \mathrm{C}$
		In flash memory programming mode			
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Cautions 1. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
2. The value of the current that can be run per pin must satisfy the value of the current per pin and the total value of the currents of all pins.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

X1 Oscillator Characteristics

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VdD}=\mathrm{EVDD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=\mathrm{EVss}=\mathrm{AVss}=0 \mathrm{~V}$)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator, crystal resonator	ss X1 X2	X1 clock oscillation frequency (fx) ${ }^{\text {Note }}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.0		20.0	MHz
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	2.0		5.0	
	$\pi 7$						

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Cautions 1. When using the X 1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. Since the CPU is started by the internal high-speed oscillation clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Internal Oscillator Characteristics
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD}=\mathrm{EVDD} \leq 5.5 \mathrm{~V}$, V ss $=\mathrm{EVss}=\mathrm{AVss}=0 \mathrm{~V}$)

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
Internal high- speed oscillation clock frequency	$\mathrm{fiH1M}$	Low-power consumption mode		0.87	1	1.13	MHz
	fiH8M	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		7.856	8	8.144	MHz
		$1.8 \mathrm{~V} \leq \mathrm{V} D<2.7 \mathrm{~V}, \mathrm{TA}=-20$ to $+70^{\circ} \mathrm{C}$		7.848	8	8.152	MHz
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$		7.84	8	8.16	MHz
	fiH2OM	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		19.52	20	20.48	MHz
Internal low-speed oscillation clock frequency	fil	Normal power mode	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	27	30	33	kHz
			$1.8 \mathrm{~V} \leq \mathrm{V} D \mathrm{c}$ < 2.7 V	25.5	30	34.5	kHz
		Low-power consumption mode		25.5	30	34.5	kHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

XT1 Oscillator Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VdD}=\mathrm{EVdD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=\mathrm{EVss}=\mathrm{AVss}=0 \mathrm{~V}$)

Resonator	Recommended Circuit	Items	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		XT1 clock oscillation frequency (fx (${ }^{\text {Note }}$		32	32.768	35	kHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Cautions 1. When using the XT1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. The XT1 oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the X1 oscillator. Particular care is therefore required with the wiring method when the XT1 clock is used.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Recommended oscillator circuit constants

(1) X 1 oscillation: Ceramic resonator (AMPH $=0, R M C=00 \mathrm{H}, \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Manufacturer	Part Number	SMD/ Lead	$\begin{aligned} & \text { Frequency } \\ & \quad(\mathrm{MHz}) \end{aligned}$	Recommended Circuit Constants			Oscillation Voltage Range	
				C1 (pF)	$\mathrm{C} 2(\mathrm{pF})$	Rd (k ${ }^{\text {a }}$)	MIN. (V)	MAX. (V)
Murata Manufacturing Co., Ltd..	CSTCC2M00G56-R0	SMD	2.0	Internal (47)	Internal (47)	0	1.8	5.5
	CSTCR4M00G55-R0	SMD	4.0	Internal (39)	Internal (39)	0		
	CSTLS4M00G56-B0	Lead		Internal (47)	Internal (47)	0		
	CSTCR4M19G55-R0	SMD	4.194	Internal (39)	Internal (39)	0		
	CSTLS4M19G56-B0	Lead		Internal (47)	Internal (47)	0		
	CSTCR4M91G55-R0	SMD	4.915	Internal (39)	Internal (39)	0		
	CSTLS4M91G53-B0	Lead		Internal (15)	Internal (15)	0		
	CSTCR5M00G55-R0	SMD	5.0	Internal (39)	Internal (39)	0		
	CSTLS5M00G53-B0	Lead		Internal (15)	Internal (15)	0		
	CSTCR6M00G53-R0	SMD	6.0	Internal (15)	Internal (15)	0		
	CSTLS6M00G53-B0	Lead		Internal (15)	Internal (15)	0		
	CSTCE8M00G55-R0	SMD	8.0	Internal (33)	Internal (33)	0		
	CSTLS8M00G53-B0	Lead		Internal (15)	Internal (15)	0		
	CSTCE8M38G55-R0	SMD	8.388	Internal (33)	Internal (33)	0		
	CSTLS8M38G53-B0	Lead		Internal (15)	Internal (15)	0		
	CSTCE10M0G52-R0	SMD	10.0	Internal (10)	Internal (10)	0		
	CSTLS10M0G53-B0	Lead		Internal (15)	Internal (15)	0		

Caution The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit. The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the $78 \mathrm{KOR} / \mathrm{Lx} 3$ so that the internal operation conditions are within the specifications of the DC and AC characteristics.
(2) X 1 oscillation: Ceramic resonator $\left(\mathrm{AMPH}=1, R M C=00 H, T_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}$)

Manufacturer	Part Number	SMD/ Lead	Frequency (MHz)	Recommended Circuit Constants			Oscillation Voltage Range	
				C1 (pF)	C 2 (pF)	Rd (k ${ }^{\text {a }}$	MIN. (V)	MAX. (V)
Murata Manufacturing Co., Ltd..	CSTCE12M0G55-R0	SMD	12.0	Internal (33)	Internal (33)	0	1.8	5.5
	CSTCE16M0V53-R0	SMD	16.0	Internal (15)	Internal (15)	0		
	CSTLS16M0X51-B0	Lead		Internal (5)	Internal (5)	0		
	CSTCE20M0V53-R0	SMD	20.0	Internal (15)	Internal (15)	0		
	CSTLS20M0X51-B0	Lead		Internal (5)	Internal (5)	0		

(3) X 1 oscillation: Ceramic resonator ($\mathrm{AMPH}=0, R M C=5 A H, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Manufacturer	Part Number	SMD/ Lead	$\begin{aligned} & \text { Frequency } \\ & \text { (MHz) } \end{aligned}$	Recommended Circuit Constants			Oscillation Voltage Range	
				C1 (pF)	C2 (pF)	Rd (k ${ }^{\text {a }}$)	MIN. (V)	MAX. (V)
Murata Manufacturing Co., Ltd..	CSTCC2M00G56-R0	SMD	2.0	Internal (47)	Internal (47)	0	1.8	5.5
	CSTCR4M00G55-R0	SMD	4.0	Internal (39)	Internal (39)	0		
	CSTLS4M00G53-B0	Lead		Internal (15)	Internal (15)	0		
	CSTCR4M19G55-R0	SMD	4.194	Internal (39)	Internal (39)	0		
	CSTLS4M19G53-B0	Lead		Internal (15)	Internal (15)	0		
	CSTCR4M91G53-R0	SMD	4.195	Internal (15)	Internal (15)	0		
	CSTLS4M91G53-B0	Lead		Internal (15)	Internal (15)	0		
	CSTCR5M00G53-R0	SMD	5.0	Internal (15)	Internal (15)	0		
	CSTLS5M00G53-B0	Lead		Internal (15)	Internal (15)	0		
TOKO, Inc.	DCRHTC(P)2.00LL	Lead	2.0	Internal (30)	Internal (30)	-	1.8	5.5
	DCRHTC(P)4.00LL		4.0	Internal (30)	Internal (30)	-		
	DECRHTC4.00	SMD	4.0	Internal (15)	Internal (15)	-		
	DCRHTC(P)5.00LL	Lead	5.0	Internal (30)	Internal (30)	-		

Caution The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit. The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the $78 \mathrm{KOR} / \mathrm{Lx} 3$ so that the internal operation conditions are within the specifications of the DC and AC characteristics.
(4) XT1 oscillation: Crystal resonator ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Manufacturer	Part Number	SMD/ Lead	Frequency (MHz)	Load Capacitance CL (pF)	XT1 oscllator oscillation mode Note 1	Recommended Circuit Constants			Oscillation Voltage Range	
									MIN.	MAX.
						$\begin{gathered} \mathrm{C} 3 \\ (\mathrm{pF}) \end{gathered}$	$\begin{gathered} \mathrm{C} 4 \\ (\mathrm{pF}) \end{gathered}$	$\begin{gathered} \mathrm{Rd} \\ (\mathrm{k} \Omega) \end{gathered}$	(V)	(V)
Seiko Instruments Inc. ${ }^{\text {Note } 2}$	SSP-T7-F	SMD	32.768	7.0	Normal oscillation	10	10	0	1.8	5.5
	SSP-T7-FL			6.0	Low power consumption oscillation	9	8	0		
				3.7	Ultra-low power consumption oscillation	4	3	0		
	VT-200-F	Lead		12.5	Normal oscillation	20	20	0		
	VT-200-FL			6.0	Low power consumption oscillation	9	8	0		
				3.7	Ultra-low power consumption oscillation	4	3	0		

Notes 1. Set the XT1 oscillation mode by using bits AMPHS1 and AMPHSO of the clock operation mode control register (CMC).
2. Contact Seiko Instruments Inc. (http://www.sii-crystal.com) when using this resonator.

DC Characteristics (1/11)

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{D}}=\mathrm{EVDD} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD}_{\mathrm{D}}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} 1 \leq \mathrm{VDD}$, <R>

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ${ }^{\text {Note } 1}$	Ioh1	Per pin for P00 to P02, P10 to P17, P30 to P34, P40, P41, P70 to P77, P80 to P87, P120, P130	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			-3.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<4.0 \mathrm{~V}$			-1.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			-1.0	mA
		Per pin for P50 to P57, P90 to P97, P100 to P102, P140 to P147	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			-1.6	mA
			$2.7 \mathrm{~V} \leq \mathrm{VdD}<4.0 \mathrm{~V}$			-0.45	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			-0.45	mA
		Total of P00 to P02, P10 to P17, P30 to P34, P40, P41, P70 to P77, P80 to P87, P120, P130 (When duty $=70 \%{ }^{\text {Note } 2}$)	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			-20.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{VdD}<4.0 \mathrm{~V}$			-10.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}$ d $<2.7 \mathrm{~V}$			-5.0	mA
		Total of P50 to P57, P90 to P97, P100 to P102, P140 to P147 (When duty $=70 \%{ }^{\text {Note 2 }}$)	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$			-12.8	mA
			$2.7 \mathrm{~V} \leq \mathrm{VdD}<4.0 \mathrm{~V}$			-3.6	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}$ d $<2.7 \mathrm{~V}$			-3.6	mA
		Total of all pins (When duty $=60 \%^{\text {Note } 2}$)	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			-32.8	mA
			$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.0 \mathrm{~V}$			-13.6	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			-8.6	mA
	Іон2	Per pin for P20 to P27, P150 to P152, P157				-0.1	mA
		Per pin for P110, P111				-0.1	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from Vod pin to an output pin.
2. Specification under conditions where the duty factor is 60% or 70%.

The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to $n \%$).
-Total output current of pins $=(\mathrm{Ioн} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=50 \%$ and I он $=-20.0 \mathrm{~mA}$
Total output current of pins $=(-20.0 \times 0.7) /(50 \times 0.01)=-28.0 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10 to P15, P75, P77, P80 and P82 do not output high level in N-ch open-drain mode.
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (2/11)
$\left(T_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{D}}=\mathrm{EVDD} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD}_{\mathrm{D}}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} 1 \leq \mathrm{VDD}$,

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ${ }^{\text {Note } 1}$	IoL1	Per pin for P00 to P02, P12, P13, P16, P17, P30 to P34, P40, P41, P70 to P77, P80 to P87, P120, P130	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			8.5	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			1.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<2.7 \mathrm{~V}$			0.5	mA
		Per pin for P10, P11, P14, P15	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			8.5	mA
			$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<4.0 \mathrm{~V}$			1.5	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			0.6	mA
		Per pin for P60, P61	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			15.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			3.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<2.7 \mathrm{~V}$			2.0	mA
		Per pin for P50 to P57, P90 to P97, P100 to P102, P140 to P147	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			1.8	mA
			$2.7 \mathrm{~V} \leq \mathrm{VdD}<4.0 \mathrm{~V}$			0.8	mA
			$1.8 \mathrm{~V} \leq \mathrm{VdD}<2.7 \mathrm{~V}$			0.35	mA
		$\begin{aligned} & \text { Total of P00 to P02, P10 to P17, } \\ & \text { P30 to P34, P40, P41, P70 to P77, } \\ & \text { P80 to P87, P120, P130 } \\ & \text { (When duty }=70 \%{ }^{\text {Note } 2} \text {) } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			20.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}$ do $<4.0 \mathrm{~V}$			15.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			9.0	mA
		Total of P60, P61 (When duty $=70 \%^{\text {Note } 2}$)	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			30.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			6.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<2.7 \mathrm{~V}$			4.0	mA
		Total of P50 to P57, P90 to P97, P100 to P102, P140 to P147 (When duty $=70 \%{ }^{\text {Note } 2}$)	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			14.4	mA
			$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.0 \mathrm{~V}$			6.4	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}$ do $<2.7 \mathrm{~V}$			2.8	mA
		Total of all pins (When duty $=70 \%^{\text {Note } 2}$)	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			64.4	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			27.4	mA
			$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			15.8	mA
	lot2	Per pin for P20 to P27, P150 to P152, P157				0.4	mA
		Per pin for P110, P111				0.4	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to Vss and $A V$ ss pin.
2. Specification under conditions where the duty factor is 60% or 70%.

The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to $n \%$).
-Total output current of pins $=($ lo $\times 0.7) /(n \times 0.01)$
<Example> Where $\mathrm{n}=50 \%$ and lol $=20.0 \mathrm{~mA}$
Total output current of pins $=(20.0 \times 0.7) /(50 \times 0.01)=28.0 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (3/11)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD}=\mathrm{EVDD} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} 1 \leq \mathrm{VDD}$, <R>

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{VIH1}$	P00 to P02, P12, P13, P17, P41, P51, P54 to P57, P82, P83, P90 to P97, P100 to P102, P123, P124, P140 to P147		$0.7 \mathrm{~V}_{\mathrm{DD}}$		VDD	V
	VIH^{2}	P10, P11, P14 to P16, P30 to P34, P40, P50, P52, P53, P70 to P77, P80, P81, P84 to P87, P120 to P122, RESET	Normal input buffer	0.8 V DD		V ${ }_{\text {D }}$	V
	$\mathrm{V}_{\mathbf{H}}$	P10, P11, P14, P15, P75, P76	TTL input buffer $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.2		VDo	V
			TTL input buffer $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	2.0		VDD	V
			TTL input buffer $1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	1.6		VDD	V
	$\mathrm{V}_{\text {H4 }}$	P20 to P27, P150 to P152, P157	$\mu \mathrm{PD} 78 \mathrm{~F} 150 \times \mathrm{A}$	0.7AVDDo		AV ${ }_{\text {do }}$	V
			μ PD78F151xA	$0.7 \mathrm{AV} \mathrm{V}_{\text {d }}$		AV ${ }_{\text {do }}$	V
	$\mathrm{V}_{\text {H5 }}$	P110, P111	μ PD78F150xA	$0.7 \mathrm{AV} \mathrm{VDD}^{1}$		AVDD1	V
			μ PD78F151xA	0.7EVDD1		EVDD1	V
	$\mathrm{V}_{\text {IH6 }}$	P60, P61		$0.7 \mathrm{~V}_{\mathrm{DD}}$		6.0	V
	VIH7	FLMDO		$0.9 \mathrm{VDD}^{\text {Note }}$		VDD	V

Note Must be $0.9 V_{D D}$ or higher when used in the flash memory programming mode.

Caution The maximum value of V_{i} of pins P 10 to $\mathrm{P} 15, \mathrm{P} 75, \mathrm{P} 77$, P 80 and P 82 is Vdd, even in the N -ch opendrain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (4/11)

$\left(T_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD}=\mathrm{EVDD} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} 1 \leq \mathrm{VDD}$,

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, low	VIL1	P00 to P02, P12, P13, P17, P41, P51, P54 to P57, P82, P83, P90 to P97, P100 to P102, P123, P124, P140 to P147		0		0.3VdD	V
	VIL2	P10, P11, P14 to P16, P30 to P34, P40, P50, P52, P53, P70 to P77, P80, P81, P84 to P87, P120 to P122, RESET	Normal input buffer	0		0.2VDD	V
	VIL3	P10, P11, P14, P15, P75, P76	TTL input buffer $4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		0.8	V
			TTL input buffer $2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$	0		0.5	V
			TTL input buffer $1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0		0.2	V
	VIL4	P20 to P27, P150 to P152, P157	μ PD78F150xA	0		0.3AVdDo	V
			μ PD78F151xA	0		0.3 AV Vd	V
	VIL5	P110, P111	μ PD78F150xA	0		$0.3 A V_{\text {dD } 1}$	V
			μ PD78F151xA	0		0.3EVDD1	V
	VIL6	P60, P61		0		0.3 Vdd	V
	VIL7	FLMD0		0		$0.1 \mathrm{VdD}^{\text {Note }}$	V

Note When disabling writing of the flash memory, connect the FLMDO pin directly to Vss, and maintain a voltage less than 0.1 V do.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (5/11)
$\left(T_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD}=\mathrm{EVDD} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} 1 \leq \mathrm{VDD}$,

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Vor1	P00 to P02, P10 to P17, P30 to P34, P40, P41, P70 to P77, P80 to P87, P120, P130	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loH}_{1}=-3.0 \mathrm{~mA} \end{aligned}$	VDD-0.7			V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loH}_{1}=-1.0 \mathrm{~mA} \end{aligned}$	VDD - 0.5			V
		P50 to P57, P90 to P97, P100 to P102, P140 to P147	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IoH}_{1}=-1.6 \mathrm{~mA} \end{aligned}$	VDD -0.7			V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-0.45 \mathrm{~mA} \end{aligned}$	VDD -0.5			V
	VOH2	P20 to P27, P150 to P152, P157 (μ PD78F150xA)	$\mathrm{loH}_{2}=-0.1 \mathrm{~mA}$	$\begin{gathered} \mathrm{AV} \mathrm{VDO}^{0} \\ -0.5 \end{gathered}$			V
		P20 to P27, P150 to P152, P157 (μ PD78F151xA)	$\mathrm{loH}_{2}=-0.1 \mathrm{~mA}$	$\begin{gathered} \mathrm{A} V_{D D} \\ -0.5 \end{gathered}$			V
		$\begin{aligned} & \text { P110, P111 } \\ & (\mu \text { PD78F150xA }) \end{aligned}$	$\mathrm{IOH2}^{2}=-0.1 \mathrm{~mA}$	$\begin{gathered} \mathrm{AV} \mathrm{VD}_{\mathrm{D}} \\ -0.5 \end{gathered}$			V
		$\begin{aligned} & \text { P110, P111 } \\ & (\mu \text { PD78F151xA }) \end{aligned}$	$\mathrm{loH2}^{2}=-0.1 \mathrm{~mA}$	$\begin{aligned} & \mathrm{EVDD} \\ & -0.5 \end{aligned}$			V

Caution P10 to P15, P75, P77, P80 and P82 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (6/11)

$\left(T_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD}=\mathrm{EVDD} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} 1 \leq \mathrm{VDD}$,

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, low	VoL1	P00 to P02, P12, P13, P16, P17, P30 to P34, P40, P41, P70 to P77, P80 to P87, P120, P130	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=8.5 \mathrm{~mA} \end{aligned}$			0.7	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=1.0 \mathrm{~mA} \end{aligned}$			0.5	v
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=0.5 \mathrm{~mA} \end{aligned}$			0.4	v
		P10, P11, P14, P15	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=8.5 \mathrm{~mA} \end{aligned}$			0.7	v
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=1.5 \mathrm{~mA} \end{aligned}$			0.5	v
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=0.6 \mathrm{~mA} \end{aligned}$			0.4	v
		P50 to P57, P90 to P97, P100 to P102, P140 to P147	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=1.8 \mathrm{~mA} \end{aligned}$			0.7	v
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=0.8 \mathrm{~mA} \end{aligned}$			0.5	v
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, \\ & \text { loLt }=0.35 \mathrm{~mA} \end{aligned}$			0.4	v
	Vol2	P20 to P27, P150 to P152, P157 (μ PD78F150xA)	$\begin{aligned} & \mathrm{AV} \text { DDo } \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL2}=0.4 \mathrm{~mA} \end{aligned}$			0.4	v
		P20 to P27, P150 to P152, P157 (μ PD78F151xA)	$\begin{aligned} & \mathrm{AV} \mathrm{VD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL2}=0.4 \mathrm{~mA} \end{aligned}$			0.4	v
		$\begin{aligned} & \text { P110, P111 } \\ & (\mu \text { PD78F150xA }) \end{aligned}$	$\begin{aligned} & \mathrm{AV}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL2}=0.4 \mathrm{~mA} \end{aligned}$			0.4	v
		$\begin{array}{\|l} \mathrm{P} 110, \mathrm{P} 111 \\ (\mu \mathrm{PD} 78 \mathrm{~F} 151 \mathrm{xA}) \end{array}$	$\begin{aligned} & \mathrm{EV}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL2}=0.4 \mathrm{~mA} \end{aligned}$			0.4	v
	Voı3	P60, P61	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=15.0 \mathrm{~mA} \end{aligned}$			2.0	v
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=5.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=3.0 \mathrm{~mA} \end{aligned}$			0.4	v
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=2.0 \mathrm{~mA} \end{aligned}$			0.4	V

Caution P10 to P15, P75, P77, P80 and P82 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (7/11)

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{D}}=\mathrm{EVDD} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD}_{\mathrm{D}}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} 1 \leq \mathrm{VDD}$,

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P02, P10 to P17, P30 to P34, P40, P41, P50 to P57, P60, P61, P70 to P77, P80 to P87, P90 to P97, P100 to P102, P120, P140 to P147, FLMD0, RESET	$V_{I}=V_{D D}$				1	$\mu \mathrm{A}$
	ILIH2	P20 to P27, P150 to P152, P157 (μ PD78F150xA)	$\mathrm{V}_{1}=A V_{\text {dDo }}$				1	$\mu \mathrm{A}$
		P20 to P27, P150 to P152, P157 (μ PD78F151xA)	$\mathrm{V}_{\mathrm{I}}=\mathrm{AV} \mathrm{VD}$				1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{P} 110, \mathrm{P} 111 \\ & (\mu \mathrm{PD} 78 \mathrm{~F} 150 \times \mathrm{A}) \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{AV} \mathrm{VDD} 1$				1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{P} 110, \mathrm{P} 111 \\ & (\mu \mathrm{PD} 78 \mathrm{~F} 151 \mathrm{xA}) \end{aligned}$	$\mathrm{V}_{1}=E V_{\text {DD } 1}$				1	$\mu \mathrm{A}$
	ІІІн3	$\begin{aligned} & \text { P121 to P124 } \\ & (\mathrm{X} 1, \mathrm{X} 2, \mathrm{XT} 1, \mathrm{XT} 2) \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$	In input port			1	$\mu \mathrm{A}$
				In resonator connection			10	$\mu \mathrm{A}$
Input leakage current, low	ILIL1	P00 to P02, P10 to P17, P30 to P34, P40, P41, P50 to P57, P60, P61, P70 to P77, P80 to P87, P90 to P97, P100 to P102, P120, P140 to P147, FLMD0, RESET	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{ss}}$				-1	$\mu \mathrm{A}$
	ILIL2	P20 to P27, P150 to P152, P157	$\mathrm{V}_{1}=\mathrm{V}_{s s}$				-1	$\mu \mathrm{A}$
		P110, P111	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {ss }}$				-1	$\mu \mathrm{A}$
	ILIL3	$\begin{aligned} & \text { P121 to P124 } \\ & \text { (X1, X2, XT1, XT2) } \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {ss }}$	In input port			-1	$\mu \mathrm{A}$
				In resonator connection			-10	$\mu \mathrm{A}$
On-chip pll-up resistance	Ru	P00 to P02, P10 to P17, P30 to P34, P40, P41, P50 to P57, P70 to P77, P80 to P87, P90 to P97, P100 to P102, P120, P140 to P147	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\text {ss }}$,	n input port	10	20	100	$\mathrm{k} \Omega$
FLMDO pin external pulldown resistance Note	Rflmdo	When enabling the self-programm software	ing mode	etting with	100			$\mathrm{k} \Omega$

Note It is recommended to leave the FLMD0 pin open. If the pin is required to be pulled down externally, set RFLmDo to $100 \mathrm{k} \Omega$ or more.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (8/11)
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{D}}=\mathrm{EVDD} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD}_{\mathrm{D}} 1.8 \mathrm{~V} \leq \mathrm{AVDD} 1 \leq \mathrm{VDD}$,

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current	IDD1$\text { Note } 1$	Operating mode	$f_{M x}=20 \mathrm{MHz}, V_{D D}=5.0 \mathrm{~V}^{\text {Note } 2}$		Square wave input		5.5	7.7	mA
					Resonator connection		5.8	8.0	mA
			$\mathrm{fmx}^{\text {a }}=20 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}^{\text {Note } 2}$		Square wave input		5.5	7.7	mA
					Resonator connection		5.8	8.0	mA
			$\mathrm{fmx}^{\prime}=10 \mathrm{MHz}, \mathrm{V}_{\text {DD }}=5.0 \mathrm{~V}^{\text {Notes } 2,3}$		Square wave input		3.2	4.6	mA
					Resonator connection		3.3	4.7	mA
			$\mathrm{fmx}=10 \mathrm{MHz}, \mathrm{VDD}^{\text {a }} 3.0 \mathrm{~V}^{\text {Notes } 2,3}$		Square wave input		3.2	4.6	mA
					Resonator connection		3.3	4.7	mA
					Square wave input		1.8	2.7	mA
					Resonator connection		1.9	2.8	mA
			$\mathrm{fmx}_{\mathrm{Mx}}=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}^{\text {Noles } 2.3}$		Square wave input		1.3	2.2	mA
					Resonator connection		1.3	2.2	mA
			$\mathrm{fiH}_{\mathrm{H}}=20 \mathrm{MHz}{ }^{\text {Note } 4}$		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		5.7	8.0	mA
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		5.7	8.0	mA
			$\mathrm{fiH}^{\prime}=8 \mathrm{MHz}{ }^{\text {Note } 4}$		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		2.6	3.7	mA
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		2.6	3.7	mA
			$\begin{aligned} & \mathrm{fl}_{\mathrm{IH}}=1 \mathrm{MHz}, \\ & \mathrm{RMC}=5 \mathrm{AH}, \mathrm{OSMC}=02 \mathrm{H}^{\text {Note } 4} \end{aligned}$		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		190	354	$\mu \mathrm{A}$
			$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz}, \\ & \text { FSEL }=0, \\ & \text { SDIV }=1, \\ & \text { AMPHS1 }=1^{\text {Note } 5} \end{aligned}$	$\begin{aligned} & \mathrm{TA}=-40 \text { to } \\ & +50^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		3.9	8.4	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		3.9	8.4	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$		3.9	8.4	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{TA}=-40 \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		3.9	11.3	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		3.9	11.3	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$		3.9	11.3	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{TA}=-40 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		3.9	14.6	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		3.9	14.6	$\mu \mathrm{A}$
					$V_{\text {DD }}=2.0 \mathrm{~V}$		3.9	14.6	$\mu \mathrm{A}$

 current flowing when the level of the input pin is fixed to $V_{D D}$ or $V_{s s}$, and excluding the current flowing into the realtime counter, watchdog timer, LVI circuit, A/D converter, D/A converter ${ }^{\text {Note }}{ }^{6}$, operational amplifier ${ }^{\text {Note }}{ }^{6}$, voltage reference ${ }^{\text {Note } 6}$, LCD controller/driver, I/O port, and on-chip pull-up/pull-down resistors. The maximum values include the peripheral operation current.
2. When internal high-speed oscillator and subsystem clock are stopped.
3. When AMPH (bit 0 of clock operation mode control register (CMC)) $=0$ and FLPC, FSEL (bits 1,0 of operation speed mode control register $(O S M C))=0,0$.
4. When high-speed system clock and subsystem clock are stopped.
5. When internal high-speed oscillation, and high-speed system clock are stopped. When watchdog timer is stopped.
6. Dedicated to μ PD78F150xA

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fiн: Internal high-speed oscillation clock frequency
3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

DC Characteristics (9/11)
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{D}}=\mathrm{EVDD} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD}_{\mathrm{D}}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} 1 \leq \mathrm{VDD}$,

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current	IDD2$\text { Note } 1$	HALT mode	$\mathrm{fmx}=20 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}^{\text {Note } 2}$		Square wave input		1.1	3.3	mA
					Resonator connection		1.4	3.6	mA
			$\mathrm{fmx}^{\text {a }}=20 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}^{\text {Note } 2}$		Square wave input		1.1	3.3	mA
					Resonator connection		1.4	3.6	mA
			$f_{m x}=10 \mathrm{MHz}, \mathrm{V}_{\text {DD }}=5.0 \mathrm{~V}^{\text {Notes } 2,3}$		Square wave input		0.55	2.1	mA
					Resonator connection		0.65	2.2	mA
			$f_{M x}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}^{\text {Notes } 2,3}$		Square wave input		0.55	2.1	mA
					Resonator connection		0.65	2.2	mA
			$\mathrm{fmx}^{\text {a }}=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}^{\text {Nomes } 2.3}$		Square wave input		0.4	1.8	mA
					Resonator connection		0.45	1.8	mA
			$\mathrm{fmx}_{\text {l }}=5 \mathrm{MHz}, \mathrm{V}_{\text {DD }}=2.0 \mathrm{~V}^{\text {Notes } 23}$		Square wave input		0.26	1.3	mA
					Resonator connection		0.31	1.4	mA
			$\mathrm{fiH}_{\mathrm{H}}=20 \mathrm{MHz}{ }^{\text {Note } 4}$		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		1.3	3.6	mA
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		1.3	3.6	mA
			$\mathrm{fiH}^{\text {a }}=8 \mathrm{MHz}^{\text {Note }}$		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		0.45	1.8	mA
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		0.45	1.8	mA
			$\begin{aligned} & \mathrm{fiH}_{\mathrm{I}}=1 \mathrm{MHz}, \\ & \mathrm{RMC}=5 \mathrm{AH}, \mathrm{OSMC}=02 \mathrm{H}^{\text {Note } 4} \end{aligned}$		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		45	153	$\mu \mathrm{A}$
			$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz}, \\ & \text { RTCLPC }=1, \\ & \text { FSEL }=0, \\ & \text { SDIV }=1, \\ & \text { AMPHS }=1 \text { Note 5 } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ & +50^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		0.9	3.6	$\mu \mathrm{A}$
					$V_{D D}=3.0 \mathrm{~V}$		0.9	3.6	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$		0.9	3.6	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		0.9	6.0	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		0.9	6.0	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$		0.9	6.0	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		0.9	8.8	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		0.9	8.8	$\mu \mathrm{A}$
					$V_{\text {DD }}=2.0 \mathrm{~V}$		0.9	8.8	$\mu \mathrm{A}$

<R>
<R>
 current flowing when the level of the input pin is fixed to VDD or Vss, and excluding the current flowing into the real-time counter, watchdog timer, LVI circuit, A/D converter, D/A converter ${ }^{\text {Note } 6}$, operational amplifier ${ }^{\text {Note } 6}$, voltage reference ${ }^{\text {Note } 6}$, LCD controller/driver, I/O port, and on-chip pull-up/pull-down resistors. The maximum values include the peripheral operation current. During HALT instruction execution by flash memory.
2. When internal high-speed oscillator and subsystem clock are stopped.
3. When AMPH (bit 0 of clock operation mode control register (CMC)) $=0$ and FLPC, FSEL (bits 1, 0 of operation speed mode control register $(O S M C))=0,0$.
4. When high-speed system clock and subsystem clock are stopped.
5. When internal high-speed oscillation, and high-speed system clock are stopped. When watchdog timer is stopped. When real-time counter is operating.
6. Dedicated to μ PD78F150xA

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fiH: Internal high-speed oscillation clock frequency
3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

DC Characteristics (10/11)
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{D}}=\mathrm{EVDD} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} 1 \leq \mathrm{VDD}$,

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Supply current	IDD3 ${ }^{\text {Note }} 1$	STOP mode	$\mathrm{T}_{\mathrm{A}}=-40$ to $+50^{\circ} \mathrm{C}$			0.37	2.8	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40$ to $+70^{\circ} \mathrm{C}$			0.37	5.2	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			0.37	7.9	$\mu \mathrm{A}$
RTC operating current	IRTC ${ }^{\text {Notes 2, } 3}$	$\mathrm{fsub}^{\text {a }} 32.768 \mathrm{kHz}$		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		0.2	1	$\mu \mathrm{A}$
				$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$		0.2	1	$\mu \mathrm{A}$
Watchdog timer operating current	IWDT ${ }^{\text {Notes 3, }}$	$\mathrm{fiL}=30 \mathrm{kHz}$				0.31	0.35	$\mu \mathrm{A}$
LVI operating current	ILVI ${ }^{\text {Note } 5}$					9	18	$\mu \mathrm{A}$
A/D converter operating current	$\mathrm{I}_{\text {ADC }}{ }^{\text {Note } 6}$	During conversion at maximum speed (μ PD78F150xA)	Normal mode 1	$A V_{\text {dDo }}=5.0 \mathrm{~V}$		1.7	3.4	mA
				$\mathrm{AV} \mathrm{VDO}=3.0 \mathrm{~V}$		0.7	1.4	mA
			Normal mode 2	$A V_{\text {dDo }}=2.3 \mathrm{~V}$		0.5	1.2	mA
			Low voltage mode	$A V_{\text {doo }}=1.8 \mathrm{~V}$		0.3	0.8	mA
		During conversion at maximum speed (μ PD78F151xA)	Normal mode 1	$A V_{\text {dD }}=5.0 \mathrm{~V}$		1.7	3.4	mA
				AV DD $=3.0 \mathrm{~V}$		0.7	1.4	mA
			Normal mode 2	$A V_{\text {DD }}=2.3 \mathrm{~V}$		0.5	1.2	mA
			Low voltage mode	$A V_{D D}=1.8 \mathrm{~V}$		0.3	0.8	mA
D/A converter operating current	IDAC ${ }^{\text {Note 7,9 }}$	50 pF per 1 channel, Isouce = $\mathrm{I}_{\mathrm{SINK}}=0 \mathrm{~mA}$	Selecting Reference potential $=$ AVDD1			0.3	0.8	mA
			Selecting Reference potential $=\mathrm{V}_{\text {Refout }}$			0.3	0.8	mA
			Selecting Reference potential $=A V_{\text {REFP }}$			$0.3^{\text {Note } 8}$	$0.8^{\text {Note } 8}$	mA

 leakage current flowing when the level of the input pin is fixed to VDD or Vss, and excluding the current flowing into the real-time counter, watchdog timer, LVI circuit, A/D converter, D/A converter, operational amplifier, voltage reference, LCD controller/driver, I/O port, and on-chip pull-up/pull-down resistors. The maximums values include the peripheral operation current and STOP leakage current. When subsystem clock is stopped. When watchdog timer is stopped.
2. Current flowing only to the real-time counter ($\mathrm{V} D \mathrm{pin}$) (excluding the operating current of the XT1 oscillator). The current value of the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers is the TYP. value, the sum of the TYP. values of either IDD1 or IdD2, and Irtc, when the real-time counter operates in an operation mode or HALT mode. The IdD1 and IdD2 MAX. values also include the real-time counter operating current. When the real-time counter operates during fclк $=$ fsubc, the TYP. value of lddz includes the real-time counter operating current.
3. When internal high-speed oscillator and high-speed system clock are stopped.
4. Current flowing only to the watchdog timer (VDD pin) (including the operating current of the 30 kHz internal oscillator). The current value of the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers is the sum of IdD1, IdD2 or IdD3 and IwdT when fcLk $=$ fsubc or when the watchdog timer operates in STOP mode.
5. Current flowing only to the LVI circuit (VDd pin). The current value of the 78K0R/Lx3 microcontrollers is the sum of Idd1, IdD2 or Idd3 and Ilvi when the LVI circuit operates in the operation mode, HALT mode or STOP mode.
6. Current flowing only to the A / D converter ($A V_{D D o}$ or ($A V_{D D}$ pin). The current value of the $78 K 0 R / L x 3$ microcontrollers is the sum of ldD1 or IDD2 and IADC when the A/D converter operates in an operation mode or HALT mode.
7. Current flowing only to the D/A converter (AVDD1 pin). The current value of the $78 \mathrm{~K} 0 \mathrm{R} / \mathrm{Lx} 3$ microcontrollers is the sum of IdD1, IdD2 or Idd3 and Idac when the D/A converter operates in an operation mode, HALT mode or STOP mode.
8. Not including the current flowing to reference potential side.
9. Dedicated to μ PD78F150xA

DC Characteristics (11/11)

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{D}}=\mathrm{EVDD} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq \mathrm{VDD}_{\mathrm{D}}, 1.8 \mathrm{~V} \leq \mathrm{AVDD} 1 \leq \mathrm{VDD}$,

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Operational amplifier operating current	$\mathrm{I}_{\text {AMP }}{ }^{\text {Note 1, } 6}$	$\mathrm{AV} \mathrm{VDD}=5.0 \mathrm{~V}$			OAIMI $=0$		250	335	$\mu \mathrm{A}$
		$\mathrm{AV}^{\text {dDo }}=3.0 \mathrm{~V}$			OAIMI $=0$		230	320	$\mu \mathrm{A}$
		$\mathrm{AV}_{\text {DD } 0}=2.3 \mathrm{~V}$			OAIMI $=0$		220	310	$\mu \mathrm{A}$
Voltage reference operating current 1	IVR1 ${ }^{\text {Note } 2,6}$	$\mathrm{AV} \mathrm{DDO}=5.0 \mathrm{~V}$					19	38	$\mu \mathrm{A}$
		$\mathrm{AV}_{\text {dDo }}=3.0 \mathrm{~V}$			VR output $=2.5 \mathrm{~V}$		9.5	25	$\mu \mathrm{A}$
		$A V_{\text {DDO }}=3.0 \mathrm{~V}$			VR output $=2.0 \mathrm{~V}$		9.5	25	$\mu \mathrm{A}$
Voltage reference operating current 2	IVR2 ${ }^{\text {Note } 3,6}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$					10	40	$\mu \mathrm{A}$
		$\mathrm{V} \mathrm{dD}=3.0 \mathrm{~V}$			VR output $=2.5 \mathrm{~V}$		10	40	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$			VR output $=2.0 \mathrm{~V}$		10	40	$\mu \mathrm{A}$
LCD operating current	ILCD1 Notes 4, 5	External resistance division method	$\mathrm{f}_{\mathrm{LCD}}=\mathrm{fsub}$, LCD panel not connected, LCD clock $=512 \mathrm{~Hz}$		$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		0.28	1.2	$\mu \mathrm{A}$
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.2	1.2	$\mu \mathrm{A}$
	ILCD2 ${ }^{\text {Note4 }}$	Internal voltage boosting method	$\mathrm{f}_{\mathrm{LCD}}=\mathrm{f}_{\mathrm{SUB}}$, LCD panel not connected, LCD clock $=512 \mathrm{~Hz}$	1/3 bias	$\mathrm{V}_{\text {LCD }}=01 \mathrm{H}$		1.39	4.7	$\mu \mathrm{A}$
					$V_{\text {LCD }}=0 \mathrm{FH}$		0.94	3.1	$\mu \mathrm{A}$
				1/4 bias	VLCD $=0 \mathrm{AH}$		1.53	5.0	$\mu \mathrm{A}$
	ILCD3 ${ }^{\text {Note4 }}$	Capacitor split method	$\mathrm{f}_{\mathrm{LCD}}=\mathrm{fsub}$, LCD panel not connected, $\text { LCD clock = } 512 \mathrm{~Hz}$		$\mathrm{V}_{\text {DD }}=5.0 \mathrm{~V}$		0.56	2.0	$\mu \mathrm{A}$
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.36	1.7	$\mu \mathrm{A}$

Notes 1. Current flowing only to the operational amplifier (AVDDo pin). The current value of the 78K0R/Lx3 microcontrollers is the sum of IDD1, IDD2 or IdD3 and IAMP when the operational amplifier operates in an operation mode, HALT mode or STOP mode.
2. Current flowing only to the voltage reference (AVddo pin). The current value of the $78 \mathrm{~K} 0 \mathrm{R} / \mathrm{Lx} 3$ microcontrollers is the sum of ldD1, IdD2 or ldd3 and lvr1 when the voltage reference circuit operates in an operation mode, HALT mode or STOP mode.
3. Current flowing only to the voltage reference or input gate voltage boost circuit for the A/D converter (VDD pin). The current value of the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers is the sum of IdD1, IdD2 or IdD3 and IvR2 when the voltage reference or boost circuit operates in an operation mode, HALT mode or STOP mode.
4. Current flowing only to the LCD controller/driver (VDD pin). The current value of the 78K0R/Lx3 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1, or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode.
5. Not including the current that flows through the LCD divider resistor.
6. Dedicated to μ PD78F150xA

AC Characteristics

(1) Basic operation (1/6)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{E} \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{A} \mathrm{V}_{\mathrm{DD} 0} \leq \mathrm{V}_{\mathrm{DD}}, 1.8 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{DD} 1} \leq \mathrm{V}_{\mathrm{DD}}$,

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fmain) operation	Normal power mode, FSEL=1	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.05		8	$\mu \mathrm{S}$
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.2		8	$\mu \mathrm{S}$
			Normal power mode,$\text { FSEL = } 0$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.1		8	$\mu \mathrm{S}$
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.2		8	$\mu \mathrm{S}$
			Low consumption power mode		1		8	$\mu \mathrm{s}$
		Subsystem clock (fsub) operation	SDIV = 1		57.2	61	62.5	$\mu \mathrm{s}$
			SDIV $=0$		28.5	30.5	31.3	$\mu \mathrm{S}$
		In the self programmin g mode	Normal power mode, FSEL=1	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.05		1	$\mu \mathrm{S}$
				$1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<2.7 \mathrm{~V}$	0.2		1	$\mu \mathrm{s}$
			Low consumption power mode ${ }^{\text {Note }}$		0.88	1	1.15	$\mu \mathrm{S}$
External main system clock frequency	fex	$2.7 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}$			2.0		20.0	MHz
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<2.7 \mathrm{~V}$			2.0		5.0	MHz
External main system clock input high-level width, low-level width	texh, texl	$2.7 \mathrm{~V} \leq \mathrm{V}$ do $\leq 5.5 \mathrm{~V}$			24			ns
		$1.8 \mathrm{~V} \leq \mathrm{V} D<2.7 \mathrm{~V}$			96			ns
TI00 to TI07, TI10 to TI13 input high-level width, low-level width	tтin, ttil				$\begin{gathered} \text { 2/fмск } \\ +10 \end{gathered}$			ns
TO00 to TO07, TO10 to TO13 output frequency	fто	$2.7 \mathrm{~V} \leq \mathrm{V}$ do $\leq 5.5 \mathrm{~V}$					10	MHz
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<2.7 \mathrm{~V}$					5	MHz
PCLBUZO, PCLBUZ1 output frequency	fPCL	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{dD} \leq 5.5 \mathrm{~V}$					10	MHz
		$1.8 \mathrm{~V} \leq \mathrm{V}$ do $<2.7 \mathrm{~V}$					5	MHz
Interrupt input high-level width, low-level width	tinth, tintl				1			$\mu \mathrm{s}$
Key return input low-level width	tkR				250			ns
$\overline{\text { RESET }}$ low-level width	trsc				10			$\mu \mathrm{S}$

Note In low-power-consumption mode, use the regulator with fcLk fixed to 1 MHz when executing self programming.

Remarks 1. fмск: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of the TMRmn register. m : Unit number ($m=0,1$), n : Channel number ($\mathrm{n}=0$ to 7))
2. For details on the normal power mode and low consumption power mode according to the regulator output voltage, refer to CHAPTER 25 REGULATOR.
(1) Basic operation (2/6)

Minimum instruction execution time during main system clock operation (FSEL $=\mathbf{0}, \mathrm{RMC}=\mathbf{0 0 H}$)

Remark FSEL: Bit 0 of the operation speed mode control register (OSMC)

(1) Basic operation (3/6)

Minimum instruction execution time during main system clock operation (FSEL =1, RMC =00H)

<R> Caution When $V_{D D}<2.25 \mathrm{~V}$ and FSEL = $\mathbf{1}$, It is prohibited to release STOP mode during fex operation or fil operation (This must not be performed even if the frequency is divided. The STOP mode may be released during fx operation.).

Remarks 1. FSEL: Bit 0 of the operation speed mode control register (OSMC)
2. fx : X1 clock oscillation frequency
fir: Internal high-speed oscillation clock frequency
fex: External main system clock frequency
fmain: Main system clock frequency
fsub: Subsystem clock frequency
fclk: CPU/peripheral hardware clock frequency

(1) Basic operation (4/6)

Minimum instruction execution time during main system clock operation (FSEL $=0$, RMC $=5 A H$)

Remarks 1. FSEL: Bit 0 of the operation speed mode control register (OSMC)
2. The entire voltage range is 1 MHz (MAX.) when RMC is set to 5 AH .

(1) Basic operation (5/6)

Minimum instruction execution time during self programming mode (RMC $=\mathbf{0 0 H}$)

Minimum instruction execution time during self programming mode (RMC $=5 A H$)

Remark The self programming function cannot be used when the CPU operates with the subsystem clock.

(1) Basic operation (6/6)

AC Timing Test Points

External Main System Clock Timing

TI Timing

Interrupt Request Input Timing

Key Interrupt Input Timing

$\overline{\text { RESET }}$ Input Timing

(2) Serial interface: Serial array unit (1/18)

(a) During communication at same potential (UART mode) (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					fмск/6	bps
		fcLk $=20 \mathrm{MHz}, \mathrm{fmck}=\mathrm{fcLk}$			3.3	Mbps

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Caution Select the normal input buffer for RxDq and the normal output mode for TxDq by using the PIMg and POMx registers.

Remarks 1. q : UART number ($q=0$ to 3), g : PIM number $(g=1,7)$, x : POM number ($x=1,7,8$)
2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of the SMRmn register. m : Unit number ($m=0,1$),
n : Channel number $(\mathrm{n}=0,2)$)
(2) Serial interface: Serial array unit (2/18)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VD}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{EV}$ ss $=\mathrm{AVss}=0 \mathrm{~V}$)
(b) During communication at same potential (CSI mode) (master mode, $\overline{\text { SCKpp}} \ldots$ internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKp }}$ cycle time	tkcy1	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VDD} \leq 5.5 \mathrm{~V}$	$200{ }^{\text {Note } 1}$			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{DD}<4.0 \mathrm{~V}$	$300{ }^{\text {Note } 1}$			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=E V_{\mathrm{DD}}<2.7 \mathrm{~V}$	$600{ }^{\text {Note } 1}$			ns
$\overline{\text { SCKp }}$ high-/low-level width	$\mathrm{t}_{\mathrm{kH}} \mathrm{l} \text {, }$tkL1	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}$	tkCy1/2-20			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{DD}<4.0 \mathrm{~V}$	tксү1/2-35			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{DD}^{2}<2.7 \mathrm{~V}$	tксү1/2-80			ns
Slp setup time (to $\overline{\mathrm{SCKp}} \uparrow$) ${ }^{\text {Note } 2}$	tsik1	$4.0 \mathrm{~V} \leq \mathrm{VDD}=\mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}$	70			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VD}^{2} 4.0 \mathrm{~V}$	100			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{DD}<2.7 \mathrm{~V}$	190			ns
SIp hold time (from $\overline{\mathrm{SCKp}} \uparrow$) ${ }^{\text {Note } 3}$	tksı1		30			ns
Delay time from $\overline{\text { SCKp }} \downarrow$ to SOp output Note 4	tkso1	$\mathrm{C}=30 \mathrm{pF}^{\text {Note } 5}$			40	ns

Notes 1. The value must also be $4 / \mathrm{ffck}$ or more.
2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to $\overline{\text { SCKp } ~} \downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from $\overline{\text { SCKp }} \downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from $\overline{\text { SCKp }} \uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
5. C is the load capacitance of the $\overline{\mathrm{SCKp}}$ and SOp output lines.

Caution Select the normal input buffer for SIp and the normal output mode for SOp and $\overline{\text { SCKp }}$ by using the PIMg and POMx registers.

Remarks 1. p : CSI number ($p=00,01,10,20$), g : PIM number $(g=1,7), x$: POM number $(x=1,7,8)$
2. m : Unit number $(m=0,1), n$: Channel number $(n=0$ to 2$)$
(2) Serial interface: Serial array unit (3/18)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{EV}$ ss $=\mathrm{AVss}=0 \mathrm{~V}$)
(c) During communication at same potential (CSI mode) (slave mode, $\overline{\text { SCKp }}$... external clock input)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKp }}$ cycle time	tkcy2	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			6/fмск			ns
		$\begin{aligned} & \text { 2.7 V } \leq \mathrm{VDD}< \\ & 4.0 \mathrm{~V} \end{aligned}$		16 MHz < fmck	8/fмск			ns
				$\mathrm{fmCk}^{5} 16 \mathrm{MHz}$	6/fмск			ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}< \\ & 2.7 \mathrm{~V} \end{aligned}$		16 MHz < fmck	8/fмск			ns
				$\mathrm{fmCK} \leq 16 \mathrm{MHz}$	6/fмск			ns
$\overline{\text { SCKp }}$ high-/low-level width	tкн2, tкı2				tkcy/2			ns
Slp setup time (to $\overline{\text { SCKp } \uparrow \text {) Note } 1}$	tsiк2				80			ns
Slp hold time (from $\overline{\mathrm{SCKp}} \uparrow$) ${ }^{\text {Note } 2}$	tksı2				1/fıck +50			ns
Delay time from $\overline{\mathrm{SCKp}} \downarrow$ to SOp output ${ }^{\text {Note } 3}$	tkso2	$\begin{aligned} & \mathrm{C}=30 \\ & \mathrm{pF}^{\text {Note } 4} \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}$				2/fмск+45	ns
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=E V_{D D}<4.0 \mathrm{~V}$				2/fмск+57	ns
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=E V_{\mathrm{DD}}<2.7 \mathrm{~V}$				2/fмск+125	ns

Notes 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to $\overline{\text { SCKp }} \downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from $\overline{\text { SCKp }} \downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from $\overline{\text { SCKp }} \uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
4. C is the load capacitance of the $\overline{\mathrm{SCKp}}$ and SOp output lines.

Caution Select the normal input buffer for SIp and $\overline{\text { SCKp }}$ and the normal output mode for SOp by using the PIMg and $P O M x$ registers.

Remarks 1. $p:$ CSI number $(p=00,01,10,20), g: \operatorname{PIM}$ number $(g=1,7), x: \operatorname{POM}$ number $(x=1,7,8)$
2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of the SMRmn register. m : Unit number ($m=0,1$), n : Channel number ($\mathrm{n}=0$ to 2))
(2) Serial interface: Serial array unit (4/18)

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)

CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.)

Remarks 1. p: CSI number $(\mathrm{p}=00,01,10,20)$
2. m : Unit number $(m=0,1), n$: Channel number $(n=0$ to 2$)$
(2) Serial interface: Serial array unit (5/18)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{EV}$ ss $=\mathrm{AVss}=0 \mathrm{~V}$)
(d) During communication at same potential (simplified $I^{2} C$ mode)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscl	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF} \end{aligned}$		400	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VD}_{\mathrm{D}} \leq 5.5 \mathrm{~V} \\ & \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF} \end{aligned}$		300	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VD}_{\mathrm{D}} \leq 5.5 \mathrm{~V} \\ & \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF} \end{aligned}$	1200		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF} \end{aligned}$	1500		ns
Hold time when SCLr = "H"	thigh	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VDD} \leq 5.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF} \end{aligned}$	1200		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VD} \leq 5.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega, \mathrm{C}_{b}=100 \mathrm{pF} \end{aligned}$	1500		ns
Data setup time (reception)	tsu:dat	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{E} \mathrm{~V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF} \end{aligned}$	1/fмск+120		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD}=\mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF} \end{aligned}$	1/fмск+230		ns
Data hold time (transmission)	thd:dAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D \mathrm{ED}=\mathrm{EVD} \leq 5.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF} \end{aligned}$	0	660	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VD} \leq 5.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF} \end{aligned}$	0	710	ns

Caution Select the normal input buffer and the N-ch open drain output (Vod tolerance) mode for SDAr and the normal output mode for SCLr by using the PIMg and POMx registers.

Remarks 1. Rb[Ω]:Communication line (SDAr) pull-up resistance,
$\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SCLr, SDAr) load capacitance
2. r : IIC number $(r=10,20)$, g : PIM number $(g=1,7), x$: POM number $(x=1,7,8)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of the SMRmn register. m : Unit number ($m=0,1$),
n : Channel number $(\mathrm{n}=0,2), \mathrm{mn}=02,10)$
(2) Serial interface: Serial array unit (6/18)

Simplified $I^{2} C$ mode mode connection diagram (during communication at same potential)

Simplified $\mathrm{I}^{2} \mathrm{C}$ mode serial transfer timing (during communication at same potential)

Remarks 1. $\operatorname{Rb}[\Omega]$:Communication line (SDAr) pull-up resistance,
$\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SCLr, SDAr) load capacitance
2. r : IIC number $(r=10,20)$
(2) Serial interface: Serial array unit (7/18)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{EV}$ ss $=\mathrm{AVss}=0 \mathrm{~V}$)
(e) Communication at different potential (2.5 V, 3 V) (UART mode) (dedicated baud rate generator output) (1/2)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Transfer rate		reception	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$				fмск/6	bps
				$\begin{aligned} & \text { fсLK }=20 \mathrm{MHz}, \\ & \text { fмск }=\text { fсLк } \end{aligned}$			3.3	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{E} \mathrm{~V}_{\mathrm{DD}}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{D}}<2.7 \mathrm{~V} \end{aligned}$				fмск/6	bps
				$\begin{aligned} & \text { fсLK }=20 \mathrm{MHz}, \\ & \text { fмск }=\text { fсLк } \end{aligned}$			3.3	Mbps

Caution Select the TTL input buffer for RxDq and the N-ch open drain output (VDD tolerance) mode for TxDq by using the PIMg and POMx registers.

Remarks 1. q : UART number ($q=0$ to 3), g : PIM number ($g=1,7$), x : POM number ($x=1,7,8$)
2. $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of the SMRmn register. m : Unit number ($m=0,1$), n : Channel number $(\mathrm{n}=0,2)$)
4. V_{IH} and V_{IL} below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in UART mode.
$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}$: $\mathrm{V}_{\mathrm{IH}}=2.2 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=E \mathrm{~V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}$
(2) Serial interface: Serial array unit (8/18)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{E} \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{EV}$ ss $=\mathrm{AVss}=0 \mathrm{~V}$)
(e) Communication at different potential (2.5 V, 3 V) (UART mode) (dedicated baud rate generator output) (2/2)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Transfer rate		transmission	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$				Note 1	bps
				$\begin{aligned} & \text { fCLK }=16.8 \mathrm{MHz}, f_{\mathrm{mcK}}=\text { fcLk, } \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{b}}= \\ & 2.7 \mathrm{~V} \end{aligned}$			$2.8{ }^{\text {Note 2 }}$	Mbps
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{DD}<4.0 \mathrm{~V}$,				Note 3	bps
				$\begin{aligned} & \text { fСLK }=19.2 \mathrm{MHz}, \text { fmck }=\text { fCLK, } \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{b}}= \\ & 2.3 \mathrm{~V} \end{aligned}$			$1.2^{\text {Note } 4}$	Mbps

Notes 1. The smaller maximum transfer rate derived by using $\mathrm{fmck}_{\mathrm{K}} / 6$ or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}$ and $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}$
Maximum transfer rate $=\frac{1}{\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{2.2}{V_{b}}\right)\right\} \times 3} \quad[\mathrm{bps}]$
Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{2.2}{V_{b}}\right)\right\}}{\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }} \times 100$ [\%]

* This value is the theoretical value of the relative difference between the transmission and reception sides.

2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
3. The smaller maximum transfer rate derived by using $\mathrm{fmck}_{\mathrm{m}} / 6$ or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VD}_{\mathrm{D}}<4.0 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}$
Maximum transfer rate $=\frac{1}{\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{2.0}{V_{b}}\right)\right\} \times 3} \quad[b p s]$
Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{C}_{b} \times \operatorname{Rob}_{\mathrm{b}} \times \ln \left(1-\frac{2.0}{\mathrm{~V}_{\mathrm{b}}}\right)\right\}}{\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }} \times 100$ [\%]

* This value is the theoretical value of the relative difference between the transmission and reception sides.

4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for RxDq and the N-ch open drain output (VDD tolerance) mode for TxDq by using the PIMg and POMx registers.
(Remarks are given on the next page.)

(2) Serial interface: Serial array unit (9/18)

Remarks 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$:Communication line (TxDq) pull-up resistance, $\mathrm{C}_{\mathrm{b}}[\mathrm{F}]$: Communication line (TxDq) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}$: Communication line voltage
2. q : UART number $(q=0$ to 3$)$, g : PIM number $(g=1,7)$, x : POM number $(x=1,7,8)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of the SMRmn register. m : Unit number ($m=0,1$), n : Channel number ($\mathrm{n}=0,2$))
4. Voн and Vol below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in UART mode.
$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}$: $\mathrm{VOH}=2.2 \mathrm{~V}$, $\mathrm{VoL}=0.8 \mathrm{~V}$
$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=E \mathrm{VDD}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}$: $\mathrm{VoH}=2.0 \mathrm{~V}, \mathrm{VoL}=0.5 \mathrm{~V}$
(2) Serial interface: Serial array unit (10/18)

UART mode connection diagram (communication at different potential)

UART mode bit width (communication at different potential) (reference)

Caution Select the TTL input buffer for RxDq and the N-ch open drain output (Vod tolerance) mode for TxDq by using the PIMg and POMx registers.

Remarks 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$:Communication line (TxDq) pull-up resistance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. q : UART number $(q=0$ to 3$)$, g : PIM number $(g=1,7)$, x : POM number $(x=1,7,8)$
(2) Serial interface: Serial array unit (11/18)

(f) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, $\overline{\text { SCKp }}$... internal clock output) (1/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKp }}$ cycle time	tkcy1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	$400{ }^{\text {Note } 1}$			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{Vod} \leq 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	$800^{\text {Note } 1}$			ns
$\overline{\text { SCKp }}$ high-level width	tkH1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	tkCy1/2-75			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	tkcrı/2 - 170			ns
$\overline{\text { SCKp }}$ low-level width	tkL1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD}^{5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V},} \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	tkcy $/ 2-20$			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}^{\mathrm{DD}} 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	tк¢ү1/2-35			ns
Slp setup time (to $\overline{\mathrm{SCKp}} \uparrow$) ${ }^{\text {Note } 2}$	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	150			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D \leq 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	275			ns
SIp hold time (from $\overline{\mathrm{SCKp}} \uparrow$) ${ }^{\text {Note } 2}$	tks 11	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD}^{\mathrm{L}} 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	30			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	30			ns
Delay time from $\overline{\mathrm{SCKp}} \downarrow$ to SOp output ${ }^{\text {Note } 2}$	tksO1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			120	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			215	ns

Notes 1. The value must also be 4/fclk or more.
2. When DAPOn $=0$ and CKPOn $=0$, or DAPOn $=1$ and CKPOn $=1$.

Caution Select the TTL input buffer for SIp and the N-ch open drain output (Vdo tolerance) mode for SOp and $\overline{\text { SCKp }}$ by using the PIMg and POMx registers.

Remarks 1. p : CSI number ($p=00,01,10,20$), g : PIM number $(g=1,7), x: \operatorname{POM}$ number $(x=1,7,8)$
2. m : Unit number ($m=0,1$), n : Channel number ($n=0$ to 2)
3. $\mathrm{R}_{\mathrm{b}}[\Omega]$:Communication line ($\overline{\mathrm{SCKp}}, \mathrm{SOp}$) pull-up resistance, $\mathrm{C}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SIp, SOp, $\overline{\mathrm{SCKp}}$) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
4. V_{IH} and V_{IL} below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode.

$$
\begin{aligned}
& 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{E} \mathrm{~V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\
& 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{E} \mathrm{~V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}: \mathrm{V}_{\mathrm{H}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}
\end{aligned}
$$

(2) Serial interface: Serial array unit (12/18)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EVDD} \leq 5.5 \mathrm{~V}, \mathrm{~V}$ ss $=\mathrm{EV}$ ss $=\mathrm{AVss}=0 \mathrm{~V}$)
(f) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, $\overline{\text { SCKp... internal clock output) }}$ (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Slp setup time (to $\overline{\text { SCKp }} \downarrow$) ${ }^{\text {Note }}$	tsİ1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D=\mathrm{EV} \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	70			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{E} \mathrm{~V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	100			ns
SIp hold time (from $\overline{\text { SCKp }} \downarrow$) ${ }^{\text {Note }}$	tkSI1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{E} \mathrm{~V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	30			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	30			ns
Delay time from $\overline{\text { SCKp }} \uparrow$ to SOp output ${ }^{\text {Note }}$	tkso1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{E} \mathrm{~V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			40	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{E} \mathrm{~V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			40	ns

Note When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

CSI mode connection diagram (communication at different potential)

Caution Select the TTL input buffer for SIp and the N-ch open drain output (VDD tolerance) mode for SOp and $\overline{\text { SCKp }}$ by using the PIMg and POMx registers.

Remarks 1. $\mathrm{p}: \operatorname{CSI}$ number $(p=00,01,10,20)$, g : PIM number $(g=1,7)$, $x: \operatorname{POM}$ number $(x=1,7,8)$
2. m : Unit number ($m=0,1$), n : Channel number ($n=0$ to 2)
3. Rb[Ω]:Communication line ($\overline{\mathrm{SCKp}}, \mathrm{SOp}$) pull-up resistance, $\mathrm{C}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SIp, SOp, $\overline{\mathrm{SCKp}}$) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
4. V_{IH} and V_{IL} below are observation points for the $A C$ characteristics of the serial array unit when communicating at different potentials in CSI mode.

$$
\begin{aligned}
& 4.0 \mathrm{~V} \leq \mathrm{V} D D^{=}=\mathrm{E}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\
& 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{E} \mathrm{~V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}
\end{aligned}
$$

(2) Serial interface: Serial array unit (13/18)

CSI mode serial transfer timing (communication at different potential)
(When DAPmn = 0 and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.)

CSI mode serial transfer timing (communication at different potential)
(When DAPmn = 0 and CKPmn $=1$, or DAPmn = 1 and CKPmn $=0$.)

Caution Select the TTL input buffer for Slp and the N-ch open drain output (Vod tolerance) mode for SOp and $\overline{\text { SCKp }}$ by using the PIMg and POMx registers.

Remarks 1. $\mathrm{p}: \mathrm{CSI}$ number $(p=00,01,10,20)$, g : PIM number $(~ g=1,7), x: \operatorname{POM}$ number $(x=1,7,8)$
2. m : Unit number $(m=0,1), n$: Channel number $(n=0$ to 2$)$
(2) Serial interface: Serial array unit (14/18)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VD}^{5} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{EV}$ SS $=\mathrm{AVss}=0 \mathrm{~V}$)
(g) Communication at different potential (2.5 V, 3 V) (CSI mode) (slave mode, $\overline{\mathrm{SCKp}} \ldots$ external clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKp }}$ cycle time	tkcy2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$	13.6 MHz < fmck	10/fmск			ns
			6.8 MHz < fmck $\leq 13.6 \mathrm{MHz}$	8/fmск			ns
			fıck 5 6.8 MHz	6/fmск			ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$	18.5 MHz < fmck	16/fмск			ns
			14.8 MHz < $\mathrm{fmCK} \leq 18.5 \mathrm{MHz}$	14/fmск			ns
			11.1 MHz < fmck $^{5} 14.8 \mathrm{MHz}$	12/fмск			ns
			$7.4 \mathrm{MHz}<$ fmck $\leq 11.1 \mathrm{MHz}$	10/fıск			ns
			3.7 MHz < fmak $\leq 7.4 \mathrm{MHz}$	8/fmск			ns
			fmck $\leq 3.7 \mathrm{MHz}$	6/fmск			ns
SCKp high-/low-level width	tкH2, tкı2	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}$		$\begin{gathered} \mathrm{fKCr}_{2} / 2- \\ 20 \end{gathered}$			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{fKCY}_{2} / 2- \\ 35 \end{gathered}$			ns
Slp setup time (to $\overline{\mathrm{SCKp}} \uparrow$) ${ }^{\text {Note } 1}$	tsik2			90			ns
Slp hold time $(\text { from } \overline{\text { SCKp }} \uparrow)^{\text {Note } 2}$	tks12			1/fıск + 50			ns
Delay time from $\overline{\mathrm{SCKp}} \downarrow$ to SOp output ${ }^{\text {Note } 3}$	tkso2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$				2/fıck +120	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$				2/fıck + 230	ns

Notes 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to $\overline{\text { SCKp } ~} \downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from $\overline{\text { SCKp }} \downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from $\overline{\text { SCKp }} \uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

CSI mode connection diagram (communication at different potential)

(Caution and Remark are given on the next page.)

(2) Serial interface: Serial array unit (15/18)

Caution Select the TTL input buffer for SIp and $\overline{\text { SCKp }}$ and the N-ch open drain output (Vod tolerance) mode for SOp by using the PIMg and POMx registers.

Remarks 1. $\mathrm{p}:$ CSI number $(\mathrm{p}=00,01,10,20)$, g : PIM number $(\mathrm{g}=1,7), \mathrm{x}$: POM number $(\mathrm{x}=1,7,8)$
2. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$:Communication line (SOp) pull-up resistance,
$\mathrm{C}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SOp, $\overline{\mathrm{SCKp}}$) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of the SMRmn register. m : Unit number ($m=0,1$), n : Channel number ($\mathrm{n}=0$ to 2))
4. V_{IH} and V_{IL} below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode.
$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=E \mathrm{~V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}$: $\mathrm{V}_{\mathrm{IH}}=2.2 \mathrm{~V}$, $\mathrm{VIL}^{2}=0.8 \mathrm{~V}$
$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{E} \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}$
(2) Serial interface: Serial array unit (16/18)

CSI mode serial transfer timing (communication at different potential)
(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0 .)

Caution Select the TTL input buffer for SIp and SCKp and the N-ch open drain output (Vod tolerance) mode for SOp by using the PIMg and POMx registers.

Remarks 1. $p: \operatorname{CSI}$ number $(p=00,01,10,20)$, g : PIM number $(~ g=1,7), x: \operatorname{POM}$ number $(x=1,7,8)$
2. m : Unit number $(m=0,1)$, n : Channel number $(n=0$ to 2$)$
(2) Serial interface: Serial array unit (17/18)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VDD}^{5} 5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{SS}}=\mathrm{EV}$ SS $=\mathrm{AVss}=0 \mathrm{~V}$)
(h) Communication at different potential (2.5 V, 3 V) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscl	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF} \end{aligned}$		400	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}, \\ & R_{b}=2.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{b}}=100 \mathrm{Pf} \end{aligned}$		400	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF} \end{aligned}$	1275		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=E \mathrm{~V}_{\mathrm{DD}}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega, \mathrm{C}_{b}=100 \mathrm{pF}, \end{aligned}$	1275		ns
Hold time when SCLr = "H"	thigh	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF} \end{aligned}$	655		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=E V_{\mathrm{DD}}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}, \\ & R_{b}=2.7 \mathrm{k} \Omega, C_{b}=100 \mathrm{pF} \end{aligned}$	655		ns
Data setup time (reception)	tsu:dat	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{E} \mathrm{~V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF} \end{aligned}$	1/ヶмск + 190		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=E V_{D D}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF} \end{aligned}$	1/fмск +190		ns
Data hold time (transmission)	thd:dAT	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF} \end{aligned}$	0	640	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=E \mathrm{~V}_{\mathrm{DD}}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}, \\ & R_{\mathrm{b}}=2.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF} \\ & \hline \end{aligned}$	0	660	ns

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for SDAr and the N-ch open drain output (Vdd tolerance) mode for SCLr by using the PIMg and POMx registers.

Remarks 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$:Communication line (SDAr, SCLr) pull-up resistance, $\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SDAr, SCLr) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. r : IIC number $(r=10,20)$, g : PIM number $(g=1,7)$, x : POM number $(x=1,7,8)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of the SMRmn register. m : Unit number ($m=0,1$), n : Channel number $(\mathrm{n}=0,2), \mathrm{mn}=02,10)$
4. V_{IH} and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in simplified $\mathrm{I}^{2} \mathrm{C}$ mode mode.

$$
\begin{aligned}
& 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{E}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\
& 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{E}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}}<2.7 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}
\end{aligned}
$$

(2) Serial interface: Serial array unit (18/18)

Simplified $I^{2} C$ mode connection diagram (communication at different potential)

Simplified $I^{2} C$ mode serial transfer timing (communication at different potential)

Caution
Select the TTL input buffer and the N-ch open drain output (Vdo tolerance) mode for SDAr and the N-ch open drain output (Vod tolerance) mode for SCLr by using the PIMg and POMx registers.

Remarks 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$:Communication line (SDAr, SCLr) pull-up resistance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. r : IIC number $(r=10,20)$, g : PIM number $(g=1,7), x$: POM number $(x=1,7,8)$
(3) Serial interface: IICA
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VDD}^{5} 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{EV}$ SS $=\mathrm{AVss}=0 \mathrm{~V}$)
(a) IICA

Parameter	Symbol	Conditions	Standard Mode		High-Speed Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCL0 clock frequency	fscl	Fast mode: fclk $\geq 3.5 \mathrm{MHz}$, Standard mode: fclk $\geq 1 \mathrm{MHz}$	0	100	0	400	kHz
Setup time of restart condition ${ }^{\text {Note } 1}$	tsu:STA		4.7		0.6		$\mu \mathrm{S}$
Hold time	thd:STA		4.0		0.6		$\mu \mathrm{S}$
Hold time when SCLO = "L"	tıow		4.7		1.3		$\mu \mathrm{S}$
Hold time when SCLO = "H"	thigh		4.0		0.6		$\mu \mathrm{S}$
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ${ }^{\text {Note } 2}$	thd:dAT		0	3.45	0	0.9	$\mu \mathrm{S}$
Setup time of stop condition	tsu:sto		4.0		0.6		$\mu \mathrm{S}$
Bus-free time	tBuF		4.7		1.3		$\mu \mathrm{S}$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the $\overline{\mathrm{ACK}}$ (acknowledge) timing.

Remark fcLk: CPU/peripheral hardware clock frequency
IICA serial transfer timing

(4) Serial interface: On-chip debug (UART)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VD}^{5} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{EV}$ SS $=\mathrm{AVss}=0 \mathrm{~V}$)
(a) On-chip debug (UART)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate			$\mathrm{fcLK} / 2{ }^{12}$		fclk/6	bps
		Flash memory programming mode $\begin{aligned} & \text { (fcLK }=20 \mathrm{MHz}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=E V_{\mathrm{DD}}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF} \text {) } \end{aligned}$			3.33	Mbps
TOOL1 output frequency	ftool 1	$2.7 \mathrm{~V} \leq \mathrm{VDD}=\mathrm{EV} \mathrm{VD} \leq 5.5 \mathrm{~V}$			10	MHz
		$1.8 \mathrm{~V} \leq \mathrm{VDD}=E \mathrm{VDD}<2.7 \mathrm{~V}$			2.5	MHz

Analog Characteristics

<R> (1) 12-bit A/D Converter (μ PD78F150xA)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES		12	12	12	bit
Overall error ${ }^{\text {Note }}$	AINL	$2.3 \mathrm{~V} \leq$ ADrefp $\leq 3.6 \mathrm{~V}$		± 2.0	± 6.0	LSB
		$1.8 \mathrm{~V} \leq$ ADrefp $<2.3 \mathrm{~V}$		± 3.0	± 6.0	LSB
Conversion time	tconv	Normal mode 1, Normal mode 2	5		50	$\mu \mathrm{S}$
		Low voltage mode	6.25		50	$\mu \mathrm{s}$
Zero-scale error ${ }^{\text {Note }}$	Ezs			± 2.0	± 4.0	LSB
Full-scale error ${ }^{\text {Note }}$	EFS			± 2.0	± 4.0	LSB
Integral non-linearity error ${ }^{\text {Note }}$	ILE				± 2.0	LSB
Differential non-linearity error ${ }^{\text {Note }}$	DLE				± 1.0	LSB
Reference voltage (high potential side)	ADrefp		1.8		AVDDo	V
Analog input voltage	VAIN		ADrefm		ADrefp	V
Reference supply current	Iref			46	200	$\mu \mathrm{A}$

 ADrefm $=0 \mathrm{~V}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES		12	12	12	bit
Overall error ${ }^{\text {Note }}$	AINL	$3.6 \mathrm{~V} \leq \mathrm{AD}_{\text {refp }} \leq 5.5 \mathrm{~V}$		± 2.0	± 10.0	LSB
		$2.3 \mathrm{~V} \leq$ ADrefp $<3.6 \mathrm{~V}$		± 2.0	± 10.0	LSB
		$1.8 \mathrm{~V} \leq$ ADrefp $<2.3 \mathrm{~V}$		± 3.0	± 10.0	LSB
Conversion time	tconv	Normal mode 1, Normal mode 2	5		50	$\mu \mathrm{S}$
		Low voltage mode	21		50	$\mu \mathrm{S}$
Zero-scale error ${ }^{\text {Note }}$	Ezs			± 2.0	± 8.0	LSB
Full-scale error ${ }^{\text {Note }}$	Efs			± 2.0	± 8.0	LSB
Integral non-linearity error ${ }^{\text {Note }}$	ILE				± 6.0	LSB
Differential non-linearity error ${ }^{\text {Note }}$	DLE				± 2.0	LSB
Reference voltage (high potential side)	ADrefp		1.8		AV ${ }_{\text {do }}$	V
Analog input voltage	VAIN		ADrefm		ADrefp	V
Reference supply current	Iref			46	220	$\mu \mathrm{A}$

Note Excludes quantization error ($\pm 1 / 2$ LSB).
Remarks 1. $A D_{\text {refp }}$ is the input voltage from the $A V_{\text {refp }}$ pin or the voltage generated by the voltage reference.
2. $A D_{\text {refm }}$ is the input voltage from the $A V_{\text {refm }}$ pin or the grand potential of A / D converter.
<R> (2) 10-bit A/D Converter (μ PD78F151xA)
(a) $\mathrm{T}_{\mathrm{A}}=40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AD}$ REF $\leq \mathrm{AVDD} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV}_{\mathrm{DD} 0}=\mathrm{EV}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{SS}}=\mathrm{EV} \mathrm{SS}=\mathrm{AV} \mathrm{SS}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES		10	10	10	bit
Overall error ${ }^{\text {Note }}$	AINL				± 0.4	\%FSR
Conversion time	tconv	Normal mode 1, Normal mode 2	5		50	$\mu \mathrm{s}$
		Low voltage mode	21		50	$\mu \mathrm{S}$
Zero-scale error ${ }^{\text {Note }}$	Ezs				± 0.4	\%FSR
Full-scale error ${ }^{\text {Note }}$	Efs				± 0.4	\%FSR
Integral non-linearity error ${ }^{\text {Note }}$	ILE				± 2.5	LSB
Differential non-linearity error ${ }^{\text {Note }}$	DLE				± 1.5	LSB
Analog input voltage	Vain		$\mathrm{AV}_{\mathrm{ss}}$		ADref	V

Note Excludes quantization error ($\pm 1 / 2$ LSB).
<R> (3) Operational amplifier (μ PD78F150xA)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.3 \mathrm{~V} \leq \mathrm{AV}$ DDo $\leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=E V_{s S}=A V_{s s}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Common-mode input voltage	VIAMP	AV DDo $=3.0 \mathrm{~V}$	0		$\begin{gathered} \text { AVDDo } \\ -0.6 \end{gathered}$	V
Input offset voltage	Vioamp				± 10	mV
Maximum output voltage (high level)	Vohamp	$A V_{\text {dDo }}=3.0 \mathrm{~V} / 2.3 \mathrm{~V}$, ISOURCE $=-500 \mu \mathrm{~A}$	AVddo -0.2			V
Maximum output voltage (low level)	Volamp	AV DDO $=3.0 \mathrm{~V} / 2.3 \mathrm{~V}$, ISOURCE $=500 \mu \mathrm{~A}$			0.1	V
Open-loop gain		AV DDo $=3.0 \mathrm{~V}$		100		dB
GBW	GBW	AV doo $=3.0 \mathrm{~V}$		3		MHz
Input noise spectral density	V ${ }_{\text {namp }}$	$\mathrm{AV}_{\text {dDo }}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{AV}_{\text {dDo }} / 2$		60		$\begin{aligned} & \hline \mathrm{nV} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$
Slew rate	SRAMP	AV DDo $=3.0 \mathrm{~V}$		2		$\mathrm{V} / \mu \mathrm{s}$
Turn on time	tonamp				20	$\mu \mathrm{s}$

(4) Voltage Reference (μ PD78F150xA)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output reference voltage	Vrefout	$\begin{aligned} & \text { VRGV }=0,2.7 \mathrm{~V} \leq \mathrm{AVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	2.45	2.5	2.55	V
		$\begin{aligned} & \mathrm{VRGV}=1,2.3 \mathrm{~V} \leq \mathrm{AVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	1.96	2	2.04	V
Temperature coefficient				40		ppm $/{ }^{\circ} \mathrm{C}$
Settling time					17	ms

Caution Connect the Vrefout pin to GND via a tantalum capacitor (capacitance: $10 \mu \mathrm{~F} \pm 30 \%$, ESR: 2Ω (max.), ESL: 10 nH (max.)) and a ceramic capacitor (capacitance: $0.1 \mu \mathrm{~F} \pm 30 \%$, ESR: 2Ω (max.), ESL: 10 nH (max.)).

Remark The settling time of the VR circuit is the time required until the reference voltage output voltage reaches the values above.
(a) $\mathrm{T}_{\mathrm{A}}=0$ to $50^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{DAREFP} \leq \mathrm{AV} V_{D D 1}, 2.3 \mathrm{~V} \leq \mathrm{AV} \mathrm{VDD}_{1}=\mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$, $\mathrm{V}_{\mathrm{SS}}=E V_{\mathrm{SS}}=\mathrm{AV}$ SS $=0 \mathrm{~V}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES		12	12	12	bit
Settling time	tset				18	$\mu \mathrm{s}$
Off-set error	Eo			± 5	± 10	mV
Gain error	Eg			± 5	± 10	mV
Integral non-linearity error	ILE	$\begin{aligned} & \text { ISOURCE }=\text { ISINK }=0 \mathrm{~mA} \\ & 0.1 \mathrm{~V} \leq \mathrm{ANOn} \leq \mathrm{AVDD1}_{\mathrm{DD}}-0.1 \mathrm{~V}(\mathrm{n}=0,1) \end{aligned}$		± 2.0	± 4.0	LSB
Differential non-linearity error	DLE				± 2.0	LSB
D/A output resistance value	Ro	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{ANOn} \leq 0.3 \mathrm{~V} \text { or } \\ & \mathrm{AVDD1}-0.3 \mathrm{~V} \leq \mathrm{ANOn} \leq \mathrm{AV}_{\mathrm{DD} 1}(\mathrm{n}=0,1) \end{aligned}$		150	250	Ω
		$0.3 \mathrm{~V} \leq \mathrm{ANOn} \leq \mathrm{AV}_{\text {dD } 1-0.3} \mathrm{~V}(\mathrm{n}=0,1)$		5	10	Ω
Output source current	Isource	$0.3 \mathrm{~V} \leq \mathrm{ANOn} \leq \mathrm{AV}_{\text {dD1 }}-0.3 \mathrm{~V}(\mathrm{n}=0,1)$			0.1	mA
Output sink current	İİNK				0.1	mA

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES		12	12	12	bit
Settling time	tset				18	$\mu \mathrm{S}$
Off-set error	Eo			± 5	± 20	mV
Gain error	Eg_{g}			± 5	± 20	mV
Integral non-linearity error	ILE	$\begin{aligned} & \text { IsOURCE }=\text { ISINK }=0 \mathrm{~mA} \text {, } \\ & 0.1 \mathrm{~V} \leq \mathrm{ANOn} \leq \mathrm{AV}_{\mathrm{DD} 1}-0.1 \mathrm{~V}(\mathrm{n}=0,1) \end{aligned}$		± 6.0	± 12.0	LSB
Differential non-linearity error	DLE				± 8.0	LSB
D/A output resistance value	Ro	$\begin{aligned} & 0 V \leq A N O n \leq 0.3 \vee \text { or } \\ & A V_{D D 1}-0.3 V \leq A N O n \leq V_{D D 1} \quad(n=0,1) \end{aligned}$		150	250	Ω
		$0.3 \mathrm{~V} \leq \mathrm{ANOn} \leq \mathrm{AV}_{\text {dD1 }}-0.3 \mathrm{~V}(\mathrm{n}=0,1)$		5	20	Ω
Output source current	Isource	$0.3 \mathrm{~V} \leq \mathrm{ANOn} \leq \mathrm{AV}_{\mathrm{DD} 1}-0.3 \mathrm{~V}(\mathrm{n}=0,1)$			0.1	mA
Output sink current	ISIINK				0.1	mA

Remarks 1. Use the D / A converter under the condition of the Output load capacitance (C) $=50 \mathrm{pF}$ (max.).
2. DArefp is the input voltage from the $A V_{\text {refp }}$ pin, the voltage generated by the voltage reference, or the input voltage from the $A V_{D D 1}$ pin. It is selected as the positive reference voltage of the D / A converter.

LCD Characteristics (1/4)

(1) Resistance division method
(a) Static display mode $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, \mathrm{V} \mathrm{VCD}(\mathrm{MIN}) \leq \mathrm{VdD}=.\mathrm{EVDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{EVss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V LCd		2.0		VdD	V
LCD output resistor ${ }^{\text {Note }}$ (Common)	Rodc	$\mathrm{lo}= \pm 5 \mu \mathrm{~A}$			40	$\mathrm{k} \Omega$
LCD output resistor ${ }^{\text {Note }}$ (Segment)	Rocs	$\mathrm{lo}= \pm 1 \mu \mathrm{~A}$			200	$\mathrm{k} \Omega$

(b) $1 / 2$ bias method, $1 / 4$ bias method ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, VLCD (MIN.) $\leq \mathrm{V}_{\mathrm{dD}}=\mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{EV}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD		2.7		$V_{D D}$	V
LCD output resistor Note (Common)	RodC	lo $= \pm 5 \mu \mathrm{~A}$			40	$\mathrm{k} \Omega$
LCD output resistor Note (Segment)	Rocs	Io $= \pm 1 \mu \mathrm{~A}$			200	$\mathrm{k} \Omega$

(c) $1 / 3$ bias method ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VLCD}(\mathrm{MIN}.) \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{EV}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD		2.5		$V_{D D}$	V
LCD output resistor (Cote (Common)	RodC	lo $= \pm 5 \mu \mathrm{~A}$			40	$\mathrm{k} \Omega$
LCD output resistor (Sote (Segment)	Rocs	$\mathrm{lo}= \pm 1 \mu \mathrm{~A}$		200	$\mathrm{k} \Omega$	

Note The output resistor is a resistor connected between one of the VLCo, VLC1, VLC2, VLC3 and Vss pins, and either of the SEG and COM pins.

LCD Characteristics (2/4)

(2) Internal voltage boosting method (1/2)
(a) $1 / 3$ bias method $\left(T_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}$, V ss $=E V \mathrm{Es}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V LCD 2	$\begin{aligned} & \text { C1 to C4 } 4^{\text {Note } 1} \\ & =0.47 \mu \mathrm{~F}^{\text {Note } 2} \end{aligned}$	$\mathrm{VLCD}=00 \mathrm{H}$	1.67	1.75	1.83	V
			VLCD $=01 \mathrm{H}$	1.62	1.70	1.78	V
			VLCD $=02 \mathrm{H}$	1.57	1.65	1.73	V
			VLCD $=03 \mathrm{H}$	1.52	1.60	1.68	V
			VLCD $=04 \mathrm{H}$	1.47	1.55	1.63	V
			VLCD $=05 \mathrm{H}$	1.42	1.50	1.58	V
			VLCD $=06 \mathrm{H}$	1.37	1.45	1.53	V
			VLCD $=07 \mathrm{H}$	1.32	1.40	1.48	V
			VLCD $=08 \mathrm{H}$	1.27	1.35	1.43	V
			VLCD $=09 \mathrm{H}$	1.22	1.30	1.375	V
			VLCD $=0 \mathrm{AH}$	1.17	1.25	1.33	V
			VLCD $=0 \mathrm{OBH}$	1.12	1.20	1.28	V
			VLCD $=0 \mathrm{CH}$	1.07	1.15	1.23	V
			VLCD $=0 \mathrm{DH}$	1.02	1.10	1.18	V
			VLCD $=0 \mathrm{EH}$	0.97	1.05	1.13	V
			$\mathrm{VLCD}=0 \mathrm{FH}$	0.92	1.00	1.08	V
			VLCD $=10 \mathrm{H}$	0.87	0.95	1.03	V
			VLCD $=11 \mathrm{H}$	0.82	0.90	0.98	V
			VLCD $=12 \mathrm{H}$	0.77	0.85	0.93	V
			$\mathrm{VLCD}=13 \mathrm{H}$	0.72	0.80	0.88	V
Doubler output voltage	VLCD1	C 1 to $\mathrm{C}^{\text {Note } 1}=0.47 \mu \mathrm{~F}$		$\begin{gathered} 2 \text { V } \mathrm{VCD2} \\ -0.1 \end{gathered}$	2 VLCD2	2 V LCD2	V
Tripler output voltage	V LCDo	C 1 to $\mathrm{C}^{\text {Note } 1}=0.47 \mu \mathrm{~F}$		$\begin{gathered} 3 \text { VLCD2 } \\ -0.15 \end{gathered}$	3 VLCD2	3 VLCD2	v
Reference voltage setup time ${ }^{\text {Note } 2}$	tvawait2			2			ms
Voltage boost wait time ${ }^{\text {Note 3 }}$	tvawait1			500			ms
		$\mathrm{V}_{\mathrm{DD}}>\mathrm{V}_{\text {LCO }}$		5			s
LCD output resistor ${ }^{\text {Note } 4}$ (Common)	Rodc	$\mathrm{lo}= \pm 5 \mu \mathrm{~A}$				40	$\mathrm{k} \Omega$
LCD output resistor ${ }^{\text {Note } 4}$ (Segment)	Rocs	$\mathrm{lo}= \pm 1 \mu \mathrm{~A}$				200	$\mathrm{k} \Omega$

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VLco and GND
C3: A capacitor connected between $\mathrm{V}_{\mathrm{LC} 1}$ and GND
C4: A capacitor connected between VLC2 and GND
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=0.47 \mathrm{pF} \pm 30 \%$
2. This is the required wait time from when the reference voltage is specified by using the LVCD register (or the register is reset to use the default value of the reference voltage) until voltage boosting is started (VLCON =1).
3. This is the wait time from when voltage boosting is started ($\mathrm{VLCON}=1$) until display is enabled (LCDON $=1$).
4. The output resistor is a resistor connected between one of the VLCo, VLC1, VLC2 and Vss pins, and either of the SEG and COM pins.

LCD Characteristics (3/4)

(2) Internal voltage boosting method (2/2)
(b) $1 / 4$ bias method $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}}=\mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}$, V ss $=E \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VLCD3	$\begin{aligned} & \mathrm{C} 1 \text { to } \mathrm{C} 5^{\text {Note } 1} \\ & =0.47 \mu \mathrm{~F}^{\text {Noete }} \end{aligned}$	VLCD $=00 \mathrm{H}^{\text {Note } 5}$	1.67	1.75	1.83	V
			VLCD $=01 \mathrm{H}^{\text {Nole } 5}$	1.62	1.70	1.78	V
			VLCD $=02 \mathrm{H}^{\text {Nole } 5}$	1.57	1.65	1.73	V
			VLCD $=03 \mathrm{H}^{\text {Nole } 5}$	1.52	1.60	1.68	V
			VLCD $=04 \mathrm{H}^{\text {Nole } 5}$	1.47	1.55	1.63	V
			VLCD $=05 \mathrm{H}^{\text {Nole } 5}$	1.42	1.50	1.58	V
			VLCD $=06 \mathrm{H}^{\text {Note } 5}$	1.37	1.45	1.53	V
			VLCD $=07 \mathrm{H}^{\text {Note } 5}$	1.32	1.40	1.48	V
			VLCD $=08 \mathrm{H}^{\text {Note } 5}$	1.27	1.35	1.43	V
			VLCD $=09 \mathrm{H}$	1.22	1.30	1.375	V
			$\mathrm{VLCD}=0 \mathrm{AH}$	1.17	1.25	1.33	V
			VLCD $=0 \mathrm{OBH}$	1.12	1.20	1.28	V
			VLCD $=0 \mathrm{OH}$	1.07	1.15	1.23	V
			VLCD $=0 \mathrm{DH}$	1.02	1.10	1.18	V
			VLCD $=0 \mathrm{EH}$	0.97	1.05	1.13	V
			VLCD $=0 \mathrm{FH}$	0.92	1.00	1.08	V
			VLCD $=10 \mathrm{H}$	0.87	0.95	1.03	V
			VLCD $=11 \mathrm{H}$	0.82	0.90	0.98	V
			VLCD $=12 \mathrm{H}$	0.77	0.85	0.93	V
			VLCD $=13 \mathrm{H}$	0.72	0.80	0.88	V
Doubler output voltage	V LCD 2	C 1 to $\mathrm{C}^{\text {Note } 1}=0.47 \mu \mathrm{~F}$		2 VLCob -0.08	2 V LCD3	2 VLCD3	V
Tripler output voltage	V LCD1	C 1 to $\mathrm{C}^{\text {Note } 1}=0.47 \mu \mathrm{~F}$		3 VLCob-0.12	3 V LCD3	3 VLCD3	V
Quadruply output voltage	VLCDo	$\mathrm{C} 1 \text { to } \mathrm{C} 5^{\text {Note } 1}=0.47 \mu \mathrm{~F}$		4 VLCos-0.16	4 V LCD3	4 VLCD3	V
Reference voltage setup time ${ }^{\text {Note } 2}$	tvawaitz			2			ms
Voltage boost wait time ${ }^{\text {Note } 3}$	tvawait 1			500			ms
		VDD $>$ VLCO		5			s
LCD output resistor ${ }^{\text {Note } 4}$ (Common)	Rodc	$\mathrm{lo}= \pm 5 \mu \mathrm{~A}$				40	$\mathrm{k} \Omega$
LCD output resistor ${ }^{\text {Note } 4}$ (Segment)	Rocs	$\mathrm{lo}= \pm 1 \mu \mathrm{~A}$				200	k Ω

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VLco and GND
C3: A capacitor connected between VLc1 and GND
C4: A capacitor connected between VLC2 and GND
C5: A capacitor connected between VLc3 and GND
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=0.47 \mathrm{pF} \pm 30 \%$
2. This is the required wait time from when the reference voltage is specified by using the LVCD register (or the register is reset to use the default value of the reference voltage) until voltage boosting is started (VLCON =1).
3. This is the wait time from when voltage boosting is started (VLCON $=1$) until display is enabled (LCDON $=1$).
4. The output resistor is a resistor connected between one of the V Lco, VLC1, VLC2, VLC3 and Vss pins, and either of the SEG and COM pins.
5. These settings are prohibited because VLCo $>5.5 \mathrm{~V}$.

LCD Characteristics (4/4)

(3) Capacitor split method

- $1 / 3$ bias method ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}=\mathrm{EV}$ dD $\leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=\mathrm{EV}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VLCo voltage	Vıco	C 1 to $\mathrm{C} 4=0.47 \mu \mathrm{~F}^{\text {Note } 3}$		VDD		V
VLC1 voltage	VLC1	C 1 to $\mathrm{C} 4=0.47 \mu \mathrm{~F}^{\text {Note } 3}$	$\begin{array}{\|c} \hline 2 / 3 \text { VLCo } \\ -0.1 \end{array}$	2/3 VLco	$\begin{gathered} \text { 2/3 VLCO } \\ +0.1 \end{gathered}$	V
VLC2 voltage	VLC2	C 1 to $\mathrm{C} 4=0.47 \mu \mathrm{~F}^{\text {Note } 3}$	$\begin{array}{\|c} \mid 1 / 3 \text { VLCo } \\ -0.1 \end{array}$	1/3 VLco	$\begin{gathered} 1 / 3 \text { VLCo } \\ +0.1 \end{gathered}$	V
Capacitor split wait time ${ }^{\text {Note } 1}$	tvawait		100			ms
LCD output resistor ${ }^{\text {Note } 2}$ (Common)	Rodo	$\mathrm{lo}= \pm 5 \mu \mathrm{~A}$			40	k Ω
$\begin{aligned} & \hline \text { LCD output resistor }{ }^{\text {Note } 2} \\ & \text { (Segment) } \end{aligned}$	Rocs	$\mathrm{lo}= \pm 1 \mu \mathrm{~A}$			200	$\mathrm{k} \Omega$

Notes 1. This is the wait time from when voltage bucking is started (VLCON $=1$) until display is enabled (LCDON = 1).
2. The output resistor is a resistor connected between one of the VLCo, VLC1, VLC2 and Vss pins, and either of the SEG and COM pins.
3. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VLco and GND
C3: A capacitor connected between VLc1 and GND
C4: A capacitor connected between VLcz and GND
$\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=0.47 \mathrm{pF} \pm 30 \%$

POC Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR		1.52	1.61	1.70	V
	VPDR		1.5	1.59	1.68	V
Power supply voltage rise inclination	tPTH	Change inclination of VDD: $0 \mathrm{~V} \rightarrow$ VPOR	0.5			$\mathrm{~V} / \mathrm{ms}$
Minimum pulse width						
Detection delay time		When the voltage drops	200			$\mu \mathrm{~s}$

POC Circuit Timing

Supply Voltage Rise Time ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$, $\mathrm{Vss}=\mathbf{0} \mathrm{V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Maximum time to rise to $\begin{aligned} & 1.8 \mathrm{~V}(\mathrm{VDD}(\mathrm{MIN} .))^{\text {Note }} \\ & (\mathrm{V} \mathrm{DD}: 0 \mathrm{~V} \rightarrow 1.8 \mathrm{~V}) \end{aligned}$	tpup1	LVI default start function stopped is set (LVIOFF (Option Byte) = 1), when RESET input is not used			3.6	ms
Maximum time to rise to $1.8 \mathrm{~V}(\mathrm{VDD}(\mathrm{MIN} .))^{\text {Note }}$ (releasing $\overline{\text { RESET }}$ input $\rightarrow \mathrm{V}_{\mathrm{DD}}: 1.8 \mathrm{~V}$)	tPUP2	LVI default start function stopped is set (LVIOFF (Option Byte) $=1$), when RESET input is used			1.88	ms

Note Make sure to raise the power supply in a shorter time than this.

Supply Voltage Rise Time Timing

- When $\overline{\text { RESET pin input is not used }}$

LVI Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{VDD}_{\mathrm{DD}}=\mathrm{EV} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=\mathrm{EVss}=0 \mathrm{~V}$)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	Vıvio		4.12	4.22	4.32	V
		VLVII		3.97	4.07	4.17	V
		VLvi2		3.82	3.92	4.02	V
		VLvis		3.66	3.76	3.86	V
		VLvi4		3.51	3.61	3.71	V
		VLVI5		3.35	3.45	3.55	V
		VLvig		3.20	3.30	3.40	V
		VLV17		3.05	3.15	3.25	V
		VLvis		2.89	2.99	3.09	V
		VLvi9		2.74	2.84	2.94	V
		V LVI10		2.58	2.68	2.78	V
		VLVI11		2.43	2.53	2.63	V
		VLVI12		2.28	2.38	2.48	V
		VLVI13		2.12	2.22	2.32	V
		VLVI14		1.97	2.07	2.17	V
		V LVI15		1.81	1.91	2.01	V
	External input pin ${ }^{\text {Note } 1}$	Vexlvi	EXLVI < VDD, $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1.11	1.21	1.31	V
	Power supply voltage on power application	VPuplVI	When LVI default start function enabled is set	1.87	2.07	2.27	V
Minimum pulse width		tıw		200			$\mu \mathrm{S}$
Detection delay time						200	$\mu \mathrm{S}$
Operation stabilization wait time ${ }^{\text {Note } 2}$		tıwalt				10	$\mu \mathrm{s}$

Notes 1. The EXLVI/P120/INTP0 pin is used.
2. Time required from setting bit 7 (LVION) of the low-voltage detection register (LVIM) to 1 to operation stabilization

Remark $\operatorname{VLVI}(\mathrm{n}-1)>\mathrm{V}_{\mathrm{LVIn}}: \mathrm{n}=1$ to 15

LVI Circuit Timing

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		$1.5^{\text {Note }}$		5.5	V

Note The value depends on the POC detection voltage. When the voltage drops, the data is retained until a POC reset is effected, but data is not retained when a POC reset is effected.

Flash Memory Programming Characteristics
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}=\mathrm{EV}$ DD $\leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{EV}$ SS $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
VDD supply current	IDD	Typ. $=10 \mathrm{MHz}$, Max. $=20 \mathrm{MHz}$				6	20	mA
Number of rewrites per chip	Cerwr	1 erase + 1 write after erase $=$ 1 rewrite Note	When a flash memory programmer is used, and the libraries provided by Renesas Electronics are used	Retention: 15 years	1000			Times
			When the EEPROM emulation libraries provided by Renesas Electronics are used	Retention :5 years	10000			Times

Note When a product is first written after shipment, "erase \rightarrow write" and "write only" are both taken as one rewrite.

CHAPTER 32 PACKAGE DRAWINGS

32.1 78KOR/LF3

- μ PD78F1500AGC-GAD-AX, 78F1501AGC-GAD-AX, 78F1502AGC-GAD-AX, 78F1510AGC-GAD-AX, 78F1512AGC-GAD-AX

80-PIN PLASTIC LQFP (14x14)

- μ PD78F1500AGK-GAK-AX, 78F1501AGK-GAK-AX, 78F1502AGK-GAK-AX, 78F1510AGK-GAK-AX, 78F1512AGK-GAK-AX

80-PIN PLASTIC LQFP (FINE PITCH) (12x12)

Each lead centerline is located within 0.08 mm of

	(UNIT:mm)
ITEM	DIMENSIONS
D	12.00 ± 0.20
E	12.00 ± 0.20
HD	14.00 ± 0.20
HE	14.00 ± 0.20
A	1.60 MAX.
A1	0.10 ± 0.05
A2	1.40 ± 0.05
A3	0.25
b	$0.20_{-0.03}^{+0.07}$
c	$0.125_{-0.075}^{+0.075}$
L	0.50
Lp	0.60 ± 0.15
L1	1.00 ± 0.20
θ	$3^{\circ}{ }_{-3}{ }^{\circ}$
e	0.50
x	0.08
y	0.08
ZD	1.25
ZE	1.25
	P80GK-50-GAK

[^6]
32.2 78K0R/LG3

<R>• μ PD78F1503AGC-UEU-AX, 78F1504AGC-UEU-AX, 78F1505AGC-UEU-AX, 78F1513AGC-UEU-AX, 78F1515AGC-UEU-AX

100-PIN PLASTIC LQFP (FINE PITCH) (14x14)

detail of lead end

(UNIT:mm)

ITEM	DIMENSIONS
D	14.00 ± 0.20
E	14.00 ± 0.20
HD	16.00 ± 0.20
HE	16.00 ± 0.20
A	1.60 MAX.
A1	0.10 ± 0.05
A2	1.40 ± 0.05
A3	0.25
b	0.20 ${ }_{-0.03}^{+0.07}$
C	$0.125_{-0.025}^{+0.075}$
L	0.50
Lp	0.60 ± 0.15
L1	1.00 ± 0.20
θ	$3^{\circ}+{ }^{+}{ }^{\circ}{ }^{\circ}$
e	0.50
x	0.08
y	0.08
ZD	1.00
ZE	1.00

32.3 78KOR/LH3

<R>• μ PD78F1506AGF-GAT-AX, 78F1507AGF-GAT-AX, 78F1508AGF-GAT-AX, 78F1516AGF-GAT-AX, 78F1518AGF-GAT-AX

128-PIN PLASTIC LQFP (FINE PITCH) (14x20)

detail of lead end

(UNIT:mm)

ITEM	DIMENSIONS
D	20.00 ± 0.20
E	14.00 ± 0.20
HD	22.00 ± 0.20
HE	16.00 ± 0.20
A	1.60 MAX
A 1	0.10 ± 0.05
A 2	1.40 ± 0.05
$\mathrm{A3}$	0.25
b	$0.20_{-0}^{+0.07}$
c	$0.125{ }_{-0}^{+0.075}$
L	0.50
Lp	0.60 ± 0.15
L 1	1.00 ± 0.20
θ	$3^{\circ}{ }_{-3}{ }^{\circ}$
e	0.50
x	0.08
y	0.08
ZD	0.75
ZE	0.75
	P128GF-50-GAT

CHAPTER 33 RECOMMENDED SOLDERING CONDITIONS

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $260^{\circ} \mathrm{C}$, Time: 60 seconds max. (at $220^{\circ} \mathrm{C}$ or higher), Count: 3 times or less, Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 to 72 hours)	IR60-107-3
Partial heating	Pin temperature: $350^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and $65 \% \mathrm{RH}$ or less for the allowable storage period.
Semiconductor Device Mount Manual (http://www.renesas.com/prod/package/manual/index.html)

Table 33-1. Surface Mounting Type Soldering Conditions (1/2)
(1) 80 -pin plastic LQFP (fine pitch) (12×12)
μ PD78F1500AGK-GAK-AX, 78F1501AGK-GAK-AX, 78F1502AGK-GAK-AX, 78F1510AGK-GAK-AX, 78F1512AGK-GAK-AX

100-pin plastic LQFP (fine pitch) (14x14)
μ PD78F1503AGC-UEU-AX, 78F1504AGC-UEU-AX, 78F1505AGC-UEU-AX, 78F1513AGC-UEU-AX, 78F1515AGC-UEU-AX
128-pin plastic LQFP (fine pitch) (14x20)
μ PD78F1506AGF-GAT-AX, 78F1507AGF-GAT-AX, 78F1508AGF-GAT-AX, 78F1516AGF-GAT-AX, 78F1518AGF-GAT-AX

Caution The 78KOR/Lx3 microcontroller has an on-chip debug function, which is provided for development and

These products should be soldered and mounted under the following recommended conditions.
For soldering methods and conditions other than those recommended below, please contact a Renesas Electronics sales representative.

For technical information, see the following website. evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

Table 33-1. Surface Mounting Type Soldering Conditions (2/2)
(2) 80-pin plastic LQFP (14×14)
μ PD78F1500AGC-GAD-AX, 78F1501AGC-GAD-AX, 78F1502AGC-GAD-AX,
78F1510AGC-GAD-AX, 78F1512AGC-GAD-AX

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $260^{\circ} \mathrm{C}$, Time: 60 seconds max. (at $220^{\circ} \mathrm{C}$ or higher), Count: 3 times or less, Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 to 72 hours)	IR60-107-3
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Time: 10 seconds max., Count: Once, Preheating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature), Exposure limit: 7 days ${ }^{\text {Note }}$ (after that, prebake at $125^{\circ} \mathrm{C}$ for 10 to 72 hours)	WS60-107-1
Partial heating	Pin temperature: $350^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and 65% RH or less for the allowable storage period.

Caution The 78KOR/Lx3 microcontroller has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for the development of systems that employ the 78K0R/Lx3 microcontrollers.

Figure $\mathrm{A}-1$ shows the development tool configuration.

Figure A-1. Development Tool Configuration (1/2)

(1) When using the in-circuit emulator QB-78K0RLX3

Notes 1. Download the device file for 78K0R/Lx3 microcontrollers (DF781508) from the download site for development tools (http://www2.renesas.com/micro/en/ods/index.html).
2. The project manager $\mathrm{PM}+$ is included in the assembler package.

The PM+ is only used for Windows ${ }^{\mathrm{TM}}$.
3. In-circuit emulator QB-78KORLX3 is supplied with integrated debugger ID78KOR-QB, on-chip debug emulator with programming function QB-MINI2, and USB interface cable. Any other products are sold separately.
4. $\mathrm{SM}+$ for 78 KOR (instruction simulation version) is included in the software package. $\mathrm{SM}+$ for $78 \mathrm{KOR} / \mathrm{Lx} 3$ (instruction + peripheral simulation version) ${ }^{\text {Note } 5}$ is not included.
5. Under development

Figure A-1. Development Tool Configuration (2/2)

(2) When using the on-chip debug emulator with programming function QB-MINI2

Notes 1. Download the device file for 78K0R/Lx3 microcontrollers (DF781508) and the integrated debugger ID78K0R-QB from the download site for development tools (http://www2.renesas.com/micro/en/ods/index.html).
2. The project manager $\mathrm{PM}+$ is included in the assembler package. The PM+ is only used for Windows.
3. On-chip debug emulator QB-MINI2 is supplied with USB interface cable, connection cables (10-pin cable and 16-pin cable), and 78K0-OCD board. Any other products are sold separately. In addition, download the software for operating the QB-MINI2 from the download site for MINICUBE2 (http://www2.renesas.com/micro/en/development/asia/minicube2/minicube2.html).
4. SM+ for 78 KOR (instruction simulation version) is included in the software package. SM+ for $78 \mathrm{KOR} / \mathrm{Lx} 3$ (instruction + peripheral simulation version) ${ }^{\text {Note } 5}$ is not included.
5. Under development

A. 1 Software Package

SP78K0R 78K0R microcontroller software package	Development tools (software) common to the 78K0R microcontrollers are combined in this package.

A. 2 Language Processing Software

RA78K0R Assembler package	This assembler converts programs written in mnemonics into object codes executable with a microcontroller. This assembler is also provided with functions capable of automatically creating symbol tables and branch instruction optimization. This assembler should be used in combination with a device file (DF781508). <Precaution when using RA78K0R in PC environment> This assembler package is a DOS-based application. It can also be used in Windows, however, by using the Project Manager (included in assembler package) on Windows.
CC78K0R C compiler package	This compiler converts programs written in C language into object codes executable with a microcontroller. This compiler should be used in combination with an assembler package and device file. $<$ <Precaution when using CC78K0R in PC environment> This C compiler package is a DOS-based application. It can also be used in Windows, however, by using the Project Manager (included in assembler package) on Windows.
DF781508 Note Device file	This file contains information peculiar to the device. This device file should be used in combination with a tool (RA78K0R, CC78K0R, ID78K0R-QB, and system simulator (SM+ for 78K0R and SM+ for 78K0R/Lx3)). The corresponding OS and host machine differ depending on the tool to be used.

Note The DF781508 can be used in common with the RA78K0R, CC78K0R, ID78K0R-QB, and system simulator. Download the DF781508 from the download site for development tools (http://www2.renesas.com/micro/en/ods/).

A. 3 Flash Memory Programming Tools

A.3.1 When using flash memory programmer PG-FP5 and FL-PR5

PG-FP5, FL-PR5	Flash memory programmer dedicated to microcontrollers with on-chip flash memory.
Flash memory programmer	
FA-78F1502GC-GAD-RX,	Flash memory programming adapter used connected to the flash memory programmer
FA-78F1502GK-GAK-RX,	for use.
FA-78F1505GC-UEU-RX,	
FA-78F1508GF-GAT-RX	
Flash memory programming adapter	

Remarks 1. FL-PR5, FA-78F1502GC-GAD-RX, FA-78F1502GK-GAK-RX, FA-78F1505GC-UEU-RX, and FA-78F1508GF-GAT-RX are products of Naito Densei Machida Mfg. Co., Ltd.

TEL: +81-42-750-4172 Naito Densei Machida Mfg. Co., Ltd.
2. Use the latest version of the flash memory programming adapter.

A.3.2 When using on-chip debug emulator with programming function QB-MINI2

QB-MINI2	This is a flash memory programmer dedicated to microcontrollers with on-chip flash
On-chip debug emulator with	
programming function	memory. It is available also as on-chip debug emulator which serves to debug hardware
and software when developing application systems using the $78 \mathrm{KOR} / \mathrm{Lx} 3$	
microcontrollers. When using this as flash memory programmer, it should be used in	
combination with a connection cable (16-pin cable) and a USB interface cable that is	
used to connect the host machine.	

Remark Download the software for operating the QB-MINI2 from the download site for MINICUBE2 (http://www2.renesas.com/micro/en/development/asia/minicube2/minicube2.html).

A. 4 Debugging Tools (Hardware)

A.4.1 When using in-circuit emulator QB-78KORLX3

QB-78KORLX3 In-circuit emulator	This in-circuit emulator serves to debug hardware and software when developing application systems using the 78KOR/Lx3 microcontrollers. It supports to the integrated debugger (ID78K0R- QB). This emulator should be used in combination with a power supply unit and emulation probe, and the USB is used to connect this emulator to the host machine.
QB-144-CA-01 Check pin adapter	This check pin adapter is used in waveform monitoring using the oscilloscope, etc.
QB-144-EP-02S Emulation probe	This emulation probe is flexible type and used to connect the in-circuit emulator and target system.
QB-xxxx-EA-xxx Exchange adapter	This exchange adapter is used to perform pin conversion from the in-circuit emulator to target connector.
QB-xxxx-YS-xxx Space adapter	This space adapter is used to adjust the height between the target system and in-circuit emulator.
QB-xxxx-YQ-xxx YQ connector	This YQ connector is used to connect the target connector and exchange adapter.
QB-xxxx-HQ-xxx Mount adapter	This mount adapter is used to mount the target device with socket.
QB-xxxx-NQ-xxx Target connector	This target connector is used to mount on the target system.

Note The part numbers of the exchange adapter, space adapter, YQ connector, mount adapter, and target connector and the packages of the target device are described below.

Package		Exchange Adapter	Space Adapter		Mount Adapter	Target Connector
78K0R/LF3	80-pin plastic LQFP (GC-GAD type)	QB-80GC- EA-09T	$\begin{aligned} & \text { QB-80GC- } \\ & \text { YS-01T } \end{aligned}$	$\begin{aligned} & \text { QB-80GC- } \\ & \text { YQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-80GC- } \\ & \text { HQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-80GC- } \\ & \text { NQ-01T } \end{aligned}$
	80-pin plastic LQFP (GK-GAK type)	QB-80GK- EA-08T	QB-80GK- YS-01T	$\begin{aligned} & \text { QB-80GK- } \\ & \text { YQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-80GK- } \\ & \text { HQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-80GK- } \\ & \text { NQ-01T } \end{aligned}$
78K0R/LG3	100-pin plastic LQFP (GC-UEU type)	QB-100GC- EA-08T	QB-100GC- YS-01T	$\begin{aligned} & \text { QB-100GC- } \\ & \text { YQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-100GC- } \\ & \text { HQ-01T } \end{aligned}$	QB-100GC- NQ-01T
78K0R/LH3	128-pin plastic LQFP (GF-GAT type)	QB-128GF- EA-01T	$\begin{aligned} & \text { QB-128GF- } \\ & \text { YS-01T } \end{aligned}$	$\begin{aligned} & \text { QB-128GF- } \\ & \text { YQ-01T } \end{aligned}$	$\begin{aligned} & \text { QB-128GF- } \\ & \text { HQ-01T } \end{aligned}$	QB-128GF- NQ-01T

Remark 1. The QB-78KORLX3 is supplied with an integrated debugger ID78KOR-QB, USB interface cable, and onchip debug emulator QB-MINI2.
When using the QB-MINI2 download the software for operating the QB-MINI2 from the download site for development tools (http://www2.renesas.com/micro/en/ods/).

Remark 2. The packed contents differ depending on the part number, as follows.

Packed Contents Part Number	In-Circuit Emulator	Emulation Probe	Exchange Adapter	YQ Connector	Target Connector
QB-78K0RLX3-ZZZ	QB-78K0RLX3	None			
QB-78K0RLX3-T80GC		QB-144-EP-02S	QB-80GK-EA-09T	QB-80GC-YQ-01T	QB-80GC-NQ-01T
QB-78K0RLX3-T80GK			QB-80GK-EA-08T	QB-80GK-YQ-01T	QB-80GK-NQ-01T
QB-78K0RLX3-T100GC			QB-100GC-EA-08T	QB-100GC-YQ-01T	QB-100GC-NQ-01T
QB-78K0RLX3-T128GF			QB-128GF-EA-01T	QB-128GF-YQ-01T	QB-128GF-NQ-01T

A.4.2 When using on-chip debug emulator with programming function QB-MINI2

| QB-MINI2 |
| :--- | :--- |
| On-chip debug emulator with |
| programming function |\quad| This on-chip debug emulator serves to debug hardware and software when developing |
| :--- |
| application systems using the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers. It is available also as flash |
| memory programmer dedicated to microcontrollers with on-chip flash memory. When |
| using this as on-chip debug emulator, it should be used in combination with a connection |
| cable (16-pin cable), and USB interface cable that is used to connect the host machine. |

Remark Download the software for operating the QB-MINI2 from the download site for MINICUBE2 (http://www2.renesas.com/micro/en/development/asia/minicube2/minicube2.html).

A. 5 Debugging Tools (Software)

ID78K0R-QB Integrated debugger ${ }^{\text {Note } 1}$	This debugger supports the in-circuit emulators for the 78K0R microcontrollers. The ID78K0R-QB is Windows-based software. It has improved C-compatible debugging functions and can display the results of tracing with the source program using an integrating window function that associates the source program, disassemble display, and memory display with the trace result. It should be used in combination with the device file (DF781508).
SM+ for 78K0R SM+ for 78K0R/Lx3 ${ }^{\text {Note } 2}$ System simulator	System simulator is Windows-based software. It is used to perform debugging at the C source level or assembler level while simulating the operation of the target system on a host machine. Use of system simulator allows the execution of application logical testing and performance testing on an independent basis from hardware development, thereby providing higher development efficiency and software quality. System simulator should be used in combination with the device file (DF781508). The following two types of system simulators supporting the $78 \mathrm{KOR} / \mathrm{Lx} 3$ microcontrollers are available. - SM+ for 78K0R (instruction simulation version) This can only simulate a CPU. It is included in the software package. - SM+ for 78K0R/Lx3 (instruction + peripheral simulation version) ${ }^{\text {Note } 1}$ This can simulate a CPU and peripheral hardware (ports, timers, serial interfaces, etc.).

Notes 1. Download the ID78K0R-QB from the download site for development tools (http://www2.renesas.com/micro/en/ods/).
2. Under development

APPENDIX B REGISTER INDEX

B. 1 Register Index (In Alphabetical Order with Respect to Register Names)
A
A/D converter mode register (ADM) 391
A/D converter mode register 1 (ADM1) 394
A/D port configuration register (ADPC) 193, 399, 429
Alarm hour register (ALARMWH) 359
Alarm minute register (ALARMWM) 359
Alarm week register (ALARMWW) 360
Analog input channel specification register (ADS) 398
Analog reference voltage control register (ADVRC) 395, 435B
Background event control register (BECTL) 839
BCD correction result register (BCDADJ) 854
C
Clock operation mode control register (CMC) 209
Clock operation status control register (CSC) 211
Clock output selection register 0 (CKSO) 382
Clock output selection register 1 (CKS1) 382
D
D/A conversion value setting register 0 (DACSO) 422
D/A conversion value setting register 1 (DACS1) 422
D/A conversion value setting register W0 (DACSW0) 422
D/A conversion value setting register W1 (DACSW1) 422
D/A converter mode register (DAM) 421
Day count register (DAY) 355
DMA byte count register n (DBCn) 720
DMA mode control register n (DMCn) 721
DMA operation control register n (DRCn) 723
DMA RAM address register n (DRAn) 719
DMA SFR address register n (DSAn) 718
E
8 -bit A/D conversion result register (ADCRH) 389, 397
External interrupt falling edge enable register (EGNO) 760
External interrupt falling edge enable register (EGN1) 760
External interrupt rising edge enable register (EGPO) 760
External interrupt rising edge enable register (EGP1) 760
H
Hour count register (HOUR) 354
IIICA control register 0 (IICCTLO)584
IICA control register 1 (IICCLT1) 593
IICA flag register (IICF) 591
IICA high-level width setting register (IICWH) 595
IICA low-level width setting register (IICWL) 595
IICA shift register (IICA) 581
IICA status register (IICS) 589
Input switch control register (ISC) 195, 283, 464, 674
Interrupt mask flag register OH (MKOH) 752
Interrupt mask flag register OL (MKOL) 752
Interrupt mask flag register 1H (MK1H) 752
Interrupt mask flag register 1L (MK1L) 752
Interrupt mask flag register 2H (MK2H) 752
Interrupt mask flag register 2L (MK2L) 752
Interrupt request flag register OH (IFOH) 748
Interrupt request flag register OL (IFOL) 748
Interrupt request flag register 1H (IF1H) 748
Interrupt request flag register 1L (IF1L) 748
Interrupt request flag register 2H (IF2H) 748
Interrupt request flag register 2L (IF2L) 748
K
Key return mode register (KRM) 772
L
LCD boost level control register (VLCD) 670
LCD clock control register (LCDC0) 669
LCD display mode register (LCDM) 667
LCD mode register (LCDMD) 667
Low-voltage detection level select register (LVIS) 808
Low-voltage detection register (LVIM) 805
M
Minute count register (MIN) 354
Month count register (MONTH) 357
Multiplication/division control register (MDUC) 713
Multiplication/division data register A (MDAH) 710
Multiplication/division data register A (MDAL) 710
Multiplication/division data register B (MDBH) 711
Multiplication/division data register B (MDBL) 711
Multiplication/division data register C (MDCH) 712
Multiplication/division data register C (MDCL) 712
N
Noise filter enable register 0 (NFENO) 465
Noise filter enable register 1 (NFEN1) 284
Noise filter enable register 2 (NFEN2) 284
0
Operation speed mode control register (OSMC) 221
Operational amplifier control register (OAC) 428
Oscillation stabilization time counter status register (OSTC) 212, 774
Oscillation stabilization time select register (OSTS) 214, 775
P
Peripheral enable register 0 (PERO) 219, 262, 348, 390, 420, 427, 435, 447, 584
Port function register (PFALL) 194, 671
Port input mode register 1 (PIM1) 191, 466
Port input mode register 7 (PIM7) 191, 466
Port mode register 0 (PMO) 180
Port mode register 1 (PM1) 180, 287, 468
Port mode register 10 (PM10) 180
Port mode register 11 (PM11) 180
Port mode register 12 (PM12) 180, 809
Port mode register 14 (PM14) 180
Port mode register 15 (PM15) 180, 400, 430
Port mode register 2 (PM2) 180, 400, 430
Port mode register 3 (PM3) 180, 287, 361, 384
Port mode register 4 (PM4) 180
Port mode register 5 (PM5) 180, 287, 468
Port mode register 6 (PM6) 180, 595
Port mode register 7 (PM7) 180, 468
Port mode register 8 (PM8) 180, 287, 468
Port mode register 9 (PM9) 180
Port output mode register 1 (POM1) 192, 467
Port output mode register 7 (POM7) 192, 467
Port output mode register 8 (POM8) 192, 467
Port register 0 (PO) 184
Port register 1 (P1) 184
Port register 10 (P10) 184
Port register 11 (P11) 184
Port register 12 (P12) 184
Port register 13 (P13) 184
Port register 14 (P14) 184
Port register 15 (P15) 184
Port register 2 (P2) 184
Port register 3 (P3) 184
Port register 4 (P4) 184
Port register 5 (P5) 184
Port register 6 (P6) 184
Port register 7 (P7) 184
Port register 8 (P8) 184
Port register 9 (P9) 184
Priority specification flag register 00H (PROOH) 755
Priority specification flag register 00L (PROOL) 755
Priority specification flag register 01H (PR01H) 755
Priority specification flag register 01L (PR01L) 755
Priority specification flag register 02H (PR02H) 755
Priority specification flag register 02L (PR02L) 755
Priority specification flag register 10H (PR10H) 755
Priority specification flag register 10L (PR10L) 755
Priority specification flag register 11H (PR11H) 755
Priority specification flag register 11L (PR11L) 755
Priority specification flag register 12H (PR12H) 755
Priority specification flag register 12L (PR12L) 755
Processor mode control register (PMC) 83
Pull-up resistor option register 0 (PU0) 188
Pull-up resistor option register 1 (PU1) 188
Pull-up resistor option register 3 (PU3) 188
Pull-up resistor option register 4 (PU4) 188
Pull-up resistor option register 5 (PU5) 188
Pull-up resistor option register 7 (PU7) 188
Pull-up resistor option register 8 (PU8) 188
Pull-up resistor option register 9 (PU9) 188
Pull-up resistor option register 10 (PU10) 188
Pull-up resistor option register 12 (PU12) 188
Pull-up resistor option register 14 (PU14) 188
R
Real-time counter control register 0 (RTCCO) 348
Real-time counter control register 1 (RTCC1) 350
Real-time counter control register 2 (RTCC2) 352
Regulator mode control register (RMC) 827
Reset control flag register (RESF) 797
S
Second count register (SEC) 353
Segment enable register (SEGEN) 672
Serial channel enable status register m (SEm) 458
Serial channel start register m (SSm). 459
Serial channel stop register m (STm) 460
Serial clock select register m (SPSm) 447
Serial communication operation setting register mn (SCRmn) 451
Serial data register mn (SDRmn) 454
Serial flag clear trigger register mn (SIRmn) 457
Serial mode register mn (SMRmn) 449
Serial output enable register m (SOEm) 461
Serial output level register m (SOLm) 463
Serial output register m (SOm) 462
Serial status register mn (SSRmn) 455
Slave address register (SVA) 581
Sub-count register (RSUBC) 353
Successive approximation register (SAR) 388
System clock control register (CKC) 216
T
10-bit A/D conversion result register (ADCR) 389, 397
Timer channel enable status register m (TEm) 269
Timer channel start register m (TSm) 270
Timer channel stop register m (TTm) 275
Timer clock select register m (TPSm) 262
Timer data register mn (TDRmn) 260
Timer input select register p (TISp) 276
Timer mode register mn (TMRmn) 264
Timer output enable register p (TOEp) 278
Timer output level register p (TOLp) 281
Timer output mode register p (TOMp) 282
Timer output register p (TOp) 279
Timer status register pq (TSRpq) 268
Timer/counter register mn (TCRmn) 258
12-bit A/D conversion result register (ADCR) 389, 396
20 MHz internal high-speed oscillation control register (DSCCTL) 218
W
Watch error correction register (SUBCUD) 358
Watchdog timer enable register (WDTE) 376
Week count register (WEEK) 356
Y
Year count register (YEAR) 357

B. 2 Register Index (In Alphabetical Order with Respect to Register Symbol)

A
ADCR: 12-bit A/D conversion result register 389, 396
ADCRH: 8-bit A/D conversion result register 389, 397
ADM: A/D converter mode register 391
ADM1: A/D converter mode register 1 394
ADPC: A/D port configuration register 193, 399, 429
ADS: Analog input channel specification register 398
ADVRC: Analog reference voltage control register 395, 435
ALARMWH: Alarm hour register. 359
ALARMWM: Alarm minute register 359
ALARMWW: Alarm week register. 360
B
BCDADJ: BCD correction result register 854
BECTL: Background event control register 839
C
CKC: System clock control register 216
CKSO: Clock output selection register 0 382
CKS1: Clock output selection register 1 382
CMC: Clock operation mode control register 209
CSC: Clock operation status control register 211
D
DACSO: D/A conversion value setting register 0 422
DACS1: D/A conversion value setting register 1 422
DACSW0: D/A conversion value setting register W0 422
DACSW1: D/A conversion value setting register W1 422
DAM: D/A converter mode register 421
DAY: Day count register 355
DBCn: DMA byte count register n 720
DMCn: DMA mode control register n 721
DSCCTL: 20 MHz internal high-speed oscillation control register 218
DRAn: DMA RAM address register n 719
DRCn: DMA operation control register n 723
DSAn: DMA SFR address register n 718
E
EGNO: External interrupt falling edge enable register 760
EGN1: External interrupt falling edge enable register 760
EGPO: External interrupt rising edge enable register 760
EGP1: External interrupt rising edge enable register 760
H
HOUR: Hour count register 354

I
IFOL: Interrupt request flag register OL 748
IF1H: Interrupt request flag register 1 H 748
IF1L: Interrupt request flag register 1L 748
IF2H: Interrupt request flag register 2H 748
IF2L: Interrupt request flag register 2L 748
IICA: IICA shift register 581
IICCLT1: IICA control register 1 593
IICCTLO: IICA control register 0 584
IICF: IICA flag register 591
IICS: IICA status register 589
IICWH: IICA high-level width setting register 595
IICWL: IICA low-level width setting register 595
ISC: Input switch control register 195, 283, 464, 674
K
KRM: Key return mode register 772
L
LCDCO: LCD clock control register 669
LCDM: LCD display mode register 667
LCDMD: LCD mode register 667
LVIM: Low-voltage detection register 805
LVIS: Low-voltage detection level select register 808
M
MDAH: Multiplication/division data register A 710
MDAL: Multiplication/division data register A 710
MDBH: Multiplication/division data register B 711
MDBL: Multiplication/division data register B 711
MDCH: Multiplication/division data register C 712
MDCL: Multiplication/division data register C 712
MDUC: Multiplication/division control register 713
MIN: Minute count register 354
MKOH: Interrupt mask flag register OH 752
MKOL: Interrupt mask flag register OL 752
MK1H: Interrupt mask flag register 1H 752
MK1L: Interrupt mask flag register 1L 752
MK2H: Interrupt mask flag register 2H 752
MK2L: Interrupt mask flag register 2L 752
MONTH: Month count register 357
N
NFENO: Noise filter enable register 0 465
NFEN1: Noise filter enable register 1 284
NFEN2: Noise filter enable register 2 284
0
OAC: Operational amplifier control register 428
OSMC: Operation speed mode control register 221
OSTC: Oscillation stabilization time counter status register 212, 774
OSTS: Oscillation stabilization time select register 214, 775
P
P0: Port register 0 184
P1: Port register 1 184
P2: Port register 2 184
P3: Port register 3 184
P4: Port register 4 184
P5: Port register 5 184
P6: Port register 6 184
P7: Port register 7 184
P8: Port register 8 184
P9: Port register 9 184
P10: Port register 10 184
P11: Port register 11 184
P12: Port register 12 184
P13: Port register 13 184
P14: Port register 14 184
P15: Port register 15 184
PERO: Peripheral enable register 0 219, 262, 348, 390, 420, 427, 435, 447, 584
PFALL: Port function register 194, 671
PIM1: Port input mode register 1 191, 466
PIM7: Port input mode register 7 191, 466
PMO: Port mode register 0 180
PM1: Port mode register 1 180, 287, 468
PM2: Port mode register 2 180, 400, 430
PM3: Port mode register 3 180, 287, 361, 384
PM4: Port mode register 4 180
PM5: Port mode register 5 180, 287, 468
PM6: Port mode register 6 180, 595
PM7: Port mode register 7 180, 468
PM8: Port mode register 8 180, 287, 468
PM9: Port mode register 9 180
PM10: Port mode register 10 180
PM11: Port mode register 11 180
PM12: Port mode register 12 180, 809
PM14: Port mode register 14 180
PM15: Port mode register 15 180, 400, 430
PMC: Processor mode control register 83
POM1: Port output mode register 1 192, 467
POM7: Port output mode register 7 192, 467
POM8: Port output mode register 8 192, 467
PR00H: Priority specification flag register 00 H 755
PR00L: Priority specification flag register 00L 755
PR01H: Priority specification flag register 01H 755
PR01L: Priority specification flag register 01L 755
PR02H: Priority specification flag register 02H 755
PR02L: Priority specification flag register 02L 755
PR10H: Priority specification flag register 10 H 755
PR10L: Priority specification flag register 10L 755
PR11H: Priority specification flag register 11 H 755
PR11L: Priority specification flag register 11L 755
PR12H: Priority specification flag register 12H 755
PR12L: Priority specification flag register 12L 755
PUO: Pull-up resistor option register 0 188
PU1: Pull-up resistor option register 1 188
PU3: Pull-up resistor option register 3 188
PU4: Pull-up resistor option register 4 188
PU5: Pull-up resistor option register 5 188
PU7: Pull-up resistor option register 7 188
PU8: Pull-up resistor option register 8 188
PU9: Pull-up resistor option register 9 188
PU10: Pull-up resistor option register 10. 188
PU12: Pull-up resistor option register 12. 188
PU14: Pull-up resistor option register 14 188
R
RESF: Reset control flag register 797
RMC: Regulator mode control register 827
RSUBC : Sub-count register 353
RTCCO: Real-time counter control register 0 348
RTCC1: Real-time counter control register 1 350
RTCC2: Real-time counter control register 2 352
S
SAR :Successive approximation register 388
SCRmn: Serial communication operation setting register mn 451
SDRmn: Serial data register mn 454
SEC : Second count register 353
SEGEN: Segment enable register 672
SEm: Serial channel enable status register m. 458
SIRmn: Serial flag clear trigger register mn 457
SMRmn: Serial mode register mn 449
SOEm: Serial output enable register m 461
SOLm: Serial output level register m 463
SOm: Serial output register m 462
SPSm: Serial clock select register m 447
SSm: Serial channel start register m 459
SSRmn: Serial status register mn 455
STm: Serial channel stop register m 460
SUBCUD: Watch error correction register 358
SVA: Slave address register 581
T
TCRmn: Timer/counter register mn 258
TDRmn: Timer data register mn 260
TEm: Timer channel enable status register m 269
TISp: Timer input select register p 276
TMRmn: Timer mode register mn 264
TOEp: Timer output enable register p 278
TOLp: Timer output level register p 281
TOMp:Timer output mode register p 282
TOp: Timer output register p 279
TPSm: Timer clock select register m 262
TSm: Timer channel start register m 270
TSRpq: Timer status register pq. 268
TTm: Timer channel stop register m 275
V
VLCD: LCD boost level control register 670
w
WDTE: Watchdog timer enable register 376
WEEK : Week count register 356
Y
YEAR: Year count register 357

APPENDIX C LIST OF CAUTIONS

This appendix lists the cautions described in this document.
"Classification (hard/soft)" in the table is as follows.

Hard: Cautions for microcontroller internal/external hardware
Soft: Cautions for software such as register settings or programs

		Function	Details of Function	Cautions	Page
		Outline	On-chip debug function	The 78K0R/Lx3 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.	p. $3 \square$
			AVss, Vss	Make AVss the same potential as Vss.	$\begin{aligned} & \text { pp.4, } 5 \square \\ & 7,8,10,11 \end{aligned}$
			REGC	Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).	$\begin{aligned} & \hline \text { pp.4, } 5 \square \\ & 7,8,10,11 \end{aligned}$
	$\begin{aligned} & \pm \\ & \dot{O} \\ & \infty \end{aligned}$	Pin functions	$\begin{array}{\|l} \text { P00/CAPH, } \\ \text { P01/CAPL, } \\ \text { P02/VLC3 } \end{array}$	To use P00/CAPH, P01/CAPL, and P02/VLC3 as a general-purpose port, set bit 5 (MDSET1) and bit 4 (MDSET0) of LCD mode register (LCDMD) to "0", which is the same as their default status setting.	p. $43 \square$
			P10/SCK20/ SCL20, P11/SI20/RxD2/ SDA20/INTP6	To use P10/SCK20/SCL20 and P11/SI20/RxD2/SDA20/INTP6 as a general-purpose port, note the serial array unit 1 setting. For details, refer to Table 14-9 Relationship Between Register Settings and Pins (Channel 0 of unit 1: CSI20, UART2 Reception, IIC20).	p. $45 \square$
			$\begin{aligned} & \mathrm{P} 12 / \mathrm{TO} 02 / \mathrm{SO} 20 \\ & \text { /TxD2 } \end{aligned}$	To use P12/TO02/SO20/TxD2 as a general-purpose port, set bit 2 (TO02) of timer output register 0 (TO0) and bit 2 (TOE02) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting. And as a general-purpose port, note the serial array unit 1 setting. For details of serial array unit 1 setting, refer to Table 14-9 Relationship Between Register Settings and Pins (Channel 0 of unit 1: CSI20, UART2 Reception, IIC20).	p. $45 \square$
			$\begin{aligned} & \mathrm{P} 13 / \mathrm{TO} 04 / \mathrm{SO} 10 \\ & \text { /TxD1 } \end{aligned}$	To use P13/TO04/SO10/TxD1 as a general-purpose port, set bit 4 (TO04) of timer output register 0 (TOO) and bit 4 (TOE04) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting. And as a general-purpose port, note the serial array unit 0 setting. For details of serial array unit 0 setting, refer to Table 14-7 Relationship Between Register Settings and Pins (Channel 2 of unit 0 : CSI10, UART1 Transmission, IIC10).	p. $45 \square$
			P14/SI10/RxD1/ SDA10/INTP4, P15/ $\overline{\text { SCK10 }} /$ SCL10/INTP7	To use P14/SI10/RxD1/SDA10/INTP4 and P15/(SCK10/SCL10/INTP7 as a generalpurpose port, note the serial array unit 0 setting. For details, refer to Table 14-7 Relationship Between Register Settings and Pins (Channel 2 of unit 0: CSI10, UART1 Transmission, IIC10).	p. $45 \square$
			$\begin{aligned} & \text { P16/TO05/TI05/ } \\ & \text { INTP10 } \end{aligned}$	To use P16/TO05/TI05/INTP10 as a general-purpose port, set bit 5 (TO05) of timer output register 0 (TO0) and bit 5 (TOE05) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting.	p. $45 \square$

		Function	Details of Function	Cautions	Page
	$\begin{array}{\|l\|} \hline \begin{array}{l} \mathrm{o} \\ 0 \end{array} \end{array}$	Pin functions	P20/ANIO/AMPOto P27/ANI7/ANP2O	P20/ANIO/AMPO- to P27/ANI7/ANP2O are set in the digital input (general-purpose port) mode after release of reset.	p. $46 \square$
	$\begin{array}{\|l} \hline \frac{\text { D }}{6} \\ \frac{\pi}{1} \end{array}$			When using at least one port of ports P20/ANIO/AMP0- to P27/ANI7/ANP2O as a digital port, set $A V_{D D o}$ to the same potential as EVDD or $V_{D D}$.	p. $46 \square$
	$$		P30/TO00/TI03/ RTC1HZ/INTP1	To use P30/TO00/TIO3/RTC1HZ/INTP1 as a general-purpose port, set bit 5 (RCLOE1) of real-time counter control register 0 (RTCC0), bit 0 (TOOO) of timer output register 0 (TOO) and bit 0 (TOEOO) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting.	p. $48 \square$
			P31/TO03/TI00/ RTCDIV/RTCCL PCLBUZ1/INTP2	To use P31/TO03/TI00/RTCDIV/RTCCL/PCLBUZ1/INTP2 as a general-purpose port, set bit 4 (RCLOEO) of real-time counter control register 0 (RTCCO), bit 6 (RCLOE2) of real-time counter control register 2 (RTCC2), bit 3 (TOO3) of timer output register 0 (TOO), bit 3 (TOEO3) of timer output enable register 0 (TOEO) and bit 7 of clock output select register 1 (CKS1) to "0", which is the same as their default status setting.	p. $48 \square$
			P32/TO01/TI01/ INTP5/PCLBUZ0	To use P32/TO01/TI01/INTP5/PCLBUZ0 as a general-purpose port, set bit 1 (TO01) of timer output register 0 (TOO), bit 1 (TOE01) of timer output enable register 0 (TOEO) and bit 7 of clock output select register 0 (CKSO) to " 0 ", which is the same as their default status setting.	p. $48 \square$
			P33/TO07/TI07/ INTP3, P34/TO06/TI06/ INTP8	To use P33/TO07/TI07/INTP3 and P34/TO06/TI06/INTP8 as a general-purpose port, set bit 7, 6 (TO07, TO06) of timer output register 0 (TO0), and bit 7, 6 (TOE07, TOE06) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting.	p. $48 \square$
	$\begin{array}{\|l} \hline \frac{\text { 무 }}{\text { w}} \end{array}$		P40/TOOL0	The function of the P40/TOOLO pin varies as described in (a) to (c) below. In the case of (b) or (c), make the specified connection. (a) In normal operation mode and when on-chip debugging is disabled (OCDENSET $=0)$ by an option byte $(000 \mathrm{C} 3 \mathrm{H})$ => Use this pin as a port pin (P40). (b) In normal operation mode and when on-chip debugging is enabled (OCDENSET $=1)$ by an option byte $(000 \mathrm{C} 3 \mathrm{H})$ => Connect this pin to Vdd via an external resistor, and always input a high level to the pin before reset release. (c) When on-chip debug function is used, or in write mode of flash memory programmer => Use this pin as TOOLO. Directly connect this pin to the on-chip debug emulator or a flash memory programmer, or pull it up by connecting it to Vdo via an external resistor.	p. $49 \square$
	$\begin{aligned} & \hline \begin{array}{l} \mathrm{J} \\ \text { 心 } \end{array} \end{aligned}$		P60/SCL0, P61/SDA0	When using P60/SCL0 and P61/SDA0 as a general-purpose port, stop the operation of serial interface IICA.	p. $50 \square$
			P75/드N01/KR5, P76/SI01/KR6, P77/SO01/KR7	To use P75/SCK01/KR5, P76/SI01/KR6, and P77/SO01/KR7, as a general-purpose port, note the serial array unit 0 setting. For details, refer to Table 14-6 Relationship Between Register Settings and Pins (Channel 1 of unit 0: CSI01, UART0 Reception).	p. $51 \square$
			P80/SCK00/ INTP11, P81/RxD0/SI00/ INTP9, P82/SO00/TxD0	To use P80/SCK00/INTP11, P81/RxD0/SI00/INTP9, and P82/SO00/TxD0, as a general-purpose port, note the serial array unit 0 setting. For details, refer to Table 14-5 Relationship Between Register Settings and Pins (Channel 0 of unit 0: CSIO0, UARTO Reception).	p. $53 \square$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \text { 믐 } \\ & \text { דَ } \end{aligned}$	Pin functions	P110/ANO0, P111/ANO1	When using at least one port of P110/ANO0 and P111/ANO1 as a digital port, set $A V_{D D 1}$ to the same potential as EVDd or VDD.	p. $54 \square$
	© 		P121 to P124	The function setting on P121 to P124 is available only once after the reset release. The port once set for connection to an oscillator cannot be used as an input port unless the reset is performed.	p. $55 \square$
			$\begin{aligned} & \text { P150/ANI8/ } \\ & \text { AMP2+ to } \end{aligned}$	P150/ANI8/AMP2+ to P152/ANI10 and P157/ANI15/AV REFm are set in the digital input (general-purpose port) mode after release of reset.	p. $57 \square$
			P152/ANI10 and P157/ANI15/ AVrefm	When using at least one port of P150/ANI8/AMP2+ to P152/ANI10 and P157/ANI15/AVrefm as a digital port, set $A V_{d d o}$ to the same potential as EVdd or Vdd.	p. $57 \square$
			REGC	Keep the wiring length as short as possible for the broken-line part in the above figure.	p. $58 \square$
	$\begin{aligned} & \pm \\ & \stackrel{y}{\circ} \end{aligned}$	Memory space	PMC: Processor mode control register	Set PMC only once during the initial settings prior to operating the DMA controller. Rewriting PMC other than during the initial settings is prohibited.	p. $83 \square$
				After setting PMC, wait for at least one instruction and access the mirror area.	p. $83 \quad \square$
				When the μ PD78F1500A, 78F1503A, and 78F1506A (flash memory size: 64 KB) are used, be sure to set bit 0 (MAA) of this register to 0 .	p. $83 \square$
			Internal data memory space	It is prohibited to use the general-purpose register (FFEEOH to FFEFFH) space for fetching instructions or as a stack area.	$\begin{array}{ll} \text { pp.83, } \\ 89,90 \end{array}$
				While using the self-programming function, the area of FFE20H to FFEFFH cannot be used as a stack memory.	$\left\lvert\, \begin{aligned} & \text { pp.83, } \quad \square \\ & 89 \end{aligned}\right.$
			SFR: Special function register area	Do not access addresses to which SFRs are not assigned.	$\left\lvert\, \begin{aligned} & \text { pp.84, } \quad \square \\ & 93 \end{aligned}\right.$
			2nd SFR: Extended special function register	Do not access addresses to which 2nd SFRs are not assigned.	$\begin{aligned} & \mathrm{pp} .84, \quad \square \\ & 99 \end{aligned}$
		Processor registers	SP: Stack pointer	Since reset signal generation makes the SP contents undefined, be sure to initialize the SP before using the stack.	p. $89 \square$
	$\begin{gathered} \pm \\ 0 \\ \hline \end{gathered}$	Port functions	$\begin{aligned} & \text { P00/CAPH, } \\ & \text { P01/CAPL, } \\ & \text { P02/VLC3 } \end{aligned}$	To use P00/CAPH, P01/CAPL, and P02/VLC3 as a general-purpose port, set bit 5 (MDSET1) and bit 4 (MDSET0) of LCD mode register (LCDMD) to "0", which is the same as their default status setting.	p. $130 \square$
			P10/SCK20/ SCL20, P11/SI20/RxD2/ SDA20/INTP6	To use P10/SCK20/SCL20 and P11/SI20/RxD2/SDA20/INTP6 as a general-purpose port, note the serial array unit 1 setting. For details, refer to Table 14-9 Relationship Between Register Settings and Pins (Channel 0 of unit 1: CSI20, UART2 Reception, IIC20).	p. $133 \square$
			$\begin{aligned} & \text { P12/TO02/SO20/ } \\ & \text { TxD2 } \end{aligned}$	To use P12/TO02/SO20/TxD2 as a general-purpose port, set bit 2 (TO02) of timer output register 0 (TOO) and bit 2 (TOE02) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting. And as a general-purpose port, note the serial array unit 1 setting. For details of serial array unit 1 setting, refer to Table 14-9 Relationship Between Register Settings and Pins (Channel 0 of unit 1: CSI20, UART2 Reception, IIC20).	p. $133 \square$
			$\begin{aligned} & \text { P13/TO04/SO10 } \\ & \text { /TxD1 } \end{aligned}$	To use P13/TO04/SO10/TxD1 as a general-purpose port, set bit 4 (TO04) of timer output register 0 (TOO) and bit 4 (TOE04) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting. And as a general-purpose port, note the serial array unit 0 setting. For details of serial array unit 0 setting, refer to Table 14-7 Relationship Between Register Settings and Pins (Channel 2 of unit 0: CSI10, UART1 Transmission, IIC10)	p. $133 \square$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \bar{i} \\ & 0 \\ & 0 \end{aligned}$	Port functions	P14/SI10/RxD1/ SDA10/INTP4, P15/ $\overline{\text { SCK10 }} /$ SCL 10/INTP7	To use P14/SI10/RxD1/SDA10/INTP4 and P15/ $\overline{\text { CK10 }} /$ SCL10/INTP7 as a generalpurpose port, note the serial array unit 0 setting. For details, refer to Table 14-7 Relationship Between Register Settings and Pins (Channel 2 of unit 0: CSI10, UART1 Transmission, IIC10)	p. $133 \square$
			P16/TO05/TI05/ INTP10	To use P16/TO05/TI05/INTP10 as a general-purpose port, set bit 5 (TO05) of timer output register 0 (TOO) and bit 5 (TOE05) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting.	p. $133 \square$
	$\begin{array}{\|l} \hline \frac{\bar{W}}{\mathbf{T}} \\ \frac{1}{2} \end{array}$		Port 2	Make the $A V_{D D o}$ pin the same potential as the EVDD or VDD pin when port 2 is used as a digital port.	p. $138 \square$
	$$		P30/TO00/TIO3/ RTC1HZ/INTP1	To use P30/TO00/TI03/RTC1HZ/INTP1 as a general-purpose port, set bit 5 (RCLOE1) of real-time counter control register 0 (RTCCO), bit 0 (TOOO) of timer output register 0 (TOO) and bit 0 (TOEOO) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting.	p. $142 \square$
			P31/TO03/TI00/ RTCDIV/RTCCL PCLBUZ1/INTP2	To use P31/TO03/TI00/RTCDIV/RTCCL/PCLBUZ1/INTP2 as a general-purpose port, set bit 4 (RCLOEO) of real-time counter control register 0 (RTCC0), bit 6 (RCLOE2) of real-time counter control register 2 (RTCC2), bit 3 (TOO3) of timer output register 0 (TOO), bit 3 (TOEO3) of timer output enable register 0 (TOEO) and bit 7 of clock output select register 1 (CKS1) to " 0 ", which is the same as their default status setting.	p. $142 \square$
			P32/TO01/TI01/ INTP5/PCLBUZ0	To use P32/TO01/TI01/INTP5/PCLBUZ0 as a general-purpose port, set bit 1 (TO01) of timer output register 0 (TOO), bit 1 (TOE01) of timer output enable register 0 (TOEO) and bit 7 of clock output select register 0 (CKSO) to " 0 ", which is the same as their default status setting.	p. $142 \square$
			P33/TO07/TI07/ INTP3, P34/TO06/TI06/I NTP8	To use P33/TO07/TI07/INTP3 and P34/TO06/TI06/INTP8 as a general-purpose port, set bit 7, 6 (TO07, TO06) of timer output register 0 (TOO), and bit 7, 6 (TOE07, TOE06) of timer output enable register 0 (TOEO) to " 0 ", which is the same as their default status setting.	p. $142 \square$
			P40, P41	When a tool is connected, the P40 pin cannot be used as a port pin. When the on-chip debug function is used, P41 pin can be used as follows by the mode setting on the debugger. - 1-line mode: can be used as a port (P41). - 2-line mode: used as a TOOL1 pin and cannot be used as a port (P41).	p. $144 \square$
	$\begin{array}{l\|} \hline \begin{array}{l} 1 \\ 0 \\ 0 \end{array} \end{array}$		$\begin{aligned} & \text { P60/SCL0, } \\ & \text { P61/SDA0 } \end{aligned}$	When using P60/SCL0 and P61/SDA0 as a general-purpose port, stop the operation of serial interface IICA.	p. $150 \square$
			P75/SCK01/KR5, P76/SI01/KR6, P77/SO01/KR7	To use P75/SCK01/KR5, P76/SI01/KR6 and P77/SO01/KR7, as a general-purpose port, note the serial array unit 0 setting. For details, refer to Table 14-6 Relationship Between Register Settings and Pins (Channel 1 of unit 0: CSI01, UART0 Reception).	p. $151 \square$
			P80/SCK00/ INTP11, P81/RxD0/SI00/ INTP9, P82/SO00/TxD0	To use P80/드N00/INTP11, P81/RxD0/SI00/INTP9 and P82/SO00/TxD0, as a general-purpose port, note the serial array unit 0 setting. For details, refer to Table 14-5 Relationship Between Register Settings and Pins (Channel 0 of unit 0: CSIO0, UARTO Reception).	p. $156 \square$

		Function	Details of Function	Cautions	Page
	$\begin{array}{\|l} \frac{\text { 으́ }}{\overline{1}} \\ \hline \end{array}$	Port functions	Port 11	Make the $A V_{D D 1}$ pin the same potential as the EVDD or VDD pin when port 11 is used as a digital port.	p. $167 \square$
			P121 to P124	The function setting on P121 to P124 is available only once after the reset release. The port once set for connection to an oscillator cannot be used as an input port unless the reset is performed.	p. $168 \square$
			Port 15	Make the $A V_{D D o}$ pin the same potential as the EVDD or $V_{D D}$ pin when port 15 is used as a digital port.	p. $176 \square$
	芯		Port mode register (78K0R/LF3)	Be sure to set bits 3 to 7 of PM0, bits 6, 7 of PM1, bit 7 of PM2, bits 4 to 7 of PM3, bits 2 to 7 of PM4, bits 3 to 7 of PM9, bits 1 to 7 of PM10, bits 2 to 7 of PM11, bits 1 to 7 of PM12, and bits 0 to 6 of PM15 to 1 .	p. $181 \square$
			Port mode register (78K0R/LG3)	Be sure to set bits 3 to 7 of PM0, bit 7 of PM1, bits 5 to 7 of PM3, bits 2 to 7 of PM4, bits 2 to 7 of PM6, bits 3 to 7 of PM8, bits 1 to 7 of PM10, bits 2 to 7 of PM11, bits 1 to 7 of PM12, and bits 3 to 6 of PM15 to 1 .	p. $182 \square$
			Port mode register (78K0R/LH3)	Be sure to set bits 3 to 7 of PM0, bits 5 to 7 of PM3, bits 2 to 7 of PM4, bits 2 to 7 of PM6, bits 3 to 7 of PM10, bits 2 to 7 of PM11, bits 1 to 7 of PM12, and bits 3 to 6 of PM15 to 1.	p. $183 \square$
			ADPC: A/D port configuration	Set the channel used for A/D conversion to the input mode by using port mode registers 2 and 15 (PM2, PM15).	p. $193 \square$
			register	Do not set the pin that is set by ADPC as digital I/O by analog input channel specification register (ADS).	p. $193 \square$
			PFALL: Port function register	For $78 \mathrm{KOR} / \mathrm{LF} 3$, bits 3 and 7 must be set to 0 . For $78 \mathrm{KOR} / \mathrm{LG} 3$ and $78 \mathrm{KOR} / \mathrm{LH} 3$, bit 7 must be set to 0 .	p. $195 \square$
			ISC: Input switch control register	Be sure to clear bits 5 to 7 to "0".	p. $196 \square$
			1-bit manipulation instruction for port register n (Pn)	When a 1-bit manipulation instruction is executed on a port that provides both input and output functions, the output latch value of an input port that is not subject to manipulation may be written in addition to the targeted bit. Therefore, it is recommended to rewrite the output latch when switching a port from input mode to output mode.	p. $205 \square$
	$\begin{aligned} & \dot{む} \\ & \infty \\ & \hline \end{aligned}$	Clock generator	CMC: Clock operation mode control register	CMC can be written only once after reset release, by an 8-bit memory manipulation instruction.	p. $210 \square$
				After reset release, set CMC before X1 or XT1 oscillation is started as set by the clock operation status control register (CSC).	p. $210 \square$
				Be sure to set AMPH to 1 if the X1 clock oscillation frequency exceeds 10 MHz .	p. $210 \square$
				To use CMC with its initial value $(00 \mathrm{H})$, be sure to set it to 00 H after releasing reset in order to prevent malfunction when a program loop occurs.	p. $210 \square$

$\begin{aligned} & \grave{\vdots} \\ & \frac{\mathbf{N}}{\mathbf{O}} \\ & \frac{\mathrm{C}}{0} \end{aligned}$		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \text { 문 } \\ & \text { 준 } \end{aligned}$	Clock generator	CMC: Clock operation mode control register	The XT1 oscillator is designed as a low-gain circuit for achieving low-power consumption. Note the following points when designing the XT1 oscillator. - The pins and circuit board include parasitic capacitance. Therefore, confirm that there are no problems by performing oscillation evaluation on the circuit board to be actually used. - When low-consumption oscillation or super-low-consumption oscillation is selected, lower power consumption than when selecting normal oscillation can be achieved. However, in this case, the XT1 oscillation margin is reduced, so perform sufficient oscillation evaluation of the resonator to be used for XT1 oscillation before using the resonator. - Keep the wiring length between the XT1 and XT2 pins and resonator as short as possible and parasitic capacitance and wire resistance as small as possible. This is particularly important when super-low-consumption oscillation (AMPHS1 = 1) is selected. - Configure the circuit board by using material with little parasitic capacitance and wire resistance. - Place a ground pattern that has the same potential as Vss (if possible) around the XT1 oscillator. - Do not cross the signal lines between the XT1 and XT2 pins and the resonator with other signal lines. Do not route the signal lines near a signal line through which a high fluctuating current flows. - Moisture absorption by the circuit board and condensation on the board in a highly humid environment may cause the impedance between the XT1 and XT2 pins to drop and disable oscillation. When using the circuit board in such an environment, prevent the circuit board from absorbing moisture by taking measures such as coating the circuit board. - Coat the surface of the circuit board by using material that does not generate capacitance or leakage between the XT1 and XT2 pins.	$\begin{aligned} & \text { pp.210, } \square \\ & 211 \end{aligned}$
	$\begin{aligned} & \text { 芯 } \\ & 0 \end{aligned}$		CSC: Clock operation status	After reset release, set the clock operation mode control register (CMC) before starting X1 oscillation as set by MSTOP or XT1 oscillation as set by XTSTOP.	p. $211 \square$
			control register	To start X1 oscillation as set by MSTOP, check the oscillation stabilization time of the X1 clock by using the oscillation stabilization time counter status register (OSTC).	p. $212 \square$
				Do not stop the clock selected for the CPU peripheral hardware clock (fclk) with the CSC register.	p. $212 \square$
				The setting of the flags of the register to stop clock oscillation (invalidate the external clock input) and the condition before clock oscillation is to be stopped are as follows.	p. $212 \square$
			OSTC: Oscillation	After the above time has elapsed, the bits are set to 1 in order from MOST8 and remain 1.	p. $213 \square$
			stabilization time counter status register	The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. In the following cases, set the oscillation stabilization time of OSTS to the value greater than the count value which is to be checked by the OSTC register after the oscillation starts. - If the X1 clock starts oscillation while the internal high-speed oscillation clock or subsystem clock is being used as the CPU clock. - If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock with the X1 clock oscillating. (Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after the STOP mode is released.)	p. $213 \square$

		Function	Details of Function	Cautions	Page
$\begin{aligned} & \text { م } \\ & \text { む } \\ & \stackrel{0}{0} \\ & \text { © } \end{aligned}$		Clock generator	OSTC： Oscillation stabilization time counter status register	The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts（＂a＂below）．	p． $213 \square$
	荡		OSTS： Oscillation stabilization time select register	To set the STOP mode when the X1 clock is used as the CPU clock，set the OSTS register before executing the STOP instruction．	p． $214 \square$
				Setting the oscillation stabilization time to 20μ s or less is prohibited．	p． $214 \quad \square$
				To change the setting of the OSTS register，be sure to confirm that the counting operation of the OSTC register has been completed．	p． $214 \square$
				Do not change the value of the OSTS register during the X 1 clock oscillation stabilization time．	p． $214 \square$
				The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS． In the following cases，set the oscillation stabilization time of OSTS to the value greater than the count value which is to be checked by the OSTC register after the oscillation starts． －If the X1 clock starts oscillation while the internal high－speed oscillation clock or subsystem clock is being used as the CPU clock． －If the STOP mode is entered and then released while the internal high－speed oscillation clock is being used as the CPU clock with the X1 clock oscillating． （Note，therefore，that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after the STOP mode is released．）	p． $214 \square$
	产			The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts（＂a＂below）．	p． $214 \square$
	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \text { O } \end{aligned}$		CKC：System clock control register	The clock set by CSS，MCMO，SDIV，and MDIV2 to MDIV0 is supplied to the CPU and peripheral hardware．If the CPU clock is changed，therefore，the clock supplied to peripheral hardware（except the real－time counter，timer array unit（when fsus／2， fsui／4，the valid edge of TIOmn input，or the valid edge of INTRTCI is selected as the count clock），clock output／buzzer output，and watchdog timer）is also changed at the same time．Consequently，stop each peripheral function when changing the CPU／peripheral operating hardware clock．	p． $216 \square$
				If the peripheral hardware clock is used as the subsystem clock，the operations of the A／D converter and IICA are not guaranteed．For the operating characteristics of the peripheral hardware，refer to the chapters describing the various peripheral hardware as well as CHAPTER 31 ELECTRICAL SPECIFICATIONS．	p． $216 \square$
			DSCCTL： 20 MHz internal high－speed oscillation control register	20 MHz internal oscillation can only be used if $\mathrm{V}_{\mathrm{DD}} \geq 2.7 \mathrm{~V}$ ．	p． $218 \square$
				Set SELDSC when 100μ s have elapsed after having set DSCON with VDD $\geq 2.7 \mathrm{~V}$ ．	p． $218 \square$
				The internal high－speed oscillator must be operated（ $\mathrm{HIOSTOP}=0$ ）when DSCON $=1$ ．	p． $218 \square$
			OSMC： Operation speed mode control register	Write＂1＂to FSEL before the following two operations． －Changing the clock prior to dividing fclk to a clock other than fiн． －Operating the DMA controller．	p． $221 \square$
				The CPU waits（ 140.5 clock（fclk））when＂ 1 ＂is written to the FSEL bit． Interrupt requests issued during a wait will be suspended． However，counting the oscillation stabilization time of $f x$ can continue even while the CPU is waiting．	p． $221 \square$
				To increase fclk to 10 MHz or higher，set FSEL to＂1＂，then change fclk after two or more clocks have elapsed．	p． $221 \square$
				Confirm that the clock is operating at 10 MHz or less before setting FSEL $=0$ ．	p． $221 \square$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \text { 운 } \\ & \text { 苩 } \end{aligned}$	X1/XT1 oscillator	-	When X2 and XT1 are wired in parallel, the crosstalk noise of X2 may increase with XT 1 , resulting in malfunctioning.	p. $225 \square$
		Internal highspeed oscillator	-	To use the 1,8 , or 20 MHz internal high-speed oscillation clock, use the option byte to set the frequency in advance (for details, see CHAPTER 26 OPTION BYTE). Also, the internal high-speed oscillator automatically starts oscillating after reset release. (If 8 MHz or 20 MHz is selected by using the option byte, the microcontroller operates using the 8 MHz internal high-speed oscillator.) To use the 20 MHz internal high-speed oscillator to operate the microcontroller, oscillation is started by setting bit 0 (DSCON) of the DSCCTL register to 1 with $V_{D D} \geq 2.7 \mathrm{~V}$.	p. $226 \square$
		Clock generator operation when power supply	When LVI default start function stopped is set (option byte: LVIOFF = 1)	If the voltage rises with a slope of less than $0.5 \mathrm{~V} / \mathrm{ms}$ (MIN.) from power application until the voltage reaches 1.8 V , input a low level to the RESET pin from power application until the voltage reaches 1.8 V , or set the LVI default start function stopped by using the option byte (LVIOFF $=0$) (see Figure $5-14$). By doing so, the CPU operates with the same timing as <2> and thereafter in Figure 5-13 after reset release by the $\overline{\text { RESET }}$ pin.	p. $229 \square$
		voltage is turned on		It is not necessary to wait for the oscillation stabilization time when an external clock input from the EXCLK pin is used.	p. $229 \square$
			When LVI default start function enabled is set (option	A voltage stabilization time (about 2.12 to 5.84 ms) is required after the supply voltage reaches 1.61 V (TYP.). If the time for the supply voltage to rise from 1.61 V (TYP.) to 2.07 V (TYP.) is shorter than the voltage stabilization time, reset processing is entered after the voltage stabilization time elapses.	p. $231 \square$
			byte: LVIOFF = 0)	It is not necessary to wait for the oscillation stabilization time when an external clock input from the EXCLK pin is used.	p. $231 \square$
	$\begin{aligned} & \pm \\ & \hline 0 \\ & 0 \end{aligned}$	Controlling high-	X1/P121, X2/EXCLK/P122	The X1/P121 and X2/EXCLK/P122 pins are in the input port mode after a reset release.	p. $232 \square$
		speed system clock	X1 clock	The CMC register can be written only once after reset release, by an 8-bit memory manipulation instruction. Therefore, it is necessary to also set the value of the OSCSELS bit at the same time. For OSCSELS bit, see 5.6.3 Example of controlling subsystem clock.	p. $232 \square$
				Set the X1 clock after the supply voltage has reached the operable voltage of the clock to be used (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).	p. $232 \square$
			External main system clock	The CMC register can be written only once after reset release, by an 8-bit memory manipulation instruction. Therefore, it is necessary to also set the value of the OSCSELS bits at the same time. For OSCSELS bits, see 5.6.3 Example of controlling subsystem clock.	p. $233 \square$
				Set the external main system clock after the supply voltage has reached the operable voltage of the clock to be used (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).	p. $233 \square$
			High-speed system clock	Be sure to confirm that MCS $=0$ or CLS $=1$ when setting MSTOP to 1 . In addition, stop peripheral hardware that is operating on the high-speed system clock.	p. $235 \square$
		Controlling internal highspeed oscillation clock	Internal highspeed oscillation clock	If switching the CPU/peripheral hardware clock from the high-speed system clock to the internal high-speed oscillation clock after restarting the internal high-speed oscillation clock, do so after 10μ s or more have elapsed. If the switching is made immediately after the internal high-speed oscillation clock is restarted, the accuracy of the internal high-speed oscillation cannot be guaranteed for $10 \mu \mathrm{~s}$.	p. $236 \square$
				Be sure to confirm that MCS = 1 or CLS = 1 when setting HIOSTOP to 1. In addition, stop peripheral hardware that is operating on the internal high-speed oscillation clock.	p. $237 \square$

		Function	Details of Function	Cautions	Page
$\begin{aligned} & \text { に } \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{0}{0} \\ & \text { ভ } \end{aligned}$	$\begin{array}{\|l\|} \hline \begin{array}{l} 0 \\ 0 \\ 0 \end{array} \\ \hline \end{array}$	Subsystem clock control	$\begin{aligned} & \hline \mathrm{XT} 1 / \mathrm{P} 123, \\ & \mathrm{XT} / \mathrm{P} 124 \end{aligned}$	The XT1/P123 and XT2/P124 pins are in the input port mode after a reset release.	p. $237 \square$
	$\begin{array}{\|l} \hline \frac{\bar{V}}{1} \\ \frac{1}{1} \end{array}$		Subsystem clock	When the subsystem clock is used as the CPU clock, the subsystem clock is also supplied to the peripheral hardware (except the real-time counter, timer array unit (when fsub/2, fsub/4, the valid edge of TIOmn input, or the valid edge of INTRTCI is selected as the count clock), clock output/buzzer output, and watchdog timer). At this time, the operations of the A/D converter and IICA are not guaranteed. For the operating characteristics of the peripheral hardware, refer to the chapters describing the various peripheral hardware as well as CHAPTER 31 ELECTRICAL SPECIFICATIONS.	$\begin{aligned} & \text { pp.237, } \square \\ & 238 \end{aligned}$
	$\begin{array}{\|l\|} \hline \frac{\pi}{0} \\ 0 \\ \hline \end{array}$			The CMC register can be written only once after reset release, by an 8-bit memory manipulation instruction. Therefore, it is necessary to also set the value of the EXCLK and OSCSEL bits at the same time. For EXCLK and OSCSEL bits, see 5.6.1 (1) Example of setting procedure when oscillating the X1 clock or 5.6.1 (2) Example of setting procedure when using the external main system clock.	p. $238 \square$
				Be sure to confirm that CLS $=0$ when setting XTSTOP to 1 . In addition, stop the peripheral hardware if it is operating on the subsystem clock.	p. $238 \square$
				The subsystem clock oscillation cannot be stopped using the STOP instruction.	p. $238 \square$
		CPU clock status transition	-	Set the clock after the supply voltage has reached the operable voltage of the clock to be set (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).	$\begin{aligned} & \hline \text { pp. } 241 \quad \square \\ & 242,245 \end{aligned}$
	$\begin{array}{l\|} \hline \pm \\ \dot{0} \\ \infty \end{array}$	Timer array unit	-	Channel 5 of timer array unit 0 of the 78K0R/LF3 can be used only as an interval timer.	p. $251 \square$
				Channel 6 of timer array unit 0 of the 78K0R/LF3 can be used only as an interval timer, for PWM output (master channel), and for one-shot pulse output (master channel when software trigger start is selected).	p. $251 \square$
				Channels 0 to 3 of timer array unit 1 of the $78 \mathrm{KOR} / \mathrm{LF} 3$ and $78 \mathrm{KOR} / \mathrm{LG} 3$ can be used only as interval timers.	p. $251 \square$
				Channels 1,5 to 7 of timer array unit 0 and channels 0 to 3 of timer array unit 1 cannot be used as frequency dividers.	p. $251 \square$
			TCRmn: Timer/counter register mn	The count value is not captured to TDRmn even when TCRmn is read.	p. $255 \square$
			TDRmn: Timer data register mn	TDRmn does not perform a capture operation even if a capture trigger is input, when it is set to the compare function.	p. $260 \square$
			PERO: Peripheral enable register 0	When setting the timer array unit, be sure to set TAUmEN to 1 first. If TAUmEN $=0$, writing to a control register of the timer array unit is ignored, and all read values are default values.	p. $262 \square$
			TPSm: Timer clock select register m	Be sure to clear bits 15 to 8 to "0".	p. $268 \square$

		Function	Details of Function	Cautions	Page
	$\begin{array}{\|l\|} \hline \begin{array}{l} 0 \\ c \end{array} \\ \hline \end{array}$	Timer array unit	TMRmn: Timer mode register mn	Be sure to clear bits $14,13,5$, and 4 to " 0 ".	$\begin{aligned} & \text { pp. } 264 \\ & \text { to } 266 \end{aligned}$
				Channel 5 of timer array unit 0 and channels 0 to 3 of timer array unit 1 of the 78K0R/LF3 can be set only to the interval mode.	$\begin{aligned} & \text { pp.266, } \\ & 271 \end{aligned}$
				Channel 6 of timer array unit 0 of the 78 K 0 R/LF3 can be set only to the interval mode and one-count mode (when using as master).	$\begin{aligned} & \text { pp.266, } \\ & 271 \end{aligned}$
				Channels 0 to 3 of timer array unit 1 of the 78K0R/LG3 can be set only to the interval mode.	$\begin{aligned} & \hline \text { pp.266, } \\ & 271 \end{aligned}$
			TSm: Timer channel start register m	Be sure to clear bits 15 to 8 of TS0 and bits 15 to 4 of TS1 to " 0 ".	p. $270 \square$
			Start Timing (In Interval Timer Mode)	In the first cycle operation of count clock after writing TSmn, an error at a maximum of one clock is generated since count start delays until count clock has been generated. When the information on count start timing is necessary, an interrupt can be generated at count start by setting MDmn0 $=1$.	p. $272 \square$
			Start Timing (In Capture Mode)	In the first cycle operation of count clock after writing TSpq, an error at a maximum of one clock is generated since count start delays until count clock has been generated. When the information on count start timing is necessary, an interrupt can be generated at count start by setting MDpq0 $=1$.	p. $273 \square$
			Start Timing (In One-count Mode and In Capture \& One-count Mode)	An input signal sampling error is generated since operation starts upon start trigger detection (The error is one count clock when Tlpq is used).	$\begin{aligned} & \text { pp.275, } \square \\ & 276 \end{aligned}$
			TTm: Timer channel stop register m	Be sure to clear bits 15 to 8 of TT0 and bits 15 to 4 of TT1 to " 0 ".	p. $277 \square$
			TISp: Timer input select register p	When the LIN-bus communication function is used, select the input signal of the RxD3 pin by setting ISC1 to 1 and TIS07 $=0$.	p. $279 \square$
			TOEp: Timer	For $78 \mathrm{KOR} / \mathrm{LF} 3$, be sure to clear bits 15 to 8,6 and 5 of TOE0 to " 0 ".	p. $279 \quad \square$
			output enable	For $78 \mathrm{KOR} / \mathrm{LG} 3$, be sure to clear bits 15 to 8 of TOE0 to " 0 ".	p. $279 \square$
			register p	For $78 \mathrm{KOR} / \mathrm{LH} 3$, be sure to clear bit 15 to 8 of TOE0, bits 15 to 4 of TOE1 to "0".	p. $279 \square$
			TOp: Timer	For $78 \mathrm{KOR} / \mathrm{LF} 3$, be sure to clear bits 15 to 8,6 and 5 of TO0 to "0".	p. $280 \square$
			output register p	For 78K0R/LG3, be sure to clear bits 15 to 8 of TO0 to "0".	p. $280 \square$
				For $78 \mathrm{KOR} / \mathrm{LH} 3$, be sure to clear bit 15 to 8 of TO0, bits 15 to 4 of TO1 to " 0 ".	p. $280 \square$
			TOLp: Timer	For $78 \mathrm{~K} 0 \mathrm{R} / \mathrm{LF} 3$, be sure to clear bits 15 to 8,6 and 5 of TOL0 to "0".	p. $281 \square$
			output level	For $78 \mathrm{K0R} / \mathrm{LG3}$, be sure to clear bits 15 to 8 of TOL0 to " 0 ".	p. $281 \square$
			register p	For $78 \mathrm{KOR} / \mathrm{LH} 3$, be sure to clear bit 15 to 8 of TOL0, bits 15 to 4 of TOL1 to " 0 ".	p. $281 \square$
			TOMp: Timer	For 78K0R/LF3, be sure to clear bits 15 to 8, 6 and 5 of TOM0 to " 0 ".	p. $282 \square$
			output mode	For 78K0R/LG3, be sure to clear bits 15 to 8 of TOM0 to "0".	p. $282 \square$
			register p	For 78K0R/LH3, be sure to clear bit 15 to 8 of TOM0, bits 15 to 4 of TOM1 to "0".	p. $282 \square$

(12/39)

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \hline \begin{array}{l} \overline{0} \\ 0 \end{array} \\ & \hline \end{aligned}$	Timer array unit	ISC: Input switch control register	Be sure to clear bits 5 to 7 to "0".	p. $283 \square$
			Changing values set in registers TOp,TOEp, TOLp, and TOMp during timer operation	Since the timer operations (operations of TCRpq and TDRpq) are independent of the TOpq output circuit and changing the values set in TOp, TOEp, TOLp, and TOMp does not affect the timer operation, the values can be changed during timer operation. To output an expected waveform from the TOpq pin by timer operation, however, set TOp, TOEp, TOLp, and TOMp to the values stated in the register setting example of each operation. When the values set in TOEp, TOLp, and TOMp (except for TOp) are changed close to the timer interrupt (INTTMpq), the waveform output to the TOpq pin may be different depending on whether the values are changed immediately before or immediately after the timer interrupt (INTTMpq) signal generation timing.	p. $291 \square$
			Default level of TOpq pin and output level after timer operation start	The following figure shows the TOpq pin output level transition when writing has been done in the state of TOEpq $=0$ before port output is enabled and TOEpq $=1$ is set after changing the default level. (a) When operation starts with TOMpq $=0$ setting (toggle output) The setting of TOLpq is invalid when TOMpq $=0$. When the timer operation starts after setting the default level, the toggle signal is generated and the output level of TOpq pin is reversed. (b) When operation starts with $\mathrm{TOMpq}=1$ setting (Combination operation mode (PWM output)) When TOMpq = 1, the active level is determined by TOLpq setting.	$\begin{aligned} & \text { pp.291, } \square \\ & 292 \end{aligned}$
			Operation of TOpq pin in combination operation mode ($\mathrm{TOMpq}=1$)	(a) When TOLpq setting has been changed during timer operation When the TOLpq setting has been changed during timer operation, the setting becomes valid at the generation timing of TOpq change condition. Rewriting TOLpq does not change the output level of TOpq. The following figure (Figure 6-30) shows the operation when the value of TOLpq has been changed during timer operation (TOMpq $=1$) (b) Set/reset timing To realize $0 \% / 100 \%$ output at PWM output, the TOpq pin/TOpq set timing at master channel timer interrupt (INTTMpq) generation is delayed by 1 count clock by the slave channel timer interrupt (INTTMqr). If the set condition and reset condition are generated at the same time, a higher priority is given to the latter. Figure 6-31 shows the set/reset operating statuses where the master/slave channels are set as follows.	$\begin{aligned} & \text { pp.291, } \square \\ & 293 \end{aligned}$
			Collective manipulation of TOpq bits	When TOEpq = 1, even if the output by timer interrupt of each timer (INTTMpq) contends with writing to TOpq, output is normally done to TOpq pin.	p. $295 \square$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \text { 蒿 } \\ & \hline \end{aligned}$	Operation of timer array unit as independent channel	Input pulse interval measurement	The TIpq pin input is sampled using the operating clock selected with the CKSpq bit of the TMRpq register, so an error equal to the number of operating clocks occurs.	p. 315
			Input signal high-/low-level width measurement	The Tlpq pin input is sampled using the operating clock selected with the CKSpq bit of the TMRpq register, so an error equal to the number of operating clocks occurs.	p. $319 \square$
		Operation of plural channels of timer array unit	PWM function	To rewrite both TDRmn of the master channel and TDRmp of the slave channel, a write access is necessary two times. The timing at which the values of TDRmn and TDRmp are loaded to TCRmn and TCRmp is upon occurrence of INTTMmn of the master channel. Thus, when rewriting is performed split before and after occurrence of INTTMmn of the master channel, the TOmp pin cannot output the expected waveform. To rewrite both TDRmn of the master and TDRmp of the slave, therefore, be sure to rewrite both the registers immediately after INTTMmn is generated from the master channel.	p. $323 \square$
			One-shot pulse output function	The timing of loading of TDRmn of the master channel is different from that of TDRmp of the slave channel. If TDRmn and TDRmp are rewritten during operation, therefore, an illegal waveform is output. Be sure to rewrite TDRmn and TDRmp after INTTMmn of the channel to be rewritten is generated.	p. $330 \square$
			Multiple PWM output function	To rewrite both TDRmn of the master channel and TDRmp of the slave channel 1 , write access is necessary at least twice. Since the values of TDRmn and TDRmp are loaded to TCRmn and TCRmp after INTTMmn is generated from the master channel, if rewriting is performed separately before and after generation of INTTMmn from the master channel, the TOmp pin cannot output the expected waveform. To rewrite both TDRmn of the master and TDRmp of the slave, be sure to rewrite both the registers immediately after INTTMmn is generated from the master channel (This applies also to TDRmq of the slave channel 2).	p. $337 \square$
	$\begin{aligned} & \pm \\ & 0 \\ & 0 \end{aligned}$	Real-time counter	PERO: Peripheral enable register 0	When using the real-time counter, first set RTCEN to 1, while oscillation of the subsystem clock (fsub) is stable. If RTCEN $=0$, writing to a control register of the realtime counter is ignored, and, even if the register is read, only the default value is read.	p. $348 \square$
				Clock supply to peripheral functions except the real-time counter can be stopped in the HALT mode when operating on the subsystem clock by setting RTCLPC of the operation speed mode control register (OSMC) to 1 . In this case, set RTCEN to 1 and bits 0 to 6 of PER0 to 0 .	p. $348 \square$
			RTCCO: Realtime counter control register 0	If RCLOE0 and RCLOE1 are changed when RTCE $=1$, the last waveform of the 32.768 kHz and 1 Hz output signals may become short.	p. $349 \square$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \infty \end{aligned}$	Real-time counter	RTCC1: Realtime counter control register 1	If writing is performed to the RTCC1 register with a 1-bit manipulation instruction, the RIFG and WAFG flags may be cleared. Therefore, to perform writing to the RIFG and WAFG flags, be sure to use an 8-bit manipulation instruction. At this time, set 1 to the RIFG and WAFG flags to invalidate writing and not to clear the RIFG and WAFG flags during writing. When the value may be rewritten because the RIFG and WAFG flags are not being used, the RTCC1 register may be written by using a 1-bit manipulation instruction.	p. $351 \square$
			RTCC2: Realtime counter control register 2	Change ICT2, ICT1, and ICT0 when RINTE $=0$.	p. $352 \square$
	$\begin{array}{\|l} \hline \frac{\text { 울 }}{\text { ¹ }} \end{array}$			When the output from RTCDIV pin is stopped, the output continues after a maximum of two clocks of f_{xt} and enters the low level. While 512 Hz is output, and when the output is stopped immediately after entering the high level, a pulse of at least one clock width of fsub may be generated.	p. $352 \square$
				After the real-time counter starts operating, the output width of the RTCDIV pin may be shorter than as set during the first interval period.	p. $352 \square$
	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \infty \end{aligned}$		RSUBC: Subcount register	When a correction is made by using the SUBCUD register, the value may become 8000 H or more.	p. $353 \square$
				This register is also cleared by reset effected by writing the second count register.	p. $353 \square$
				The value read from this register is not guaranteed if it is read during operation, because a value that is changing is read.	p. $353 \square$
			HOUR: Hour count register	Bit 5 (HOUR20) of HOUR indicates $\mathrm{AM}(0) / \mathrm{PM}(1)$ if $\mathrm{AMPM}=0$ (if the 12-hour system is selected).	p. $354 \square$
			WEEK: Week count register	The value corresponding to the month count register or the day count register is not stored in the week count register automatically. After reset release, set the week count register as follow.	p. $356 \square$
			ALARMWM: Alarm minute register	Set a decimal value of 00 to 59 to this register in BCD code. If a value outside the range is set, the alarm is not detected.	p. $359 \square$
			ALARMWH: Alarm hour register	Set a decimal value of 00 to 23 , or 01 to 12 and 21 to 32 to this register in BCD code. If a value outside the range is set, the alarm is not detected.	p. $359 \square$
				Bit 5 (WH20) of ALARMWH indicates AM(0)/PM(1) if AMPM $=0$ (if the 12-hour system is selected).	p. $359 \square$
			Reading/writing real-time counter	Complete the series of operations of setting RWAIT to 1 to clearing RWAIT to 0 within 1 second.	$\begin{array}{\|l\|} \hline \text { pp. } 364 \square \\ , 365 \end{array}$
$\begin{array}{\|l} \hline \infty \\ \frac{1}{ \pm} \\ \stackrel{\rightharpoonup}{\circ} \\ \frac{\widetilde{C}}{0} \end{array}$	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{\circ} \\ & \text { on } \end{aligned}$	Watchdog timer	WDTE: Watchdog timer enable register	If a value other than "ACH" is written to WDTE, an internal reset signal is generated.	p. $376 \square$
				If a 1-bit memory manipulation instruction is executed for WDTE, an internal reset signal is generated.	p. $376 \square$
				The value read from WDTE is 9AH/1AH (this differs from the written value (ACH)).	p. $376 \quad \square$

亠 ¢ ¢ ¢ U		Function	Details of Function	Cautions	Page
	$\stackrel{\rightharpoonup}{\circ}$	Watchdog timer	Controlling operation	When data is written to WDTE for the first time after reset release, the watchdog timer is cleared in any timing regardless of the window open time, as long as the register is written before the overflow time, and the watchdog timer starts counting again.	p. $377 \square$
				If the watchdog timer is cleared by writing "ACH" to WDTE, the actual overflow time may be different from the overflow time set by the option byte by up to $2 / \mathrm{fiL}$ seconds.	p. $377 \square$
				The watchdog timer can be cleared immediately before the count value overflows.	p. $377 \square$
				The operation of the watchdog timer in the HALT and STOP modes differs as follows depending on the set value of bit 0 (WDSTBYON) of the option byte $(000 \mathrm{COH})$. (See the table on page 378.) If WDSTBYON $=0$, the watchdog timer resumes counting after the HALT or STOP mode is released. At this time, the counter is cleared to 0 and counting starts. When operating with the X1 oscillation clock after releasing the STOP mode, the CPU starts operating after the oscillation stabilization time has elapsed. Therefore, if the period between the STOP mode release and the watchdog timer overflow is short, an overflow occurs during the oscillation stabilization time, causing a reset. Consequently, set the overflow time in consideration of the oscillation stabilization time when operating with the X1 oscillation clock and when the watchdog timer is to be cleared after the STOP mode release by an interval interrupt.	p. $378 \square$
				The watchdog timer continues its operation during self-programming of the flash memory and EEPROM emulation. During processing, the interrupt acknowledge time is delayed. Set the overflow time and window size taking this delay into consideration.	p. $378 \square$
			Setting overflow time	The watchdog timer continues its operation during self-programming of the flash memory and EEPROM emulation. During processing, the interrupt acknowledge time is delayed. Set the overflow time and window size taking this delay into consideration.	p. $378 \square$
			Setting window open period	When data is written to WDTE for the first time after reset release, the watchdog timer is cleared in any timing regardless of the window open time, as long as the register is written before the overflow time, and the watchdog timer starts counting again.	p. $379 \square$
				The watchdog timer continues its operation during self-programming of the flash memory and EEPROM emulation. During processing, the interrupt acknowledge time is delayed. Set the overflow time and window size taking this delay into consideration.	p. $379 \square$
				When bit 0 (WDSTBYON) of the option byte $(000 \mathrm{COH})=0$, the window open period is 100% regardless of the values of WINDOW1 and WINDOW0.	p. $379 \square$

$\begin{aligned} & \grave{\varrho} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \frac{\pi}{U} \end{aligned}$		Function	Details of Function	Cautions	Page
	$\begin{array}{\|l\|} \hline \\ \dot{0} \\ 0 \end{array}$	Watchdog timer	Setting interval interrupt	When operating with the X1 oscillation clock after releasing the STOP mode, the CPU starts operating after the oscillation stabilization time has elapsed. Therefore, if the period between the STOP mode release and the watchdog timer overflow is short, an overflow occurs during the oscillation stabilization time, causing a reset. Consequently, set the overflow time in consideration of the oscillation stabilization time when operating with the X 1 oscillation clock and when the watchdog timer is to be cleared after the STOP mode release by an interval interrupt.	p. $380 \square$
$\begin{aligned} & \text { O} \\ & \frac{1}{む} \\ & \stackrel{0}{0} \\ & \frac{\widetilde{U}}{2} \end{aligned}$	$\begin{aligned} & \text { 芯 } \\ & 0 \end{aligned}$	Clock output/ buzzer output controller	CKSn: Clock output select registers n	Change the output clock after disabling clock output (PCLOEn $=0$).	p. $383 \square$
				If the selected clock (fmain or fsub) stops during clock output (PCLOEn $=1$), the output becomes undefined.	p. $383 \square$
				To shift to STOP mode when the main system clock is selected (CSELn $=0$), set PCLOEn $=0$ before executing the STOP instruction. When the subsystem clock is selected (CSELn = 1), PCLOEn = 1 can be set because the clock can be output in STOP mode.	p. $383 \square$
	$\begin{aligned} & \pm \\ & \substack{\circ \\ \infty} \end{aligned}$	A/D converter	PERO: Peripheral enable register 0	When setting the A / D converter, be sure to set $A D C E N$ to 1 first. If $A D C E N=0$, writing to a control register of the A / D converter is ignored, and, even if the register is read, only the default value is read.	p. $390 \square$
			ADM: A/D converter mode register	A/D conversion must be stopped before rewriting bits ADSCM, FR0 to FR2, LV1, and LVO to values other than the identical data.	p. $392 \square$
				When using the A/D converter in normal mode $2(L V 1=0, L V 0=1)$ or low voltage mode ($\mathrm{LV} 1=1, \mathrm{LV} 0=0$), enable the input gate voltage boost circuit for the A / D converter by using the analog reference voltage control register (ADVRC), and then set ADCE and ADCS to 1 . After the voltage boost circuit stabilization time ($10 \mu \mathrm{~s}$) passes after the input gate voltage boost circuit for the A / D converter has been enabled, set ADCS to 1.	$\begin{aligned} & \text { pp. } 392 \square \\ & , 393 \end{aligned}$
			ADM1: A/D converter mode register 1	Rewriting ADM1 during A/D conversion is prohibited. Rewrite it when conversion operation is stopped (ADCS $=0$).	p. $394 \square$
			ADVRC: Analog reference voltage control register	When using the A/D converter in normal mode $2(L V 1=0, L V 0=1)$ or low voltage mode ($L V 1=1, L V 0=0$), enable the input gate voltage boost circuit for the A/D converter by using the analog reference voltage control register (ADVRC), and then set ADCE and ADCS to 1 . After the voltage boost circuit stabilization time ($10 \mu \mathrm{~s}$) passes after the input gate voltage boost circuit for the A / D converter has been enabled, set ADCS to 1.	p. $395 \square$
				To use voltage reference output to the positive reference voltage of the A/D converter, be sure to set VRON to 1 after setting VRSEL to 1.	p. $396 \square$
				Do not change the output voltage of the reference voltage by using VRGV during the voltage reference operation (VRON = 1).	p. $396 \square$
			ADCR: 12-bit A/D conversion result register	When writing to A / D converter mode register (ADM), analog input channel specification register (ADS), and A/D port configuration register (ADPC), the contents of ADCR may become undefined. Read the conversion result following conversion completion before writing to ADM, ADS, and ADPC. Using timing other than the above may cause an incorrect conversion result to be read.	p. $396 \square$
			ADCRH: 8-bit A/D conversion result register	When writing to A / D converter mode register (ADM), analog input channel specification register (ADS), and A/D port configuration register (ADPC), the contents of ADCRH may become undefined. Read the conversion result following conversion completion before writing to ADM, ADS, and ADPC. Using timing other than the above may cause an incorrect conversion result to be read.	p. $397 \square$

$\begin{aligned} & \grave{\varrho} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \frac{\pi}{U} \end{aligned}$		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \dot{5} \\ & \infty \\ & \infty \end{aligned}$	A/D converter	ADS: Analog input channel specification register	Be sure to clear bits 4 to 7 to "0".	p. $398 \square$
				Set a channel to be used for A/D conversion in the input mode by using port mode registers 2 and 15 (PM2, PM15).	p. $398 \square$
				Do not set the pin that is set by ADPC as digital I/O by ADS.	p. $398 \square$
				When using an operational amplifier n, the output signal of an operational amplifier n can be used as an analog input.	p. $398 \square$
			ADPC: A/D port configuration register	Set a channel to be used for A/D conversion in the input mode by using port mode registers 2 and 15 (PM2, PM15).	p. $399 \square$
				Do not set the pin that is set by ADPC as digital I/O by ADS.	p. $399 \square$
			PM2, PM15: Port mode registers 2 and 15	If a pin is set as an analog input port, not the pin level but "0" is always read.	p. $400 \square$
				When an operational amplifier is used, pins AMPn+, AMPn-, and AMPnO are used, so the alternative analog input functions cannot be used. The operational amplifier output signals, however, can be used as analog inputs.	p. $401 \square$
			Basic operations of A/D converter	Make sure the period of $\langle 4\rangle$ to $<8>$ is 1μ s or more.	p. $404 \square$
				To use an operational amplifier output for an analog input, start operating the operational amplifier before setting the A/D conversion operation (see CHAPTER 12 OPERATIONAL AMPLIFIER). Furthermore, do not change the operational amplifier setting during the A / D conversion operation.	p. $404 \square$
				To use an output voltage of the voltage reference for a positive reference voltage of the A / D converter, start operating the voltage reference before setting the A / D conversion operation (see CHAPTER 13 VOLTAGE REFERENCE). Furthermore, do not change the voltage reference setting during the A / D conversion operation.	p. $404 \square$
				When using the A/D converter in normal mode $2(L V 1=0, L V 0=1)$ or low voltage mode ($\mathrm{LV} 1=1, \mathrm{LV} 0=0$), enable the input gate voltage boost circuit for the A / D converter by using the analog reference voltage control register (ADVRC), and then set ADCE and ADCS to 1 . After the voltage boost circuit stabilization time ($10 \mu \mathrm{~s}$) passes after the input gate voltage boost circuit for the A/D converter has been enabled, set ADCS to 1.	p. $404 \square$
			A/D conversion operation	Make sure the period of $\langle 4\rangle$ to $<8>$ is 1μ s or more.	p. $411 \quad \square$
				$<4>$ may be done between $<5>$ and < $7>$.	p. $411 \square$
				$<4>$ can be omitted. However, ignore data of the first conversion after <8> in this case.	p. $411 \square$
				The period from <9> to <13> differs from the conversion time set using bits 5 to 1 (FR2 to FR0, LV1, LV0) of ADM. The period from $<12>$ to $<13>$ is the conversion time set using FR2 to FR0, LV1, and LV0.	p. $411 \square$
				To use an operational amplifier output for an analog input, start operating the operational amplifier before setting the A/D conversion operation (see CHAPTER 12 OPERATIONAL AMPLIFIER). Furthermore, do not change the operational amplifier setting during the A / D conversion operation.	p. $411 \square$
				To use an output voltage of the voltage reference for a positive reference voltage of the A / D converter, start operating the voltage reference before setting the A / D conversion operation (see CHAPTER 13 VOLTAGE REFERENCE). Furthermore, do not change the voltage reference setting during the A / D conversion operation.	p. $411 \square$
				When using the A/D converter in normal mode $2(L V 1=0, L V 0=1)$ or low voltage mode ($\mathrm{LV} 1=1, \mathrm{LV} 0=0$), enable the input gate voltage boost circuit for the A / D converter by using the analog reference voltage control register (ADVRC), and then set ADCE and ADCS to 1 . After the voltage boost circuit stabilization time ($10 \mu \mathrm{~s}$) passes after the input gate voltage boost circuit for the A/D converter has been enabled, set ADCS to 1.	p. $411 \square$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \hline \begin{array}{l} 1 \\ 0 \\ 0 \end{array} \end{aligned}$	A/D converter	Operating current in STOP mode	Shift to STOP mode after stopping the A/D converter (by setting bit 7 (ADCS) of the A / D converter mode register (ADM) to 0). The operating current can be reduced by setting bit 0 (ADCE) of the A/D converter mode register (ADM) to 0 at the same time. When using normal mode $2(L V 1=0, L V 0=1)$ or low voltage mode $(L V 1=1, L V 0=$ 0), clear bit 1 (VRGV) and bit 0 (VRON) of the analog reference voltage control register (ADVRC) to 0, and then shift to STOP mode. To restart from the standby status, clear bit 0 (ADIF) of interrupt request flag register 1L (IF1L) to 0 and start operation.	p. $414 \square$
	$\begin{array}{\|l} \hline \frac{\square}{0} \\ \mathbb{T} \end{array}$		Input range of ANIO to ANI10, ANI15	Observe the rated range of the ANIO to ANI10, ANI15 input voltage. If a voltage of $A V_{\text {dDo }}$ or higher and $A V$ ss or lower (even in the range of absolute maximum ratings) is input to an analog input channel, the converted value of that channel becomes undefined. In addition, the converted values of the other channels may also be affected.	p. $414 \square$
	$\begin{aligned} & \dot{0} \\ & 0 \\ & 0 \end{aligned}$		Conflicting operations	Conflict between A/D conversion result register (ADCR, ADCRH) write and ADCR or ADCRH read by instruction upon the end of conversion ADCR or ADCRH read has priority. After the read operation, the new conversion result is written to ADCR or ADCRH.	p. $414 \square$
				Conflict between ADCR or ADCRH write and A/D converter mode register (ADM) write, analog input channel specification register (ADS), or A/D port configuration register (ADPC) write upon the end of conversion ADM, ADS, or ADPC write has priority. ADCR or ADCRH write is not performed, nor is the conversion end interrupt signal (INTAD) generated.	p. $414 \square$
	$\begin{array}{\|l} \hline \frac{\text { D }}{6} \\ \text { ָ } \end{array}$		Noise countermeasures	To maintain the 12-bit resolution, attention must be paid to noise input to the AVrefp pin and pins ANI0 to ANI10, ANI15. <1> Connect a capacitor with a low equivalent resistance and a good frequency response to the power supply. $<2>$ The higher the output impedance of the analog input source, the greater the influence. To reduce the noise, connecting external C as shown in Figure 10-28 is recommended. $<3>$ Do not switch these pins with other pins during conversion. $<4>$ The accuracy is improved if the HALT mode is set immediately after the start of conversion.	p. $414 \square$
	$\begin{aligned} & \text { 芯 } \end{aligned}$		ANIO to ANI10, ANI15	The analog input pins (ANIO to ANI7) are also used as input port pins (P20 to P27). The analog input pins (ANI8 to ANI10, ANI15) are also used as input port pins (P150 to P152, P157). When A/D conversion is performed with any of ANIO to ANI10, and ANI15 selected, do not access P20 to P27, P150 to P152, and P157 while conversion is in progress; otherwise the conversion resolution may be degraded. It is recommended to select pins used as P20 to P27, P150 to P152, and P157 starting with the ANIO/P20 that is the furthest from $A V$ do.	p. $415 \square$
	$\begin{aligned} & \text { 무 } \\ & \text { त्ञ } \end{aligned}$			If the pins adjacent to the pins currently used for A/D conversion are used as digital I/O port, the expected value of the A/D conversion may not be obtained due to coupling noise. Therefore, make sure that digital pulses are not input to or output from the pins adjacent to the pin undergoing A/D conversion.	p. $415 \square$
				If any pin among pins of ports 2 and 15 is used as digital output port during A / D conversion, the expected value of the A / D conversion may not be obtained due to coupling noise. Therefore, make sure that digital pulses are not output to pins of ports 2 and 15 during A/D conversion.	p. $415 \square$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \text { 문 } \\ & \text { 조 } \end{aligned}$	A/D converter	Input impedance of ANIO to ANI10, ANI15 pins	This A/D converter charges a sampling capacitor for sampling during sampling time. Therefore, only a leakage current flows when sampling is not in progress, and a current that charges the capacitor flows during sampling. Consequently, the input impedance fluctuates depending on whether sampling is in progress, and on the other states. To make sure that sampling is effective, however, it is recommended to keep the output impedance of the analog input source to within $1 \mathrm{k} \Omega$, and to connect a capacitor of about 100 pF to the ANIO to ANI10 and ANI15 pins (see Figure 10-28).	p. $415 \square$
			AV ${ }_{\text {refp }}$ pin input impedance	A series resistor string of several tens of $k \Omega$ is connected between the $A V_{\text {refp }}$ and AVrefm (or $A V$ ss) pins. Therefore, if the output impedance of the reference voltage supply is high, this will result in a series connection to the series resistor string between the AVrefp and $A V_{\text {refm }}$ (or $A V s s$) pins, resulting in a large reference voltage ($A V_{\text {ref }}$) error of A / D converter.	p. $416 \square$
	$\begin{aligned} & \pm \\ & 0 \\ & \infty \end{aligned}$		Interrupt request flag (ADIF)	The interrupt request flag (ADIF) is not cleared even if the analog input channel specification register (ADS) is changed. Therefore, if an analog input pin is changed during A / D conversion, the A / D conversion result and ADIF for the pre-change analog input may be set just before the ADS rewrite. Caution is therefore required since, at this time, when ADIF is read immediately after the ADS rewrite, ADIF is set despite the fact A/D conversion for the post-change analog input has not ended. When A / D conversion is stopped and then resumed, clear ADIF before the A / D conversion operation is resumed.	p. $416 \square$
			Conversion results just after A/D conversion start	The first A / D conversion value immediately after A / D conversion starts may not fall within the rating range if the ADCS bit is set to 1 within $1 \mu \mathrm{~s}$ after the ADCE bit was set to 1 , or if the ADCS bit is set to 1 with the ADCE bit $=0$. Take measures such as polling the A / D conversion end interrupt request (INTAD) and removing the first conversion result.	p. $416 \square$
			A/D conversion result register (ADCR, ADCRH) read operation	When a write operation is performed to A/D converter mode register (ADM), A/D converter mode register 1 (ADM1), analog input channel specification register (ADS), and A/D port configuration register (ADPC), the contents of ADCR and ADCRH may become undefined. Read the conversion result following conversion completion before writing to ADM, ADM1, ADS, or ADPC. Using a timing other than the above may cause an incorrect conversion result to be read.	p. $417 \square$
			Internal equivalent circuit	The equivalent circuit of the analog input block is shown below. (See Figure 10-30.)	p. $417 \square$
			Rewriting DACSWn during A/D conversion	Rewriting DACSWn ($\mathrm{n}=0,1$) during A/D conversion is prohibited when both the positive reference voltage of A / D converter (ADrefp) and the positive reference voltage of the D/A converter (DAref) are the voltage reference output (Vrefout) $($ VRSEL $=1$ and DAREF $=1$). Rewrite it when conversion operation is stopped (ADCS $=0$).	p. $417 \square$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \pm \\ & \dot{\delta} \\ & 0 \end{aligned}$	D/A converter	PERO: Peripheral enable register 0	When setting the D/A converter, be sure to set DACEN to 1 first. If DACEN $=0$, writing to a control register of the D/A converter is ignored, and, even if the register is read, only the default value is read.	p. $420 \square$
			DACSW0, DACSW1: D/A conversion value setting registers W0 and W1	Rewriting DACSWn during A/D conversion is prohibited when both the positive reference voltage of the A/D converter (ADrefp) and the positive reference voltage of the D/A converter (DAref) are the voltage reference output (Vrefout) (VRSEL = 1 and DAREF $=1$). Rewrite it when conversion operation is stopped ($A D C S=0$).	$\begin{array}{ll} \hline \text { pp. } 422 \square \\ , 424 \end{array}$
			Operation of D/A Converter	Even if 1,0 , and then 1 is set to the DACEn bit, there is a wait after 1 is set for the last time.	$\begin{array}{\|l} \mid p p . ~ \end{array} 233$
			Operation in normal mode	If the DACSWn or DACSn register is rewritten during the settling time, D/A conversion is aborted and reconversion by using the rewritten values starts.	p. $423 \square$
			Operation in real-time output mode	Make the interval between each generation of the INTTMOm signal longer than the settling time. If an INTTMOm signal is generated during the settling time, D/A conversion is aborted and reconversion starts.	p. $424 \square$
				Even if the generation of the INTTMOm signal and rewriting the DACSWn or DACSn register conflict, the D/A conversion result is output.	p. $424 \square$
			Digital port I/O function, which is the alternate function of the ANO0, ANO1 pins	The digital port I/O function, which is the alternate function of the ANO0 and ANO1 pins, does not operate during D/A conversion. When the P11 register is read during D/A conversion, 0 is read in input mode and the set value of the P11 register is read in output mode. If the digital output mode is set, no output data is output to pins.	p. $424 \square$
			Operation of the D/A converter continues in the HALT and STOP mode	The operation of the D/A converter continues in the HALT and STOP mode. To lower the power consumption, therefore, clear the DACEn bit of the DAM register to 0 (D/A conversion stop), and execute HALT or STOP instruction.	p. $424 \square$
	$$	Operational amplifier	PERO: Peripheral enable register 0	When setting operational amplifier, be sure to set ADCEN to 1 first. If $A D C E N=0$, writing to a control register of operational amplifier is ignored, and, even if the register is read, only the default value is read.	p. 427
			OAC: Operational	Use the ADPC register to specify as analog inputs the pins to be used with operational amplifiers.	p. $428 \square$
			amplifier control register	When using as digital inputs the pins of ports 2 and 15, which are not used with operational amplifiers, when the operational amplifiers are used, make sure that the input levels are fixed.	p. $428 \square$
			ADPC: A/D port configuration register	Set pins to be used with operational amplifiers in the input mode by using port mode registers 2 and 15 (PM2, PM15).	p. $429 \square$
			PM2, PM15:	If a pin is set as an analog input port, not the pin level but "0" is always read.	p. $430 \square$
	$\begin{array}{\|l} \hline \frac{\bar{y}}{\widetilde{1}} \\ \frac{1}{2} \end{array}$		Port mode registers 2 and 15	When an operational amplifier is used, AMPn+, AMPn-, and AMPnO pins are used, so the alternative analog input functions cannot be used. The operational amplifier output signals, however, can be used as analog inputs.	$\begin{aligned} & \text { pp. } 431 \\ & \text {, } 432 \end{aligned}$
	$$		Single AMP mode	To use as an input of the A/D converter a voltage that has been amplified in single amplifier mode, enable operation in single amplifier mode before selecting an analog input channel by using the ADS register.	p. $433 \square$
		Voltage reference	PERO: Peripheral enable register 0	When setting voltage reference, be sure to set ADCEN to 1 first. If $A D C E N=0$, writing to a control register of voltage reference is ignored, and, even if the register is read, only the default value is read.	p. $435 \square$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \infty \end{aligned}$	Voltage reference	ADVRC: A/D reference voltage control register	During voltage reference operation, be sure to connect a tantalum capacitor (capacitance: $10 \mu \mathrm{~F} \pm 30 \%$, ESR: 2Ω (max.), ESL: 10 nH (max.)) and a ceramic capacitor (capacitance: $0.1 \mu \mathrm{~F} \pm 30$ \%, ESR: 2Ω (max.), ESL: 10 nH (max.)) to the Vrefout/AVrefp pin for stabilizing the reference voltage. Furthermore, do not apply a voltage from the Vrefout/AVrefp pin during voltage reference operation.	p. $436 \square$
				To use voltage reference output (Vrefout) to the positive reference voltage of the A/D converter (ADrefp) and the positive reference voltage of the the D/A converter (DArefp), be sure to set VRON to 1 after setting VRSEL to 1.	p. $436 \square$
				Rewriting DACSWn ($n=0,1$) during A/D conversion is prohibited when both the positive reference voltage of the A / D converter (ADrEfP) and the positive reference voltage fo the D/A converter (DArefp) are the voltage reference output (Vrefout) (VRSEL = 1 and DAREF = 1). Rewrite it when conversion operation is stopped (ADCS = 0).	p. $437 \square$
				Do not change the output voltage of the reference voltage by using VRGV during the voltage reference operation (VRON $=1$).	p. $437 \square$
	$\begin{array}{\|l} \hline \frac{\text { 무 }}{\text { w }} \end{array}$		Vrefout pin	The Vrefout output voltage can be used only as the positive reference voltage of the internal A / D and D / A converters of the microcontroller. Do not connect an external circuit other than a tantalum capacitor (capacitance: $10 \mu \mathrm{~F} \pm 30 \%$, ESR: 2Ω (max.), ESL: 10 nH (max.)) and a ceramic capacitor (capacitance: $0.1 \mu \mathrm{~F} \pm 30 \%$, ESR: 2Ω (max.), ESL: 10 nH (max.)) to the Vrefout pin for stabilizing the reference voltage.	p. $437 \square$
	$\begin{aligned} & \frac{\pi}{0} \\ & 0 \end{aligned}$	Configuration of serial array unit	SDRmn: Lower 8 bits of the serial data register mn	Be sure to clear bit 8 to "0".	p. $445 \square$
			PERO: Peripheral enable register 0	When setting serial array unit m, be sure to set $S A U m E N$ to 1 first. If $S A U m E N=0$, writing to a control register of serial array unit m is ignored, and, even if the register is read, only the default value is read (except for input switch control register (ISC), noise filter enable register (NFEN0), port input mode register (PIM1, PIM7), port output mode register (POM1, POM7, POM8), port mode registers (PM1, PM5, PM7, PM8), and port registers (P1, P5, P7, P8)).	p. $447 \square$
				After setting the SAUmEN to 1 , be sure to set the SPSm register after 4 or more clocks have elapsed.	p. $447 \square$
			SPSm: Serial clock select register m	Be sure to clear bits 15 to 8 to "0".	p. $448 \quad \square$
				After setting the SAUmEN to 1 , be sure to set the SPSm register after 4 or more clocks have elapsed.	p. $448 \square$
			SMRmn: Serial mode register mn	Be sure to clear bits 13 to $9,7,4$, and 3 to " 0 ". Be sure to set bit 5 to " 1 ".	p. $449 \square$
			SCRmn: Serial communication operation setting register mn	Be sure to clear bits 3,6 , and 11 to " 0 ". Be sure to set bit 2 to " 1 ".	$\left\lvert\, \begin{aligned} & \text { pp. } 451 \\ & \text { to } 453 \end{aligned}\right.$
			SDRmn: Serial data register mn	Be sure to clear bit 8 to "0".	p. $454 \square$
				Setting SDRmn[15:9] $=(0000000 \mathrm{~B}, 0000001 \mathrm{~B})$ is prohibited when UART is used.	p. $454 \square$
				Setting SDRmn[15:9] = 0000000B is prohibited when the simplified $I^{2} \mathrm{C}$ is used. Set SDRmn[15:9] to 0000001B or greater.	p. $454 \square$

		Function	Details of Function	Cautions	Page
	$$	Configuration of serial array unit	SIRmn: Serial flag clear trigger register mn	Be sure to clear bits 15 to 3 to " 0 ".	p. $457 \square$
			SSm: Serial channel start register m	Be sure to clear bits 15 to 4 to " 0 ".	p. 459
			STm: Serial channel stop register m	Be sure to clear bits 15 to 4 to " 0 ".	p. $460 \square$
			SOEm: Serial output enable register m	Be sure to clear bits 15 to 3 of SOE0, and bits 1 and 15 to 3 of SOE1 to "0".	p. $461 \square$
			SOm: Serial output register m	Be sure to set bits 11 and 3 of SO , and bits 11 to 9,3 , and 1 of SO1 to " 1 ". And be sure to clear bits 15 to 12 and 7 to 4 of SOm to " 0 ".	p. $462 \square$
			SOLm: Serial output level register m	Be sure to clear bits 15 to 3 , 1 to " 0 ".	p. $463 \square$
			ISC: Input switch control register	Be sure to clear bits 7 to 5 to " 0 ".	p. $464 \square$
			NFENO: Noise filter enable register 0	Be sure to clear bits 7, 5, 3, and 1 to " 0 ".	p. $465 \square$
		Operation stop mode	Stopping the operation by units	If $\mathrm{SAUmEN}=0$, writing to a control register of serial array unit m is ignored, and, even if the register is read, only the default value is read (except for input switch control register (ISC), noise filter enable register (NFENO), port input mode register (PIM1, PIM7), port output mode register (POM1, POM7, POM8), port mode registers (PM1, PM5, PM7, PM8), and port registers (P1, P5, P7, P8)).	p. $469 \square$
		3-wire serial I/O (CSI00, CSI01,	Master transmission	After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.	$\begin{gathered} \text { pp.475, } \square \\ 479,481 \end{gathered}$
		CSI10, CSI20) communication	Master transmission (in continuous transmission mode)	The MDmn0 bit can be rewritten even during operation. However, rewrite it before transfer of the last bit is started, so that it will be rewritten before the transfer end interrupt of the last transmit data.	p. $480 \square$
			Master reception	After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.	$\begin{array}{\|l\|} \hline \text { pp. } 484, ~ \\ 487 \\ \hline \end{array}$
			Master transmission/ reception	After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.	$\begin{aligned} & \text { pp.490, } \square \\ & 493,494 \end{aligned}$
			Master transmission/ reception (in continuous transmission/ reception mode)	The MDmn0 bit can be rewritten even during operation. However, rewrite it before transfer of the last bit is started, so that it has been rewritten before the transfer end interrupt of the last transmit data.	p. $495 \square$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \pm \\ & \dot{\delta} \\ & 0 \end{aligned}$	3-wire serial I/O (CSIOO, CSI01, CSI10, CSI20) communication	Slave transmission	After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.	$\begin{aligned} & \text { pp.498, } \square \\ & 502,504 \end{aligned}$
			Slave transmission (in continuous transmission mode)	The MDmn0 bit can be rewritten even during operation. However, rewrite it before transfer of the last bit is started.	p. $503 \square$
			Slave reception	After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.	$\begin{array}{\|l\|} \hline p p .507, \quad \square \\ 510 \end{array}$
			Slave transmission/ reception	After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.	$\begin{array}{\|l\|} \hline p p .513, \\ 517,518 \end{array}$
			Slave transmission/ reception (in continuous transmission/ reception mode)	The MDmn0 bit can be rewritten even during operation. However, rewrite it before transfer of the last bit is started, so that it will be rewritten before the transfer end interrupt of the last transmit data.	p. $519 \square$
		UART (UARTO, UART1, UART2, UART3) communication	UART communication	When using serial array units 0 and 1 as UARTs, the channels of both the transmitting side (even-number channel) and the receiving side (odd-number channel) can be used only as UARTs.	p. $522 \square$
			UART transmission	After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.	$\begin{aligned} & \text { pp.526, } \square \\ & 530,532 \end{aligned}$
			UART transmission (in continuous transmission mode)	The MDmn0 bit can be rewritten even during operation. However, rewrite it before transfer of the last bit is started, so that it has been rewritten before the transfer end interrupt of the last transmit data.	p. $531 \square$
			UART reception	For the UART reception, be sure to set SMRmr of channel r that is to be paired with channel n .	$\begin{aligned} & \mathrm{pp} .534, \square \\ & 535 \end{aligned}$
				After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.	$\begin{aligned} & \mathrm{pp.} .536, \square \\ & 539 \end{aligned}$
			Calculating baud rate	Setting SDRmn [15:9] $=(0000000 \mathrm{~B}, 0000001 \mathrm{~B})$ is prohibited.	p. $548 \square$
		Simplified $I^{2} \mathrm{C}$ (IIC10, IIC20) communication	Address field transmission	After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.	p. 555
			Data reception	ACK is also output when the last data is received. Communication is then completed by setting " 1 " to the STmn bit to stop operation and generating a stop condition.	p. $564 \square$
			Calculating baud rate	Setting SDRmn [15:9] $=0000000 \mathrm{~B}$ is prohibited. Set SDRmn[15:9] to 0000001B or greater.	p. $566 \square$

$\begin{aligned} & \grave{\vdots} \\ & \frac{\mathbf{N}}{\mathbf{O}} \\ & \frac{\mathrm{C}}{0} \end{aligned}$		Function	Details of Function	Cautions	Page
	$$	Serial interface IICA	IICA: IICA shift register	Do not write data to IICA during data transfer.	p. $581 \square$
				Write or read IICA only during the wait period. Accessing IICA in a communication state other than during the wait period is prohibited. When the device serves as the master, however, IICA can be written only once after the communication trigger bit (STT) is set to 1 .	p. $581 \square$
				When communication is reserved, write data to IICA after the interrupt triggered by a stop condition is detected.	p. $581 \square$
			PERO: Peripheral enable register 0	When setting serial interface IICA, be sure to set IICAEN to 1 first. If IICAEN $=0$, writing to a control register of serial interface IICA is ignored, and, even if the register is read, only the default value is read.	p. $584 \square$
			IICCTLO: IICA control register 0	If the operation of $I^{2} C$ is enabled (IICE $=1$) when the SCLO line is at high level, the SDAO line is at low level, and DFC of the IICCTL1 register is 1, a start condition will be inadvertently detected immediately. Immediately after enabling $I^{2} C$ to operate (IICE = 1), set LREL (1) by using a 1-bit memory manipulation instruction.	p. $585 \square$
				When bit 3 (TRC) of the IICA status register (IICS) is set to 1 , WREL is set to 1 during the ninth clock and wait is canceled, after which TRC is cleared and the SDA0 line is set to high impedance. Release the wait performed while the TRC bit is 1 (transmission status) by writing to the IICA shift register.	p. $588 \square$
			IICS: IICA status register	Reading the IICS register while the address match wakeup function is enabled (WUP $=1$) in STOP mode is prohibited. When the WUP bit is changed from 1 to 0 (wakeup operation is stopped), regardless of the INTIICA interrupt request, the change in status is not reflected until the next start condition or stop condition is detected. To use the wakeup function, therefore, enable (SPIE $=1$) the interrupt generated by detecting a stop condition and read the IICS register after the interrupt has been detected.	p. $589 \square$
			IICF: IICA flag	Write to STCEN only when the operation is stopped (IICE = 0).	p. $592 \square$
			register	As the bus release status (IICBSY $=0$) is recognized regardless of the actual bus status when STCEN $=1$, when generating the first start condition (STT $=1$), it is necessary to verify that no third party communications are in progress in order to prevent such communications from being destroyed.	p. $592 \square$
				Write to IICRSV only when the operation is stopped (IICE = 0).	p. $592 \square$
			Setting IICWL and IICWH on slave side	Note the minimum fclk operation frequency when setting the transfer clock. The minimum fcLk operation frequency for serial interface IICA is determined according to the mode. Fast mode: \quad fclk $=3.5 \mathrm{MHz}$ (MIN.) Standard mode: fcLk $=1 \mathrm{MHz}$ (MIN.)	p. $597 \square$
			Canceling wait	If a processing to cancel a wait state executed when WUP (bit 7 of IICA control register 1 (IICCTL1)) = 1, the wait state will not be canceled.	p. $604 \square$
			When STCEN (bit 1 of IICA flag register (IICF)) $=$ 0	Immediately after $I^{2} C$ operation is enabled (IICE $=1$), the bus communication status (IICBSY $=1$) is recognized regardless of the actual bus status. When changing from a mode in which no stop condition has been detected to a master device communication mode, first generate a stop condition to release the bus, then perform master device communication. When using multiple masters, it is not possible to perform master device communication when the bus has not been released (when a stop condition has not been detected). Use the following sequence for generating a stop condition. $<1>$ Set IICA control register 1 (IICCTL1). $<2>$ Set bit 7 (IICE) of IICA control register 0 (IICCTLO) to 1. $<3>$ Set bit 0 (SPT) of IICCTLO to 1.	p. $616 \square$
			$\begin{aligned} & \text { When STCEN = } \\ & 1 \end{aligned}$	Immediately after $I^{2} \mathrm{C}$ operation is enabled (IICE $=1$), the bus released status (IICBSY $=0$) is recognized regardless of the actual bus status. To generate the first start condition (STT = 1), it is necessary to confirm that the bus has been released, so as to not disturb other communications.	p. $616 \square$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \hline \begin{array}{l} \mathrm{O} \\ 0 \\ \hline \end{array} \end{aligned}$	Serial interface IICA	If other I ${ }^{2} \mathrm{C}$ communications are already in progress	If $I^{2} C$ operation is enabled and the device participates in communication already in progress when the SDAO pin is low and the SCLO pin is high, the macro of $I^{2} C$ recognizes that the SDAO pin has gone low (detects a start condition). If the value on the bus at this time can be recognized as an extension code, $\overline{A C K}$ is returned, but this interferes with other $I^{2} C$ communications. To avoid this, start $I^{2} C$ in the following sequence. <1> Clear bit 4 (SPIE) of IICCTLO to 0 to disable generation of an interrupt request signal (INTIICA) when the stop condition is detected. $<2>$ Set bit 7 (IICE) of IICCTLO to 1 to enable the operation of $I^{2} C$. $<3>$ Wait for detection of the start condition. $<4>$ Set bit 6 (LREL) of IICCTLO to 1 before $\overline{\mathrm{ACK}}$ is returned (4 to 80 clocks after setting IICE to 1), to forcibly disable detection.	p. $616 \square$
			STT, SPT: Bits 1, 0 of IICA control register 0 (IICCTLO)	Setting STT and SPT (bits 1 and 0 of IICCTLO) again after they are set and before they are cleared to 0 is prohibited.	p. $616 \square$
			Reserving transmission	When transmission is reserved, set SPIE (bit 4 of IICTLO) to 1 so that an interrupt request is generated when the stop condition is detected. Transfer is started when communication data is written to IICA after the interrupt request is generated. Unless the interrupt is generated when the stop condition is detected, the device stops in the wait state because the interrupt request is not generated when communication is started. However, it is not necessary to set SPIE to 1 when MSTS (bit 7 of IICS) is detected by software.	p. $616 \square$
	$$	LCD controller/d river	LCDMD: LCD mode register	Bits 0 to 3, 6 and 7 must be set to 0 .	p. $667 \square$
			LCDM: LCD display mode register	When LCD display is not performed or necessary, set SCOC and VLCON to 0 , in order to reduce power consumption.	p. $668 \square$
				When the external resistance division method has been set (MDSET1 = MDSET0 = 0), do not set VLCON to 1.	p. $668 \square$
				Set BLON and LCDSEL to 0 when 8 has been selected as the number of time slices for the display mode.	p. $668 \square$
				To use the internal voltage boosting method, specify the reference voltage by using the VLCD register (or perform a reset to use the default value of the reference voltage), wait for the reference voltage setup time (2 ms (min.)), and then set VLCON to 1.	p. $668 \square$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \hline \frac{ \pm}{0} \\ & \infty \end{aligned}$	LCD controller/d river	LCDM: LCD display mode register	To manipulate VLCON when using the internal voltage boosting method or capacitor split method, follow the procedure below. A. To stop the operation of the voltage boosting/capacitor split circuit after switching display status from on to off: 1) Set to display off status by setting LCDON $=0$. 2) Disable outputs of all the segment buffers and common buffers by setting SCOC $=0$. 3) Stop the operation of the voltage boosting/capacitor split circuit by setting V LCON $=0$. B. To stop the operation of the voltage boosting/capacitor split circuit during display on status: Setting prohibited. Be sure to stop the operation of the voltage boosting/capacitor split circuit after setting display off. C. To set display on from stop status of the voltage boosting/capacitor split circuit: 1) Start the operation of the voltage boosting/capacitor split circuit by setting $\mathrm{VLCON}=1$, then wait for the voltage boosting/capacitor split wait time (see CHAPTER 31 ELECTRICAL SPECIFICATIONS). 2) Set all the segment buffers and common buffers to non-display output status by setting $\mathrm{SCOC}=1$. 3) Set display on by setting LCDON $=1$.	p. $669 \square$
			LCDC0: LCD clock control register 0	Bits 3, 6, and 7 must be set to 0 .	p. $670 \square$
				Set the LCD clock (LCDCL) to no more than 512 Hz when the internal voltage boost method has been set.	p. $670 \square$
			VLCD: LCD boost level control register	The VLCD setting is valid only when the voltage boost circuit is operating.	p. $671 \quad \square$
				Bits 5 to 7 must be set to 0 .	p. $671 \square$
				Be sure to change the VLCD value after having stopped the operation of the voltage boost circuit (VLCON = 0).	p. $671 \square$
				These values above may change after device evaluation.	p. $671 \square$
				To use the internal voltage boosting method, specify the reference voltage by using the VLCD register (or perform a reset to use the default value of the reference voltage), wait for the reference voltage setup time (2 ms (min.)), and then set VLCON to 1.	p. $671 \square$
			PFALL: Port function register	For $78 \mathrm{KOR} / \mathrm{LF} 3$, bits 3 and 7 must be set to 0 . For $78 \mathrm{KOR} / \mathrm{LG} 3$ and $78 \mathrm{KOR} / \mathrm{LH} 3$, bit 7 must be set to 0 .	p. $672 \square$
			SEGEN: Segment enable register	SEGEN can be written only once after reset release.	p. $673 \quad \square$
				For 78K0R/LF3, bits 1 to 7 must be set to 0 . For 78 K0R/LG3, bits 2 to 7 must be set to 0 . For $78 \mathrm{KOR} / \mathrm{LH} 3$, bits 5 to 7 must be set to 0 .	p. $673 \square$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \hline \begin{array}{l} 0 \\ 0 \end{array} \end{aligned}$	LCD controller/d river	ISC: Input switch control register	Be sure to clear bits 5 to 7 to " 0 ".	p. $674 \square$
			Internal voltage boosting method	When stopping the operation of the voltage boost circuit circuit, be sure to set SCOC and LCDON to 0 before setting VLCON to 0 .	p. $679 \square$
			Capacitor split method	When stopping the operation of the capacitor split circuit, be sure to set SCOC and LCDON to 0 before setting VLCON to 0.	p. $680 \square$
			External resistance division method	To stabilize the potential of the Vlco to Vlc3 pins, it is recommended to connect a capacitor of about $0.1 \mu \mathrm{~F}$ between each of the pins from $\mathrm{V}_{\mathrm{Lc} 0}$ to $\mathrm{V}_{\mathrm{LC} 3}$ and the GND pin as needed.	$\begin{aligned} & \text { pp. } 703 \square \square \\ & , 704 \end{aligned}$
			Selection of LCD display data	When the LCD display data memory is used when the number of time slices is eight, LCD display data (A-pattern, B-pattern, or blinking display) cannot be selected.	p. $706 \square$
	$\begin{aligned} & \dot{\square} \\ & \dot{0} \end{aligned}$	Multiplier/d ivider	MDAH, MDAL: Multiplication/divi sion data register A	Do not rewrite the MDAH and MDAL values during division operation processing (while the multiplication/division control register (MDUC) is 81 H). The operation will be executed in this case, but the operation result will be an undefined value.	p. $711 \square$
				The MDAH and MDAL values read during division operation processing (while MDUC is 81 H) will not be guaranteed.	p. $711 \square$
			MDBL, MDBH: Multiplication/divi sion data register B	Do not rewrite the MDBH and MDBL values during division operation processing (while the multiplication/division control register (MDUC) is 81 H). The operation result will be an undefined value.	p. $711 \square$
				Do not set MDBH and MDBL to 0000 H in the division mode. If they are set, the operation result will be an undefined value.	p. $711 \square$
			MDCL, MDCH: Multiplication/divi sion data register C	The MDCH and MDCL values read during division operation processing (while the multiplication/division control register (MDUC) is 81 H) will not be guaranteed.	p. $712 \square$
			MDUC: Multiplication/divi sion control register	Do not rewrite DIVMODE during operation processing (while DIVST is 1). If it is rewritten, the operation result will be an undefined value.	p. $713 \square$
				DIVST cannot be cleared (0) by using software during division operation processing (while DIVST is 1).	p. $713 \square$
	$\begin{aligned} & \stackrel{ \pm}{0} \\ & 0 \end{aligned}$	DMA controller	DBCn: DMA byte count register n	Be sure to clear bits 15 to 10 to "0".	p. $720 \quad \square$
				If the general-purpose register is specified or the internal RAM space is exceeded as a result of continuous transfer, the general-purpose register or SFR space are written or read, resulting in loss of data in these spaces. Be sure to set the number of times of transfer that is within the internal RAM space.	p. $720 \square$
			DRCn: DMA operation control register n	The DSTn flag is automatically cleared to 0 when a DMA transfer is completed. Writing the DENn flag is enabled only when DSTn $=0$. When a DMA transfer is terminated without waiting for generation of the interrupt (INTDMAn) of DMAn, therefore, set DSTn to 0 and then DENn to 0 (for details, refer to 18.5.7 Forced termination by software).	p. $723 \square$
				When the FSEL bit of the OSMC register has been set to 1 , do not enable (DENn = 1) DMA operation for at least three clocks after the setting.	p. $723 \square$
			Holding DMA transfer pending by DWAITn	When DMA transfer is held pending while using both DMA channels, be sure to held the DMA transfer pending for both channels (by setting DWAIT0 and DWAIT1 to 1). If the DMA transfer of one channel is executed while that of the other channel is held pending, DMA transfer might not be held pending for the latter channel.	p. $735 \square$
			Forced termination of DMA transfer	In example 3, the system is not required to wait two clock cycles after the DWAITn bit is set to 1. In addition, the system does not have to wait two clock cycles after clearing the DSTn bit to 0 , because more than two clock cycles elapse from when the DSTn bit is cleared to 0 to when the DENn bit is cleared to 0 .	p. $737 \square$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \hline \begin{array}{l} 1 \\ 0 \\ 0 \end{array} \end{aligned}$	DMA controller	Priority	During DMA transfer, a request from the other DMA channel is held pending even if generated. The pending DMA transfer is started after the ongoing DMA transfer is completed. If two DMA requests are generated at the same time, however, DMA channel 0 takes priority over DMA channel 1. If a DMA request and an interrupt request are generated at the same time, the DMA transfer takes precedence, and then interrupt servicing is executed.	p. $738 \square$
	$\begin{array}{\|l\|} \hline \frac{\square}{2} \\ \frac{\pi}{\top} \end{array}$		Response time	The response time of DMA transfer is as follows. (See Table 18-2.)	p. $738 \square$
	$\begin{array}{\|l\|} \hline \pm \\ 0 \\ 0 \end{array}$		Operation in standby mode	The DMA controller operates as follows in the standby mode. (See Table 18-3.)	p. $739 \square$
			DMA pending instruction	Even if a DMA request is generated, DMA transfer is held pending immediately after the following instructions. - CALL !addr16 - CALL \$!addr20 - CALL !!addr20 - CALL rp - CALLT [addr5] - BRK - Bit manipulation instructions for registers IF0L, IFOH, IF1L, IF1H, IF2L, IF2H, MKOL, MK0H, MK1L, MK1H, MK2L, MK2H, PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H and PSW each.	p. $739 \square$
			Operation if address in general-purpose register area or other than those of internal RAM area is specified	The address indicated by DRAOn is incremented during DMA transfer. If the address is incremented to an address in the general-purpose register area or exceeds the area of the internal RAM, the following operation is performed. - In mode of transfer from SFR to RAM The data of that address is lost. - In mode of transfer from RAM to SFR Undefined data is transferred to SFR. In either case, malfunctioning may occur or damage may be done to the system. Therefore, make sure that the address is within the internal RAM area other than the general-purpose register area.	p. $739 \square$
	$\begin{aligned} & \hline \frac{1}{0} \\ & 0 \end{aligned}$	Interrupt functions	IFOL, IFOH, IF1L, IF1H, IF2L, IF2H: Interrupt request flag registers	When operating a timer, serial interface, or A/D converter after standby release, operate it once after clearing the interrupt request flag. An interrupt request flag may be set by noise.	p. $748 \square$

		Function	Details of Function	Cautions	Page
	$\begin{array}{\|l\|} \hline \begin{array}{l} \mathrm{D} \\ \mathrm{c} \end{array} \\ \hline \end{array}$	Interrupt functions	IFOL, IFOH, IF1L, IF1H, IF2L, IF2H: Interrupt request flag registers	When manipulating a flag of the interrupt request flag register, use a 1-bit memory manipulation instruction (CLR1). When describing in C language, use a bit manipulation instruction such as "IFOL. $0=0$;" or "_asm("clr1 IFOL, 0");" because the compiled assembler must be a 1-bit memory manipulation instruction (CLR1). If a program is described in C language using an 8-bit memory manipulation instruction such as "IFOL \& = 0xfe;" and compiled, it becomes the assembler of three instructions. mova, IFOL and a, \#OFEH mov IFOL, a In this case, even if the request flag of another bit of the same interrupt request flag register (IFOL) is set to 1 at the timing between "mov a, IFOL" and "mov IFOL, a", the flag is cleared to 0 at "mov IFOL, a". Therefore, care must be exercised when using an 8-bit memory manipulation instruction in C language.	p. $748 \square$
				Be sure to clear bits 5,6 of IFOH, bit 3 of IF1L, bit 3 of IF1H, bits 5 to 7 of IF2L, bits 0 , 6, 7 of IF2H to 0. (78K0R/LF3)	p. $749 \square$
				Be sure to clear bit 3 of IF1H, bits 6, 7 of IF2H to 0. (78K0R/LG3)	p. $750 \square$
				Be sure to clear bits 6,7 of IF2H to 0. (78K0R/LH3)	p. $751 \square$
			MKOL, MKOH, MK1L, MK1H, MK2L, MK2H: Interrupt mask flag registers	Be sure to set bits 5 , 6 of MK0H, bit 3 of MK1L, bit 3 of MK1H, bits 5 to 7 of MK2L, bits $0,6,7$ of MK2H to 1. (78K0R/LF3)	p. $752 \square$
				Be sure to set bit 3 of MK1H, bits 6, 7 of MK2H to 1. (78K0R/LG3)	p. $753 \square$
				Be sure to set bits 6, 7 of MK2H to 1. (78K0R/LH3)	p. $754 \square$
			$\begin{aligned} & \hline \text { PR00L, PR00H, } \\ & \text { PR01L, PR01H, } \\ & \text { PR02L, PR02H, } \\ & \text { PR10L, PR10H, } \\ & \text { PR11L, PR11H, } \\ & \text { PR12L, PR12H: } \\ & \text { Priority } \\ & \text { specification flag } \\ & \text { registers } \end{aligned}$	Be sure to set bits 5, 6 of PROOH and PR10H, bit 3 of PR01L and PR11L to 1. (78K0R/LF3)	p. $755 \square$
				Be sure to set bit 3 of PR01H and PR11H, bits 5 to 7 of PR02L and PR12L, bits 0,6 , 7 of PR02H and PR12H to 1. (78K0R/LF3)	p. $756 \square$
				Be sure to set bit 3 of PR01H and PR11H, bits 6,7 of PR02H and PR12H to 1. (78K0R/LG3)	p. $757 \square$
				Be sure to set bits 6, 7 of PR02H and PR12H to 1. (78K0R/LH3)	p. $758 \square$
			EGP0, EGP1: External interrupt rising edge enable registers, EGNO, EGN1: External interrupt falling edge enable registers	Select the port mode by clearing EGPn and EGNn to 0 because an edge may be detected when the external interrupt function is switched to the port function.	p. $762 \square$
			Software interrupt request acknowledgment	Do not use the RETI instruction for restoring from the software interrupt.	p. $766 \square$
			BRK instruction	The BRK instruction is not one of the above-listed interrupt request hold instructions. However, the software interrupt activated by executing the BRK instruction causes the IE flag to be cleared. Therefore, even if a maskable interrupt request is generated during execution of the BRK instruction, the interrupt request is not acknowledged.	p. $770 \square$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{\delta} \\ & \infty \\ & \hline \end{aligned}$	Key interrupt function	KRM: Key return mode register	If any of the KRM0 to KRM7 bits used is set to 1 , set bits 0 to 7 (PU70 to PU77) of the corresponding pull-up resistor register 7 (PU7) to 1.	p. $772 \square$
				An interrupt will be generated if the target bit of the KRM register is set while a low level is being input to the key interrupt input pin. To ignore this interrupt, set the KRM register after disabling interrupt servicing by using the interrupt mask flag. Afterward, clear the interrupt request flag and enable interrupt servicing after waiting for the key interrupt input low-level width (250 ns or more).	p. $772 \square$
				The bits not used in the key interrupt mode can be used as normal ports.	p. $772 \square$
	$\begin{gathered} \pm \\ 0 \\ \hline \end{gathered}$	Standby function	-	The STOP mode can be used only when the CPU is operating on the main system clock. The STOP mode cannot be set while the CPU operates with the subsystem clock. The HALT mode can be used when the CPU is operating on either the main system clock or the subsystem clock.	p. $773 \square$
				When shifting to the STOP mode, be sure to stop the peripheral hardware operation operating with main system clock before executing STOP instruction.	p. $773 \square$
				The following sequence is recommended for operating current reduction of the A/D converter when the standby function is used: First clear bit 7 (ADCS) and bit 0 (ADCE) of the A / D converter mode register (ADM) to 0 to stop the A / D conversion operation, and then execute the STOP instruction.	p. $773 \square$
				It can be selected by the option byte whether the internal low-speed oscillator continues oscillating or stops in the HALT or STOP mode. For details, see CHAPTER 26 OPTION BYTE.	p. $773 \square$
				The STOP instruction cannot be executed when the CPU operates on the 20 MHz internal high-speed oscillation clock. Be sure to execute the STOP instruction after shifting to internal high-speed oscillation clock operation.	p. $773 \square$
			OSTC: Oscillation stabilization time counter status register	After the above time has elapsed, the bits are set to 1 in order from MOST8 and remain 1.	p. $774 \square$
				The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows. - Desired OSTC oscillation stabilization time \leq Oscillation stabilization time set by OSTS Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released.	p. $774 \square$
	-			The X 1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).	p. $774 \square$
			OSTS: Oscillation stabilization time select register	To set the STOP mode when the X1 clock is used as the CPU clock, set OSTS before executing the STOP instruction.	p. $775 \square$
				Setting the oscillation stabilization time to 20μ s or less is prohibited.	p. $775 \square$
				Before changing the setting of the OSTS register, confirm that the count operation of the OSTC register is completed.	p. $775 \square$
				Do not change the value of the OSTS register during the X 1 clock oscillation stabilization time.	p. $775 \square$
				The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows. - Desired OSTC oscillation stabilization time \leq Oscillation stabilization time set by OSTS Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released.	p. $775 \square$

		Function	Details of Function	Cautions	Page
$\begin{aligned} & \bar{N} \\ & \stackrel{\rightharpoonup}{む} \\ & \stackrel{\sim}{0} \\ & \bar{ভ} \end{aligned}$	$\begin{array}{\|l} \hline \frac{\bar{T}}{6} \\ \frac{\pi}{1} \end{array}$	Standby function	OSTS: Oscillation stabilization time select register	The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).	p. $775 \square$
			STOP mode	Because the interrupt request signal is used to clear the standby mode, if there is an interrupt source with the interrupt request flag set and the interrupt mask flag reset, the standby mode is immediately cleared if set. Thus, the STOP mode is reset to the HALT mode immediately after execution of the STOP instruction and the system returns to the operating mode as soon as the wait time set using the oscillation stabilization time select register (OSTS) has elapsed.	p. $782 \square$
				The STOP instruction cannot be executed when the CPU operates on the 20 MHz internal high-speed oscillation clock. Be sure to execute the STOP instruction after shifting to internal high-speed oscillation clock operation.	$\begin{aligned} & \mathrm{pp.} 782 \square \\ & \text {, } 784 \end{aligned}$
				To use the peripheral hardware that stops operation in the STOP mode, and the peripheral hardware for which the clock that stops oscillating in the STOP mode after the STOP mode is released, restart the peripheral hardware.	p. $784 \square$
				To stop the internal low-speed oscillation clock in the STOP mode, use an option byte to stop the watchdog timer operation in the HALT/STOP mode (bit 0 (WDSTBYON) of $000 \mathrm{COH}=0$), and then execute the STOP instruction.	p. $784 \square$
				To shorten oscillation stabilization time after the STOP mode is released when the CPU operates with the high-speed system clock (X1 oscillation), temporarily switch the CPU clock to the internal high-speed oscillation clock before the next execution of the STOP instruction. Before changing the CPU clock from the internal highspeed oscillation clock to the high-speed system clock (X1 oscillation) after the STOP mode is released, check the oscillation stabilization time with the oscillation stabilization time counter status register (OSTC).	p. $784 \square$
	$\begin{aligned} & \frac{\square}{\bar{T}} \\ & \frac{\pi}{1} \end{aligned}$	Reset function	-	For an external reset, input a low level for 10μ s or more to the RESET pin (To perform an external reset upon power application, a low level of at least $10 \mu \mathrm{~s}$ must be continued during the period in which the supply voltage is within the operating range ($\mathrm{VDD} \geq 1.8 \mathrm{~V}$)).	p. $788 \square$
				During reset input, the X1 clock, XT1 clock, internal high-speed oscillation clock, and internal low-speed oscillation clock stop oscillating. External main system clock input becomes invalid.	p. $788 \square$
				When the STOP mode is released by a reset, the RAM contents in the STOP mode are held during reset input.	p. $788 \square$
				When reset is effected, port pin P140 is set to low-level output and other port pins become high-impedance, because each SFR and 2nd SFR are initialized.	p. $788 \square$
	$\begin{aligned} & 4 \\ & \vdots \\ & 0 \end{aligned}$		Block diagram of reset function	An LVI circuit internal reset does not reset the LVI circuit.	p. $790 \square$
			Watchdog timer overflow	A watchdog timer internal reset resets the watchdog timer.	p. $790 \square$
			RESF: Reset control flag register	Do not read data by a 1-bit memory manipulation instruction.	p. $797 \square$
				Do not make a judgment based on only the read value of the RESF register 8-bit data, because bits other than TRAP, WDRF, and LVIRF become undefined.	p. $797 \square$
				When the LVI default start function (bit 0 (LVIOFF) of $000 \mathrm{C} 1 \mathrm{H}=0$) is used, LVIRF flag may become 1 from the beginning depending on the power-on waveform.	p. $797 \square$

$\begin{aligned} & \stackrel{\searrow}{む} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{U} \end{aligned}$		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \text { 蒿 } \\ & \hline \end{aligned}$	Power-on- clear circuit	-	If the low-voltage detector (LVI) is set to ON by an option byte by default, the reset signal is not released until the supply voltage (VDD) exceeds $2.07 \mathrm{~V} \pm 0.2 \mathrm{~V}$.	$\begin{aligned} & \text { pp.798, } \\ & 799 \end{aligned}$
				If an internal reset signal is generated in the POC circuit, the reset control flag register (RESF) is cleared to 00 H .	p. $798 \square$
			Timing of generation of internal reset signal (LVIOFF = 1)	Set the low-voltage detector by software after the reset status is released (see CHAPTER 24 LOW-VOLTAGE DETECTOR).	p. $800 \square$
			Timing of generation of internal reset signal (LVIOFF = 0)	Set the low-voltage detector by software after the reset status is released (see CHAPTER 24 LOW-VOLTAGE DETECTOR).	p. $801 \square$
			Cautions for power-on-clear circuit	In a system where the supply voltage (V_{DD}) fluctuates for a certain period in the vicinity of the POC detection voltage (VPOR, VPDR), the system may be repeatedly reset and released from the reset status. In this case, the time from release of reset to the start of the operation of the microcontroller can be arbitrarily set by taking the following action.	p. $802 \square$
	$$	Lowvoltage detector	LVIM: Lowvoltage detection register	To stop LVI, be sure to clear (0) LVION by using a 1-bit memory manipulation instruction.	p. $807 \square$
	$\begin{aligned} & \hline \frac{\bar{V}}{\widetilde{T}} \\ & \text { T } \end{aligned}$			Input voltage from external input pin (EXLVI) must be EXLVI < Vdo.	p. $807 \square$
	$\begin{aligned} & \pm \\ & 0 \\ & 0 \end{aligned}$			When LVI is used in interrupt mode (LVIMD $=0$) and LVISEL is set to 0 , an interrupt request signal (INTLVI) that disables LVI operation (clears LVION) when the supply voltage (VDD) is less than or equal to the detection voltage (VLvi) (if LVISEL = 1, input voltage of external input pin (EXLVI) is less than or equal to the detection voltage ($\mathrm{V}_{\text {ExLVII }}$) is generated and LVIIF may be set to 1 .	p. $807 \square$
			LVIS: Lowvoltage detection level select register	Be sure to clear bits 4 to 7 to "0".	p. $808 \square$
				Change the LVIS value with either of the following methods. - When changing the value after stopping LVI <1> Stop LVI (LVION = 0). <2> Change the LVIS register. $<3>$ Set to the mode used as an interrupt (LVIMD = 0). <4> Mask LVI interrupts (LVIMK = 1). <5> Enable LVI operation (LVION = 1). <6> Before cancelling the LVI interrupt mask (LVIMK $=0$), clear it with software because an LVIIF flag may be set when LVI operation is enabled. - When changing the value after setting to the mode used as an interrupt (LVIMD = 0) <1> Mask LVI interrupts (LVIMK = 1). $<2>$ Set to the mode used as an interrupt (LVIMD = 0). $<3>$ Change the LVIS register. <4> Before cancelling the LVI interrupt mask (LVIMK $=0$), clear it with software because an LVIIF flag may be set when the LVIS register is changed.	p. $809 \square$
				When an input voltage from the external input pin (EXLVI) is detected, the detection voltage (VExLvi) is fixed. Therefore, setting of LVIS is not necessary.	p. $809 \square$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \hline \begin{array}{l} \overline{0} \\ 0 \end{array} \end{aligned}$	Lowvoltage detector	Used as reset (when detecting level of supply voltage (VDD)) (LVIOFF = 1)	Be sure to execute $<1>$. When LVIMK $=0$, an interrupt may occur immediately after the processing in <4>.	p. $811 \square$
				If supply voltage (V_{DD}) \geq detection voltage (V_{Lv}) when LVIMD is set to 1 , an internal reset signal is not generated.	p. $811 \square$
			Used as reset (when detecting level of supply voltage (VDD)) $($ LVIOFF $=0)$	Even when the LVI default start function is used, if it is set to LVI operation prohibition by the software, it operates as follows: - Does not perform low-voltage detection during LVION $=0$. - If a reset is generated while LVION $=0$, LVION will be re-set to 1 when the CPU starts after reset release. There is a period when low-voltage detection cannot be performed normally, however, when a reset occurs due to WDT and illegal instruction execution. This is due to the fact that while the pulse width detected by LVI must be $200 \mu \mathrm{~s}$ max., LVION = 1 is set upon reset occurrence, and the CPU starts operating without waiting for the LVI stabilization time.	p. $812 \square$
			Used as reset (when detecting	Be sure to execute $<1>$. When LVIMK $=0$, an interrupt may occur immediately after the processing in $<3>$.	p. $813 \square$
			level of input voltage from	If input voltage from external input pin (EXLVI) \geq detection voltage ($\mathrm{V}_{\mathrm{EXLV}}=1.21 \mathrm{~V}$ (TYP.)) when LVIMD is set to 1 , an internal reset signal is not generated.	p. $813 \square$
	-		external input pin (EXLVI))	Input voltage from external input pin (EXLVI) must be EXLVI < V ${ }_{\text {do }}$.	p. $813 \square$
	$\begin{aligned} & \mathrm{J} \\ & \dot{0} \\ & 0 \end{aligned}$		Used as interrupt (when detecting level of supply voltage (Vod)) (LVIOFF = $0)$	Even when the LVI default start function is used, if it is set to LVI operation prohibition by the software, it operates as follows: - Does not perform low-voltage detection during LVION $=0$. - If a reset is generated while LVION $=0$, LVION will be re-set to 1 when the CPU starts after reset release. There is a period when low-voltage detection cannot be performed normally, however, when a reset occurs due to WDT and illegal instruction execution. This is due to the fact that while the pulse width detected by LVI must be $200 \mu \mathrm{~s}$ max., LVION = 1 is set upon reset occurrence, and the CPU starts operating without waiting for the LVI stabilization time.	p. $819 \square$
				When the LVI default start function (bit 0 (LVIOFF) of $000 \mathrm{C} 1 \mathrm{H}=0$) is used, the LVIRF flag may become 1 from the beginning due to the power-on waveform. For details of RESF, see CHAPTER 22 RESET FUNCTION.	p. $819 \square$
	-		Used as interrupt (when detecting level of input voltage from external input pin (EXLVI))	Input voltage from the external input pin (EXLVI) must be EXLVI < VDD.	p. $821 \square$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{0} \\ & \infty \\ & \hline \end{aligned}$	Low- voltage detector	Cautions for lowvoltage detector	In a system where the supply voltage (VDD) fluctuates for a certain period in the vicinity of the LVI detection voltage (VLvI), the operation is as follows depending on how the low-voltage detector is used. Operation example 1: When used as reset The system may be repeatedly reset and released from the reset status. The time from reset release through microcontroller operation start can be set arbitrarily by the following action. <Action> After releasing the reset signal, wait for the supply voltage fluctuation period of each system by means of a software counter that uses a timer, and then initialize the ports (see Figure 24-11). Operation example 2: When used as interrupt Interrupt requests may be generated frequently. Take the following action. <Action> Confirm that "supply voltage (VDD) \geq detection voltage (VLvI)" when detecting the falling edge of $V_{D D}$, or "supply voltage (VDD) < detection voltage (VLVI)" when detecting the rising edge of $V_{D D}$, in the servicing routine of the LVI interrupt by using bit 0 (LVIF) of the low-voltage detection register (LVIM). Clear bit 1 (LVIIF) of interrupt request flag register OL (IFOL) to 0 . For a system with a long supply voltage fluctuation period near the LVI detection voltage, take the above action after waiting for the supply voltage fluctuation time.	$\begin{gathered} \mathrm{pp.} 823 \square \\ \text { to } 825 \end{gathered} \square$
				There is some delay from the time supply voltage (VDD) < LVI detection voltage (VLvI) until the time LVI reset has been generated. In the same way, there is also some delay from the time LVI detection voltage (VLvi) s supply voltage (VDD) until the time LVI reset has been released (see Figure 24-12).	p. $825 \square$
	$\begin{aligned} & \pm \\ & \hline \end{aligned}$	Regulator	RMC: Regulator mode control register	The RMC register can be rewritten only in the low-power consumption mode (refer to Table 25-1). In other words, rewrite this register during CPU operation with the subsystem clock (fxT) while the high-speed system clock (f_{mx}), the high-speed internal oscillation clock, and the 20 MHz internal high-speed oscillation clock ($\mathrm{f}_{\mathrm{H}+2 \mathrm{O}}$) are both stopped.	p. $827 \square$
				When using the setting fixed to the low consumption current mode, the RMC register can be used in the following cases. <When the high-speed internal oscillation clock (fiH $=8 \mathrm{MHz}$ (TYP.) or $\mathrm{f}_{\mathrm{I}}=1 \mathrm{MHz}$ (TYP.)) is selected as the CPU clock> fclk $\leq 1 \mathrm{MHz}$ and external oscillator (X 1 clock (fx), external main system clock (fex)) stop.. <When the X1 clock (fx) or external main system clock (f Ex) is selected as the CPU clock> fcLk $\leq 1 \mathrm{MHz}, \mathrm{fx}_{\mathrm{x}} / \mathrm{fEx} \leq 5 \mathrm{MHz}$ and the internal high-speed oscillator stop. <When the subsystem clock (fsuв) is selected as the CPU clock> Both the internal high-speed oscillator and external oscillator ($\mathrm{fx} / \mathrm{f}_{\mathrm{Ex}} \leq 5 \mathrm{MHz}$) stop or either one stops.	p. $827 \square$
				In low-power consumption mode, use the regulator with fclk fixed to 1 MHz when executing self programming.	p. 828 口

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \text { 을 } \\ & \text { T } \end{aligned}$	Flash memory	Security settings	After the security setting for the batch erase is set, erasure cannot be performed for the device. In addition, even if a write command is executed, data different from that which has already been written to the flash memory cannot be written, because the erase command is disabled.	p. $843 \square$
				If a security setting that rewrites boot cluster 0 has been applied, boot cluster 0 of that device will not be rewritten, and the entire flash memory of the device will not be erased in batch.	p. $843 \square$
			Flash memory programming by selfprogramming	The self-programming function cannot be used when the CPU operates with the subsystem clock.	p. $845 \square$
	$\begin{aligned} & \text { \# } \\ & \text { © } \end{aligned}$			In the self-programming mode, call the self-programming start library (FlashStart).	p. $845 \square$
				To prohibit an interrupt during self-programming, in the same way as in the normal operation mode, execute the self-programming library in the state where the IE flag is cleared (0) by the DI instruction. To enable an interrupt, clear (0) the interrupt mask flag to accept in the state where the IE flag is set (1) by the El instruction, and then execute the self-programming library.	p. $845 \square$
				In low-power-consumption mode, use the regulator with fcLk fixed to 1 MHz when executing self programming. For details of the low-power-consumption mode, see CHAPTER 25 REGULATOR.	p. $845 \square$
				Disable DMA operation $(\mathrm{DENn}=0)$ during the execution of self programming library functions.	p. $845 \square$
			Flash shield window function	If the rewrite-prohibited area of the boot cluster 0 overlaps with the flash shield window range, prohibition to rewrite the boot cluster 0 takes priority.	p. $849 \square$
		On-chip debug function	Connecting QBMINI2 to 78K0R/Lx3	The 78KOR/Lx3 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.	p. $851 \square$
$\begin{aligned} & \text { N } \\ & \text { N } \\ & \vdots \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{U} \end{aligned}$	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{0} \\ & \infty \\ & \hline \end{aligned}$	BCD correction circuit	Addition	The value read from the BCDADJ register varies depending on the value of the A register when it is read and those of the CY and AC flags. Therefore, execute the instruction $<3>$ after the instruction $<2>$ instead of executing any other instructions. To perform BCD correction in the interrupt enabled state, saving and restoring the A register is required within the interrupt function. PSW (CY flag and AC flag) is restored by the RETI instruction.	p. $855 \square$
			Subtraction	The value read from the BCDADJ register varies depending on the value of the A register when it is read and those of the CY and AC flags. Therefore, execute the instruction $<3>$ after the instruction $<2>$ instead of executing any other instructions. To perform BCD correction in the interrupt enabled state, saving and restoring the A register is required within the interrupt function. PSW (CY flag and AC flag) is restored by the RETI instruction.	p. $856 \square$
	$$	Instruction set	PREFIX instruction	Set the ES register value with MOV ES, A, etc., before executing the PREFIX instruction.	p. $859 \square$

$\begin{aligned} & \grave{0} \\ & \stackrel{0}{0} \\ & \text { © } \\ & \hline 0 \end{aligned}$		Function	Details of Function	Cautions	Page
		Electrical specifications	-	The 78K0R/Lx3 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.	p. $877 \square$
				The pins mounted depend on the product. Refer to 1.3 Pin Configuration (Top View) and CHAPTER 2 PIN FUNCTIONS.	p. $877 \square$
			Absolute maximum ratings	Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.	$\begin{aligned} & \text { pp. } 878 \square \\ & \text { to } 880 \end{aligned}$
				The value of the current that can be run per pin must satisfy the value of the current per pin and the total value of the currents of all pins.	pp. $879 \square$
			X1 oscillator characteristics	When using the X 1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance. - Keep the wiring length as short as possible. - Do not cross the wiring with the other signal lines. - Do not route the wiring near a signal line through which a high fluctuating current flows. - Always make the ground point of the oscillator capacitor the same potential as Vss. - Do not ground the capacitor to a ground pattern through which a high current flows. - Do not fetch signals from the oscillator.	p. $880 \square$
				Since the CPU is started by the internal high-speed oscillation clock after a reset release, check the X 1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.	p. $880 \square$
			XT1 oscillator characteristics	When using the XT1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance. - Keep the wiring length as short as possible. - Do not cross the wiring with the other signal lines. - Do not route the wiring near a signal line through which a high fluctuating current flows. - Always make the ground point of the oscillator capacitor the same potential as Vss. - Do not ground the capacitor to a ground pattern through which a high current flows. - Do not fetch signals from the oscillator.	p. $881 \square$
				The XT1 oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the X 1 oscillator. Particular care is therefore required with the wiring method when the XT1 clock is used.	p.881 \square
			Recommended oscillator circuit constants	The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit. The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the $78 \mathrm{~K} 0 \mathrm{R} / \mathrm{Lx} 3$ so that the internal operation conditions are within the specifications of the DC and AC characteristics.	$\begin{array}{\|l\|} \hline \text { pp. } 882 \square \\ , 883 \end{array} \square$

		Function	Details of Function	Cautions	Page
		Electrical specifications	DC characteristics	P10 to P15, P75, P77, P80 and P82 do not output high level in N-ch open-drain mode.	$\begin{aligned} & \mathrm{pp.885}, \square \\ & 890 \end{aligned}$
				The maximum value of VIH of pins P10 to P15, P75, P77, P80 and P82 is Vod, even in the N -ch open-drain mode.	p. $887 \square$
	$\begin{aligned} & \pm \\ & \hline 0 \\ & 0 \end{aligned}$		Minimum instruction execution time during main system clock operation	When $V_{D D}<2.25 \mathrm{~V}$ and $\operatorname{FSEL}=1$, It is prohibited to release STOP mode during $f_{E x}$ operation or f_{IH} operation (This must not be performed even if the frequency is divided. The STOP mode may be released during fx operation.).	p. $898 \square$
			During communication at same potential (UART mode) (dedicated baud rate generator output)	Select the normal input buffer for RxDq and the normal output mode for TxDq by using the PIMg and POMx registers.	p. $902 \square$
			During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)	Select the normal input buffer for SIp and the normal output mode for SOp and $\overline{\text { SCKp by using the PIMg and POMx registers. }}$	p. $903 \square$
			During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)	Select the normal input buffer for SIp and $\overline{\text { SCKp }}$ and the normal output mode for SOp by using the PIMg and POMx registers.	p. $904 \square$
			During communication at same potential (simplified $I^{2} C$ mode)	Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for SDAr and the normal output mode for SCLr by using the PIMg and POMx registers.	p. $906 \square$
			During communication at different potential (2.5 V, 3 V) (UART mode) (dedicated baud rate generator output)	Select the TTL input buffer for RxDq and the N-ch open drain output (Vod tolerance) mode for TxDq by using the PIMg and POMx registers.	$\begin{aligned} & \hline \text { pp.908, } \square \\ & 909,911 \end{aligned}$

		Function	Details of Function	Cautions	Page
	$\begin{aligned} & \dot{0} \\ & \infty \\ & \infty \end{aligned}$	Electrical specifications	During communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)	Select the TTL input buffer for Slp and the N-ch open drain output (Vod tolerance) mode for SOp and SCKp by using the PIMg and POMx registers.	$\begin{aligned} & \mathrm{pp} .912 \\ & \text { to } 914 \end{aligned}$
			During communication at different potential (2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)	Select the TTL input buffer for SIp and SCKp and the N-ch open drain output (VDD tolerance) mode for SOp by using the PIMg and POMx registers.	$\begin{array}{\|l\|} \hline \mathrm{pp.916}, \square \\ 917 \end{array}$
			During communication at different potential (2.5 V, 3 V) (simplified $I^{2} \mathrm{C}$ mode)	Select the TTL input buffer and the N-ch open drain output (Vod tolerance) mode for SDAr and the N-ch open drain output (Vod tolerance) mode for SCLr by using the PIMg and POMx registers.	$\begin{array}{\|l\|} \hline \text { pp.918, } \square \\ 919 \end{array}$
	$\begin{array}{\|l\|} \hline \frac{\square}{\mathbf{T}} \\ \frac{\pi}{工} \end{array}$		VR circuit	Connect the Vrefout pin to GND via a tantalum capacitor (capacitance: 10 $\mu \mathrm{F} \pm 30$ \%, ESR: 2Ω (max.), ESL: 10 nH (max.)) and a ceramic capacitor (capacitance: $0.1 \mu \mathrm{~F} \pm 30 \%$, ESR: 2Ω (max.), ESL: 10 nH (max.)).	p. $923 \square$
	$\begin{aligned} & \text { 무 } \\ & \frac{\pi}{\top} \end{aligned}$	Recommended soldering condition	-	The μ PD78F1500A to 78F1508A have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.	$\begin{array}{\|l\|} \hline \mathrm{pp.938}, \square \\ 939 \end{array}$

APPENDIX D REVISION HISTORY

D. 1 Major Revisions in This Edition

(1/3)

Page	Description	Classification
Major Revisions in Rev.5.01		
CHAPTER 3 CPU ARCHITECTURE		
p. 95	Deletion of Note of analog reference voltage control register (ADVRC)	(a)
CHAPTER 10 12-BIT A/D CONVERTER (μ PD78F150xA), 10-BIT A/D CONVERTER (μ PD78F151xA)		
p.387, 395	Change of the selectable bit in analog reference voltage control register (ADVRC) for μ PD78F151xA to only the VRGV bit	(a)
CHAPTER 23 POWER-ON-CLEAR CIRCUIT		
Throughout	Deletion of Note of preliminary values	(c)
CHAPTER 24 LOW-VOLTAGE DETECTOR		
Throughout	Deletion of Note of preliminary values	(c)
Major Revisions in Rev.5.00		
Throughout		
-	Addition of 78F1510A and 78F1512A to 78K0R/LF3 product series	(d)
-	Addition of 78F1513A and 78F1515A to 78K0R/LG3 product series	(d)
-	Addition of 78F1516A and 78F1518A to 78K0R/LH3 product series	(d)
CHAPTER 1 OUTLINE		
p. 2	Addition of 10-bit resolution A/D conversion (μ PD78F151xA only) Addition of (μ PD78F150xA only) to 12-bit resolution A/D conversion, 12-bit resolution D/A converter, Operational amplifier, and On-chip voltage reference ($2.0 \mathrm{~V} / 2.5 \mathrm{~V}$)	(d)
$\begin{aligned} & \text { pp. } 4 \text { to } 5,7 \\ & \text { to } 8,10 \text { to } 11 \end{aligned}$	Separation of (1) μ PD78F150xA and (2) μ PD78F151xA from each pin configuration	(d)
pp.6, 9, 12		(d)
pp. 13 to 18	Separation of (1) μ PD78F150xA and (2) μ PD78F151xA from each block diagram	(d)
pp. 19 to 22	Separation of (1) μ PD78F150xA and (2) μ PD78F151xA in 1.5 Outline of Functions	(d)
CHAPTER 2 PIN FUNCTIONS		
pp.23, 62	Addition of AVDD and EVDD1	(d)
pp. 24 to 26, 29 to 32, 35 to 38, 42 to 44, 47 to 56, 60 to 63, 65, 66, 68	Addition of Notes	(d)
$\begin{aligned} & \text { pp. } 43 \text { to } 44 \text {, } \\ & 47 \text { to } 56 \end{aligned}$	Literal change of $78 \mathrm{KOR} / \mathrm{LF} 3$ series; from 78F1500A and 78F1502A to $78 \mathrm{~F} 15 \times 0 \mathrm{~A}$ and $78 \mathrm{~F} 15 \times 2 \mathrm{~A}$ Literal change of $78 \mathrm{KOR} / \mathrm{LG} 3$ series; from 78F1503A and 78 F 1505 A to $78 \mathrm{~F} 15 \times 3 \mathrm{~A}$ and $78 \mathrm{~F} 15 \times 5 \mathrm{~A}$ Literal change of $78 \mathrm{KOR} / \mathrm{LH} 3$ series; from 78F1506A and 78 F 1508 A to $78 \mathrm{~F} 15 \times 6 \mathrm{~A}$ and $78 \mathrm{~F} 15 \times 8 \mathrm{~A}$	(d)
p. 46	Addition of μ PD78F151xA to Table in 2.2.3 P20 to P27	(d)
p. 54	Addition of μ PD78F151xA to Table in 2.2.12 P110 to P111	(d)
p. 57	Addition of μ PD78F151xA to Table in 2.2.16 P150 to P152, P157	(d)
p. 58	Addition of (μ PD78F150xA only) to 2. 2. 20 Vrefout/AV ${ }_{\text {refp }}$ Addition of 2.2.21 AV ${ }_{\text {ref }}$ (μ PD78F151xA only)	(d)

Remark "Classification" in the above table classifies revisions as follows.
(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note,
(d): Addition/change of package, part number, or management division, (e): Addition/change of related documents

		(2/3)
Page	Description	Classification
CHAPTER 3 CPU ARCHITECTURE (continuation)		
p. 59	Addition of (μ PD78F150xA only) to (1) $A V_{D D o}$ and (2) $A V_{D D 1}$ Addition of (3) AVDD (μ PD78F151xA only) and (4) EVDD1 (μ PD78F151xA only)	(d)
p. 69	Addition of Type 5	(d)
CHAPTER 3 CPU ARCHITECTURE		
p. 74	Addition of 78F1510A, 78F1513A, and 78F1516 to Figure 3-1. Memory Map	(d)
p. 76	Addition of 78F1512A, 78F1515A, and 78F1518A to Figure 3-3. Memory Map	(d)
p. 78	Addition of 78F1510A, 78F1513A, 78F1516 and 78F1512A, 78F1515A, 78F1518A to Remark below Table 3-1. Correspondence Between Address Values and Block Numbers in Flash Memory	(d)
p. 79	Addition of 78F1510A, 78F1513A, 78F1516 and 78F1512A, 78F1515A, 78F1518A to Table 3-2. Internal ROM Capacity	(d)
p. 81	Addition of 78F1510A, 78F1513A, 78F1516 and 78F1512A, 78F1515A, 78F1518A to 3.1.2 Mirror area	(d)
p. 82	Addition of 78F1510A, 78F1513A, and 78F1516 to Example 1 and 78F1512A, 78F1515A, and 78F1518A to Example 2	(d)
p. 83	Addition of 78F1510A, 78F1513A, 78F1516 and 78F1512A, 78F1515A, and 78F1518A to Table 3- 4. Internal RAM Capacity	(d)
p. 85	Addition of 78F1510A, 78F1513A, and 78F1516A to Figure 3-5. Correspondence Between Data Memory and Addressing	(d)
p. 87	Addition of 78F1512A, 78F1515A, and 78F1518A to Figure 3-7. Correspondence Between Data Memory and Addressing	(d)
pp. 94 to 95	Addition of Note to Table 3-5. SFR List	(d)
CHAPTER 4 PORT FUNCTIONS		
p. 121	Addition of AVdD and EVdD1	(d)
$\begin{aligned} & \text { pp. } 122 \text { to } \\ & 128 \end{aligned}$	Addition of Notes	(d)
p. 138	Addition of μ PD78F151xA to Table in 4.2.3 Port 2	(d)
p. 167	Addition of μ PD78F151xA to Table in 4.2.12 Port 11	(d)
p. 176	Addition of μ PD78F151xA to Table in 4.2.16 Port 15	(d)
CHAPTER 10 12-BIT A/D CONVERTER (μ PD78F150xA), 10-BIT A/D CONVERTER (μ PD78F151xA)		
p. 385	Change of chapter title Addition of μ PD78F151xA to Table Addition of description of 10-bit resolution to 10.1 Function of A/D Converter	(d)
p. 387	Addition of Figure 10-2. Block Diagram of 10-Bit A/D Converter (μ PD78F151xA)	(d)
p. 389	Addition of 10-bit conversion result register to (6) Addition of $A V_{\text {do to }}$ (9) Addition of $A V_{\text {ref to (13) }}$	(d)
p. 390	Addition of 10-bit conversion result register to 10.3 Registers Used in A/D Converter	(d)
p. 395	Addition of (μ PD78F150xA only) to (4) Analog reference voltage control register (ADVRC)	(d)
p. 396	Addition of (μ PD78F150xA only) to (5) 12-bit A/D conversion result register (ADCR)	(d)
p. 397	Addition of (μ PD78F150xA only) to (6) 10-bit A/D conversion result register (ADCR)	(d)
p. 412	Change of value of 1LSB in 10.5 (1) Resolution	(a)

Remark "Classification" in the above table classifies revisions as follows.
(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note, (d): Addition/change of package, part number, or management division, (e): Addition/change of related documents

Page	Description	Classification
CHAPTER 11 D/A CONVERTER (μ PD78F150xA only)		
p. 418	Addition of (μ PD78F150xA only) to chapter title	(d)
CHAPTER 12 OPERATIONAL AMPLIFIER (μ PD78F150xA only)		
p. 425	Addition of (μ PD78F150xA only) to chapter title	(d)
CHAPTER 13 VOLTAGE REFERENCE (μ PD78F150xA only)		
p. 434	Addition of (μ PD78F150xA only) to chapter title	(d)
CHAPTER 31 ELECTRICAL SPECIFICATIONS		
Throughout	Addition of specifications of $\mathrm{VV}_{\text {dD }}$, EV $\mathrm{DDD} 1, ~ a n d ~ \mathrm{AV}_{\text {REF }}$	(d)
pp.892, 893	Addition of AMPHS1 = 1 to Conditions of Supply current when fsub $=32.768 \mathrm{kHz}$	(b)
p. 894	Separation of μ PD78F150xA and μ PD78F151xA in P110, P111 of IADC Conditions	(d)
p. 922	Addition of (μ PD78F150xA only) to (1) 12-bit A/D Converter	(d)
p. 923	Addition of (μ PD78F150xA only) to (2) 10-bit A/D Converter Addition of (μ PD78F150xA only) to (3) Operational amplifier Addition of (μ PD78F150xA only) to (4) Voltage Reference	(d)
p. 924	Addition of (μ PD78F150xA only) to (5) D/A Converter	(d)
CHAPTER 32 PACKAGE DRAWINGS		
pp.934, 935	Addition of 78F1510AGC-GAD-AX and 78F1512AGC-GAD-AX to 78K0R/LF3 product series	(d)
p. 936	Addition of 78F1513AGC-UEU-AX and 78F1515AGC-UEU-AX to 78K0R/LF3 product series	(d)
p. 937	Addition of 78F1516AGF-GAT-AX and 78F1518AGF-GAT-AX to 78K0R/LH3 product series	(d)
CHAPTER 33 RECOMMENDED SOLDERING CONDITIONS		
p. 938	Addition of 78F1510AGC-GAD-AX and 78F1512AGC-GAD-AX to 80 pins Addition of 78F1513AGC-UEU-AX and 78F1515AGC-UEU-AX to 100 pins Addition of 78F1516AGF-GAT-AX and 78F1518AGF-GAT-AX to 128 pins Change of Caution: from " μ PD78F1503A to 78F1508A" to 78K0R/Lx3	(d)
p. 939	Addition of 78F1510AGC-GAD-AX and 78F1512AGC-GAD-AX to 80 pins (14×14) Change of Caution: from " μ PD78F1503A to 78F1508A" to 78K0R/Lx3	(d)

Remark "Classification" in the above table classifies revisions as follows.
(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note, (d): Addition/change of package, part number, or management division, (e): Addition/change of related documents

D. 2 Revision History of Preceding Editions

Here is the revision history of the preceding editions. Chapter indicates the chapter of each edition.

Edition	Description	Chapter
2nd Edition	Modification of regulator output voltage of normal power mode	Throughout
	Addition of timer array unit 1	
	Modification of related documents	INTRODUCTION
	Addition of 1.1 Features	CHAPTER 1 OUTLINE
	Modification of 1.3.3 78KOR/LH3	
	Modification of 1.4.1 78KOR/LF3, 1.4.2 78K0R/LG3, and 1.4.3 78K0R/LH3	
	Modification of 1.5 Outline of Functions	
	Modification of 2.1.3 78K0R/LH3	CHAPTER 2 PIN FUNCTIONS
	Addition of 2.2 Description of Pin Functions	
	Modification of 2.3 Pin I/O Circuits and Recommended Connection of Unused Pins	
	Modification of Table 3-3 Vector Table	CHAPTER 3 CPU ARCHITECTURE
	Modification of 3.2.4 Special function registers (SFRs)	
	Modification of 3.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers)	
	Modification of Table 4-4 Port functions (78K0R/LH3)	CHAPTER 4 PORT FUNCTIONS
	Modification of 4.2 Port Configuration	
	Addition of (7) Port function register (PFALL) and (8) Input switch control register (ISC) to 4.3 Registers Controlling Port Function	
	Addition of 4.5 Settings of Port Mode Register and Output Latch When Using Alternate Function	
	Modification of Figure 5-1 Block Diagram of Clock Generator	CHAPTER 5 CLOCK GENERATOR
	Modification of Figure 5-2 Format of Clock Operation Mode Control Register (CMC)	
	Addition of Note 2 and Modification of Caution 1 in Figure 5-6. Format of System Clock Control Register (CKC)	
	Modification of Table 5-3 Relationship Between CPU Clock and Minimum Instruction Execution Time	
	Modification of Figure 5-7 Format of Peripheral Enable Register 0 (PER0)	
	Modification of Figure 5-8 Format of Operation Speed Mode Control Register (OSMC)	
	Modification of Caution 1 in Figure 5-9 Example of External Circuit of X1 Oscillator and Figure 5-10 Example of External Circuit of XT1 Oscillator (Crystal Oscillation)	
	Modification of Figure 5-12 Clock Generator Operation When Power Supply Voltage Is Turned On (When LVI Default Start Function Stopped Is Set (Option Byte: LVIOFF = 1)) and Figure 5-13 Clock Generator Operation When Power Supply Voltage Is Turned On (When LVI Default Start Function Enabled Is Set (Option Byte: LVIOFF = 0))	
	Modification of 5.6.1 Example of controlling high-speed system clock, 5.6.2 Example of controlling internal high-speed oscillation clock, and 5.6.3 Example of controlling subsystem clock	

Edition	Description	Chapter
2nd Edition	Modification of Table 5-5 Changing CPU Clock	CHAPTER 5 CLOCK GENERATOR (continuation)
	Modification of Table 5-6 Maximum Time Required for Main System Clock Switchover, fsubc \leftrightarrow fsubc, Table 5-7 Maximum Number of Clocks Required in fmainc \leftrightarrow fmainc (changing the division ratio), fsubc \leftrightarrow fsubc (changing the division ratio), and Table 5-9 Maximum Number of Clocks Required in fmainc \leftrightarrow fsubc	
	Addition of chapter	CHAPTER 6 TIMER ARRAY UNIT
	Modification of Table 7-1 Configuration of Real-Time Counter	CHAPTER 7 REAL- TIME COUNTER
	Modification of Figure 7-1 Block Diagram of Real-Time Counter	
	Modification of Figure 7-2 Format of Peripheral Enable Register 0 (PERO)	
	Modification of Figure 7-3 Format of Real-Time Counter Control Register 0 (RTCCO)	
	Modification of Figure 7-4 Format of Real-Time Counter Control Register 1 (RTCC1)	
	Addition of Caution 3 to Figure 7-5 Format of Real-Time Counter Control Register 2 (RTCC2)	
	Modification of (7) Minute count register (MIN) to (9) Day count register (DAY)	
	Modification of (11) Month count register (MONTH) to (13) Watch error correction register (SUBCUD)	
	Addition of (17) Port mode register 3 (PM3)	
	Modification of Note 2 in Figure 7-19 Procedure for Starting Operation of RealTime Counter	
	Addition of 7.4.2 Shifting to STOP mode after starting operation	
	Addition of 7.4.8 Example of watch error correction of real-time counter	
	Modification of Figure 10-1 Block Diagram of A/D Converter	CHAPTER 10 A/D CONVERTER
	Modification of Figure 10-3 Format of Peripheral Enable Register 0 (PER0)	
	Addition of Note 1 to Figure 10-4 Format of A/D Converter Mode Register (ADM)	
	Addition of Table 10-2 A/D Conversion Time Selection	
	Modification of (4) Analog reference voltage control register (ADVRC)	
	Modification of Figure 10-10 Format of 8-bit A/D Conversion Result Register (ADCRH)	
	Modification of Table 10-4. Setting Functions of ANIO/AMP0-/P20, ANI2/AMP0+/P22, ANI3/AMP1-/P23, ANI5/AMP1+/P25, ANI6/AMP2-/P26, and ANI8/AMP2+/P150 Pins, Table 10-5. Setting Functions of ANI1/AMP00/P21, ANI4/AMP1O/P24, and ANI7/AMP2O/P27 Pins, and Table 10-7. Setting Functions of ANI15/AVrefm/P157 Pin	
	Addition of (12) Rewriting DACSWn during A/D conversion to 10.6 Cautions for A/D Converter	
	Modification of Figure 11-1 Block Diagram of D/A Converter	CHAPTER 11 D/A CONVERTER
	Modification of Figure 11-2 Format of Peripheral Enable Register 0 (PER0)	
	Modification of Remark in Figure 11-3 Format of D/A Converter Mode Register (DAM)	
	Addition of Caution to Figure 11-4 Format of D/A Conversion Value Setting Registers W0 and W1 (DACSW0, DACSW1)	
	Addition of <1> to 11.4.1 Operation in normal mode and 11.4.2 Operation in realtime output mode	
	Addition of (3) to 11.5 Cautions for D/A Converter	

Edition	Description	Chapter
2nd Edition	Modification of Table 12-1 Configuration of Operational Amplifiers	CHAPTER 12 OPERATIONAL AMPLIFIER
	Addition of (1) Peripheral enable register 0 (PERO)	
	Modification of Table 12-2 Setting Functions of ANIO/AMP0-/P20, ANI2/AMP0+/P22, ANI3/AMP1-/P23, ANI5/AMP1+/P25, ANI6/AMP2-/P26, and ANI8/AMP2+/P150 Pins Table 12-3 Setting Functions of ANI1/AMP00/P21, ANI4/AMP1O/P24, and ANI7/AMP2O/P27 Pins, and Table 12-5 Setting Functions of ANI15/AV refm 2 P157 Pin	
	Addition of $<1>$ to 12.4.1 Single AMP Mode	
	Modification of Table 13-1 Configuration of Voltage Reference	CHAPTER 13 VOLTAGE REFERENCE
	Modification of Figure 13-1 Block Diagram of Voltage Reference	
	Addition of (1) Peripheral enable register 0 (PERO)	
	Modification of (2) A/D reference voltage control register (ADVRC)	
	Modification of 13.4.1 Reference voltage output mode	
	Modification of Figure 14-4 Format of Peripheral Enable Register 0 (PER0)	CHAPTER 14 SERIAL ARRAY UNIT
	Modification of Caution 2 in Figure 14-5 Format of Serial Clock Select Register m (SPSm)	
	Modification of Figure 14-22 Peripheral Enable Register 0 (PERO) Setting When Stopping the Operation by Units	
	Modification of Caution in Figure 14-25 Initial Setting Procedure for Master Transmission	
	Modification of Caution in Figure 14-29 Flowchart of Master Transmission (in Single-Transmission Mode)	
	Modification of Caution in Figure 14-31 Flowchart of Master Transmission (in Continuous Transmission Mode)	
	Modification of Caution in Figure 14-33 Initial Setting Procedure for Master Reception	
	Modification of Caution in Figure 14-37 Flowchart of Master Reception (in SingleReception Mode)	
	Modification of Caution in Figure 14-39 Initial Setting Procedure for Master Transmission/Reception	
	Modification of Caution in Figure 14-43 Flowchart of Master Transmission/Reception (in Single- Transmission/Reception Mode)	
	Modification of Caution in Figure 14-45 Flowchart of Master Transmission/Reception (in Continuous Transmission/Reception Mode)	
	Modification of Caution in Figure 14-47 Initial Setting Procedure for Slave Transmission	
	Modification of Caution in Figure 14-51 Flowchart of Slave Transmission (in Single-Transmission Mode)	
	Modification of Caution in Figure 14-53 Flowchart of Slave Transmission (in Continuous Transmission Mode)	
	Modification of Caution in Figure 14-55 Initial Setting Procedure for Slave Reception	
	Modification of Caution in Figure 14-59 Flowchart of Slave Reception (in SingleReception Mode)	
	Modification of Caution in Figure 14-61 Initial Setting Procedure for Slave Transmission/Reception	
	Modification of Caution in Figure 14-65 Flowchart of Slave Transmission/Reception (in Single- Transmission/Reception Mode)	

Edition	Description	Chapter
2nd Edition	Modification of Caution in Figure 14-67 Flowchart of Slave Transmission/Reception (in Continuous Transmission/Reception Mode)	CHAPTER 14 SERIAL ARRAY UNIT (continuation)
	Modification of Caution in Figure 14-69 Initial Setting Procedure for UART Transmission	
	Modification of Caution in Figure 14-73 Flowchart of UART Transmission (in Single-Transmission Mode)	
	Modification of Caution in Figure 14-75 Flowchart of UART Transmission (in Continuous Transmission Mode)	
	Modification of Caution in Figure 14-77 Initial Setting Procedure for UART Reception	
	Modification of Caution in Figure 14-81 Flowchart of UART Reception	
	Modification of Caution in Figure 14-89 Initial Setting Procedure for Address Field Transmission	
	Modification of Figure 15-5 Format of Peripheral Enable Register 0 (PER0)	CHAPTER 15 SERIAL INTERFACE IICA
	Addition of 15.4.2 Setting transfer clock by using IICWL and IICWH registers	
	Addition of Caution to 15.5.7 Canceling wait	
	Modification of Table 15-3 Bit Definitions of Main Extension Code	
	Modification of Figure 15-23 Flow When Setting WUP = 0 upon Address Match (Including Extension Code Reception) to Figure 15-25 When Operating as Slave Device after Releasing STOP Mode other than by INTIICA (When Not Required to Operate as Master Device)	
	Modification of Figure 15-33 Example of Master to Slave Communication and Figure 15-34 Example of Slave to Master Communication	
	Modification of Figure 16-1 Block Diagram of LCD Controller/Driver	CHAPTER 16 LCD CONTROLLER/DRIVER
	Modification of Figure 16-5 Format of LCD boost level control register (VLCD)	
	Addition of Caution 1 to Figure 16-7 Format of Segment Enable Register (SEGEN)	
	Modification of Figure 16-33 Examples of LCD Drive Power Connections (Internal Voltage Boosting Method)	
	Modification of Figure 17-4 Format of Multiplication/Division Data Register C (MDCH, MDCL)	CHAPTER 17 MULTIPLIER/DIVIDER
	Modification of Table 18-2 Response Time of DMA Transfer	CHAPTER 18 DMA CONTROLLER
	Modification of Maskable interrupts	CHAPTER 19 INTERRUPT FUNCTIONS
	Modification of Table 19-1 Interrupt Source List	
	Modification of Figure 19-1 Basic Configuration of Interrupt Function	
	Modification of Table 19-2 Flags Corresponding to Interrupt Request Sources	
	Modification of Figure 19-2 Format of Interrupt Request Flag Registers (IFOL, IF0H, IF1L, IF1H, IF2L, IF2H) (78K0R/LF3) to Figure 19-4 Format of Interrupt Request Flag Registers (IFOL, IF0H, IF1L, IF1H, IF2L, IF2H) (78K0R/LH3)	
	Modification of Figure 19-5 Format of Interrupt Mask Flag Registers (MKOL, MK0H, MK1L, MK1H, MK2L, MK2H) (78K0R/LF3) to Figure 19-7 Format of Interrupt Mask Flag Registers (MKOL, MKOH, MK1L, MK1H, MK2L, MK2H) (78KOR/LH3)	
	Modification of Figure 19-8 Format of Priority Specification Flag Registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H) (78K0R/LF3) to Figure 19-10 Format of Priority Specification Flag Registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H) (78K0R/LH3)	

Edition	Description	Chapter
2nd Edition	Modification of Caution 2 in Figure 20-2 Format of Key Return Mode Register (KRM)	CHAPTER 20 KEY INTERRUPT FUNCTION
	Addition of Table 21-1 Operating Statuses in HALT Mode (3/3)	CHAPTER 21 STANDBY FUNCTION
	Modification of Note in Figure 21-3 HALT Mode Release by Interrupt Request Generation	
	Modification of Figure 21-4 HALT Mode Release by Reset	
	Modification of Figure 21-5 Operation Timing When STOP Mode Is Released (When Unmasked Interrupt Request Is Generated)	
	Modification of Figure 21-6 STOP Mode Release by Interrupt Request Generation	
	Modification of Figure 21-7 STOP Mode Release by Reset	
	Modification of Figure 22-2 Timing of Reset by RESET Input to Figure 22-4 Timing of Reset in STOP Mode by RESET Input	CHAPTER 22 RESET FUNCTION
	Modification of Table 22-1 Operation Statuses During Reset Period	
	Modification of Table 22-2 Hardware Statuses After Reset Acknowledgment	
	Modification of Figure 23-2 Timing of Generation of Internal Reset Signal by Power-on-Clear Circuit and Low-Voltage Detector	CHAPTER 23 POWER-ON-CLEAR CIRCUIT
	Modification of Caution 1 in Figure 24-2 Format of Low-Voltage Detection Register (LVIM)	CHAPTER 24 LOW- VOLTAGE DETECTOR
	Modification of 24.4.1 When used as reset - When stopping operation	
	Modification of 24.4.2 When used as interrupt - When stopping operation	
	Modification of Cautions 1, 2 in Figure 25-1 Format of Regulator Mode Control Register (RMC)	CHAPTER 25 REGULATOR
	Modification of Caution 4 in 27.8 Flash Memory Programming by SelfProgramming	CHAPTER 27 FLASH MEMORY
	Absolute Maximum Ratings - Modification of Output voltage (Vo4), Output current, high (Іонз), Output current, low (lolz)	CHAPTER 31 ELECTRICAL SPECIFICATIONS (TARGET)
	DC Characteristics - Modification of Output current, high (Іонг), Output current, low (lol2), Output voltage, high (Vонг), Output voltage, low (Vol2), Supply current (IDd2), A/D converter operating current (ladC), Operational amplifier operating current (IAMP), Voltage reference operating current (Ivr), LCD operating current (ILcD2, ILCD3)	
	(1) Basic operation in AC Characteristics - Modification of Instruction cycle - Addition of Note - Modification of Minimum instruction execution time during main system clock operation ($F S E L=0, R M C=00 H$) to Minimum instruction execution time during self programming mode (RMC $=00 \mathrm{H}$) - Addition of Minimum instruction execution time during self programming mode (RMC = 5AH)	
	(2) Serial interface: Serial array unit in AC Characteristics - Modification of (d) Data hold time (transmission) in During communication at same potential (simplified $I^{2} C$ mode) - Modification of (h) Data hold time (transmission) in Communication at different potential (2.5 V, 3 V) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)	

Edition	Description	Chapter
2nd Edition	(3) Serial interface: IICA in AC Characteristics - Modification of Table	CHAPTER 31 ELECTRICAL SPECIFICATIONS (TARGET) (continuation)
	(3) Voltage Reference in Analog Characteristics - Addition of Remark	
	(4) D/A Converter in Analog Characteristics - Addition of Gain error (EG)	
	(2) Internal voltage boosting method in LCD Characteristics - Modification of LCD output voltage variation range	
	(3) Capacitor split method in LCD Characteristics - Modification of Vlco voltage	
	Addition of chapter	APPENDIX A DEVELOPMENT TOOLS
	Addition of chapter	APPENDIX B REVISION HISTORY
3rd Edition	DF781508, QB-78K0RLX3: Under development \rightarrow Under mass production	Throughout
	Addition of QB-Programmer Programming GUI Operation User's Manual to Related Documents	INTRODUCTION
	Modification of 1.1 Features	CHAPTER 1 OUTLINE
	Modification of 2.2.21 RESET and 2.2.22 REGC	CHAPTER 2 PIN FUNCTIONS
	Addition of Note 1 to Figure 3-1 Memory Map (μ PD78F1500, 78F1503, 78F1506)	CHAPTER 3 CPU ARCHITECTURE
	Addition of Note 1 to Figure 3-2 Memory Map (μ PD78F1501, 78F1504, 78F1507)	
	Addition of Note 1 to and modification of Figure 3-3 Memory Map (μ PD78F1502, 78F1505, 78F1508)	
	Modification of description in 3.1.1 (1) Vector table area	
	Modification of 3.1.2 Mirror area	
	Modification of description in and addition of Cautions 1, 2 to 3.1.3 Internal data memory space	
	Modification of Figure 3-7 Correspondence Between Data Memory and Addressing (μ PD78F1502, 78F1505, 78F1508)	
	Addition of Cautions 2, 3 to 3.2.1 (3) Stack pointer (SP)	
	Modification of Figure 4-1 Block Diagram of P00 and P01	CHAPTER 4 PORT FUNCTIONS
	Modification of Figure 4-2 Block Diagram of P02	
	Modification of Figure 5-6 Format of System Clock Control Register (CKC)	CHAPTER 5 CLOCK GENERATOR
	Modification of <2> in 5.6 .2 (2) Example of setting procedure when using internal high-speed oscillation clock as CPU/peripheral hardware clock	
	Modification of Table 5-4 CPU Clock Transition and SFR Register Setting Examples	
	Modification of Table 5-8 Maximum Number of Clocks Required in fiH $\leftrightarrow \mathrm{fmx}$ and Table 5-9 Maximum Number of Clocks Required in fmainc \leftrightarrow fsubc	
	Modification of Note 1 in Figure 6-6 Format of Timer Clock Select Register m (TPSm)	CHAPTER 6 TIMER ARRAY UNIT
	Modification of Figure 6-7 Format of Timer Mode Register mn (TMRmn) (1/4)	
	Addition of description of Event counter mode to Table 6-4 Operations from Count Operation Enabled State to TCRmn Count Start	
	Addition of description to 6.4 .3 (1) Changing values set in registers TOp,TOEp,TOLp, and TOMp during timer operation	

Edition	Description	Chapter
3rd Edition	Addition of description to 6.7.1 Operation as interval timer/square wave output	CHAPTER 6 TIMER ARRAY UNIT
	Modification of Figure 6-37 Block Diagram of Operation as Interval Timer/Square Wave Output	
	Addition of (2) When the timer input (TIpq pin input, fsub/4, fsus/2 or INTRTCI) is selected as count clock to Figure 6-39 Example of Set Contents of Registers During Operation as Interval Timer/Square Wave Output	
	Modification of Figure 6-40 Operation Procedure of Interval Timer/Square Wave Output Function (1/2)	
	Modification of Caution in Figure 7-3 Format of Real-Time Counter Control Register 0 (RTCCO)	CHAPTER 7 REALTIME COUNTER
	Addition of description to 7.3 (8) Hour count register (HOUR)	
	Addition of description to Figure 7-14 Format of Watch Error Correction Register (SUBCUD)	
	Modification of Figure 7-26 512 Hz or 16.384 kHz Output Setting Procedure	
	Addition of Caution 3 to Figure 9-2 Format of Clock Output Select Register n (CKSn)	CHAPTER 9 CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER
	Modification of Remark in 9.4.1 Operation as output pin	
	Modification of Figure 9-4 Remote Control Output Application Example	
	Addition of Notes 2, 3 to and modification of Cautions 1, 2 in Figure 10-4 Format of A/D Converter Mode Register (ADM)	CHAPTER 10 A/D CONVERTER
	Modification of Table 10-2 A/D Conversion Time Selection	
	Modification of description in 10.3 (4) Analog reference voltage control register (ADVRC)	
	Modification of Figure 10-8 Format of Analog Reference Voltage Control Register (ADVRC)	
	Addition of $<3>$ to and modification of <8> and Caution 4 in 10.4.1 Basic operations of A/D converter	
	Modification of Figure 10-16 Software trigger mode (Continuous conversion mode)	
	Modification of Figure 10-17 Software trigger mode (Single conversion mode)	
	Modification of <2> in 10.4 .3 (3) Timer trigger mode (Continuous conversion mode)	
	Modification of Figure 10-18 Timer trigger mode (Continuous conversion mode)	
	Modification of <2> in and addition of <5> to 10.4.3 (4) Timer trigger mode (Single conversion mode)	
	Modification of Figure 10-19 Timer trigger mode (Single conversion mode)	
	Addition of <3> to and modification of <8>, <11> and Caution 7 in setting methods of 10.4.3 A/D converter operation modes	
	Modification of 10.6 (1) Operating current in STOP mode and (12) Rewriting DACSWn during A/D conversion	
	Modification of Figure 11-1 Block Diagram of D/A Converter	CHAPTER 11 D/A CONVERTER
	Addition of Note 1 to and modification of Note 2 and Remark in Figure 11-3 Format of D/A Converter Mode Register (DAM)	
	Modification of Caution in Figure 11-4 Format of D/A Conversion Value Setting Registers W0 and W1 (DACSW0, DACSW1)	
	Modification of $\langle 3\rangle,\langle 6\rangle$ in and addition of Cautions 1, 2 to 11.4.1 Operation in normal mode	
	Modification of <3>, <6>, <9> in and addition of Cautions 1 to 3 to 11.4.2 Operation in real-time output mode	
	Modification of (3) in 11.5 Cautions for D/A Converter	

Edition	Description	Chapter
3rd Edition	Addition of <5> to 12.4.1 Single AMP Mode	CHAPTER 12 OPERATIONAL AMPLIFIER
	Modification of Figure 13-1 Block Diagram of Voltage Reference	CHAPTER 13 VOLTAGE REFERENCE
	Modification of description in 13.3 (2) Analog reference voltage control register (ADVRC)	
	Modification of Figure 13-3 Format of Analog Reference Voltage Control Register (ADVRC)	
	Modification of <2> to <5> in 13.4.1 Reference voltage output mode	
	Addition of 13.5 Cautions for Voltage Reference	
	Addition of Note to 14.1.3 Simplified I'C (IIC10, IIC20)	CHAPTER 14 SERIAL ARRAY UNIT
	Modification of Figure 14-1 Block Diagram of Serial Array Unit 0	
	Modification of Figure 14-2 Block Diagram of Serial Array Unit 1	
	Modification of Note 2 in Figure 14-5 Format of Serial Clock Select Register m (SPSm)	
	Modification of description of and addition of Note to Figure 14-7 Format of Serial Communication Operation Setting Register mn (SCRmn) (1/3)	
	Addition of Caution 3 to Figure 14-8 Format of Serial Data Register mn (SDRmn)	
	Addition of Note to Figure 14-9 Format of Serial Status Register mn (SSRmn)	
	Modification of Figure 14-10 Format of Serial Flag Clear Trigger Register mn (SIRmn)	
	Modification of Figure 14-26 Procedure for Stopping Master Transmission	
	Modification of Figure 14-27 Procedure for Resuming Master Transmission	
	Modification of Figure 14-28 Timing Chart of Master Transmission (in SingleTransmission Mode)	
	Modification of Figure 14-30 Timing Chart of Master Transmission (in Continuous Transmission Mode)	
	Modification of Figure 14-31 Flowchart of Master Transmission (in Continuous Transmission Mode)	
	Modification of Figure 14-36 Timing Chart of Master Reception (in SingleReception Mode)	
	Modification of Figure 14-40 Procedure for Stopping Master Transmission/Reception	
	Modification of Figure 14-41 Procedure for Resuming Master Transmission/Reception	
	Modification of Figure 14-42 Timing Chart of Master Transmission/Reception (in Single-Transmission/Reception Mode)	
	Modification of Figure 14-44 Timing Chart of Master Transmission/Reception (in Continuous Transmission/Reception Mode)	
	Modification of Figure 14-45 Flowchart of Master Transmission/Reception (in Continuous Transmission/Reception Mode)	
	Modification of 14.5.4 Slave transmission and Note 1	
	Modification of Figure 14-48 Procedure for Stopping Slave Transmission	
	Modification of Figure 14-49 Procedure for Resuming Slave Transmission	
	Modification of Figure 14-50 Timing Chart of Slave Transmission (in SingleTransmission Mode)	
	Modification of Figure 14-52 Timing Chart of Slave Transmission (in Continuous Transmission Mode)	

Edition	Description	Chapter
3rd Edition	Modification of Figure 14-53 Flowchart of Slave Transmission (in Continuous Transmission Mode)	CHAPTER 14 SERIAL ARRAY UNIT (continuation)
	Modification of 14.5.5 Slave reception and Note 1	
	Modification of Figure 14-57 Procedure for Resuming Slave Reception	
	Modification of Figure 14-58 Timing Chart of Slave Reception (in SingleReception Mode)	
	Modification of 14.5.6 Slave transmission/reception and Note 1	
	Modification of Figure 14-62 Procedure for Stopping Slave Transmission/Reception	
	Modification of Figure 14-63 Procedure for Resuming Slave Transmission/Reception	
	Modification of Figure 14-64 Timing Chart of Slave Transmission/Reception (in Single-Transmission/Reception Mode)	
	Modification of Figure 14-66 Timing Chart of Slave Transmission/Reception (in Continuous Transmission/Reception Mode)	
	Modification of Figure 14-67 Flowchart of Slave Transmission/Reception (in Continuous Transmission/Reception Mode)	
	Modification of Note 2 in Table 14-2 Selection of operation clock	
	Addition of Caution to 14.6 Operation of UART (UARTO, UART1, UART2, UART3) Communication	
	Modification of Figure 14-70 Procedure for Stopping UART Transmission	
	Modification of Figure 14-72 Timing Chart of UART Transmission (in SingleTransmission Mode)	
	Modification of Figure 14-74 Timing Chart of UART Transmission (in Continuous Transmission Mode)	
	Modification and addition of description in 14.6.2 UART reception	
	Addition of description of Figure 14-76 Example of Contents of Registers for UART Reception of UART (UART0, UART1, UART2, UART3)	
	Modification of Figure 14-80 Timing Chart of UART Reception	
	Modification of the transfer data length in 14.6.3 LIN transmission	
	Modification of Note 2 in Figure 14-82 Transmission Operation of LIN	
	Modification of the transfer data length in 14.6.4 LIN reception	
	Modification of Note 2 in Table 14-3 Selection of operation clock	
	Addition of Note to 14.7 Operation of Simplified I ${ }^{2}$ C (IIC10, IIC20) Communication	
	Addition of Note, Remark and the description of the transfer rate to 14.7.1 Address field transmission	
	Modification of Figure 14-89 Initial Setting Procedure for Address Field Transmission	
	Modification of Figure 14-90 Timing Chart of Address Field Transmission	
	Addition of Note, Remark and the description of the transfer rate to 14.7.2 Data transmission	
	Modification of Figure 14-93 Timing Chart of Data Transmission	
	Addition of Note, Remark and the description of the transfer rate to 14.7.3 Data reception	
	Modification of Figure 14-96 Timing Chart of Data Reception	
	Modification of Figure 14-97 Flowchart of Data Reception	

Edition	Description	Chapter
3rd Edition	Modification of and addition of Note to Figure 14-98 Timing Chart of Stop Condition Generation	CHAPTER 14 SERIAL ARRAY UNIT (continuation)
	Addition of Caution to 14.7.5 Calculating transfer rate	
	Modification of Note 2 in Table 14-4 Selection of operation clock	
	Addition of Caution 3 to Figure 15-3 Format of IICA Shift Register (IICA)	CHAPTER 15 SERIAL INTERFACE IICA
	Modification of description in 15.2 (2) Slave address register (SVA)	
	Modification of description in Figure 15-4 Format of Slave Address Register (SVA)	
	Addition of Note 3 to and modification of Caution in Figure 15-6 Format of IICA Control Register 0 (IICCTLO) (1/4)	
	Addition of description to Figure 15-6 Format of IICA Control Register 0 (IICCTLO) (2/4)	
	Modification of description in Figure 15-6 Format of IICA Control Register 0 (IICCTLO) (3/4)	
	Addition of description to Figure 15-9 Format of IICA Control Register 1 (IICCTL1) (1/2)	
	Modification of 15.4.2 (1) Setting transfer clock on master side	
	Modification of Figure 15-23 Flow When Setting WUP = 0 upon Address Match (Including Extension Code Reception)	
	Modification of Figure 15-24 When Operating as Master Device after Releasing STOP Mode other than by INTIICA and deletion of Figure 15-25 When Operating as Slave Device after Releasing STOP Mode other than by INTIICA (When Not Required to Operate as Master Device) in old edition	
	Modification of 15.5.14 (1) When communication reservation function is enabled (bit 0 (IICRSV) of IICA flag register (IICF) $=0$)	
	Modification of Note 1 in Figure 15-27 Communication Reservation Protocol	
	Modification of Note in Figure 15-29 Master Operation in Multi-Master System (2/3)	
	Modification of Figure 16-1 Block Diagram of LCD Controller/Driver	CHAPTER 16 LCD CONTROLLER/DRIVER
	Addition of Caution 4 to and modification of Caution 5 in Figure 16-3 Format of LCD Display Mode Register	
	Modification of Figure 16-4 Format of LCD Clock Control Register	
	Addition of Caution 5 to and modification of Figure 16-5 Format of LCD boost level control register (VLCD)	
	Addition of <8> to 16.5 (2) Internal voltage boosting method	
	Addition of Caution to Figure 16-31 Examples of LCD Drive Power Connections (External Resistance Division Method)	
	Modification of description in 19.2 Interrupt Sources and Configuration	CHAPTER 19 INTERRUPT FUNCTIONS
	Modification of Table 21-2 Operating Statuses in STOP Mode	CHAPTER 21 STANDBY FUNCTION
	Modification of Caution 1	CHAPTER 22 RESET FUNCTION
	Modification of Figure 22-1 Block Diagram of Reset Function	
	Modification of Table 22-1 Operation Statuses During Reset Period	
	Modification of Table 22-2 Hardware Statuses After Reset Acknowledgment	
	Modification of 22.1 Register for Confirming Reset Source	
	Modification of and addition of Caution 2 to Figure 22-5 Format of Reset Control Flag Register (RESF)	

Edition	Description	Chapter
3rd Edition	Modification of Figure 23-1 Block Diagram of Power-on-Clear Circuit	CHAPTER 23 POWER-ON-CLEAR CIRCUIT
	Modification of Note 4 in Figure 24-2 Format of Low-Voltage Detection Register (LVIM)	CHAPTER 24 LOWVOLTAGE DETECTOR
	24.4.1 (1) When detecting level of supply voltage (V_{DD}) - Modification of $<5>$ in (a) When LVI default start function stopped is set (LVIOFF = 1)	
	24.4.1 (2) When detecting level of input voltage from external input pin (EXLVI) - Modification of <4>	
	24.4.2 (1) When detecting level of supply voltage (V_{DD}) - Modification of <5> in (a) When LVI default start function stopped is set (LVIOFF = 1)	
	24.4.2 (2) When detecting level of input voltage from external input pin (EXLVI) - Modification of <4>	
	Modification of Figure 24-12 Delay from the time LVI reset source is generated until the time LVI reset has been generated or released	
	Modification of 25.1 Regulator Overview	CHAPTER 25
	Addition of Caution 1, 4 to Figure 25-1 Format of Regulator Mode Control Register (RMC)	REGULATOR
	Addition of 26.4 Setting of Option Byte	CHAPTER 26 OPTION BYTE
	Modification of 27.4.5 REGC pin	CHAPTER 27 FLASH
	Addition of Caution 5 to $\mathbf{2 7 . 8}$ Flash Memory Programming by Self-Programming	MEMORY
	Modification of 27.8.2 Flash shield window function	
	Modification of chapter	CHAPTER 31 ELECTRICAL SPECIFICATIONS (TARGET)
	Addition of chapter	APPENDIX B REGISTER INDEX
	Addition of chapter	APPENDIX C LIST OF CAUTIONS
	Addition of D. 2 Revision History of Preceding Editions	APPENDIX D REVISION HISTORY
4th Edition	Change URL of Renesas Electronics website	Throughout
	Change product names to A version (μ PD78F150xA)	
	Deletion of target from the capacitance value of the capacitor connected to the REGC pin	
	Change names of A / D conversion modes - conversion mode $1 \rightarrow$ normal mode 1 - conversion mode $2 \rightarrow$ normal mode 2 - conversion mode $3 \rightarrow$ low voltage mode	
	Addition of description of 20 MHz internal high-speed oscillation clock oscillator	
	Change of 1.2 Ordering Information	CHAPTER 1 OUTLINE
	Change the value of vectored interrupt sources of 78K0R/LF3	

Edition	Description	$\begin{array}{c}\text { Chapter }\end{array}$
4th Edition	Change of description of the wait time of the FSEL	CHAPTER 5 CLOCK
	GENERATOR	

Edition	Description	Chapter
4th Edition	Addition of example of calculation of LCD frame frequency to (c) and (d) of Figure 16-13. Common Signal Waveforms (2/2)	CHAPTER 16 LCD CONTROLLER/ DRIVER
	Change of Caution of Figure 16-31. Examples of LCD Drive Power Connections (External Resistance Division Method)	
	Change the capacitance value of external capacitors to $0.47 \mu \mathrm{~F} \pm 30 \%$ in $\mathbf{1 6 . 8 . 2}$ Internal voltage boosting method and 16.8.3 Capacitor split method	
	Addition of Note to Figure 18-4. Format of DMA Mode Control Register \mathbf{n} (DMCn) (1/2)	CHAPTER 18 DMA CONTROLLER
	Change of description of Figure 18-7. Example of Setting for CSI Consecutive Transmission	
	Addition of 18.5.2 CSI master reception and 18.5.3 CSI transmission/reception	
	Change of 18.5.6 Holding DMA transfer pending by DWAITn and addition of Caution	
	Change of 18.5.7 Forced termination by software	
	Change of 18.6 Cautions on Using DMA Controller	
	Change value of maskable interrupts of 78K0R/LF3	CHAPTER 19 INTERRUPT FUNCTIONS
	Change of Figure 26-1. Format of User Option Byte (000COH/010COH) (1/2)	CHAPTER 26 OPTION BYTE
	Change of 26.4 Setting of Option Byte	
	Addition of Figure 27-3. Example of Wiring Adapter for Flash Memory Writing (μ PD78F1508A)	CHAPTER 27 FLASH MEMORY
	Addition of 27.9 Creating ROM Code to Place Order for Previously Written Product	
	Change of Examples 2 in 29.3 BCD Correction Circuit Operation	CHAPTER 29 BCD CORRECTION CIRCUIT
	Change of Table 30-5. Operation List	CHAPTER 30 INSTRUCTION SET
	Deletion of (TARGET)	CHAPTER 31 ELECTRICAL SPECIFICATIONS
	Change of analog output voltage, output current, high, and output current, low in Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	
	Change of Internal Oscillator Characteristics	
	Addition of Recommended oscillator circuit constants	
	Change of output voltage, low (Voடг), supply current, and operating current of DC Characteristics	
	Change of Caution of (1) Basic operation (3/6) in AC Characteristics	
	Change of (b) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) of (2) Serial interface: Serial array unit (2/18) and addition of Note 1	
	Change of (c) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) of (2) Serial interface: Serial array unit (3/18)	
	Change of (d) During communication at same potential (simplified I ${ }^{2} \mathrm{C}$ mode) of (2) Serial interface: Serial array unit $(5 / 18)$	
	Change of (f) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, $\overline{\text { SCKp... internal clock output) (1/2) of (2) Serial interface: Serial }}$ array unit $(11 / 18)$ and addition of Note 1	

Edition	Description	Chapter
4th Edition	Change of (f) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2) of (2) Serial interface: Serial array unit (12/18)	CHAPTER 31 ELECTRICAL SPECIFICATIONS (continuation)
	Change of (g) Communication at different potential (2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) of (2) Serial interface: Serial array unit (14/18)	
	Change of (h) Communication at different potential ($2.5 \mathrm{~V}, 3 \mathrm{~V}$) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode) of (2) Serial interface: Serial array unit (17/18)	
	Change of Analog Characteristics	
	Addition of chapter	CHAPTER 33 RECOMMENDED SOLDERING CONDITIONS
	Addition of part number of flash memory programming adapter	APPENDIX A DEVELOPMENT TOOLS

78K0R/Lx3 User's Manual: Hardware

Publication Date: Rev.0.01 Apr 30, 2008

Rev.5.01 Jun 20, 2011

Published by: Renesas Electronics Corporation

-RENESAS

Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: $+1-905-898-3220$
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No. 1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858/-7898
Renesas Electronics Hong Kong Limited
nit 16013, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Renesas Electronics Taiwan Co., Ltd.
Tr, No. 363 Fu Shing Norn Road Tapei, Taiwan
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, \#06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn. Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

78K0R/Lx3

[^0]: Remark For extended SFRs (2nd SFRs), see Table 3-6 Extended SFR (2nd SFR) List.

[^1]: Remark \times : don't care
 -: \quad Not applicable
 PFALL: Port function register
 ISC: Input switch control register
 PM $\times x$: Port mode register
 Pxx: Port output latch

[^2]: Remark fmain: Main system clock frequency (fil , $\mathrm{fIH}_{\mathrm{H} 20}$, or fmx)
 fsub: Subsystem clock frequency

[^3]: Caution If $S A U m E N=0$, writing to a control register of serial array unit \mathbf{m} is ignored, and, even if the register is read, only the default value is read (except for input switch control register (ISC), noise filter enable register (NFEN0), port input mode registers (PIM1, PIM7), port output mode registers (POM1, POM7, POM8), port mode registers (PM1, PM5, PM7, PM8), and port registers (P1, P5, P7, P8)).

[^4]: Caution Be sure to set bit 3 of PR01H and PR11H, bits 5 to 7 of PR02L and PR12L, bits $0,6,7$ of PR02H and PR12H to 1.

[^5]: <1>: Minimum pulse width (200 $\mu \mathrm{s}(\mathrm{MIN})$.

[^6]: its true position at maximum material condition

