EUROQUARTZ

CX2SM CRYSTAL

Low Profile Miniature SMD Crystal

760kHz to 1.35MHz

FEATURES

- Extensional mode resonator, 760kHz to 1.35MHz
- **Designed for low power applications**
- Ideal microprocessor clock crystal
- Low ageing
- Full military testing available

DESCRIPTION

CX2SM crystals consist of a high quality extensional mode resonator in a rugged, hermetically sealed ceramic package.

SPECIFICATION

Specifications stated are typical at 25°C unless otherwise indicated. Specifications may change without notice.

Frequency Range:	760.0kHz to 1.35MHz
Standard Calibration Tolerance*:	±500ppm (0.05%) ±1000ppm (0.1%) ±10000ppm (1.0%)
Load Capacitance:	7pF
Motional Resistance (R1):	5kΩ maximum
Motional Capacitance (C1):	1.2fF
Quality Factor (Q):	150k
Shunt Capacitance (C0):	1.0pF
Drive Level:	3µ₩ maximum
Turning Point (T0**):	35°C
Temperature Coefficient (k):	-0.035ppm/°C2
Ageing First Year:	±5ppm maximum
Shock, Survival:	1000g, 0.3ms, ½ sine
Vibration, Survival:	10g rms, 20~1000Hz random
Operating Temperature Range:	-10°C to +70°C (Commercial) -40°C to +85°C (Industrial) -55°C to +125°C (Military)
Storage Temperature Range:	-55° to +125°C
Maximum Process Temperature:	+260°C for 20 seconds

Maximum Process Temperature:

Tighter frequency calibration is available.

Other turning point is available.

Turning Point Temperature

Note: Frequency f at temperature T is related to frequency Fo at turning point temperature To by:

$$\frac{f-fo}{fo} = k(T-To)^2$$

OUTLINE & DIMENSIONS

Dim.	Тур.	Max.
А	6.60	6.99
В	2.39	2.74
С	see bel	ow
D	0.89	1.14
E	1.50	1.75
F	1.27	1.52
G	2.67	2.92
Н	3.94	4.19
1	5 3 3	5 5 9

Dim. C	Glass Lid	Ceramic Lid
SM1	1.65	1.91
SM2	1.70	1.96
SM3	1.78	2.03
SM4	1.70	1.96
SM5	1.78	2.03

PACKAGING OPTIONS

CX2SM crystals are available either tray packed (<250pcs) or tape and reel (>250 pieces).

16mm tape, 178mm or 330mm reels (EIA 418).

HOW TO ORDER CX2SM CRYSTALS

EUROQUARTZ LIMITED Blacknell Lane CREWKERNE Somerset UK TA18 7HE Tel: +44 (0)1460 230000 Fax: +44 (0)1460 230001 info@euroquartz.co.uk www.euroquartz.co.uk

EURO QUARTZ

CX2SM CRYSTAL

Low Profile Miniature SMD Crystal

760kHz to 1.35MHz

CRYSTAL EQUIVALENT CIRCUIT

R1 Motional Resistance C1 Motional Capacitance

L1 Motional Inductance C0 Shunt Capacitance

TYPICAL APPLICATION FOR A PIERCE OSCILLATOR

The low profile CX miniature crystal is ideal for use in small, high density, battery operated portable products. The CX crystal designed in a Pierce oscillator (single inverter) circuit provides very low current consumption and high stability. A conventional Pierce oscillator is shown above. The crystal is effectively inductive and in a Pi network circuit with C^D and C^G provides the additional phase shift to sustain oscillation. The oscillation frequency (f^o) is 15 to 250ppm above the crystal's resonant frequency (f^s).

Drive Level

 R^A is used to limit the crystal's drive level by forming a voltage divider between R^A and C^D. R^A also stabilizes the oscillator against changes in the amplifier's output resistance (R^O). R^A should be increased for higher voltage operation.

Load Capacitance

The CX crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance (CL). CL is approximately equal to:

$$C_{L} = \frac{C_{D} \times C_{G}}{C_{D} + C_{G}} + C_{S}$$

Note: C^{D} and C^{G} include stray layout-induced capacitance to ground and C^{S} is the stray shunt capacitance between the crystal terminal. In practice, the effective value of C^{L} will be less than that calculated from C^{D} , C^{G} and C^{S} values because of the effect of the amplifier output resistance. C^{S} should be minimized.

The oscillation frequency (fo) is approximately equal to:

$$f_{O} = f_{S} \left[1 + \frac{C_{1}}{2(C_{O} + C_{L})} \right]$$

Where

 $\label{eq:Fs} \begin{array}{l} Fs = \text{Series resonant frequency of the crystal} \\ C^{1} = \text{Motional Capacitance} \\ C^{\circ} = \text{Shunt Capacitance} \end{array}$

TERMINATIONS - PLATING

Designation	Termination	
SM1	Gold Plated (Lead Free)	
SM2	Solder Plated	
SM3	Solder Dipped	
SM4	Solder Plated (Lead Free)	
SM5	Solder Dipped (Lead Free)	
	,	

Turning Point Temperature

Note: Frequency f at temperature T is related to frequency F0 at turning point temperature To by:

$$\frac{f-fo}{fo} = k(T-To)^2$$