SIEMENS ## SFH 4212 IRED TO18 PACKAGE ### **FEATURES** - InGaAsP/InP-IRED - Emission Wavelength: 2nd Optical Window (1300 nm) - Suitable for Bit Rates up to 50 Mbit/s - 200 Mbit/s with Appropriate Pulse Shaping of Modulation Current - High Output Power with Double Heterostructure - High Coupling Efficiency into a 62.5/125 µm Graded Index Fiber with Built in Optics and Appropriate Second Lens Configuration - Hermetically Sealed 3-pin Metal Case, Similar to TO 18, AR-Coated Window - Application: - Fiber Optic Communication System ### **Maximum Ratings** | Forward Current DC (I _F) | 60 mA | |---|--------------| | Forward Current τ ≤10 μs, D≤1 (I _{EGM}) | 100 mA | | Reverse Voltage (V _R) | | | Operating Temperature Range at Case (T _C) | 20" to +80"C | | Storage Temperature Range (Ambient Temp.) (T _{CTG}) | 40" to +80°C | | Junction Temperature (T _J) | 125"C | | Soldering Time (Wave Soldering), | | | Pin Length 2mm, 260"C (T _{G1}) | 10 s | | Soldering Time (Dip Soldering), | | | Pin Length 2mm, 280°C (T ₀₂) | 3 s | Characteristics (Output power ratings refers to an optimally coupled 62.5/125 μm GI fiber at $T_A=25^{\circ}C$) | Parameter | Symbol | Value | Unit | |--|---------------------------------|----------|------| | Emission Wavelength (1) | λ_c | 1310±30 | nm | | Spectral Bandwidth at 50% of $\Phi_{MAX}(1)$ | $\Delta\lambda$ | 130±30 | nm | | Radiation Power Coupled into a | | | | | 62.5/125 μm GI-fiber with | | | | | Fiber-Lens-Corif., NA = 0.275 (1) | ф _е | 15 to 45 | μW | | Forward Voltage, I _F = 50 mA DC | V _F | 12 | V | | Rise and Fall Time (10 to 90%) | | | | | $(R_L=50 \ \Omega. \ I_F=50 \ mA)$ | $t_{\mathbf{H}},t_{\mathbf{F}}$ | 3, 4 | ns | | Capacitance (V _R =0 V, f=1 MHz) | Co | 100 | рF | | Temperature Coefficient of | | | | | Forward Voltage (I _F =50 mA) | TC _{VF} | 1.3 | mV/K | | Temperature Coefficient of | | | | | Wavelength (I _F =50 mA) | TC_{λ} | 0.5 | nm/K | | Temperature Coefficient of | | | | | Radiation Power (I _F =50 mA) (1) | TC _{⊕e} | -0.7 | %/K | | Thermal Resistance | | | | | Junction/Air | R _{thJA} | 400 | | | Junction/Case | R _{thJC} | 150 | KΜ | | Frequency Response (2) | A ₍₆₀₍₁₀₎ | 0.80 | | #### Notes - 1 Measured with optical system as shown in example (see below). Driving current is a square wave, 50% duty cycle, 60 mA_{PK} current at 1 MHz. Φ_E is the average optical power coupled in the described lens configuration. - The diode is driven with 30 mA DC and 60 mA_{PtC} sine wave at 10 MHz and 60 MHz, respectively. A _(60/10) is the ration of the coupled-in optical power of 60 MHz and 10 MHz modulation frequency. ### **OPERATING INSTRUCTIONS** In order to achieve an operating lifetime $> 10^5\,\mathrm{h}$, which is required for Telcom applications, the value listed below should not be exceeded. Recommended forward current I_F=50 mA DC