2.5W Stereo Class-D Audio Power Amplifier (with DC Volume Control)

Features

- Operating Voltage: 3.3V-5.5V
- High Efficiency 85% at $P_{0}=2.5 \mathrm{~W}, 4 \Omega$ Speaker, $V_{D D}=5 \mathrm{~V}$
- Filter-Free Class-D Amplifier
- Low Shutdown Current
$-I_{D D}=1 \mu A$ at $V_{D D}=5 V$
- 64 Steps Volume Adjustable from -80dB to +20dB by DC Voltage with Hysteresis
- Output Power at THD $+\mathrm{N}=1 \%$
-2.5 W at $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega$
- Less External Components Required
- Internal AGC Function
- Input signal and output signal in phase
- Thermal and Over-Current Protections with Auto-Recovery
- Lead Free and Green Device Available (RoHS Compliant)
- Power Enhanced Packages SOP-16 and QFN4x420A

General Description

The APA2603B is a stereo, high efficiency, filter-free ClassD audio amplifier available in a SOP-16, QFN4x4-20A package.
The APA2603B provide the precise DC volume control, the gain range is from $-80 \mathrm{~dB}\left(\mathrm{~V}_{\text {volume }}=5 \mathrm{~V}\right)$ to +20 dB $\left(\mathrm{V}_{\text {volume }}=0 \mathrm{~V}\right)$ with 64 steps precise control. It's easy to get the suitable amplifier's gain with the 64 steps gain setting. The filter-free architecture eliminates the output filters compared to the traditional Class-D audio amplifier, and reduces the external component counts and the components high, it could save the PCB space, system cost, simplifies the design and the power loss at filter.
APA2603B provides an internal AGC (Non-Clip) function, and this function can low down the dynamic range for large input signal. APA2603B can provide from 20dB to 80 dB with 64 steps gain decrease for non-clipping function, and this function can avoid output signal clipping. The APA2603B also integrates the de-pop circuitry that reduces the pops and click noises during power on/off or shutdown enable process.
The APA2603B has build-in over-current and thermal protection that prevent the chip being destroyed by short circuit or over temperature situation.

Simplified Application Circuit

[^0]
Pin Configuration

Ordering and Marking I nformation

APA2603B		Package Code K: SOP-16 QA: QFN4x4-20A Operating Ambient Temperature Range I: -40 to $85^{\circ} \mathrm{C}$ Handling Code TR : Tape \& Reel Lead Free Code G: Halogen and Lead Free Device
APA2603B K :	APA2603B 0	XXXXX - Date Code
APA2603B QA :		XXXXX - Date Code

Note : ANPEC lead-free products contain molding compounds/die attach materials and 100\% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for MSL classification at lead-free peak reflow temperature. ANPEC defines "Green" to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

Absolute Maximum Ratings (Note 1)

Symbol	Parameter	Rating	Unit
$V_{\text {D }}$	Supply Voltage (VDD to GND)	-0.3 to 6.5	V
	Input Voltage (LINN, RINN to GND)	-0.3 to $V_{D D}+0.3$	
	Input Voltage (SD, MUTE, VOLUME and BYPASS to GND)	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	
T_{J}	Maximum Junction Temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	
$\mathrm{T}_{\text {SDR }}$	Maximum Soldering Temperature Range, 10 Seconds	260	
PD	Power Dissipation	Internally Limited	W

Note1: Stresses beyond those listed under " absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated undef recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Thermal Characteristics

Symbol	Parameter		Typical Value	Unit
θ_{JA}	Thermal Resistance -Junction to Ambient ${ }^{\text {(Note 2 }}$	$\begin{array}{r} \text { SOP-16 } \\ \text { QFN4x4-20A } \end{array}$	$\begin{aligned} & 80 \\ & 45 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$	Thermal Resistance -Junction to Case ${ }^{\text {(Note 3) }}$	$\begin{array}{r} \text { SOP-16 } \\ \text { QFN4x4-20A } \end{array}$	$\begin{gathered} 16 \\ 7 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 2: Please refer to " Layout Recommendation", the PGND PIN on the central of the IC should connect to the ground plan, and the PCB is a 2-layer, 5 -inch square area with 2 oz copper thickness.
Note 3: The case temperature is measured at the center of the PGND PIN on the underside of the SOP-16 package.

Recommended Operating Conditions

Symbol	Parameter		Range		Unit
			Min	Max	
$V_{\text {DD }}$	Supply Voltage		3.3	5.5	
V_{IH}	High Level Threshold Voltage	$\overline{\text { SD, MUTE }}$	2	$V_{D D}$	V
$\mathrm{V}_{\text {IL }}$	Low Level Threshold Voltage	SD, MUTE	0	0.8	
$\mathrm{V}_{\text {ICM }}$	Common Mode Input Voltage		1	$\mathrm{V}_{\mathrm{DD}}-1$	V
$\mathrm{T}_{\text {A }}$	Ambient Temperature Range		-40	85	${ }^{\circ}$
T_{J}	Junction Temperature Range		-40	125	C
R_{L}	Speaker Resistance		3.5	-	Ω

Electrical Characteristics

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (unless otherwise noted)

Symbol	Parameter	Test Conditions		APA2603B			Unit
				Min.	Typ.	Max.	
$I_{\text {D }}$	Supply Current	$\mathrm{V}_{\text {MUTE }}=0 \mathrm{~V}, \mathrm{~V}_{\text {/SD }}=5 \mathrm{~V}$, No Load		-	8	20	mA
$I_{\text {mute }}$	Supply Current (Mute Mode)	$\mathrm{V}_{\text {MUTE }}=5 \mathrm{~V}, \mathrm{~V}_{\text {/SD }}=5 \mathrm{~V}$, No Load		-	8	20	
$\mathrm{I}_{\text {SD }}$	Supply Current (SD Mode)	$\mathrm{V}_{\text {MUTE }}=0 \mathrm{~V}, \mathrm{~V}_{\text {/SD }}=0 \mathrm{~V}$, No Load		-	-	1	$\mu \mathrm{A}$
I_{1}	Input Current	SD, MUTE, VOLUME		-	-	1	
Fosc	Oscillator Frequency			400	500	600	kHz
$\mathrm{R}_{\text {DSon }}$	Static Drain-Source On-State Resistance	$\begin{aligned} & V_{\mathrm{DD}}=5.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{L}}=0.8 \mathrm{~A} \end{aligned}$	P-channel Power MOSFET	215	270	325	$\mathrm{m} \Omega$
			N -channel Power MOSFET	205	260	310	
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{L}}=0.6 \mathrm{~A} \end{aligned}$	P-channel Power MOSFET	225	285	340	
			N -channel Power MOSFET	215	270	325	
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{L}}=0.4 \mathrm{~A} \end{aligned}$	P-channel Power MOSFET	240	300	360	
			N -channel Power MOSFET	220	280	335	
$\mathrm{T}_{\text {START-Up }}$	Start-Up Time from Shutdown	Bypass Capacitor, $\mathrm{C}_{\mathrm{B}}=2.2 \mu \mathrm{~F}$.		-	1.2	2	s
$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{GAIN}=20 \mathrm{~dB}$							
Po	Output Power	$\begin{aligned} & \text { THD+N=1\% } \\ & \mathrm{f}_{\text {in }}=1 \mathrm{kHz} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=4 \Omega$	2.2	2.4	-	W
THD+N	Total Harmonic Distortion Plus Noise	$\mathrm{f}_{\mathrm{in}}=1 \mathrm{kHz}$	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=4 \Omega, \\ & \mathrm{P}_{\mathrm{O}}=1.7 \mathrm{~W} \\ & \hline \end{aligned}$	-	0.1	0.3	\%
			$\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{P}_{\mathrm{o}}=1 \mathrm{~W}$	-	0.08	0.2	
Crosstalk	Channel Separation	$\mathrm{P}_{\mathrm{o}}=0.24 \mathrm{~W}, \mathrm{R}$	$4 \Omega, \mathrm{f}_{\mathrm{in}}=1 \mathrm{kHz}$	-	-90	-60	dB
PSRR	Power Supply Rejection Ratio	$R_{\mathrm{L}}=4 \Omega$, Input AC-Ground	$\mathrm{f}_{\text {in }}=100 \mathrm{~Hz}$	-	-60	-50	
			$\mathrm{f}_{\text {in }}=1 \mathrm{kHz}$	-	-70	-60	
SNR	Signal to Noise Ratio	With A-weighting Filter $\mathrm{V}_{\mathrm{o}}=0.96 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		80	85	-	
Attmute $^{\text {a }}$	Mute Attenuation	$\mathrm{f}_{\text {in }}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{~V}_{\text {in }}=1 \mathrm{Vrms}$		-	-100	-80	
${\text { Att }{ }_{\text {suutdown }} \text { }}^{\text {a }}$	Shutdown Attenuation	$\mathrm{f}_{\text {in }}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$, $\mathrm{V}_{\text {in }}=1 \mathrm{Vrms}$		-	-120	-90	
V_{n}	Output Noise	With A-weighting Filter (Gain=20dB), AC=GND		-	75	100	$\mu \mathrm{Vrms}$
$\mathrm{V}_{\text {os }}$	Output Offset Voltage	$\mathrm{R}_{\mathrm{L}}=4 \Omega$, Gain= 20 dB		-	10	30	mV
$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{GAIN}=20 \mathrm{~dB}$							
Po	Output Power	$\begin{aligned} & \text { THD+N=1\% } \\ & \mathrm{f}_{\mathrm{in}}=1 \mathrm{kHz} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=4 \Omega$	-	1.1	-	W
Crosstalk	Channel Separation	$\mathrm{P}_{\mathrm{o}}=0.12 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{f}_{\text {in }}=1 \mathrm{kHz}$		-	-90	-60	
PSRR	Power Supply Rejection Ratio	$R_{L}=4 \Omega$, Input AC-Ground	$\mathrm{f}_{\text {in }}=100 \mathrm{~Hz}$	-	-60	-50	
			$\mathrm{f}_{\text {in }}=1 \mathrm{kHz}$	-	-70	-60	
SNR	Signal to Noise Ratio	With A-weighting Filter$\mathrm{P}_{\mathrm{O}}=0.96 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		80	85	-	
Attmute $^{\text {a }}$	Mute Attenuation	$\mathrm{f}_{\text {in }}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{~V}_{\text {in }}=1 \mathrm{~V}_{\text {rms }}$		-	-100	-80	
Attstsutdown	Shutdown Attenuation	$\mathrm{f}_{\text {in }}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{~V}_{\text {in }}=1 \mathrm{~V}_{\text {rms }}$		-	-120	-90	
V_{n}	Output Noise	With A-weighting Filter (Gain=20dB), AC=GND		-	75	100	$\mu \mathrm{Vrms}$
Vos	Output Offset Voltage	$\mathrm{R}_{\mathrm{L}}=4 \Omega$, Gain=20dB		-	10	30	mV

Typical Operating Characteristics

Typical Operating Characteristics

PSRR VS Frequency

Typical Operating Characteristics

Typical Operating Characteristics

Pin Description

PIN			I/O/P	FUNCTION
NO.		NAME		
SOP-16	$\begin{gathered} \text { QFN4x4- } \\ 20 \mathrm{~A} \end{gathered}$			
1	3	SD	I	Shutdown Mode Control Input, Place entire IC in shutdown mode when held low.
2	4	BYPASS	P	Bias Voltage for Power Amplifiers.
3	5	RIN	1	Negative Input of Right Channel Power Amplifier.
$\begin{gathered} 4,5,12,1 \\ 3 \end{gathered}$	6,18	GND	P	Ground Connection.
6	7	LIN	I	Negative Input of Left Channel Power Amplifier.
7	8	VOLUME	1	To Set The Amplifier's Gain by Using The DC Voltage.
8	9	MUTE	1	Mute control signal input, hold low for normal operation, hold high to mute.
9	15	LOUT-	0	Negative Output of Left Channel Power Amplifier.
10,15	13,16,20	VDD	P	Power Supply.
11	17	LOUT+	\bigcirc	Positive Output of Left Channel Power Amplifier.
14	19	ROUT+	0	Positive Output of Right Channel Power Amplifier.
16	1	ROUT-	0	Negative Output of Right Channel Power Amplifier.

Typical Application Circuit

Block Diagram

DC Volume Control Table

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {GND }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Step	Gain (dB)	Down (\%)	Down (V)	Up(\%)	Up (V)	Recom(\%)	Recom(V)
		Volume H to L		Volume L to H			
1	20.0	1.70	0.09	0.00	0.00	0.00	0.00
2	19.6	3.25	0.16	2.20	0.11	2.73	0.14
3	19.2	4.80	0.24	3.75	0.19	4.28	0.21
4	18.8	6.35	0.32	5.30	0.27	5.83	0.29
5	18.4	7.90	0.40	6.85	0.34	7.38	0.37
6	18.0	9.45	0.47	8.40	0.42	8.93	0.45
7	17.6	11.00	0.55	9.95	0.50	10.48	0.52
8	17.2	12.55	0.63	11.50	0.58	12.03	0.60
9	16.8	14.10	0.71	13.05	0.65	13.58	0.68
10	16.4	15.65	0.78	14.60	0.73	15.13	0.76
11	16.0	17.20	0.86	16.15	0.81	16.68	0.83
12	15.6	18.75	0.94	17.70	0.89	18.23	0.91
13	15.2	20.30	1.02	19.25	0.96	19.78	0.99
14	14.8	21.85	1.09	20.80	1.04	21.33	1.07
15	14.4	23.40	1.17	22.35	1.12	22.88	1.14
16	14.0	24.95	1.25	23.90	1.20	24.43	1.22
17	13.6	26.50	1.33	25.45	1.27	25.98	1.30
18	13.2	28.05	1.40	27.00	1.35	27.53	1.38
19	12.8	29.60	1.48	28.55	1.43	29.08	1.45
20	12.4	31.15	1.56	30.10	1.51	30.63	1.53
21	12.0	32.70	1.64	31.65	1.58	32.18	1.61
22	11.6	34.25	1.71	33.20	1.66	33.73	1.69
23	11.2	35.80	1.79	34.75	1.74	35.28	1.76
24	10.8	37.35	1.87	36.30	1.82	36.83	1.84
25	10.4	38.90	1.95	37.85	1.89	38.38	1.92
26	10.0	40.45	2.02	39.40	1.97	39.93	2.00
27	9.6	42.00	2.10	40.95	2.05	41.48	2.07
28	9.2	43.55	2.18	42.50	2.13	43.03	2.15
29	8.8	45.10	2.26	44.05	2.20	44.58	2.23
30	8.4	46.65	2.33	45.60	2.28	46.13	2.31
31	8.0	48.20	2.41	47.15	2.36	47.68	2.38
32	7.6	49.75	2.49	48.70	2.44	49.23	2.46

DC Volume Control Table (Cont.)

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Step	Gain (dB)	Down (\%)	Down (V)	Up(\%)	Up (V)	Recom(\%)	Recom(V)
		Volume H to L		Volume L to H			
33	7.2	51.30	2.57	50.25	2.51	50.78	2.54
34	6.8	52.85	2.64	51.80	2.59	52.33	2.62
35	6.4	54.40	2.72	53.35	2.67	53.88	2.69
36	6.0	55.95	2.80	54.90	2.75	55.43	2.77
37	5.6	57.50	2.88	56.45	2.82	56.98	2.85
38	5.2	59.05	2.95	58.00	2.90	58.53	2.93
39	4.8	60.60	3.03	59.55	2.98	60.08	3.00
40	4.4	62.15	3.11	61.10	3.06	61.63	3.08
41	4.0	63.70	3.19	62.65	3.13	63.18	3.16
42	3.6	65.25	3.26	64.20	3.21	64.73	3.24
43	3.2	66.80	3.34	65.75	3.29	66.28	3.31
44	2.8	68.35	3.42	67.30	3.37	67.83	3.39
45	2.4	69.90	3.50	68.85	3.44	69.38	3.47
46	2.0	71.45	3.57	70.40	3.52	70.93	3.55
47	1.6	73.00	3.65	71.95	3.60	72.47	3.62
48	1.2	74.55	3.73	73.50	3.68	74.02	3.70
49	0.8	76.10	3.81	75.05	3.75	75.57	3.78
50	0.4	77.65	3.88	76.60	3.83	77.12	3.86
51	0.0	79.20	3.96	78.15	3.91	78.67	3.93
52	-1.0	80.75	4.04	79.70	3.99	80.22	4.01
53	-2.0	82.30	4.12	81.25	4.06	81.77	4.09
54	-3.0	83.85	4.19	82.80	4.14	83.32	4.17
55	-5.0	85.40	4.27	84.35	4.22	84.87	4.24
56	-7.0	86.95	4.35	85.90	4.30	86.42	4.32
57	-9.0	88.50	4.43	87.45	4.37	87.97	4.40
58	-11.0	90.05	4.50	89.00	4.45	89.52	4.48
59	-17.0	91.60	4.58	90.55	4.53	91.07	4.55
60	-23.0	93.15	4.66	92.10	4.61	92.62	4.63
61	-29.0	94.70	4.74	93.65	4.68	94.17	4.71
62	-35.0	96.25	4.81	95.20	4.76	95.72	4.79
63	-41.0	97.80	4.89	96.75	4.84	97.27	4.86
64	-80.0	100.00	5.00	98.30	4.92	100.00	5.00

Function Description

Class-D Operation

Figure1. The APA2603B Output Waveform (Voltage\& Current)

The APA2603B power amplifier modulation scheme is shown in figure 1 ; the outputs $\mathrm{V}_{\text {OUT+ }}$ and $\mathrm{V}_{\text {OUTN }}$ are in phase with each other when no input signals. When output > 0 V , the duty cycle of $\mathrm{V}_{\text {out+ }}$ is greater than 50% and $\mathrm{V}_{\text {out. }}$ is less than 50%; when Output $<0 \mathrm{~V}$, the duty cycle of $\mathrm{V}_{\text {out+ }}$ is less than 50% and $V_{\text {out. }}$ is greater than 50%. This method reduces the switching current across the load, and reduces the $I^{2} R$ losses in the load that improve the amplifier's efficiency
This modulation scheme has very short pulses across the load, this making the small ripple current and very little loss on the load, and the LC filter can be eliminate in most applications. Added the LC filter can increase the efficiency by filter the ripple current.

Bypass Voltage

The bypass voltage is equal to $\mathrm{V}_{\mathrm{DD}} / 2$, this voltage is for bias the internal preamplifier stages. The external capacitor for this reference $\left(C_{1}\right)$ is a critical component and serves several important functions.

DC Volume Control Function

The APA2603B has an internal stereo volume control whose setting is the function of the DC voltage applied to the VOLUME input pin. The APA2603B volume control consists of 64 steps that are individually selected by a variable DC voltage level on the VOLUME control pin. The range of the steps controlled by the DC voltage, are from +20 dB to -80 dB . Each gain step corresponds to a specific input voltage range, as shown in the table. To minimize the effect of noise on the volume control pin, which can affect the selected gain level, hysteresis and clock delay are implemented. The amount of hysteresis corresponds to half of the step width, as shown in the "DC Volume Control Graph".
For the highest accuracy, the voltage shown in the "recommended voltage" column of the table is used to select a desired gain. This recommended voltage is exactly halfway between the two nearest transitions. The gains level have are $0.4 \mathrm{~dB} /$ step from 20 dB to $0 \mathrm{~dB} ; 1 \mathrm{~dB} /$ step from 0 dB to -3 dB ; $2 \mathrm{~dB} /$ step from -3 dB to -11 dB and $6 \mathrm{~dB} /$ step from -11 dB to -41 dB and the last step at -80 dB as mute mode.

Function Description (Cont.)

AGC (Non-Clipping) Function

The APA2603B provides the 64 steps non-clipping control, and the range is from 20 dB to -80 dB . When the output reaches the maximum power setting value, the internal Programmable Gain Amplifier (PGA) will decrease the gain for prevent the output waveform clipping. This feature prevents speaker damage from occurring clipping. The AGC pin to set the non-clipping function.

MUTE Operation

When place the logic high on MUTE pin, the APA2603B's outputs runs at a constant 50% duty cycle, and the APA2603B is at mute state. Place the logic low on MUTE pin enables the outputs, and the output changes the duty cycle with the input signal. This pin could be used as a quick disable/enable of outputs when changing channels on a television or transitioning between different audio sources. The MUTE pin must not be floating.

Shutdown Operation

In order to reduce power consumption while not in use, the APA2603B contains a shutdown function to externally turn off the amplifier bias circuitry. This shutdown feature turns the amplifier off when logic low is placed on the SD pin for APA2603B. The trigger point between a logic high and logic low level is typically 1.5 V . It is the best to switch between ground and the supply voltage V_{DD} to provide maximum device performance. By switching the SD pin to a low level, the amplifier enters a low-consumptioncurrent state, $I_{D D}$ for APA2603B is in shutdown mode. On normal operating, APA2603B's SD pin should pull to a high level to keep the IC out of the shutdown mode. The SD pin should be tied to a definite voltage to avoid unwanted state changes.

Over-Current Protection

The APA2603B monitors the output current, and when the current exceeds the current-limit threshold, the APA2603B turn-off the output stage to prevent the output device from damages in over-current or short-circuit condition. The IC will turn-on the output buffer after 200 ms , but if the overcurrent or short-circuits condition is still remain, it enters the Over-Current protection again.

The situation will circulate until the over-current or shortcircuits has be removed.

Thermal Protection

The over-temperature circuit limits the junction temperature of the APA2603B. When the junction temperature exceeds $T_{J}=+155^{\circ} \mathrm{C}$, a thermal sensor turns off the output buffer, allowing the devices to cool. The thermal sensor allows the amplifier to start-up after the junction temperature down about $125^{\circ} \mathrm{C}$. The thermal protection is designed with a $25^{\circ} \mathrm{C}$ hysteresis to lower the average T_{J} during continuous thermal overload conditions, increasing lifetime of the IC.

Application Information

Square Wave into the Speaker

Apply the square wave into the speaker may cause the voice coil of speaker jumping out the air gap and defacing the voice coil. However, this depends on the amplitude of square wave is high enough and the bandwidth of speaker is higher than the square wave;|s frequency. For 500 kHz switching frequency, this is not issued for the speaker because the frequency is beyond the audio band and canilt significantly move the voice coil, as cone movement is proportional to $1 / f^{2}$ for frequency out of audio band.

Input Resistor, $\mathbf{R}_{\mathbf{i}}$

For achieving the 64 steps gain setting, it varies the input resistance network ($R_{i} \& R_{f}$) of amplifier. The input resistor's range form smallest to maximum is about 3.5 times. Therefore, the input high-pass filter's low cutoff frequency will change 3.5 times from low to high. The cutoff frequency can be calculated by equation 1 .

Input Capacitor, $\mathbf{C}_{\mathbf{i}}$
In the typical application, an input capacitor, C_{i}, is required to allow the amplifier to bias the input signal to the proper DC level for optimum operation. In this case, C_{i} and the input impedance R_{i} form a high-pass filter with the corner frequency determined in the following equation:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{C} \text { (highpass) }}=\frac{1}{2 \pi \mathrm{R}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}} \tag{1}
\end{equation*}
$$

The value of C_{i} must be considered carefully because it directly affects the low frequency performance of the circuit. Where R_{i} is $36 \mathrm{k} \Omega$ (minimum) and the specification calls for a flat bass response down to 50 Hz . The equation is reconfigured as below:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{i}}=\frac{1}{2 \pi \mathrm{R}_{\mathrm{i}} \mathrm{f}_{\mathrm{c}}} \tag{2}
\end{equation*}
$$

When the input resistance variation is considered, the C_{i} is $0.08 \mu \mathrm{~F}$, so a value in the range of $0.01 \mu \mathrm{~F}$ to $0.022 \mu \mathrm{~F}$ would be chosen. A further consideration for this capacitor is the leakage path from the input source through the input network $\left(R_{i}+R_{t}, C_{i}\right)$ to the load. This leakage current creates a DC offset voltage at the input to the amplifier that reduces useful headroom, especially in high gain applications. For this reason, a low-leakage tantalum or ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the capacitor should face the amplifiers' input in most applications because the DC level of the amplifiers' inputs are held at $\mathrm{V}_{\mathrm{DD}} / 2$. Please note that it is important to confirm the capacitor polarity in the application.

Effective Bypass Capacitor, C_{B}

As with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection.
The bypass capacitance effects the start-up time. It is determined in the following equation:

$$
\begin{equation*}
\mathrm{T}_{\text {START-UP }}=0.5(\mathrm{sec} / \mu \mathrm{F}) \times \mathrm{C} 1+0.2(\mathrm{sec}) \tag{3}
\end{equation*}
$$

The capacitor location on the bypass pin should be as close to the device as possible. The effect of a larger half bypass capacitor is improved PSRR due to increased half-supply stability. The selection of bypass capacitors, especially C_{B}, is thus dependent upon desired PSRR requirements, click and pop performance.

To avoid the start-up pop noise occurred, choose C_{i} which is not larger than C_{B}.

Application Information (Cont.)

Ferrite Bead Selection

If the traces form APA2603B to speaker are short, the ferrite bead filters can reduce the high frequency radiated to meet the FCC \& CE required.
A ferrite that has very low impedance at low frequencies and high impedance at high frequencies (above 1 MHz) is recommended.

Output Low-Pass Filter

If the traces form APA2603B to speaker are short, it doesn't require output filter for FCC \& CE standard.
A ferrite bead may be needed if it's failing the test for FCC or CE tested without the LC filter. The figure 2 is the sample for added ferrite bead; the ferrite shows choosing high impedance in high frequency.

Figure 2. Ferrite bead output filter
Figure 3 and 4 are examples for added the LC filter (Butterworth), it's recommended for the situation that the trace form amplifier to speaker is too long and needs to eliminate the radiated emission or EMI.

Figure 3. LC output filter for 8Ω speaker

Figure 4. LC output filter for 4Ω speaker
Figure 3 and 4 's low pass filter cut-off frequency are 25 kHz (F_{c}).

$$
\begin{equation*}
f_{C(\text { lowpass) }}=\frac{1}{2 \pi \sqrt{\text { LC }}} \tag{5}
\end{equation*}
$$

Power-Supply Decoupling Capacitor, C_{s}

The APA2603B is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to ensure the output total harmonic distortion (THD) is as low as possible. Power supply decoupling also prevents the oscillations being caused by long lead length between the amplifier and the speaker.

Application I nformation (Cont.)

Power-Supply Decoupling Capacitor, C_{s} (Cont.)

The optimum decoupling is achieved by using two different types of capacitors that target on different types of noise on the power supply leads. For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR) ceramic capacitor, typically $0.1 \mu \mathrm{~F}$ placed as close as possible to the device VDD pin for works best. For filtering lower frequency noise signals, a large aluminum electrolytic capacitor of $10 \mu \mathrm{~F}$ or greater placed near the audio power amplifier is recommended.

Layout Recommendation

Figure 5.SOP-16P \& SOP-24co-layout Land Pattern Recommendation

1. All components should be placed close to the APA2603B. For example, the input capacitor (C_{i}) should be close to APA2603B's input pins to avoid causing noise coupling to APA2603B;|s high impedance inputs; the decoupling capacitor $\left(\mathrm{C}_{\mathrm{s}}\right)$ should be placed by the APA2603B's power pin to decouple the power rail noise.
2. The output traces should be short, wide ($>50 \mathrm{mil}$) and symmetric.
3. The input trace should be short and symmetric.
4. The power trace width should greater than 50 mil .
5. APA2603B and APA2603A share the pin 9~16 to avoid soldering short. APA2603B's left half pads are connected to APA2603A by lines.

Figure 6. QFN4x4-20A Land Pattern Recommendation

1. All components should be placed close to the APA2603B. For example, the input capacitor (C_{i}) should be close to APA2603B's input pins to avoid causing noise coupling to APA2603B's high impedance inputs; the decoupling capacitor $\left(\mathrm{C}_{\mathrm{s}}\right)$ should be placed by the APA2603B's power pin to decouple the power rail noise.
2. The output traces should be short, wide ($>50 \mathrm{mil}$), and symmetric.
3. The input trace should be short and symmetric.
4. The power trace width should greater than 50 mil .
5. The QFN4X4-20A Thermal PAD should be soldered on PCB, and the ground plane needs soldered mask (to avoid short-circuit) except the Thermal PAD area.

Package Information

SOP-16

$\begin{aligned} & \mathrm{S} \\ & \mathbf{Y} \\ & \mathbf{M} \\ & \mathrm{~B} \\ & \mathbf{O} \end{aligned}$	SOP-16			
	MILLIMETERS		INCHES	
	MIN.	MAX.	MIN.	MAX.
A		1.75		0.069
A1	0.10	0.15	0.004	0.010
A2	1.25		0.049	
b	0.31	0.51	0.012	0.020
c	0.17	0.25	0.007	0.010
D	9.80	10.00	0.374	0.394
E	5.80	6.20	0.228	0.244
E1	3.80	4.00	0.150	0.157
e	1.27 BSC		0.050 BSC	
h	0.25	0.50	0.010	0.020
L	0.40	1.27	0.016	0.050
θ	0°	8°	0°	8°
aaa	0.10		0.004	

Note : 1. Follow from JEDEC MS-012 BC.
2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not
3. Dimension "E" does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 10 mil per sideeed 6 mil per side.

Package Information

QFN4x4-20A

$\begin{aligned} & \mathbf{S} \\ & \mathbf{Y} \\ & \mathbf{M} \\ & \mathbf{B} \\ & \mathbf{O} \end{aligned}$	QFN4x4-20A			
	MILLIMETERS		INCHES	
	MIN.	MAX.	MIN.	MAX.
A	0.80	1.00	0.031	0.039
A1	0.00	0.05	0.000	0.002
A3	0.20 REF		0.008 REF	
b	0.18	0.30	0.008	0.012
D	3.90	4.10	0.154	0.161
D2	2.00	2.50	0.079	0.098
E	3.90	4.10	0.154	0.161
E2	2.00	2.50	0.079	0.098
e	0.50 BSC		0.020 BSC	
L	0.35	0.45	0.014	0.018
K	0.20		0.008	

Note : 1. Followed from JEDEC MO-220 VGGD-5.

Carrier Tape \& Reel Dimensions

Application	A	H	T1	C	d	D	W	E1	F
SOP-16	330.0 ± 2.00	50 MIN .	$\begin{array}{r} 16.4+2.00 \\ -0.00 \end{array}$	$\begin{array}{r} 13.0+0.50 \\ -0.20 \end{array}$	1.5 MIN.	20.2 MIN.	16.0 00.30	1.75 ± 0.10	7.5 ± 0.10
	PO	P1	P2	D0	D1	T	A0	B0	K0
	4.0 ± 0.10	8.0 ± 0.10	2.0 ± 0.10	$1.5+0.10$ -0.00	1.5 MIN.	$\begin{array}{r} 0.6+0.00 \\ -0.40 \end{array}$	6.40 ± 0.20	10.30 ± 0.20	2.10 ± 0.20
Application	A	H	T1	C	d	D	W	E1	F
QFN4x4-20A	330.0 ± 2.00	50 MIN .	$\begin{array}{r} 12.4+2.00 \\ -0.00 \end{array}$	$\begin{array}{r} 13.0+0.50 \\ -0.20 \end{array}$	1.5 MIN.	20.2 MIN.	12.0 ± 0.30	1.75 ± 0.10	5.5 ± 0.05
	P0	P1	P2	D0	D1	T	A0	B0	K0
	4.0 ± 0.10	8.0 ± 0.10	2.0 ± 0.05	$\begin{gathered} 1.5+0.10 \\ -0.00 \end{gathered}$	1.5 MIN.	$\begin{gathered} 0.6+0.00 \\ -0.40 \end{gathered}$	4.30 ± 0.20	4.30 ± 0.20	1.30 ± 0.20

(mm)

Devices Per Unit

Package Type	Unit	Quantity
QFN4x4-20A	Tape \& Reel	3000
SOP-16	Tape \& Reel	2500

Taping Direction I nformation

SOP-16

QFN4x4-20A

Classification Profile

Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Preheat \& Soak Temperature min ($\mathrm{T}_{\text {smin }}$) Temperature max ($\mathrm{T}_{\text {smax }}$) Time ($\mathrm{T}_{\text {smin }}$ to $\mathrm{T}_{\text {smax }}$) (t_{s})	$\begin{gathered} 100^{\circ} \mathrm{C} \\ 150^{\circ} \mathrm{C} \\ 60-120 \text { seconds } \end{gathered}$	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 60-120 \text { seconds } \end{gathered}$
Average ramp-up rate ($\mathrm{T}_{\text {smax }}$ to T_{P})	$3^{\circ} \mathrm{C} /$ second max.	$3^{\circ} \mathrm{C} /$ second max.
Liquidous temperature (T_{L}) Time at liquidous (tı)	$\begin{gathered} 183{ }^{\circ} \mathrm{C} \\ 60-150 \text { seconds } \end{gathered}$	$\begin{gathered} 217^{\circ} \mathrm{C} \\ 60-150 \text { seconds } \end{gathered}$
Peak package body Temperature $\left(T_{p}\right)^{*}$	See Classification Temp in table 1	See Classification Temp in table 2
Time ($\left.\mathrm{t}_{\mathrm{p}}\right)^{* *}$ within $5^{\circ} \mathrm{C}$ of the specified classification temperature (T_{c})	20** seconds	30** seconds
Average ramp-down rate (T_{p} to $\mathrm{T}_{\text {smax }}$)	$6^{\circ} \mathrm{C} /$ second max.	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to peak temperature	6 minutes max.	8 minutes max.
* Tolerance for peak profile Temperature (T_{p}) is defined as a supplier minimum and a user maximum. ** Tolerance for time at peak profile temperature (t_{p}) is defined as a supplier minimum and a user maximum.		

Table 1. SnPb Eutectic Process - Classification Temperatures (Tc)

Package Thickness	Volume $\mathrm{mm}^{\mathbf{3}}$ <350	Volume $\mathbf{m m}^{3}$ ≥ 350
$<2.5 \mathrm{~mm}$	$235^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$
$\geq 2.5 \mathrm{~mm}$	$220^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

Table 2. Pb-free Process - Classification Temperatures (Tc)

Package Thickness	Volume $^{\mathbf{~ m m}}$ 3 $<\mathbf{3 5 0}$	Volume $\mathbf{m m}^{\mathbf{3}}$ $\mathbf{3 5 0 - 2 0 0 0}$	Volume $\mathbf{m m}^{\mathbf{3}}$ $>\mathbf{2 0 0 0}$
$<1.6 \mathrm{~mm}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
$1.6 \mathrm{~mm}-2.5 \mathrm{~mm}$	$260^{\circ} \mathrm{C}$	$250^{\circ} \mathrm{C}$	$245^{\circ} \mathrm{C}$
$\geq 2.5 \mathrm{~mm}$	$250^{\circ} \mathrm{C}$	$245^{\circ} \mathrm{C}$	$245^{\circ} \mathrm{C}$

Reliability Test Program

Test item	Method	Description
SOLDERABILITY	JESD-22, B102	$5 \mathrm{Sec}, 245^{\circ} \mathrm{C}$
HOLT	JESD-22, A108	$1000 \mathrm{Hrs}, \mathrm{Bias} @ \mathrm{Tj}=125^{\circ} \mathrm{C}$
PCT	JESD-22, A102	$168 \mathrm{Hrs}, 100 \% \mathrm{RH}, 2 \mathrm{amm}, 121^{\circ} \mathrm{C}$
TCT	JESD-22, A104	$500 \mathrm{Cycles},-65^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$
HBM	MIL-STD-883-3015.7	VHBM $\geqq 2 \mathrm{KV}$
MM	JESD-22, A115	VMM $\geqq 200 \mathrm{~V}$
Latch-Up	JESD 78	$10 \mathrm{~ms}, 1_{\mathrm{tr}} \geqq 100 \mathrm{~mA}$

Customer Service

Anpec Electronics Corp.

Head Office :

No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan
Tel : 886-3-5642000
Fax: 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838

[^0]: ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

