+5V, RS-232 Transceivers with 0.1μ F External Capacitors

General Description

The MAX200-MAX209/MAX211/MAX213 transceivers are designed for RS-232 and V. 28 communication interfaces where $\pm 12 \mathrm{~V}$ supplies are not available. On-board charge pumps convert the +5 V input to the $\pm 10 \mathrm{~V}$ needed for RS-232 output levels. The MAX201 and MAX209 operate from +5 V and +12 V , respectively, and contain a +12 V to -12 V charge-pump voltage converter.
The MAX200-MAX209/MAX211/MAX213 drivers and receivers meet all EIA/TIA-232E and CCITT V. 28 specifications at a 20 kbps data rate. The drivers maintain the $\pm 5 \mathrm{~V}$ EIA/TIA-232E output signal levels at data rates in excess of 120 kbps when loaded in accordance with the EIA/TIA-232E specification.
The $5 \mu \mathrm{~W}$ shutdown mode of the MAX200, MAX205, MAX206, and MAX211 conserves energy in battery-powered systems. The MAX213 has an active-low shutdown and an active-high receiver enable control. Two receivers of the MAX213 are active, allowing the ring indicator (RI) to be monitored easily using only $75 \mu \mathrm{~W}$ power.
The MAX211 and MAX213 are available in a 28 -pin, wide small-outline (SO) package and a 28 -pin shrink smalloutline (SSOP) package, which occupies only 40% of the area of the SO. The MAX207 is now available in a 24 -pin SO package and a 24 -pin SSOP. The MAX203 and MAX205 use no external components and are recommended for applications with limited circuit board space.
Ordering Information appears at end of data sheet.

Next-Generation Device Features

- For Low-Cost Applications:

MAX221E: $\pm 15 \mathrm{kV}$ ESD-Protected, $+5 \mathrm{~V}, 1 \mu \mathrm{~A}$, Single RS-232 Transceiver with AutoShutdown ${ }^{\text {TM }}$

- For Low-Voltage and Space-Constrained Applications: MAX3222E/MAX3232E/MAX3237E/MAX3241E/ MAX3246E: $\pm 15 \mathrm{kV}$ ESD-Protected, Down to $10 \mathrm{nA},+3.0 \mathrm{~V}$ to +5.5 V , Up to 1 Mbps , True RS-232 Transceivers (MAX3246E Available in UCSPTM Package)
- For Space-Constrained Applications: MAX3228E/MAX3229E: $\pm 15 \mathrm{kV}$ ESD-Protected, +2.5 V to +5.5 V, RS-232 Transceivers in UCSP
- For Low-Voltage or Data Cable Applications: MAX3380E/MAX3381E: +2.35V to $+5.5 \mathrm{~V}, 1 \mu \mathrm{~A}$, 2Tx/2Rx RS- 232 Transceivers with $\pm 15 \mathrm{kV}$ ESDProtected I/O and Logic Pins
- For Low-Power Applications:

MAX3224E-MAX3227E/MAX3244E/MAX3245E:
$\pm 15 \mathrm{kV}$ ESD-Protected, $1 \mu \mathrm{~A}, 1 \mathrm{Mbps}$, +3.0 V to +5.5 V , RS-232 Transceivers with AutoShutdown Plus ${ }^{\text {™ }}$

Applications
Computers: Laptops, Palmtops, Notebooks Battery-Powered Equipment Handheld Equipment

Selector Guide

PART	POWER-SUPPLY VOLTAGE (V)	NUMBER OF RS-232 DRIVERS	NUMBER OF RS-232 RECEIVERS	NUMBER OF RECEIVERS ACTIVE IN SHUTDOWN	NUMBER OF EXTERNAL CAPACITORS $(\mathbf{0 . 1} \boldsymbol{\mu F})$	LOW-POWER SHUTDOWN/TLL THREE-STATE
MAX200	+5	5	0	0	4	Yes/No
MAX201	+5 and +9.0 to +13.2	2	2	0	2	No/No
MAX202	+5	2	2	0	4	No/No
MAX203	+5	2	2	0	None	No/No
MAX204	+5	4	0	0	4	No/No
MAX205	+5	5	5	0	None	Yes/Yes
MAX206	+5	4	3	0	4	Yes/Yes
MAX207	+5	5	3	0	4	No/No
MAX208	+5	4	4	0	4	No/No
MAX209	+5 and +9.0 to +13.2	3	5	0	2	No/Yes
MAX211	+5	4	5	0	4	Yes/Yes
MAX213	+5	4	5	2	4	Yes/Yes

AutoShutdown, AutoShutdown Plus, and UCSP are trademarks of Maxim Integrated Products, Inc.
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers with 0.1μ F External Capacitors

ABSOLUTE MAXIMUM RATINGS

VCC..-0.3V to +6V
$\mathrm{V}+\ldots \ldots \ldots . ~(V C C ~-~ 0.3 V) ~ t o ~+14 V ~$
V- .. 0.3 V to -14V
Input Voltages
TIN ... - 0.3 V to (VCC +0.3 V)
RIN... $\pm 30 \mathrm{~V}$
Output Voltages
Tout.
. $\mathrm{V}++0.3 \mathrm{~V}$) to ($\mathrm{V}--0.3 \mathrm{~V}$)
Rout
. -0.3V to (VCc + 0.3V)
Short-Circuit Duration
TOUT. \qquad
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
14-Pin Plastic DIP (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... 800 mW 16-Pin Plastic DIP (derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)... 842 mW
16-Pin SO (derate $8.70 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 696 mW
16-Pin Wide SO (derate $9.52 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).... 762 mW
16-Pin CERDIP (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots 800 \mathrm{~mW}$
20-Pin Plastic DIP (derate $11.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots 889 \mathrm{~mW}$
20-Pin Wide SO (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).. 800 mW 20-Pin CERDIP (derate $11.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots 889 \mathrm{~mW}$ 24-Pin Narrow Plastic DIP
(derate $13.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1067 mW 24-Pin Wide Plastic DIP
(derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 727 mW 24-Pin Wide SO (derate $11.76 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).. 941 mW 24-Pin SSOP (derate $8.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)......... 640 mW 24-Pin CERDIP (derate $12.50 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) .1000 mW 28 -Pin Wide SO (derate $12.50 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1000 mW 28 -Pin SSOP (derate $9.52 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)......... 762 mW Operating Temperature Ranges

Note 1: Maximum reflow temperature for the MAX203 and MAX205 is $+225^{\circ} \mathrm{C}$.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(MAX202/MAX204/MAX206/MAX208/MAX211/MAX213: $V_{C C}=+5 \mathrm{~V} \pm 10 \% ;$ MAX200/MAX203/MAX205/MAX207: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$, C1-C4 = 0.1 $\mu \mathrm{F} ;$ MAX201/MAX209: $\mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}+=+9.0 \mathrm{~V}$ to $+13.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Output-Voltage Swing	All transmitter outputs loaded with $3 \mathrm{k} \Omega$ to ground		± 5	± 8		V
VCC Power-Supply Current	No load, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	MAX202, MAX203		8	15	mA
		MAX200, MAX204-MAX208, MAX211, MAX213		11	20	
		MAX201, MAX209		0.4	1	
V+ Power-Supply Current	No load	MAX201		5	10	mA
		MAX209		7	15	
Shutdown Supply Current	Figure 1, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	MAX200, MAX205, MAX206, MAX211		1	10	$\mu \mathrm{A}$
		MAX213		15	50	
Input Logic Threshold Low	TIN, $\overline{\text { EN }}, \mathrm{SHDN}, \mathrm{EN}, \overline{\text { SHDN }}$				0.8	V
Input Logic Threshold High	TIN		2.0			V
	$\overline{\mathrm{EN}}, \mathrm{SHDN}, \mathrm{EN}, \overline{\text { SHDN }}$		2.4			
Logic Pullup Current	TIN = OV			15	200	$\mu \mathrm{A}$
RS-232 Input-Voltage Operating Range			-30		+30	V

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers with 0.1μ F External Capacitors

ELECTRICAL CHARACTERISTICS (continued)

(MAX202/MAX204/MAX206/MAX208/MAX211/MAX213: VCC $=+5 \mathrm{~V} \pm 10 \%$; MAX200/MAX203/MAX205/MAX207: VCC $=+5 \mathrm{~V} \pm 5 \%$, C1-C4 $=0.1 \mu F ;$ MAX201/MAX209: $\mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}+=+9.0 \mathrm{~V}$ to $+13.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Receiver Input Threshold Low	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Active mode	0.8	1.2		V
		Shutdown mode, MAX213, R4, R5	0.6	1.5		
Receiver Input Threshold High	$\begin{aligned} & V_{C C}=+5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Active mode		1.7	2.4	V
		Shutdown mode, MAX213, R4, R5		1.5	2.4	
RS-232 Input Hysteresis	VCC $=+5 \mathrm{~V}$, no hysteresis in shutdown		0.2	0.5	1.0	V
RS-232 Input Resistance	$\mathrm{VCC}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3	5	7	$\mathrm{k} \Omega$
TTL/CMOS OutputVoltage Low	IOUT $=3.2 \mathrm{~mA}$	MAX201, MAX202, MAX203	0.4			V
	IOUT $=1.6 \mathrm{~mA}$	All others				
TTL/CMOS OutputVoltage High	IOUT $=1.0 \mathrm{~mA}$		3.5			V
TTL/CMOS Output Leakage Current	$\overline{\mathrm{EN}}=\mathrm{V}_{C C}, \mathrm{EN}=0 \mathrm{~V}, 0 \leq$ ROUT $\leq \mathrm{VCC}$			0.05	± 10	$\mu \mathrm{A}$
Output Enable Time	Figure 2	MAX205, MAX206, MAX209, MAX211, MAX213		600		ns
Output Disable Time	Figure 2	MAX205, MAX206, MAX209, MAX211, MAX213		200		ns
Receiver Propagation Delay	$\overline{\text { SHDN }}=0 \mathrm{~V}, \mathrm{R} 4, \mathrm{R} 5$	MAX213		4	40	$\mu \mathrm{s}$
	$\overline{\text { SHDN }}=\mathrm{VCC}$			0.5	10	
	MAX200-MAX211			0.5	10	
Transmitter Output Resistance	$\mathrm{VCC}=\mathrm{V}+=\mathrm{V}-=0 \mathrm{~V}, \mathrm{VOUT}= \pm 2 \mathrm{~V}$		300			Ω
Transition Region Slew Rate	$\begin{aligned} & \mathrm{CL}=50 \mathrm{pF} \text { to } 2500 \mathrm{pF}, \\ & \mathrm{RL}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega, \\ & \mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \text { measured from }+3 \mathrm{~V} \text { to } \\ & -3 \mathrm{~V} \text { or }-3 \mathrm{~V} \text { to }+3 \mathrm{~V} \end{aligned}$	MAX200, MAX202-MAX211, MAX213	3	5.5	30	V/us
		MAX201		4	30	
RS-232 Output ShortCircuit Current				± 10	± 60	mA
Maximum Data Rate	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to 1000 pF , one transmitter		120			kbps

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers with 0.1μ F External Capacitors

Typical Operating Characteristics

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers with 0.1μ F External Capacitors

Figure 1. Shutdown Current Test Circuit

Figure 2. Receiver Output Enable and Disable Timing

Detailed Description

The MAX200-MAX209/MAX211/MAX213 consist of three sections: charge-pump voltage converters, drivers (transmitters), and receivers. Each section is described in detail.
+5 V to $\pm 10 \mathrm{~V}$ Dual Charge-Pump Voltage Converter
The +5 V to $\pm 10 \mathrm{~V}$ conversion is performed by two charge-pump voltage converters (Figure 4). The first uses capacitor C1 to double +5 V to +10 V , storing +10 V on the V + output filter capacitor, C3. The second chargepump voltage converter uses capacitor C 2 to invert +10 V to -10 V , storing -10 V on the V - output filter capacitor, C 4 .
The MAX201 and MAX209 include only the V+ to Vcharge pump, and are intended for applications that have a $V C C=+5 V$ supply and $a V+$ supply in the $+9 V$ to +13.2 V range.
In shutdown mode, V_{+}is internally connected to VCC by a $1 \mathrm{k} \Omega$ pulldown resistor and V - is internally connected to ground by a $1 \mathrm{k} \Omega$ pullup resistor.

RS-232 Drivers
When VCC $=+5 \mathrm{~V}$, the typical driver output-voltage swing is $\pm 8 \mathrm{~V}$ when loaded with a nominal $5 \mathrm{k} \Omega \mathrm{RS}$-232 receiver. The output swing is guaranteed to meet the EIA/TIA-232E and $V .28$ specifications, which call for $\pm 5 \mathrm{~V}$ minimum output levels under worst-case conditions. These include a minimum $3 \mathrm{k} \Omega$ load, $\mathrm{VCC}=+4.5 \mathrm{~V}$, and the maximum operating temperature. The open-circuit output-voltage swing ranges from ($\mathrm{V}+-0.6 \mathrm{~V}$) to V -.
Input thresholds are both CMOS and TTL compatible. The inputs of unused drivers can be left unconnected since $400 \mathrm{k} \Omega$ pullup resistors to VCC are included onchip. Since all drivers invert, the pullup resistors force the outputs of unused drivers low. The input pullup resistors typically source $15 \mu \mathrm{~A}$; therefore, the driver inputs should be driven high or open circuited to minimize power-supply current in shutdown mode.
When in low-power shutdown mode, the driver outputs are turned off and their leakage current is less than 1 mA , even if the transmitter output is backdriven between OV and $(\mathrm{VCC}+6 \mathrm{~V})$. Below -0.5 V , the transmitter output is diode clamped to ground with a $1 \mathrm{k} \Omega$ series impedance. The transmitter output is also zener clamped to approximately ($V_{C C}+6 \mathrm{~V}$), with a $1 \mathrm{k} \Omega$ series impedance.

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers
with 0.1μ F External Capacitors

NOTE: () ARE FOR MAX213.
Figure 3. Transition Slew-Rate Test Circuit

Figure 4. Dual Charge-Pump Diagram

RS-232 Receivers
The receivers convert RS-232 signals to CMOS logic output levels. Receiver outputs are inverting, maintaining compatibility with driver outputs. The guaranteed receiver input thresholds of +0.8 V and +2.4 V are significantly tighter than the $\pm 3.0 \mathrm{~V}$ threshold required by the EIA/TIA-232E specification. This allows receiver inputs to respond to TTL/CMOS logic levels and improves noise margin for RS-232 levels.

The MAX200-MAX209/MAX211/MAX213 guaranteed +0.8 V threshold $(+0.6 \mathrm{~V}$ in shutdown for the MAX213) ensures that receivers shorted to ground have a logic 1 output. Also, the $5 \mathrm{k} \Omega$ input resistance to ground ensures that a receiver with its input left open also has a logic 1 output.
Receiver inputs have approximately +0.5 V hysteresis. This provides clean output transitions, even with slow rise and fall time input signals with moderate amounts of noise and ringing. In shutdown, the MAX213 receivers R4 and R5 have no hysteresis.

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers with 0.1μ F External Capacitors

Figure 5. Transmitter Outputs When Exiting Shutdown

Shutdown and Enable Control

In shutdown mode, the MAX200/MAX205/MAX206/ MAX211/MAX213 charge pumps are turned off, $V+$ is pulled down to Vcc, V - is pulled to ground, and the transmitter outputs are disabled. This reduces supply
current typically to $1 \mu \mathrm{~A}$ ($15 \mu \mathrm{~A}$ for the MAX213). The time required to exit shutdown is 1 ms , as shown in Figure 5.
All receivers except R4 and R5 on the MAX213 are put into a high-impedance state in shutdown mode. The MAX213's R4 and R5 receivers still function in shutdown mode. These two receivers are useful for monitoring external activity while maintaining minimal power consumption.

The enable control is used to put the receiver outputs into a high-impedance state, so that the receivers can be connected directly to a three-state bus. It has no effect on the RS-232 drivers or on the charge pumps.

MAX213 Receiver Operation in Shutdown
During normal operation, the MAX213's receiver propagation delay is typically $1 \mu \mathrm{~s}$. When entering shutdown with receivers active, R4 and R5 are not valid until 80 after $\overline{\text { SHDN }}$ is driven low. In shutdown mode, propagation delays increase to 4μ s for a high-to-low or a low-tohigh transition.

When exiting shutdown, all receiver outputs are invalid until the charge pumps reach nominal values ($<2 \mathrm{~ms}$ when using $0.1 \mu \mathrm{~F}$ capacitors).

Table 1a. MAX200 Control Pin Configurations

SHDN	OPERATION STATUS	TRANSMITTERS T1-T5
0	Normal Operation	All Active
1	Shutdown	All High-Z

Table 1b. MAX205/MAX206/MAX211 Control Pin Configurations

SHDN	$\overline{\text { EN }}$	OPERATION STATUS	TRANSMITTERS T1-T5	RECEIVERS R1-R5
0	0	Normal Operation	All Active	All Active
0	1	Normal Operation	All Active	All High-Z
1	0	Shutdown	All High-Z	All High-Z

Table 1c. MAX213 Control Pin Configurations

SHDN	EN	OPERATION STATUS	TRANSMITTERS T1-T4	RECEIVERS	
				R1, R2, R3	R4, R5
0	0	Shutdown	All High-Z	High-Z	High-Z
0	1	Shutdown	All High-Z	High-Z	Active
1	0	Normal Operation	All Active	High-Z	High-Z
1	1	Normal Operation	All Active	Active	Active

[^0]
MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers with 0.1μ F External Capacitors

Applications Information

Capacitor Selection

The type of capacitor used is not critical for proper operation. Ceramic capacitors are suggested. To ensure proper RS-232 signal levels over temperature when using $0.1 \mu \mathrm{~F}$ capacitors, make sure the capacitance value does not degrade excessively as the temperature varies. If in doubt, use capacitors with a larger nominal value. Also observe the capacitors' ESR value over temperature, since it influences the amount of ripple on V_{+} and V -. To reduce the output impedance at $\mathrm{V}+$ and V -, use larger capacitors (up to $10 \mu \mathrm{~F}$). If polarized capacitors are used, obey the polarities shown in Figure 1 and the pin configurations.

Driving Multiple Receivers
Each transmitter is designed to drive a single receiver. Transmitters can be paralleled to drive multiple receivers.

Driver Outputs When Exiting Shutdown

Figure 5 shows two driver outputs exiting shutdown. As they become active, the two driver outputs go to opposite RS-232 levels (one driver input is high, the other is low). Each driver is loaded with $3 \mathrm{k} \Omega$ in parallel with 2500pF. The driver outputs display no ringing or undesirable transients as they come out of shutdown.

Power-Supply Decoupling In applications that are sensitive to power-supply noise, decouple VCC to ground with a capacitor of the same value as the charge-pump capacitors.

V+ and V- as Power Supplies A small amount of power can be drawn from $V+$ and V-, although this reduces noise margins.

Power Supplies for MAX201/MAX209
If at power-up the $\mathrm{V}+$ supply rises after the VCC supply, place a diode (e.g., 1N914) in series with the V+ supply.

Table 2. Summary of EIA/TIA-232E, V. 28 Specifications

PARAMETER	CONDITION	EIA/TIA-232E, V.28 SPECIFICATION
Driver Output Voltage: 0 Level	$3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$ load	+5.0 V to +15 V
Driver Output Voltage: 1 Level	$3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$ load	-5.0 V to -15 V
Output Level, Maximum	No load	$\pm 25 \mathrm{~V}$
Data Rate	$3 \mathrm{k} \Omega \leq \mathrm{RL} \leq 7 \mathrm{k} \Omega, \mathrm{CL} \leq 2500 \mathrm{pF}$	Up to 20kbps
Receiver Input Voltage: 0 Level	-	+3.0 V to +15 V
Receiver Input Voltage: 1 Level	-	-3.0 V to -15V
Input Level, Maximum	-	$\pm 25 \mathrm{~V}$
Instantaneous Slew Rate, Maximum	$3 \mathrm{k} \Omega \leq \mathrm{RL} \leq 7 \mathrm{k} \Omega, \mathrm{CL} \leq 2500 \mathrm{pF}$	$30 \mathrm{~V} / \mathrm{us}$
Driver Output Short-Circuit Current, Maximum	-	100 mA
Transition Rate on Driver Output	V .28	1 ms or 3\% of the period
	$\mathrm{EIA} / T \mathrm{~A}-232 \mathrm{E}$	4% of the period

Table 3. DB9 Cable Connections Commonly Used for EIA/TIA-232E and V. 24 Asynchronous Interfaces

PIN	NAME	CONNECTION
1	Received Line Signal Detector, sometimes called Carrier Detect (DCD)	Handshake from DCE
2	Receive Data (RD)	Data from DCE
3	Transmit Data (TD)	Data from DTE
4	Data Terminal Ready	Handshake from DTE
5	Signal Ground	Reference point for signals
6	Data Set Ready (DSR)	Handshake from DCE
7	Request to Send (RTS)	Handshake from DTE
8	Clear to Send (CTS)	Handshake from DCE
9	Ring Indicator	Handshake from DCE

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers with 0.1μ External Capacitors MAX200 Pin Configuration/Typical Operating Circuit

TOP VIEW

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers
with 0.1μ F External Capacitors
MAX201 Pin Configurations/Typical Operating Circuit

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers with 0.1μ F External Capacitors MAX202 Pin Configuration/Typical Operating Circuit

TOP VIEW

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers
with 0.1μ F External Capacitors
MAX203 Pin Configurations/Typical Operating Circuit

NOTE: PIN NUMBERS IN () ARE FOR SO PACKAGE.

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers with 0.1μ F External Capacitors MAX204 Pin Configuration/Typical Operating Circuit

TOP VIEW

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers
with 0.1μ F External Capacitors
MAX205 Pin Configuration/Typical Operating Circuit

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers with 0.1μ F External Capacitors

 MAX206 Pin Configuration/Typical Operating Circuit

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers
with 0.1μ F External Capacitors
MAX207 Pin Configuration/Typical Operating Circuit

TOP VIEW

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers with 0.1μ F External Capacitors MAX208 Pin Configuration/Typical Operating Circuit

TOP VIEW

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers
with 0.1μ F External Capacitors
MAX209 Pin Configuration/Typical Operating Circuit

TOP VIEW

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers with 0.1μ F External Capacitors

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers

with 0.1μ F External Capacitors

MAX213 Pin Configuration/Typical Operating Circuit

TOP VIEW

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers with 0.1μ F External Capacitors

PART	TEMP RANGE	PIN-PACKAGE
MAX200CPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP
MAX200CWP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Wide SO
MAX200EPP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Plastic DIP
MAX200EWP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Wide SO
MAX201CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX201CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX201C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX201EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX201EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX202CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX202CSE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Narrow SO
MAX202CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX202C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX202EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX202ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO
MAX202EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX203CPP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Plastic DIP
MAX203CWP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Wide SO
MAX203EPP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Plastic DIP
MAX203EWP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Wide SO
MAX204CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP
MAX204CWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO
MAX204C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX204EPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP
MAX204EWE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Wide SO
MAX205CPG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide Plastic DIP
MAX205EPG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide Plastic DIP
MAX206CNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX206CWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO
MAX206CAG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 SSOP
MAX206ENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DIP

PART	TEMP RANGE	PIN-PACKAGE
MAX206EWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO
MAX206EAG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 SSOP
MAX207CNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX207CWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO
MAX207CAG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 SSOP
MAX207ENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX207EWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO
MAX207EAG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 SSOP
MAX208CNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX208CWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO
MAX208CAG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 SSOP
MAX208C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX208ENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX208EWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO
MAX208EAG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 SSOP
MAX209CNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX209CWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO
MAX209C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX209ENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX209EWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO
MAX211CWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Wide SO
MAX211CAI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 SSOP
MAX211C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX211EWI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Wide SO
MAX211EAI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 SSOP
MAX213CWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Wide SO
MAX213CAI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 SSOP
MAX213C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX213EWI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Wide SO
MAX213EAI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 SSOP

*Contact factory for dice specifications.

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers
 with 0.1μ F External Capacitors

Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
14 CDIP	J14-3	$\underline{21-0045}$
16 CDIP	J16-3	$\underline{21-0045}$
20 CDIP	J20-2	21-0045
24 CDIP	R24-4	21-0045
14 PDIP	P14-3	21-0043
16 PDIP	P16-1	$\underline{21-0043}$
20 PDIP	P20-3	21-0043
24 PDIP	N24-2	21-0043
24 PDIP	N24-3	21-0043
24 PDIP	P24-1	$\underline{21-0044}$
24 PDIP	P24M-1	$\underline{\text { 21-0044 }}$
16 SO	S16-3	21-0041
16 SO	W16-3	21-0042
16 SO	W16-1	21-0042
20 SO	W20M-1	21-0042
20 SO	W20-3	$\underline{21-0042}$
24 SO	W24-2	21-0042
28 SO	W28-1	21-0042
28 SO	W28-2	21-0042
24 SSOP	A24-3	21-0056
24 SSOP	A24-2	$\underline{21-0056}$
28 SSOP	A28-1	$\underline{\underline{21-0056}}$
16 TSSOP	U16-1	$\underline{\underline{21-0066}}$

MAX200-MAX209/MAX211/MAX213

+5V, RS-232 Transceivers with 0.1μ F External Capacitors

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
6	$10 / 03$	Changed the Features section and section information to the Next-Generation Device Features section.	1
7	$12 / 05$	Added Note 1 to the Absolute Maximum Ratings section.	2

maxim
integrated $_{\text {mw }}$

[^1]
[^0]: *Active $=$ active with reduced performance.

[^1]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

