

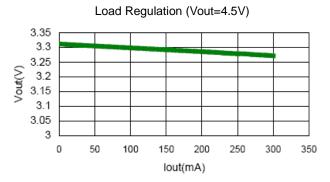
Description

ACE515 series is a group of positive voltage output, low power consumption, low dropout voltage regulator.

ACE515 can provide output value in the range of 1.0V~4.5V every 0.1V step. It also can be customized on command.

ACE515 includes high accuracy voltage reference, error amplifier, current limit circuit and output driver module with discharge capability.

ACE515 has excellent load and line transient response and good temperature characteristics, which can assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within $\pm 2\%$.


Features

- Low Power Consumption: 25uA (Typ)
- Low Output Noise (47uVRMS)
- Standby Mode: 0.1uA
- Low Dropout Voltage 0.16V@300mA (Typ.)
- High Ripple Rejection: 73dB @100Hz (Typ.)
- Low Temperature Coefficient: ±100ppm/°C
- Excellent Line Regulation: 0.05%/V
- Build-in Chip Enable And Discharge Circuit
- Output Voltage Range: 1.0V~4.5V (customized on command every 0.1V step)
- High Accurate: ±2%
- Output Current Limit

Application

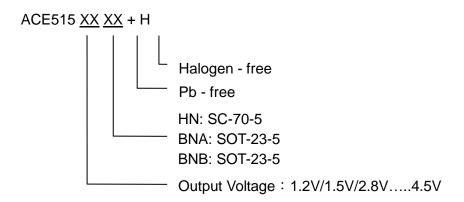
- Power source for cellular phones and various kind of PCSs
- Battery Powered equipment
- Power Management of MP3, PDA, DSC, Mouse, PS2 games
- Reference voltage source
- Regulation after switching power

Typical Performance Characteristic:

Absolute Maximum Ratings

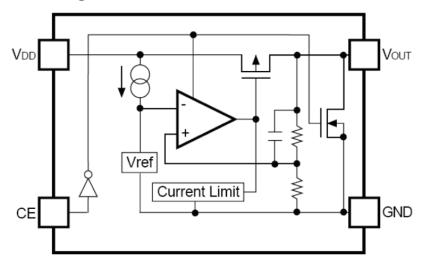
Parameter	Symbol	Max	Unit
Max Input voltage	Vin	8	V
Power Dissipation SOT-23-5 SC-70-5		250 250	mW
Junction temperature	TJ	125	°C
Storage temperature	Ts	- 45 to 150	°C
Output Current		300	mA
Ambient Temperature	TA	-40 to 85	°C

Note:


Exceed these limits to damage to the device.

Exposure to absolute maximum rating conditions may affect device reliability.

Packaging Type


SOT-23-5					
SC-70-5	SC-70-5	SOT-23-5(A)	SOT-23-5(B)	Description	Function
5 4	5	5	1	Vout	Output pin
	1	1	3	VDD	Input pin
	2	2	2	GND	Ground pin
	3	3	4	CE	Chip Enable pin
$\begin{array}{c c} \Box & \Box \\ 1 & 2 & 3 \end{array}$	4	4	5	NC	No Connection

Ordering information

Block Diagram

Recommended Work Conditions

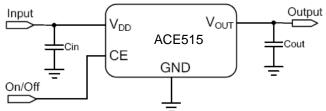
Item	Min	Max	Unit
Input Voltage Range	2	6	V
Ambient Temperature	-40	85	°C

Electrical Characteristics

ACE515 for arbitrary output voltage (Test Conditions: Cin=1uF, Cout=1uF, T_A=25°C, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Voltage	V _{IN}		2		6	V
Output Voltage	V _{OUT} >1.5V	V _{IN} =Set V _{OUT} +1V	V _{оит} x0.98	V _{OUT} 1	V _{оит} х 1.02	V
	V _{OUT} <=1.5V	1mA≦lout≦30mA	V _{OUT} – 0.03	V _{OUT} 1	V _{OUT} + 0.03	
Maximum Output Current	I _{OUT} (Max.)	V _{IN} -V _{OUT} =1V	300			mA
$\begin{tabular}{ c c c c } \hline Dropout Voltage, V_{OUT} & Vdrop^1 \\ & \geqq 2.8 V \end{tabular} \end{tabular}$	I _{OUT} =100mA		50	80	mV	
	varop	I _{OUT} =300mA		160	220	mV
Line Regulation	ΔV _{OUT} / ΔV _{IN} •V _{OUT}	I _{OUT} =40mA 2.8V≦V _{IN} ≦6V		0.05	0.2	%/V
Load Regulation	ΔV _{OUT} / ΔΙ _{ΟUT}	V _{IN} =Set V _{OUT} +1V 1mA≦I _{OUT} ≦300mA		60	100	mV
Supply Current	lss	V _{IN} =Set V _{OUT} +1V		25	50	uA
Supply Current (Standby)	Istandby	V _{IN} =Set V _{OUT} +1V Vce=GND		0.1	1.0	uA
Output Voltage Temperature Coefficient	ΔV _{OUT} / ΔT•V _{OUT}	I _{OUT} =30mA		±100		ppm/ °C

ACE515


Low Noise, fast response 300mA LDO regulator

Ripple Rejection	PSRR	F=100Hz, Ripple=0.5Vp-p V _{IN} =Set V _{OUT} +1V		70		dB
Short Current Limit	llim	V _{OUT} =0V		500		mA
CE Pull down Resistance	Rpd		2.0	5.0	10.0	mΩ
CE Input Voltage "H"	Vceh		1.5		V _{IN}	V
CE Input Voltage "L"	Vcel		0		0.25	V
Output Noise	En	BW=10Hz~100kHz		47		uVrms

Note: Vdrop=Vin 1-(Vout2*0.98) Vout2 is the output voltage when Vin=Vout1+1.0V and lout=300mA.

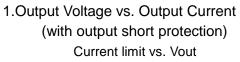
Vin is the input voltage at which the output voltage becomes 98% of Vout1 after gradually decreasing the input voltage.

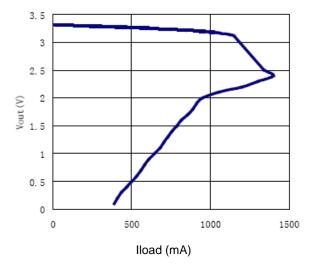
Typical Application Circuit

Note Input capacitor (Cin=1uF) and Output capacitor (Cout=1uF) are recommended in all application circuit.

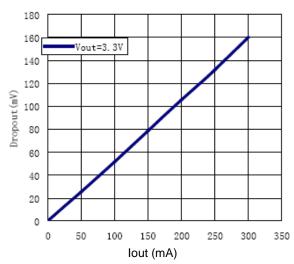
Explanation :

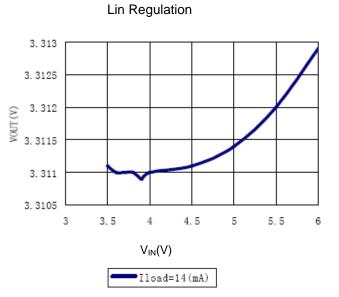
ACE515 series is a group of positive voltage output, low noise, low power consumption, low dropout voltage regulator.

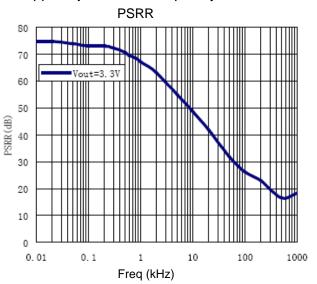

ACE515 can provide output value in the range of 1.0V~4.5V every 0.1V step. It also can be customized on command.

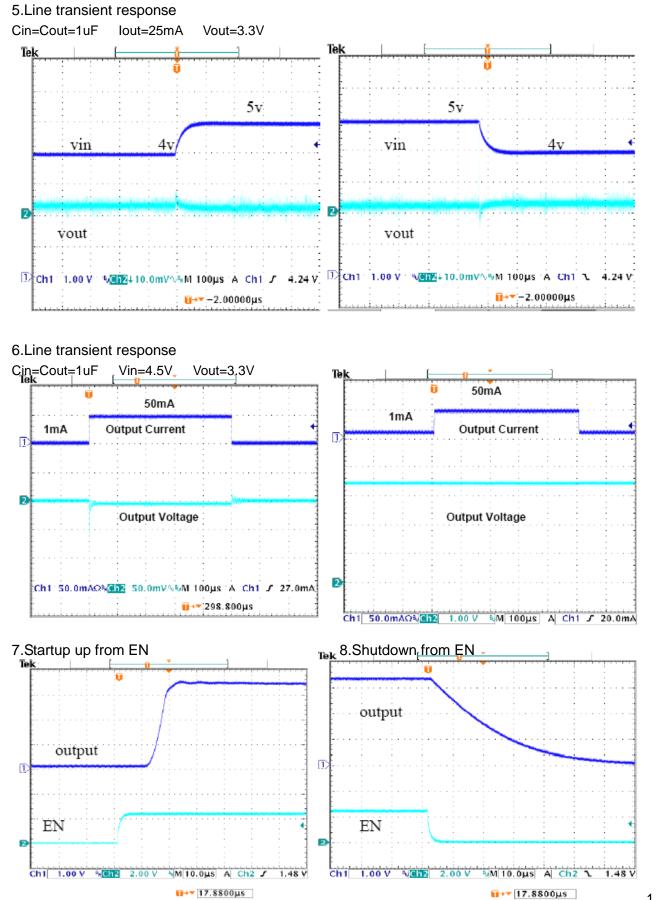

ACE515 includes high accuracy voltage reference, error amplifier, current limit circuit and output driver module.

ACE515 has excellent load and line transient response and good temperature characteristics, which can assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within $\pm 2\%$.

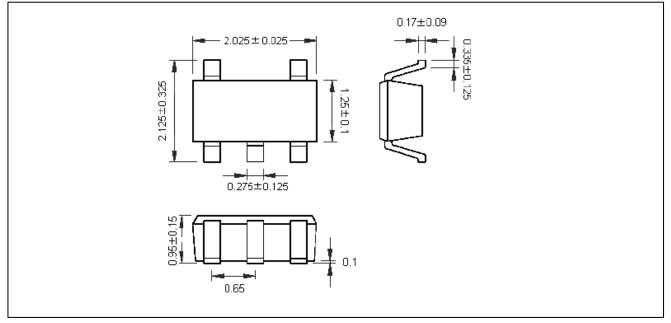




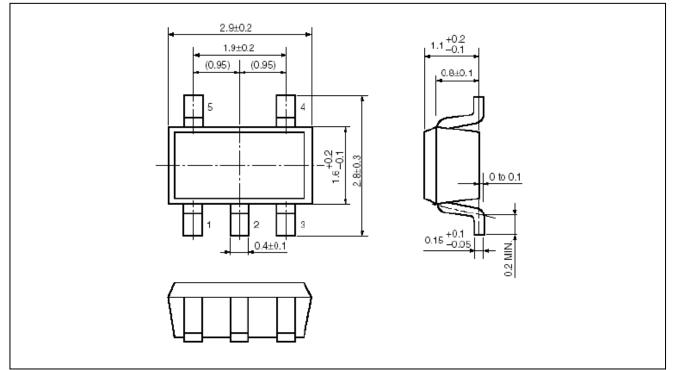

3. Dropout Voltage vs. Output Current Dropout & lout


2. Output Voltage vs. Input Voltage

4.Ripple rejection vs. Frequency



1.5 6



Packing Information

SC-70-5

SOT-23-5

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/