Power MOSFET

60 V, 295 mA, Dual N–Channel with ESD Protection, SC–88

Features

- Low R_{DS(on)}
- Low Gate Threshold
- Low Input Capacitance
- ESD Protected Gate
- This is a Pb–Free Device

Applications

- Low Side Load Switch
- DC-DC Converters (Buck and Boost Circuits)

MAXIMUM RATINGS (T_J = $25^{\circ}C$ unless otherwise stated)

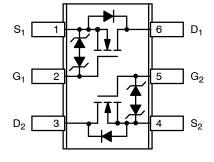
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	60	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain	Steady	$T_A = 25^{\circ}C$	Ι _D	295	mA
Current (Note 1)	State	$T_A = 85^{\circ}C$		212	
	t ≤ 5 s	$T_A = 25^{\circ}C$		304	
		$T_A = 85^{\circ}C$	1	219	
Power Dissipation (Note 1)	Steady State	$T_A = 25^{\circ}C$	P _D	250	mW
	t ≤ 5 s			266	
Pulsed Drain Current	t _p =	= 10 μs	I _{DM}	900	mA
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Source Current (Body Diode)		I _S	210	mA	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C
Gate-Source ESD Rating (HBM)			ESD _{HBM}	2000	V
Gate-Source ESD Rating (MM)			ESD _{MM}	200	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State	$R_{\theta JA}$	500	°C/W
Junction-to-Ambient – t \leq 5 s	$R_{\theta JA}$	470	

1. Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D Max
60 V	1.6 Ω @ 10 V	295 mA
	2.5 Ω @ 4.5 V	295 IIIA

Top View

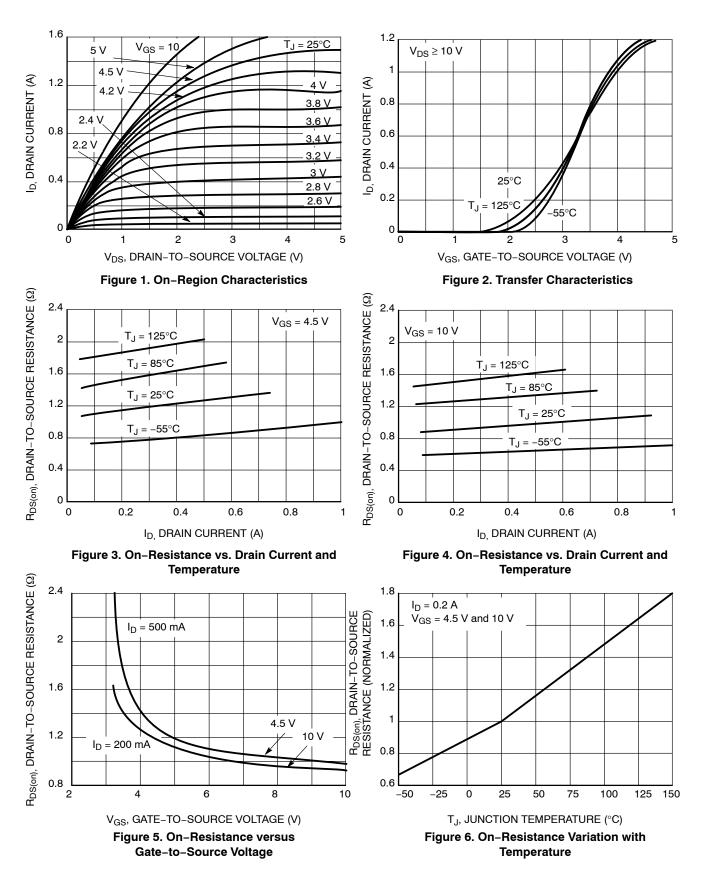
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTJD5121NT1G	SC-88 (Pb-Free)	3000 / Tape & Reel
NTJD5121NT2G	SC-88 (Pb-Free)	3000 / Tape & Reel

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

© Semiconductor Components Industries, LLC, 2013 October, 2013 – Rev. 6


ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
OFF CHARACTERISTICS					•			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		60			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 250 μA, r	ef to 25°C		92		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS} V _{GS} = V _{DS} =	V _{GS} = 0 V,	$T_J = 25^{\circ}C$	= 25°C		1.0	μΑ	
		$V_{\rm DS} = 60 \text{ V}$	T _J = 125°C			500	1	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{G}$	_{iS} = ±20 V			±10	μA	
ON CHARACTERISTICS (Note 2)						-		
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	e = 250 μA	1.0	1.7	2.5	V	
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.0		mV/°C	
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 500 mA			1.0	1.6	Ω	
		V _{GS} = 4.5 V, I _D = 200 mA			1.2	2.5		
Forward Transconductance	9FS	V _{DS} = 5 V, I _D = 200 mA			80		S	
Gate Resistance	R _G				536		Ω	
CHARGES AND CAPACITANCES								
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 20 V			26		pF	
Output Capacitance	C _{OSS}				4.4		1	
Reverse Transfer Capacitance	C _{RSS}	• 05 = -			2.5			
Total Gate Charge	Q _{G(TOT)}				0.9		nC	
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V	ns = 25 V.		0.2			
Gate-to-Source Charge	Q _{GS}	$I_{\rm D} = 200$			0.3			
Gate-to-Drain Charge	Q _{GD}		Ē		0.28			
SWITCHING CHARACTERISTICS (No	ote 3)		•		•			
Turn-On Delay Time	t _{d(on)}				22		ns	
Rise Time	tr	V_{GS} = 4.5 V, V_{DD} = 25 V, I _D = 200 mA, R _G = 25 Ω			34			
Turn-Off Delay Time	t _{d(off)}				34			
Fall Time	t _f				32		7	
DRAIN-SOURCE DIODE CHARACTE	RISTICS				•			
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.8	1.2	V	
		I _S = 200 mA			0.7			

2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%. 3. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

TYPICAL PERFORMANCE CURVES

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

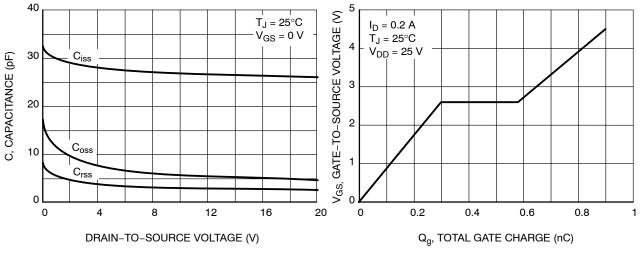
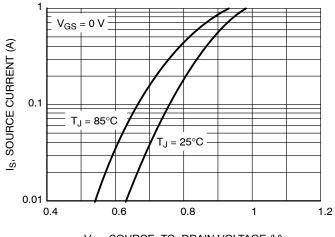



Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

V_{SD}, SOURCE-TO-DRAIN VOLTAGE (V)

Figure 9. Diode Forward Voltage vs. Current

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363 CASE 419B-02 ISSUE Y D H A 3 D GAGE 4 4 L2 6. Ε E1 **DETAIL A** 2X 3 TIPS е 6X b В \oplus ddd \bigcirc C A-B D TOP VIEW Α2 DETAIL A 6х 🗀 ссс С A1 SEATING PLANE Ċ С STYLE 26: SIDE VIEW **END VIEW** З. RECOMMENDED 4. SOLDERING FOOTPRINT* 0.30 0.66 2 50 0.65 PITCH DIMENSIONS: MILLIMETERS

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M. 1994.
- CONTROLLING DIMENSION: MILLIMETERS. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRU-
- SIONS, OR GATE BURNS SHALL NOT EXCEED 0.20 PER END. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H. DATUMS A AND B ARE DETERMINED AT DATUM H.
- DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
- DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL CONDI-TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α			1.10			0.043	
A1	0.00		0.10	0.000		0.004	
A2	0.70	0.90	1.00	0.027	0.035	0.039	
b	0.15	0.20	0.25	0.006	0.008	0.010	
С	0.08	0.15	0.22	0.003	0.006	0.009	
D	1.80	2.00	2.20	0.070	0.078	0.086	
Е	2.00	2.10	2.20	0.078	0.082	0.086	
E1	1.15	1.25	1.35	0.045	0.049	0.053	
e	0.65 BSC			0.026 BSC			
Г	0.26	0.36	0.46	0.010	0.014	0.018	
L2	0.15 BSC			0.006 BSC			
aaa	0.15			0.006			
bbb	0.30			0.012			
ccc	0.10			0.004			
ddd	0.10			0.004			

PIN 1. SOURCE 1 2. GATE 1 DRAIN 2 SOURCE 2

5. GATE 2 6. DRAIN 1

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without particular purpose, not does soluce as soluce any insuming ansing out of the application of use of any product of clubter and an insuming ansing out of the applications and specifications can and ox any end and insuming ansing out of the applications of use of any product of clubter and/or specifications can and ox any end and an insuming ansing out of the applications and a study and an insuming ansing out of the applications and a study and an insuming ansing out of the applications of a study and an insuming ansing out of the applications of the applications and a study and an insuming an and ox any product of clubter applications and do vary indifferent applications and a study and an insuming an and ox any product of the applications and a study and an insuming an and ox any product of the applications and a study and an insuming and hold applications and a study and an insuming and hold applications and a study and an insuming and hold applications and a study applications and a vary or study and an instruction and a study and an instruction applications and a vary and an instruction applications and a vary and an instruction and a vary and an instruction application application and an and an and application application and a vary and an instruction application application and an and application application application application application and a vary and an instruction application application application application application application application application application applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC application its officers, employees, subsidiaries, affiliates, and distributors hamless against all claims, costs, damages, and exponses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employeer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative