
1. General Description

The H18GPL11S is a 1.8V CMOS (0.18µm 1-poly, 3-metal) analog programmable frequency synthesizer based on charged pump type PLL for an on-chip application using Hynix standard 0.18µm ASIC Process. H18GPL11S has 5MHz to 320MHz output range. Operating frequency and loop characteristics of PLL are fully programmable.

2. Features

- On-chip charge pump type PLL clock generator
- Input reference clock range : $5MHz \sim 100MHz$
- Clock output frequency range : $5MHz \sim 160MHz$ (extend to 320MHz)
- Reference divider range : $1 \sim 256$ (8-bit programmable divider)
- Feedback divider range : 3 ~ 16386 (14-bit programmable divider)
- 8 mode programmable loop filter
- programmable VCO range and VCO gain(2-bit)
- programmable PD gain (2-bit)
- Maximum Power consumption : 12mW
- Process : 0.18 mu CMOS generic Process(1-poly, 3-metal)
- Cell Size : 740μ x 816 μ (with guard ring)

3. Block Diagram and Recommended Application Circuits

4. Pin Descriptions

Pin Name	Туре	Description	
DVDD	Power	Digital power supply	
DVSS	Ground	Digital ground	
AVDD	Power	Analog power supply	
AVSS	Ground	Analog ground	
ASUB	Ground	Guard ring ground	
ref	Input	PLL reference clock input signal	
bpck	Input	Bypass clock input signal	
pd	Input	PLL power down mode except VCO : active high	
vcopd	Input	VCO power down mode : active high	
bypass	Input	Bypass mode : active high	
tdm	Input	Digital part test mode : active high	
reset	Input	Digital part reset signal : active high	
vcoinit	Input	VCO initialize signal : active high	
cnttest	Input	Counter toggle test : active high	
tpdud[1:0]	Input	Charge pump test mode(Normal mode : "00")	
m[13:0]	Input	Feedback divisor is M[13:0]+2	
n[7:0]	Input	Reference divisor is N[7:0]+1	
p[1:0]	Input	Post divisor is 2 P[1:0]+1	
vc[1:0]	Input	VCO range control vector	
icp[3:0]	Input	Charge pump bias current control vector	

Pin Name	Туре	Description	
lfm[2:0]	input	loop filter mode selector	
lfo	Analog	External loop filter port	
ck	Output	PLL output clock	
lock	Output	PLL lock detect signal : active high	
ncb[7:0]	Output	Reference divider test output	
mc[13:0]	Output	Feedback divider test output	

5. Function Descriptions

H18GPL11S is ideally suited to provide the graphics system clock signals required by video signal AD and DA. Fully Programmable feedback and reference divider capability allow virtually any frequency to be generated, not just simple multiples of reference frequency. Also PD gain, VCO gain and VCO range are programmable for user-define PLL characteristics.

(1) Determining Output Frequency

H18GPL11S generates its output frequencies using charge pump PLL techniques.

Then The output frequency is ratiometrically related to the reference frequency.

a) Normal Frequency mode

Output frequency range : $5MHz \sim 160MHz$

* PLL control setting

TDM = "low", BYPASS = "low"

At this condition, the output frequency, F(ck), is actually determined by the following equation.

 $F(ck) = \frac{F(ref) \cdot (Feedback Divisor)}{(Reference Divisor)}$ F(ck) : frequency of output, ck F(ref) : frequency of reference pin, ref Feedback Divisor : m[13:0] + 2 Reference Divisor : n[7:0] + 1

* F(ck) range is showed section 3).

F(ref) range is restricted by loop filter mode at section 4).

b) Extended Frequency mode

* PLL control setting

TDM = "low", BYPASS = "high"

At this condition, the output frequency, F(ck), is actually determined by the following equation.

 $F(ck) = \frac{F(ref) \cdot (Feedback Divisor) \cdot (Post divisor)}{(Reference Divider)}$

Pre divisor : 2 p[1:0]+1

	F(c	:k)
vc[1:0]	min	max
00	80MHz	200MHz
01	120MHz	240MHz
10	160MHz	280MHz
11	200MHz	320MHz

Table. F(ck) range at extended frequency range

(2) PD gain programming

H18GPL11S provides various PD gain. Actually PD gain is controlled internally by charge pump current. At charge pump PLL, PD gain is charge pump current over 2π . H18GPL11S controls charge pump current by 4-bit resolution with the following equations.

 $ICP = (ICPB/16) \cdot (16 - icp[3:0]) [A]$ $Kpd = ICP / 2\pi [A/rad]$ ICPB : Charge pump reference current. Typically 40uA ICP : Charge pump currentKpd : PD gain

^{© 2004} Hynix Semiconductor Inc. All rights reserved.

(3) VCO range and gain programming

H18GPL11S provides 4 different VCO ranges and a post divider. VCO ranges are controlled by **vc[1:0]** and clock output frequency is divided by 2 power (**p[1:0]** +1) then clock output range has 16 ranges. The gain of VCO which is the ratio of input voltage v.s. clock output frequency variation, Kvcop, has 4 different values. Following table shows each range by **vc[1:0]** and Kvcop.

		I	Fck		
vc[1:0]	p[1:0]	min	max	Кусор	
00	00	40MHz	100MHz	150MHz/V	
	01	20MHz	50MHz	75MHz/V	
	10	10MHz	25MHz	37.5MHz/V	
	11	5MHz	12.5MHz	18.75MHz/V	
01	00	60MHz	120MHz	150MHz/V	
	01	30MHz	60MHz	75MHz/V	
	10	15MHz	30MHz	37.5MHz/V	
	11	7.5MHz	15MHz	18.75MHz/V	
10	00	80MHz	140MHz	150MHz/V	
	01	40MHz	70MHz	75MHz/V	
	10	20MHz	35MHz	37.5MHz/V	
	11	10MHz	17.5MHz	18.75MHz/V	
11	00	100MHz	160MHz	150MHz/V	
	01	50MHz	80MHz	75MHz/V	
	10	25MHz	40MHz	37.5MHz/V	
	11	12.5MHz	20MHz	18.75MHz/V	

(4) Programmable loop filter

H18GPL11S has 7 internal loop filter mode, and an external loop filter mode, totally 8 mode. Following table shows each loop filter mode characteristics. Figure 1 represents loop filter schematic.

lfm[2:0]	RLF CLF [Ohm] [pF]		CLF2 [pF]	ZERO [kHz]	POLE [kHz]		
000	40k	1437	96.4	2.77	44.0		
001	24.1k	1437	96.4	4.6	73.1		
010	40k	518	35.8	7.68	118.8		
011	24.1k	518	35.8	12.75	197.2		
100	24.1k	310	22	21.3	321.5		
101	14.7k	310	22	34.9	527		
110	8.9k	310	22	57.7	871		
111	External loop filter						

Table. Loop Filter device value

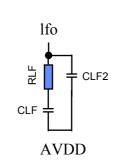


Figure 1. loop filter schematic.

In H18GPL11S, to get sufficient stability margin and efficient loop characteristics, loop filter mode(LFM) must be selected properly. Each LFM restricts feedback divisor and reference frequency ranges. At internal loop filter mode(lfm : 000 to 110), PD reference input frequency(F(ref)/(Ref divisor)) is 150kHz to 20MHz. In this mode external loop filter and **lfo** pin are not needed. If PD ref frequency is smaller than 150kHz, the external mode (lfm : 111) must be selected to get sufficient loop stability. However, it is recommended that PD reference input frequency is bigger than 2MHz for low jitter frequency synthesis.

Following equation shows relation of loop filter and PLL loop characteristics.

Knll –	Kvcop*Kpd*RLF			
Kpll =	m[13:0] +2	-2 [Hz/s] : PL		
Zero1 =	$1/(2\pi * RLF * CLF)$ [Hz] : Open loop		[Hz] : Open loop first zero	
Pol3 = (C	CLF+CLF2)/(2π*RLF*CLF*CLF2)	F2)/ $(2\pi * RLF * CLF * CLF2)$ [Hz] : Open		

Kpll is restricted by PD ref frequency, loop filter zero1, and pole3 according to the following equation.

Kpll < (PD ref frequency)/6 Kpll > 1.5*zero1 Kpll < 0.7*pole3

Typically Kpll is recommended smaller than Fpdref/10, Kpll is lager than 2*zero1, and Kpll is smaller than 0.5*pole3 to get sufficient stability margin.

(5) PLL power down, VCO power down and VCO initialization

H18GPL11S has PLL power down mode, VCO power down mode, and VCO initialize mode. **pd** signal is PLL power down. When **pd** is active(active high), H18GPL11S digital circuits do not operate and the charge pump circuit is disabled. v**copd** signal means VCO power down. When **vcopd** is active(active high), VCO does not oscillate. **vcoinit** is VCO initializing signal. During power-up sequence, **vcoinit** must be activated. To ensure the proper operation of the H18GPL11S, the activation of **vcoinit** signal is required just after the deactivation of the **vcopd** signal. If you want use external VCO, **vcopd** is active only. Following figure 2 is a configuration of external VCO mode.

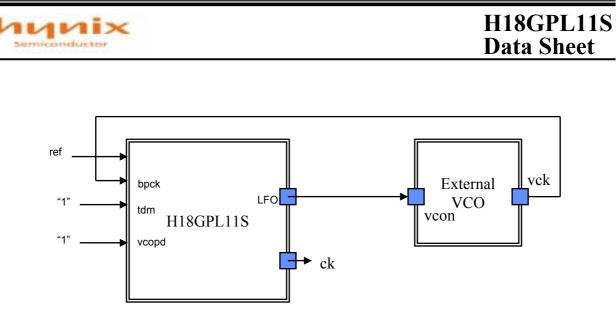


Figure 2. External VCO configuration block diagram

At this mode, frequency of **ck** is determined by section 1.a), and frequency of **vck** is determined by section 1.b)

(6) Bypass mode

H18GPL11S has bypass mode for test main block of chip. When **bypass** signal and **tdm** is active(active high), PLL output clock is **bpck**.

(7) Digital block test mode

At mass product test, H18GPL11S provides digital block test. When **tdm** is active(active high), **bpck** clock is provided to the whole digital blocks in H18GPL11S and check **mc[13:0]** and **ncb[7:0]**. If **cnttest** is high, internal counter is toggle each bit by m, or n.

(8) VCO block and Charge pump test mode

At mass product test, **tpdud**[1:0] enables you to access the VCO control voltage directly from off-chip to get VCO gain and to measure charge pump up or down currents.

^{© 2004} Hynix Semiconductor Inc. All rights reserved.

(9) H18PL11S control modes summary

Table. Mode settings of H18GPL11S

tpdud[1:0] = "00", tvco[1:0] = "00", reset = "0"

MODE	pd	by pass	tdm	vcopd	vcoinit	DESCRIPTION
Normal mode	0	0	0	0	0	$Fck = Fref^{(m+2)/(n+1)}$
Extended mode	0	1	0	0	0	Fck = Fref*(m+2)*2 ^{P+1} /(n+1)
Bypass mode	pass mode 0 1 1 0 0 CK = ~BPCK		CK = ~BPCK			
vco initialize mode	vco initialize mode 0 0 0 0		0	1	When power turn on, vcoinit must be activated	
Power down mode	1	0	0	1	0	H18GPL11S is disabled at this mode
External VCO mode	0	0	1	1	0	Using External VCO
Digital part test	0	0	1	0	0	digital part toggle test(cnttest = 1)

Table. VCO and charge pump test mode

p[1:0] = "11", pd = "0", BYPASS = "0", reset = "0",tdm = "0" vcopd = "0", vcoinit = "0"

tpdud	DESCRIPTION
00	Charge pump normal mode operation
01	Charge pump down current test, or VCO maximum frequency test
10	Charge pump up current test, or VCO minimum frequency test
11	Ifo pin is high impedance, for charge pump and loop filter leakage test

6. Operating Conditions

Symbol	Parameter	Min.	Max.	Unit
DVDD		1.6	2.0	V
AVDD	Power Supply	1.6	2.0	V
DVSS-AVSS		0	50	mV
ASUB	Guarding Ground	0	50	mV
Тор	Operating temperature	0	100	Ĉ

7. Electrical Characteristics

SYMBOL	ITEM	CONDITION	MIN	TYP	MAX	UNIT
ldd	PLL dynamic current	@F(vco)=100MHz	3	4	6	mA
Fckn	Output frequency	Normal Range	5	-	160	MHz
Fckh	Output frequency	Extended Range	80	-	320	MHz
Dtn	Output duty cycle	Normal Range	45	50	55	%
Dtht	Output duty cycle	Extended Range	40	50	60	%
Tpolock	Power on lock time	When power turn on	-	-	10	msec
Tlock	Lock time in lock range	Lock state, Internal loop filter mode	-	-	2	msec
Tjit	Cycle peak to peak jitter	LOCK STATE	-	-	500	psec

8. Timing Diagram

(1) Power on and loop dynamic timing

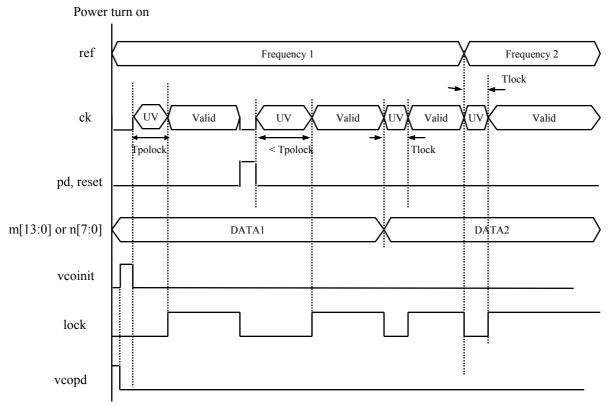
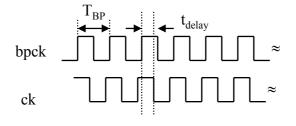
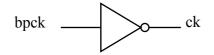


Figure 3. Timing diagram

When **ck** is UV(Un-Valid) state, frequency of **ck** is undesirable. In this state H18GPL11S tracks valid frequency of **ck**. When **ck** is in the Valid state, frequency of **ck** is frequency of **ref** multiplied by $(\mathbf{m[13:0]} + 2)/(\mathbf{n[9:0]} + 1)$.


Tpolock is a power on lock time. While **pd** is high, loop filter charges are held. When **pd** is disabled, PLL tracks valid frequency fast. However, when **pd** remains high for a long time, loop filter charges are discharged slowly and at last charges are completely discharged. After long **pd**'s active state, the lock time of H18GPL11S, i.e. Tpolock is maximized. Tlock is a lock time when control data (**m[13:0]**, **n[9:0]**) or reference clock frequency are changed in lock range.


To ensure the proper operation of the H18GPL11S, the activation of **vcoinit** signal is required just after the deactivation of the **vcopd** signal. During power-up sequence **vcoinit** is recommended to be activated for more than 100ns.

(2) Bypass mode

tdm = "high", bypass = "high"

 t_{delay} : 3ns : **bpck** to **ck** delay time

9. Layout Guide

(1) Power Pads guide

- 1) PLL requires dedicated analog (AVDD, AVSS, ASUB) and digital (DVDD, DVSS) power and ground pads to ensure proper operation.
- 2) ASUB ground must be connected from the analog ground pad and merged in front of the pad as can be seen in the Figure 4.
- 3) AVDD and DVDD are supplied with 1.8V and 1.8V power respectively. To isolate the analog and the digital power and the ground from digital pad ring, use the power cutting cells i.e. diode cells (PDO). Refer to the I/O library (HGI1113TP1_TYP or HGI1113TP3_TYP page 9) for more information. See Figure 5 for an example.
- 4) If you can place more pads for PLL, use as many power pads as you can and use those pads with double (multiple)-bond configuration. It is required to reduce power bouncing.
- 5) You may insert buffers between reference clock input pad and PLL input pin to make the rise/fall time of the clock input short.

^{© 2004} Hynix Semiconductor Inc. All rights reserved.

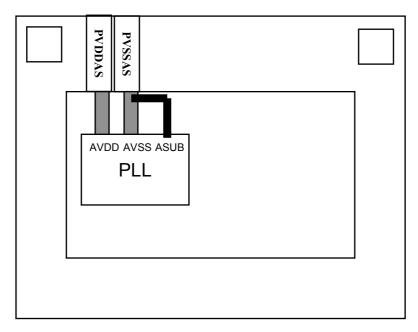


Figure 4. Routing consideration for the analog ground pads

(2) Placement & Routing

- 1) Please place PLL at a corner of the chip and do not put noisy or high driving I/O pads near the PLL.
- 2) Please keep the routing from power pads to PLL power pins as short as possible.
- 3) The power metal width should be larger than the width of the PLL IP connection. See Figure 6 for an example.
- 4) Do not rout over the PLL IP and place 30um space from the IP to the other circuitry.
- 5) Minimize the crossing of digital core power or signal over the power lines of the PLL IP.
- 6) Figure 5 is a placement and routing example of PLL. In the figure analog and digital power are separated with diode cut cells.

^{© 2004} Hynix Semiconductor Inc. All rights reserved.

H18GPL11S Data Sheet

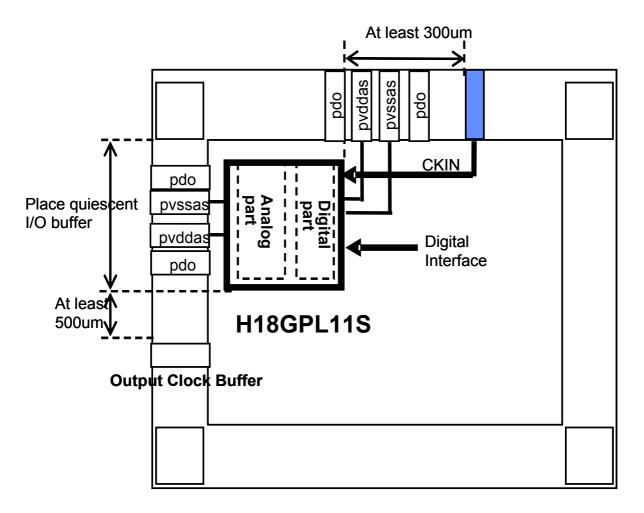


Figure 5. Placement and Routing consideration of PLL

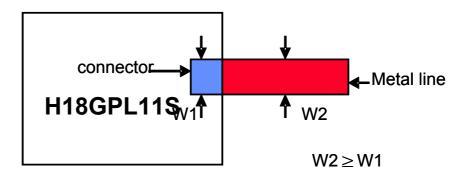


Figure 6. Connector width

 $[\]textcircled{C}$ 2004 Hynix Semiconductor Inc. All rights reserved.