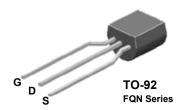
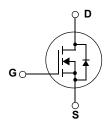
March 2013

FQN1N50C

N-Channel QFET MOSFET


500 V, 0.38 A, 6 Ω


Description

This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor®'s proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

- 0.38 A, 500 V, $R_{DS(on)}$ = 6 Ω (Max) @ V_{GS} = 10 V, I_D = 0.19 A
- Low Gate Charge (Typ. 4.9 nC)
- Low Crss (Typ. 4.1 pF)
- 100% Avalanche Tested

Absolute Maximum Ratings

Symbol		Parameter		FQN1N50C	Unit
V _{DSS}	Drain-Source V	oltage		500	V
I _D	Drain Current	- Continuous (T _C = 25	5°C)	0.38	А
		- Continuous (T _C = 10	00°C)	0.24	А
I _{DM}	Drain Current	- Pulsed	(Note 1)	3.04	A
V _{GSS}	Gate-Source Vo	oltage		± 30	V
E _{AS}	Single Pulsed A	valanche Energy	(Note 2)	44.4	mJ
I _{AR}	Avalanche Curr	ent	(Note 1)	0.38	A
E _{AR}	Repetitive Avala	anche Energy	(Note 1)	0.21	mJ
dv/dt	Peak Diode Re	covery dv/dt	(Note 3)	4.5	V/ns
P_{D}	Power Dissipati	on (T _A = 25°C)		0.89	W
	Power Dissipati	on (T _L = 25°C)		2.08	W
		- Derate above 25°C		0.017	W/°C
T _J , T _{STG}	Operating and S	Storage Temperature R	ange	-55 to +150	°C
T _L	Maximum lead	temperature for soldering	ng purposes,	300	°C

Thermal Characteristics

Symbol	Parameter		Тур	Max	Unit
$R_{\theta JL}$	Thermal Resistance, Junction-to-Lead	(Note 6a)		60	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 6b)		140	°C/W

Package Marking and Ordering Information

Device Marking	Device Package		Reel Size	Tape Width	Quantity	
1N50C	FQN1N50C	TO-92	-	-	2000ea	

Electrical Characteristics $T_C = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Characte	ristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	500			V
$\Delta BV_{DSS}/$ ΔT_J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.5		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 500 V, V _{GS} = 0 V			50	μА
		V _{DS} = 400 V, T _C = 125°C			250	μА
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
On Characte	ristics					
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	2.0		4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 0.19 A		4.6	6.0	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 0.19A (Note 4)		0.6		S
Dynamic Cha	aracteristics					
C _{iss}	Input Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$		150	195	pF
C _{oss}	Output Capacitance	f = 1.0 MHz		28	40	pF
C _{rss}	Reverse Transfer Capacitance			4.1		pF
Switching Cl	naracteristics					
t _{d(on)}	Turn-On Delay Time	V _{DD} = 250 V, I _D = 1.0 A,		10	30	ns
t _r	Turn-On Rise Time	$R_G = 25 \Omega$		10	30	ns
t _{d(off)}	Turn-Off Delay Time			20	50	ns
t _f	Turn-Off Fall Time	(Note 4, 5)		15	40	ns
Qg	Total Gate Charge	V _{DS} = 400 V, I _D = 1.0 A,		4.9	6.4	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V		0.66		nC
Q _{gd}	Gate-Drain Charge	(Note 4, 5)	-	2.9		nC
Drain-Source	e Diode Characteristics and Maximum R	atings				
I _S	Maximum Continuous Drain-Source Dioc	de Forward Current			0.38	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Fo	orward Current	-		3.04	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 0.38 A	-		1.4	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = 1.0 A,	-	188		ns
Q _{rr}	Reverse Recovery Charge	$dI_F / dt = 100 \text{ A/}\mu\text{s}$ (Note 4)		0.55		μС

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. L = 80mH, I_{AS} = 1.0A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25°C
- 3. $I_{SD} \leq 0.38 A$, di/dt $\leq 200 A/\mu s$, $V_{DD} \leq BV_{DSS}$, Starting T_J = 25°C
- 4. Pulse Test : Pulse width $\leq 300 \mu s,$ Duty cycle $\leq 2\%$
- 5. Essentially independent of operating temperature
- 6. a) Reference point of the R_{B,IL} is the drain lead b) When mounted on 3"x4.5" FR-4 PCB without any pad copper in a still air environment

 $(R_{\theta JA})$ is the sum of the junction-to-case and case-to-ambient thermal resistance. $R_{\theta CA}$ is determined by the user's board design)

Typical Performance Characteristics

Figure 1. On-Region Characteristics

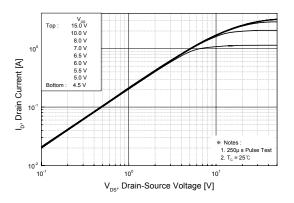


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

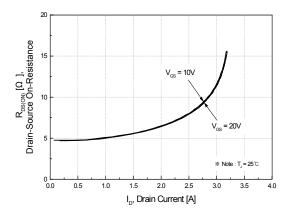


Figure 5. Capacitance Characteristics

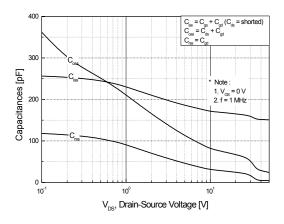


Figure 2. Transfer Characteristics

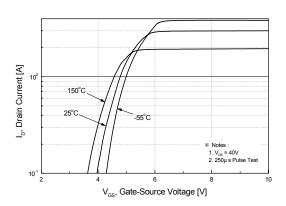


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

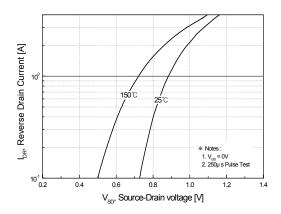
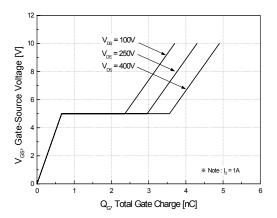



Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

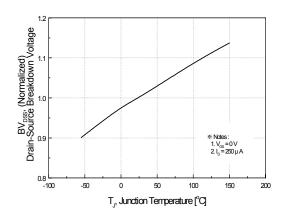


Figure 8. On-Resistance Variation vs. Temperature

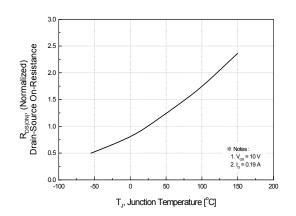


Figure 9. Maximum Safe Operating Area

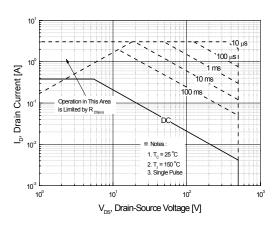
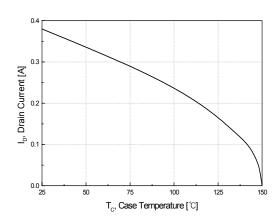
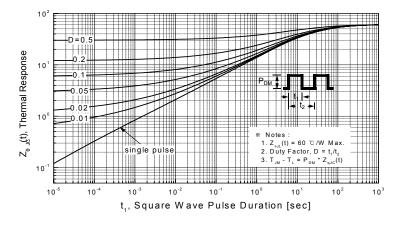
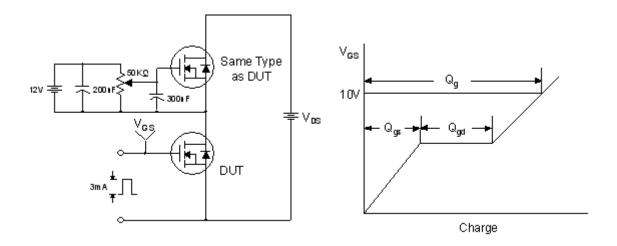
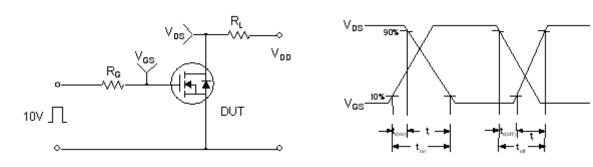
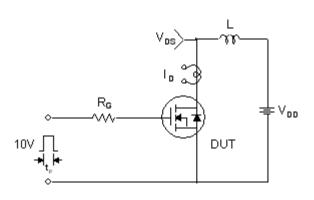
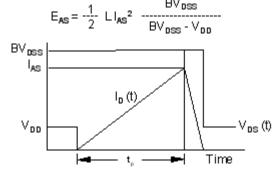


Figure 10. Maximum Drain Current vs. Case Temperature

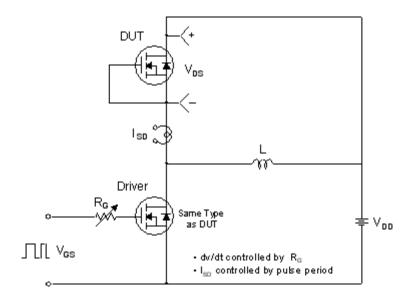




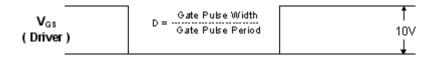

Figure 11. Transient Thermal Response Curve

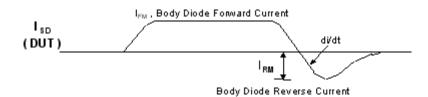

Gate Charge Test Circuit & Waveform

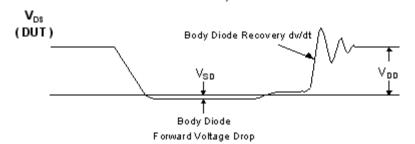


Resistive Switching Test Circuit & Waveforms

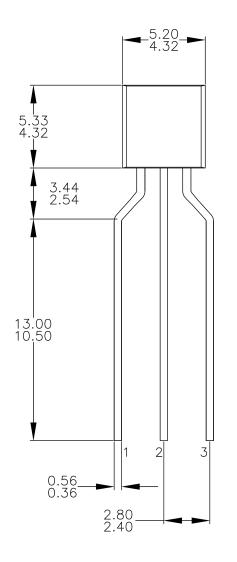


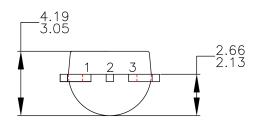

Unclamped Inductive Switching Test Circuit & Waveforms

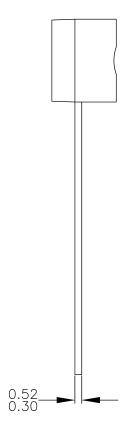




Peak Diode Recovery dv/dt Test Circuit & Waveforms







Mechanical Dimensions

TO-92

NOTES: UNLESS OTHERWISE SPECIFIED

- DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS.
 ALL DIMENSIONS ARE IN MILLIMETERS.
 DRAWING CONFORMS TO ASME Y14.5M-1994.
 TO-92 (92,94,96,97,98) PIN CONFIGURATION:

Z	14		92			94			96			97			98		
٥		Р	F	М	Р	F	М	В	F	М	Р	F	М	Р	F	М	
1		Ε	S	S	Ε	S	S	В	D	G	С	G	D	С	G	D	
2	- 2	В	D	G	C	G	D	Ε	S	S	В	D	G	Ε	S	S	
3	5	С	G	D	В	D	G	С	G	D	Ε	S	S	В	D	G	

LEGEND:

P - BIPOLAR F - JFET M - DMOS E - EMITTER B - BASE C - COLLECTOR D - DRAIN S - SOURCE G - GATE

- E) FOR PACKAGE 92, 94, 96, 97 AND 98:
 PIN CONFIGURATION DRAIN "D" AND SOURCE "S"
 ARE INTERCHANGEAGLE AT JFET "F" OPTION.
 F) DRAWING FILENAME: MKT—ZAO3FREV2.

Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

FPS™ AccuPower™ F-PFS™ FRFET® AX-CAP® BitSiC™ Global Power ResourceSM

Green Bridge™ Green FPS™ Build it Now™ CorePLUS™ CorePOWER™ Green FPS™ e-Series™

 $CROSSVOLT^{TM}$ Gmax™ GTO™ CTI TN Current Transfer Logic™ IntelliMAX™ ISOPLANAR™ DFUXPFFD[®]

Marking Small Speakers Sound Louder Dual Cool™

EcoSPARK® and Better™ MegaBuck™ EfficentMax™ MICROCOUPLER™ ESBC™ MicroFET™

MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™

FACT Quiet Series™ FACT® FAST® OPTOLOGIC® FastvCore™ OPTOPLANAR® FETBench™

PowerTrench® PowerXS™

Programmable Active Droop™

QFET QSTM

Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM[®] STEALTH™ SuperFET® SuperSOT™-3

SuperSOT™-6 SuperSOT™-8 SupreMOS® SvncFET™

Sync-Lock™

SYSTEM®* TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TIŃYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®]

TriFault Detect™ TRUECURRENT®* μSerDes™

Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Fairchild®

Fairchild Semiconductor®

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 164