

お客様各位

資料中の「沖電気」、「OKI」等名称のOKI セミコンダクタ株式会社への変更について

2008 年 10 月 1 日を以って沖電気工業株式会社の半導体事業は OKI セミコン ダクタ株式会社に承継されました。 従いまして、本資料中には「沖電気工業株 式会社」、「沖電気」、「OKI」といった表記が残っておりますが、これらの表記は 全て「OKI セミコンダクタ株式会社」に変更されておりますのでご理解の程お願 い致します。 なお、会社名、会社商標・ロゴ等以外の内容については変更し ておりませんので資料としての内容変更ではありません。

> 2008 年 10 月 1 日 OKI セミコンダクタ株式会社

OKIセミコンダクタ株式会社

〒193-8550 東京都八王子市東浅川町 550-1 http://www.okisemi.com/jp/

MR37V12841A

128M \times 1–Bit Serial Production Programmed ROM (P2ROM)

GENERAL DESCRIPTION

The MR37V12841A is a 128Mbit Production Programmed Read-Only Memory, which is configured as 134,217,728word $\times 1$ -bit. The MR37V12841A supports a simple read operation using a single 3.3V power supply and a Serial Peripheral Interface (SPI) compatible serial bus.

The MR37V12841A have data programmed and have functions tested at OKI SEMICONDUCTOR factory. (Using the DC pins for the programming function is NOT allowed)

FEATURES

·Read Operation


- +3.3 V power supply
- 134,217,728 × 1-bit
- Access time: 33MHz serial clock (FAST-READ)
- 20MHz serial clock (READ)
- Read Identification Instruction
- Active read current: 30mA(FAST-READ)
- 20mA(READ)
- Standby current : $50 \,\mu A$
- Serial Clock Input and Data Input/Output
- Input Data Format :
- 1-byte Command code, 3-byte address, 1-byte dummy (FAST-READ)
- 1-byte Command code, 3-byte address (READ)

PACKAGES

- · MR37V12841A-xxxMP
- 16-pin plastic SOP (P-SOP16-375-1.27-K)

PIN DESCRIPTIONS

Pin name	Functions under Read Operation
#CS	Chip Select
SI	Serial Data Input
SO	Serial Data Output
SCLK	Clock Input
V _{CC}	Power supply voltage
GND	Ground
DC	Don't care (0v - Vcc) <for reference=""> Program power supply voltage Vpp under Programming operation</for>
NC	Non connection

READ COMMAND DEFINITION

Command	Read Array (byte)	Note
1 st	03[H]	1
2 nd	AD1	2
3 rd	AD2	2
4 th	AD3	2
Action	N byte read out until #CS goes high	3

Note:

- The 1st command 03[H] is a Read command
 AD1 to AD3 are address input data
- 3. Data output

Details of command and address are shown as follows.

1-byte command	code							
READ	0	0	0	0	0	0	1	1
3-byte address								
AD1:	A23	A22	A21	A20	A19	A18	A17	A16
AD2:	A15	A14	A13	A12	A11	A10	A9	A8
AD3:	A7	A6	A5	A4	A3	A2	A1	A0

FAST READ COMMAND DEFINITION

Command	Read Array (byte)	Note
1 st	0B[H]	1
2 nd	AD1	2
3 rd	AD2	2
4 th	AD3	2
5 th	X	3
Action	N byte read out until #CS goes high	4

Note:

- The 1st command 0B[H] is a Read command
 AD1 to AD3 are address input data
- X is a dummy cycle
 Data output

Details of command and address are shown as follows.

1-byte command	code							
FAST-READ	0	0	0	0	1	0	1	1
3-byte address								
AD1:	A23	A22	A21	A20	A19	A18	A17	A16
AD2:	A15	A14	A13	A12	A11	A10	A9	A8
AD3:	A7	A6	A5	A4	A3	A2	A1	A0

MR37V12841A / P2ROM

READ IDENTIFICATION COMMAND DEFINITION

Command	Read Array (byte)	Note
1 st	9F[H]	1
Action	3 byte read out	2

Note:

- The 1st command 9F[H] is a Read Identification command
 Identification output

Details of command and address are shown as follows.

		,	1-byte cor	nmand co	de			
RDID	1	0	0	1	1	1	1	1

IDENTIFICATION DEFINITION

	Device Identification				
Manufacturer Identification	Туре	Capacity			
AE[H]	41[H]	16[H]			

DEVICE OPERATION

- 1. Command "03h" or "0Bh" makes this LSI become and keep active mode until next #CS High.
- 2. Incorrect command makes this LSI become and keep standby mode until next #CS Low. In standby mode, SO pin is High-Z.

COMMAND DESCRIPTION

1. Read Array

This command consists of the 4-byte code. The 1^{st} code is a command which decides if the device becomes standby or active mode. The 1^{st} code "03h" activates the device. The 2^{nd} code to the 4^{th} code are address inputs.

2. Fast Read Array

This command consists of the 5-byte code. The 1^{st} code is a command which decides if the device becomes standby or active mode. The 1^{st} code "0Bh" activates the device. The 2^{nd} code to the 4^{th} code are address. The 5^{th} code is a dummy cycle.

3. Identification Read Array

This command consists of the 1-byte code. The 1st code is a command which decides if the device becomes standby or active mode. The 1st code "9Fh"activates the device.

4. Standby

When #CS is high, the device is put in standby mode at the next rising edge of SCLK. Maximum standby current is 10uA. When the above-mentioned 1st code is incorrect command, the device is put in standby mode at the next rising edge of SCLK.

DATA SEQUENCE

The data is serially sent out through SO pin, synchronized with the falling edge of SCLK. Meanwhile input data is also serially read in through SI pin, synchronized with the rising edge of SCLK. The bit sequence for both input and output data are bit7 (MSB) first, bit6, bit 5, ..., and bit0(LSB).

ADDRESS SEQUENCE

The address assignment is described at the COMMAND DEFINITION on page 2, 3.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Value	Unit
Storage temperature	Tstg	—	-55 to 125	°C
Input voltage	VI		–0.5 to V _{CC} +0.5	V
Output voltage	Vo	relative to V_{SS}	-0.5 to V _{CC} +0.5	V
Power supply voltage	Vcc		-0.5 to 5	V
Power dissipation per package	PD	Ta = 25°C	1.0	W
Output short circuit current	l _{os}	_	10	mA

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating temperature under bias	Та		0	_	70	°C
V _{CC} power supply voltage	V _{cc}	$V_{CC} = 3.0$ to 3.6 V	3.0		3.6	V
Input "H" level	VIH		2.4	-	V _{CC} +0.5*	V
Input "L" level	VIL		-0.5**	_	0.6	V

Voltage is relative to V_{SS}.

* : Vcc+1.5V(Max.) when pulse width of positive overshoot is less than 10ns.

** : -1.5V(Min.) when pulse width of negative overshoot is less than 10ns.

PIN CAPACITANCE

(V_{CC} = 3.3 V, Ta = 25°C, f = 1 MHz)

				(• 0	0 0.0 19 10	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input	C _{IN1}	$V_I = 0 V$	—	—	8	
Output	C _{OUT}	$V_0 = 0 V$	—	—	10	pF
DC	C _{DC}	$V_I = 0 V$	—	—	200	

MR37V12841A / P2ROM

ELECTRICAL CHARACTERISTICS

DC Characteristics

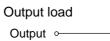
DC Characteristics				(V _{cc}	= 3.0V-3.6V,	Ta = 0 to 7
parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input leakage current	ILI	$V_1 = 0$ to V_{CC}	_		10	μA
Output leakage current	I _{LO}	$V_{O} = 0$ to V_{CC}	_		10	μA
V _{CC} power supply current	I _{SB1}	$\#CS = V_{CC}$	_		50	μA
(Standby)	I _{SB2}	#CS = V _{IH}	_		1	mA
V _{CC} power supply current (Read)	I _{CC1}	#CS = V _{IL} ,f = 20MHz SO= open	_	_	20	mA
V _{CC} power supply current (Fast Read)	I _{CC1} F	#CS = V _{IL} ,f = 33Hz SO= open	_	_	30	mA
Input "H" level	V _{IH}	_	2.4		V _{CC} +0.5*	V
Input "L" level	V _{IL}	—	-0.5**	_	0.6	V
Output "H" level	V _{OH}	I _{OH} = −100 μA	Vcc-0.2	_		V
Output "L" level	Vol	I _{OL} = 500 μA	_	_	0.4	V

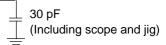
Voltage is relative to V_{SS}. * : Vcc+1.5V(Max.) when pulse width of positive overshoot is less than 10ns. ** : -1.5V(Min.) when pulse width of negative overshoot is less than 10ns.

MR37V12841A / P2ROM

AC Characteristics

ite characteristics			(tsclk=33MHz	$V_{\rm CC} = 3.0 \text{V} - 3.6^{\circ}$	√, Ta = 0 to 70°
Parameter	Symbol	Condition	Min.	Max.	Unit
Clock frequency	tsclk	—	—	33 *	MHz
Clock High time	t _{sкн}	—	11	—	ns
Clock Low time	t _{SKL}	—	11	—	ns
Clock Rise time	t _R	—	—	4	ns
Clock Fall time	t _F	—	_	4	ns
#CS Lead Clock Time	t _{CSA}	—	5	—	ns
#CS Setup Time	t _{cs}	—	5	—	ns
#CS Lag Clock Time	t _{CSB}	—	5	—	ns
#CS Hold Time	t _{CH}	—	5	—	ns
#CS High Time	t _{CSH}	—	100	—	ns
SI Setup Time	t _{DS}	—	2	—	ns
SI Hold Time	t _{DH}	_	10		ns
Access time	t _{AA}	_	_	8	ns
SO Hold Time	t _{DOH}	_	0		ns
SO Floating Time	t _{DOZ}	—	—	8	ns

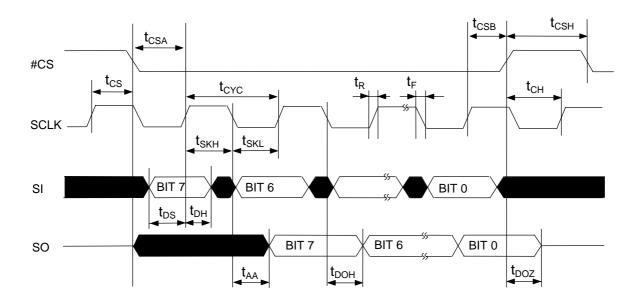

			(tsclk=20MHz V _{CC} = 3.0V-3.6V, Ta = 0 to 70			
Parameter	Symbol	Condition	Min.	Max.	Unit	
Clock frequency	t _{SCLK}	_	—	20 **	MHz	
Clock High time	t _{SKH}	_	20		ns	
Clock Low time	t _{SKL}	_	20	—	ns	
Clock Rise time	t _R	_	—	5	ns	
Clock Fall time	t _F	—	—	5	ns	
#CS Lead Clock Time	t _{CSA}	—	10	—	ns	
#CS Setup Time	t _{cs}	_	10	—	ns	
#CS Lag Clock Time	t _{CSB}	_	5	—	ns	
#CS Hold Time	t _{CH}	—	5	—	ns	
#CS High Time	t _{CSH}	_	100	—	ns	
SI Setup Time	t _{DS}	_	5	—	ns	
SI Hold Time	t _{DH}	—	10	—	ns	
Access time	t _{AA}	_	—	15	ns	
SO Hold Time	t _{DOH}	_	0		ns	
SO Floating Time	t _{DOZ}	_	_	10	ns	

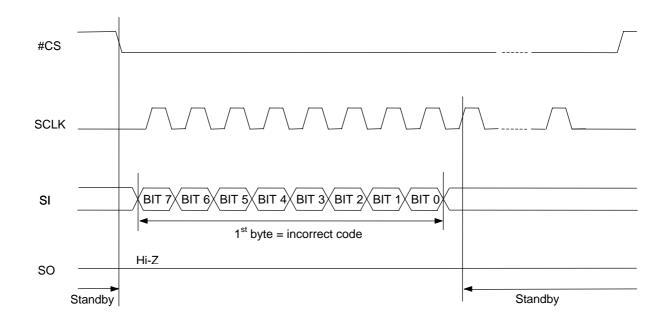

*: FAST-READ instructions

**: READ instructions

Measurement conditions

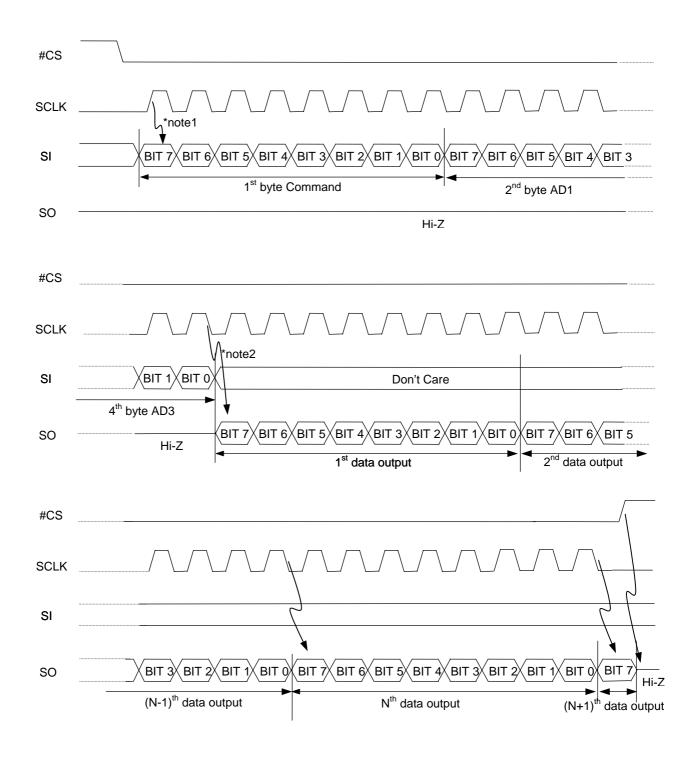
Input signal level Input timing reference level Output load Output timing reference level Vcc/0v 2.4V/0.6V30 pF 0.5 Vcc




70°C)

TIMING CHART (READ CYCLE)

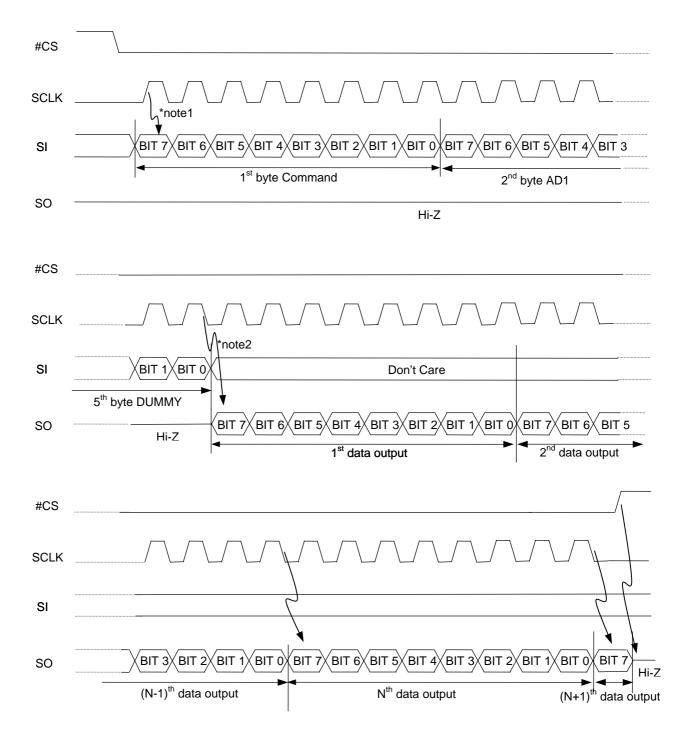
Serial Data Input/Output Timing


Standby Timing

Incorrect command makes this LSI become and keep standby mode until next #CS rising edge. In standby mode, SO pin is High-Z.

OKI SEMICONDUCTOR

Read Array Timing Waveform

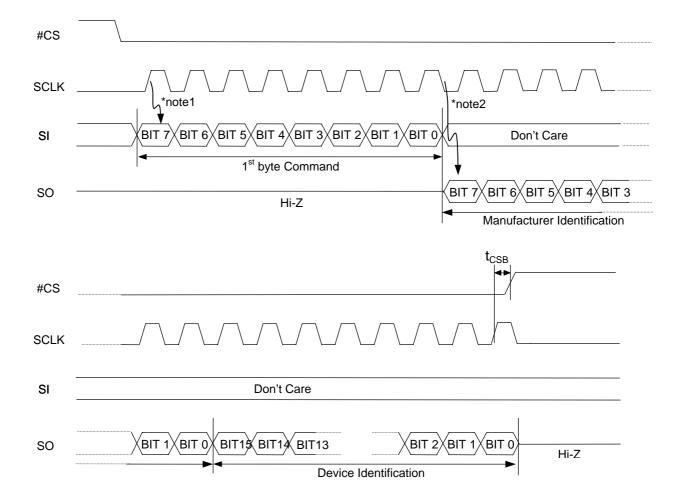


Note:

1. Input data are latched at SCLK-rising edge.

2. Data-output starts at SCLK-falling edge in bit0 of the 4th byte.

MR37V12841A / P2ROM

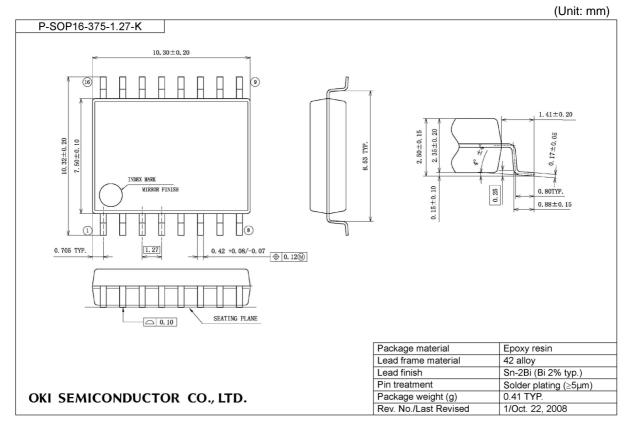


Fast Read Array Timing Waveform

Note:

- 1. Input data are latched at SCLK-rising edge.
- 2. Data-output starts at SCLK-falling edge in bit0 of the 5th byte.

MR37V12841A / P2ROM


Read Identification Timing Waveform

Note:

1. Input data are latched at SCLK-rising edge.

2. Data-output starts at SCLK-falling edge in bit0 of the 1st byte.

PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact OKI SEMICONDUCTOR's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

REVISION HISTORY

Document No.	Date	Page		
		Previous Edition	Current Edition	Description
FEDR37V12841A-02-01	Nov. 9, 2006	-	Ι	Final edition 1
FEDR37V12841A-02-02	Mar. 16, 2007	13	13	Replaced package diagram
FEDR37V12841A-002-02	Oct. 1, 2008	-	Ι	Changed company logo and name to OKI SEMICONDUCTOR

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. OKI SEMICONDUCTOR assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not, unless specifically authorized by OKI SEMICONDUCTOR authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans.

Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.

- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2008 OKI SEMICONDUCTOR CO., LTD.