EVALUATION KIT

+3.0V to +5.5V, 125Mbps to 266Mbps Limiting Amplifiers with Loss-of-Signal Detector

General Description

The MAX3969 is a recommended upgrade for the MAX3964, MAX3965, and MAX3968. The MAX3964A limiting amplifier, with 2mV_{P-P} input sensitivity and PECL data outputs, is ideal for low-cost ATM, FDDI, and Fast Ethernet fiber optic applications.

The MAX3964A features an integrated power detector that senses the input-signal power. It provides a received-signal-strength indicator (RSSI), which is an analog indication of the power level and complementary PECL loss-of-signal (LOS) outputs, which indicate when the power level drops below a programmable threshold. The threshold can be adjusted to detect signal amplitudes as low as 2.7mVP-P. An optional squelch function disables switching of the data outputs by holding them at a known state during an LOS condition.

The MAX3965 provides the same functionality, but offers TTL-compatible LOS outputs. The MAX3968 provides the same functionality as the MAX3964A, but has data-output edge speed suitable for ESCON and 266Mbps fibre channel applications.

The MAX3964A/MAX3965/MAX3968 are available in die form, as tested wafers, and in 20-pin QSOP packages. The MAX3964AETP is available in a 20-pin thin QFN package.

Applications

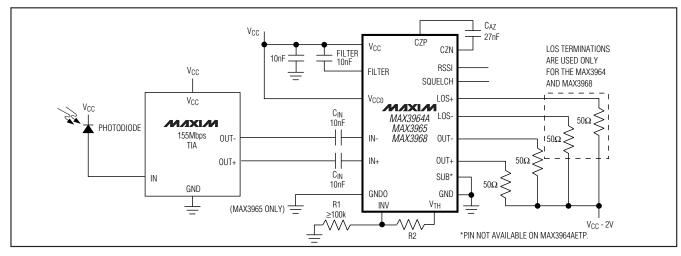
125Mbps FDDI Receivers 155Mbps LAN ATM Receivers Fast Ethernet Receivers ESCON Receivers 155Mbps FTTx Receivers

Pin Configurations appear at end of data sheet. Selector Guide appears at end of data sheet.

_ Features

- Single Supply: +3.0V to +5.5V
- 2mV_{P-P} Input Sensitivity
- 1.2ns Output Edge Speed
- Loss-of-Signal Detector with Programmable Threshold
- Analog Received-Signal-Strength Indicator
- Output Squelch Function
- Choice of TTL or PECL LOS Outputs
- Compatible with 4B/5B Data Coding

Ordering Information


		•
PART	TEMP RANGE	PIN-PACKAGE
MAX3964CEP	0°C to +70°C	20 QSOP
MAX3964C/D	0°C to +70°C	Dice*
MAX3964C/DW	0°C to +70°C	Wafers*
MAX3964AETP	-40°C to +85°C	20 Thin QFN**
MAX3964AETP+	-40°C to +85°C	20 Thin QFN**
MAX3964AC/D	-40°C to +85°C	Dice*
MAX3965CEP	0°C to +70°C	20 QSOP
MAX3965C/D	0°C to +70°C	Dice*
MAX3965C/DW	0°C to +70°C	Wafers*
MAX3968CEP	0°C to +70°C	20 QSOP
MAX3968C/D	0° C to $+70^{\circ}$ C	Dice*
MAX3968C/DW	0°C to +70°C	Wafers*

*Dice and wafers are designed to operate over a 0°C to +100°C junction temperature (Tj) range, but are tested and guaranteed only at $T_A = +25$ °C.

**Package Code: T2044-1

+Denotes lead-free package.

Typical Operating Circuit

M/X/M

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

(SUB, GND, GNDO tied to ground)

VCC, VCCO.....-0.5V to +7.0V FILTER, RSSI, IN+, IN-, CZP, CZN, SQUELCH, LOS+, LOS-, INV, VTH, OUT+, OUT-....-0.5V to (VCC + 0.5V) PECL Output Current (OUT+, OUT-, LOS+, LOS-)50mA Differential Voltage Between CZP and CZN......-1.5V to +1.5V Differential Voltage Between IN+ and IN--1.5V to +1.5V Continuous Power Dissipation ($T_A = +70^{\circ}C$) 20-Lead Thin QFN

(derate 16.9mW/°C above +70°C)......1349mW 20-Pin QSOP (derate 6.7mW/°C above +70°C)......500mW Operating Temperature Range-40°C to +85°C Operating Junction Temperature Range (die)-40°C to +150°C Processing Temperature (die)-40°C to +150°C Storage Temperature Range-65°C to +160°C Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX3964ACEP/MAX3965CEP/MAX3968CEP

 $(V_{CC} = +3.0V \text{ to } +5.5V, \text{PECL} \text{ outputs terminated with } 50\Omega \text{ to } (V_{CC} - 2V), T_A = 0^{\circ}C \text{ to } +70^{\circ}C, \text{ unless otherwise noted. Typical values are at } V_{CC} = +3.3V \text{ and } T_A = +25^{\circ}C.)$ (Note 1)

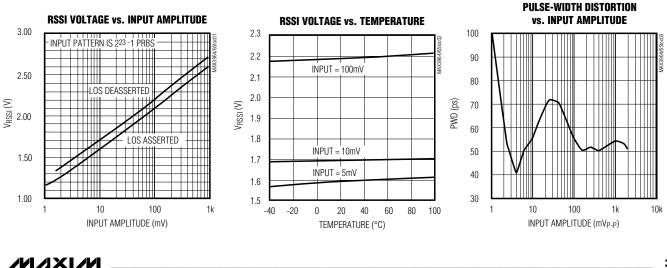
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Current	ICC	PECL outputs open		22	40	mA
LOS Hysteresis		Input = 3.3mV_{P-P} to 90mV_{P-P} (Note 2)	3.8	5	8.0	dB
SQUELCH Input Current		$V_{SQUELCH} = V_{CC}, T_A = +25^{\circ}C$		27	100	μA
PECL Output Voltage High		(Note 3)	-1025		-880	mV
PECL Output Voltage Low		(Note 3)	-1810		-1620	mV
PECL LOS Output Voltage High		(Note 3)	-1035		-880	mV
PECL LOS Output Voltage Low		(Note 3)	-1810		-1620	mV
LOS Assert Accuracy		Input = $7mV_{P-P}$ or $90mV_{P-P}$	-2.5		+2.5	dB
Minimum LOS Assert Input					2.7	mV _{P-P}
Maximum LOS Deassert Input			143			mV _{P-P}
Input Sensitivity				2.0	3.3	mV _{P-P}
Input Overload			1.5			VP-P
Output Transition Time	t _r , t _f	20% to 80% transition time, MAX3964A/MAX3965	0.92	1.2	2.20	ns
		MAX3968	0.4	0.8	1.2	
Pulse-Width Distortion		(Note 4)		50	200	ps
TTL Output High		I _{OH} = -200μA	2.4	3.1	V _{CC}	V
TTL Output Low		I _{OL} = 200μA	0	0.3	0.4	V

ELECTRICAL CHARACTERISTICS—MAX3964AETP

 $(V_{CC} = +3.0V \text{ to } +5.5V, \text{PECL} \text{ outputs terminated with } 50\Omega \text{ to } (V_{CC} - 2V), T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ Typical values measured at $V_{CC} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ +3.3V and $T_A = +25^{\circ}C$, unless otherwise noted.)

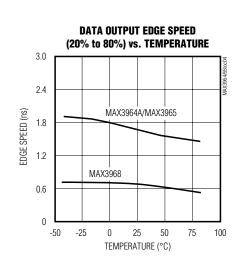
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Current	Icc	PECL outputs open		22	45	mA
LOS Hysteresis		Input = 4.0mV_{P-P} (Note 2)	3.0	5	8.0	dB
SQUELCH Input Current				27	100	μΑ
PECL Output Voltage High		(Note 3)	-1.085		-0.880	V
PECL Output Voltage Low		(Note 3)	-1.830		-1.550	V
		Input = 7mV _{P-P} or 90mV _{P-P} , 0°C to +85°C	-3		+3	dD
LOS Assert Accuracy		Input = $7mV_{P-P}$ or $90mV_{P-P}$, $-40^{\circ}C$ to $0^{\circ}C$	-3.6		+3.6	dB
Minimum LOS Assert Input					2.7	mV _{P-P}
Maximum LOS Deassert Input			143			mV _{P-P}
Input Sensitivity				2	4	mV _{P-P}
Input Overload			1.5			V _{P-P}
Output Transition Time	t _r , t _f	20% to 80%		1.6	2.4	ns
Pulse-Width Distortion		(Note 4)		50	250	psp-p

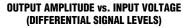
Note 1: Dice are tested and guaranteed at $T_A = +25^{\circ}C$ only.

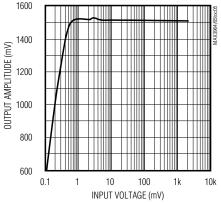

Note 2: LOS hysteresis = 20log(VLOS-DEASSERT / VLOS-ASSERT).

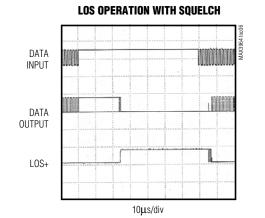
Note 3: Voltage measurements are relative to supply voltage (V_{CC}).

Note 4: PWD = [(width of wider pulse) - (width of narrower pulse)] / 2, measured with 100Mbps 1-0 pattern.

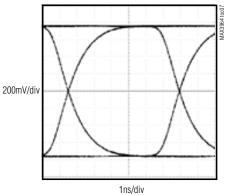

Typical Operating Characteristics

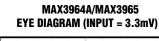

(MAX3964A EV kit, V_{CC} = +3.3V, decibels (dB) calculated as 20 log ΔV, PECL outputs terminated with 50Ω to (V_{CC} - 2V), T_A = +25°C, unless otherwise noted.)




Typical Operating Characteristics (continued)

(MAX3964A EV kit, V_{CC} = +3.3V, decibels (dB) calculated as 20 log ΔV , PECL outputs terminated with 50 Ω to (V_{CC} - 2V), T_A = +25°C, unless otherwise noted.)





MAX3964A/MAX3965

_Pin Description

Р	IN		
QSOP	THIN QFN	NAME	FUNCTION
1	19	SQUELCH	Squelch Input. The squelch function disables the data outputs by forcing OUT- low and OUT+ high during a loss-of-signal condition. Connect to GND or leave unconnected to disable. Connect to V _{CC} to enable squelching.
2	20	V _{TH}	Output of Internal Op Amp that Sets Loss-of-Signal Threshold Voltage (Figure 1). Connect a resistor from V _{TH} to INV and from INV to ground (minimum resistance 100k Ω) to program the desired threshold voltage.
3	1	INV	Inverting Input of Internal Op Amp that Sets Loss-of-Signal Threshold Voltage (Figure 1). Connect a resistor from V_{TH} to INV and from INV to ground (minimum resistance 100k Ω) to program the desired threshold voltage.
4	2	FILTER	Filter Output of Full-Wave Logarithmic Detectors (FWDs). The FWD outputs are summed together at FILTER to generate the received-signal-strength indicator (RSSI). Connect a capacitor from FILTER to V_{CC} for proper operation.
5	3	RSSI	Received-Signal-Strength Indicator Output. The analog DC voltage at RSSI indicates the input signal power. The RSSI output is reduced approximately 120mV when LOS+ is asserted.
6	4	IN-	Inverting Data Input
7	5	IN+	Noninverting Data Input
8		SUB	Substrate. Connect to ground.
9, 10	6, 7, 8	GND	Ground
11	9	CZP	Auto-Zero Capacitor Input. Connect a capacitor between CZP and CZN to determine the offset- correction-loop bandwidth.
12	10	CZN	Auto-Zero Capacitor Input. Connect a capacitor between CZP and CZN to determine the offset- correction-loop bandwidth.
13	11	V _{CCO}	Output Buffer Supply Voltage. Connect to the same potential as $V_{CC},$ but filter V_{CCO} and V_{CC} separately.
14	12	OUT+	Noninverting PECL Data Output. Terminate with 50 Ω to (V _{CC} - 2V).
15	13	OUT-	Inverting PECL Data Output. Terminate with 50 Ω to (V _{CC} - 2V).
16	14	LOS-	Inverting Loss-of-Signal Output. LOS- is asserted low when input power drops below the LOS threshold. For the MAX3964A/MAX3968, this pin is PECL compatible and should be terminated with 50Ω to (V _{CC} - 2V). For the MAX3965, this output is TTL compatible and does not require termination.
17	15	LOS+	Noninverting Loss-of-Signal Output. LOS+ is asserted high when input power drops below the LOS threshold. For the MAX3964A/MAX3968, this pin is PECL compatible and should be terminated with 50Ω to (V _{CC} - 2V). For the MAX3965, this output is TTL compatible and does not require termination.
10	10	Vcco	MAX3964A/MAX3968: This pin can be left open or connected to the positive supply.
18	16	GNDO	MAX3965: This pin must be connected to ground.
19, 20	17, 18	V _{CC}	+3.0V to +5.5V Supply Voltage
	EP	Exposed Pad	Connect the exposed pad to board ground for optional electrical and thermal performance.

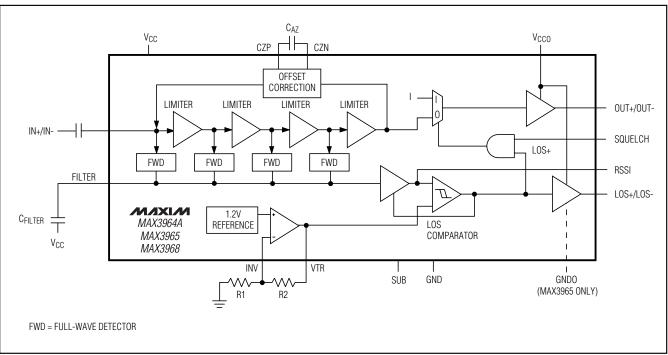


Figure 1. Functional Diagram

Detailed Description

The MAX3964A contains a series of limiting amplifiers and power detectors, offset correction, data-squelch circuitry, and PECL output buffers for data and loss-ofsignal (LOS) outputs. The MAX3965 is functionally the same, but it provides TTL buffers on the LOS outputs. The MAX3968 provides PECL LOS outputs with data outputs suitable for 266Mbps. Figure 1 shows a functional diagram of the MAX3964A/MAX3965/MAX3968.

Limiting Amplifiers

A series of four limiting amplifiers provides gain of approximately 65dB.

Power Detector

Each amplifier stage contains a full-wave logarithmic detector (FWD), which indicates the RMS input signal power. The FWD outputs are summed together at the FILTER pin where the signal is filtered by an external capacitor (CFILTER) connected between FILTER and V_{CC}. The FILTER signal generates the RSSI output voltage, which is proportional to the input power in decibels. When LOS+ is low, V_{RSSI} is approximated by the following equation:

 $V_{RSSI}(V) = 1.2V + 0.5log(V_{IN})$

where VIN is measured in mVP-P.

This relation translates to a 25mV increase in V_{RSSI} for every 1dB increase in V_{IN} (25mV/dB). The RSSI output is reduced approximately 120mV when LOS+ is asserted.

PECL Outputs

The data outputs (OUT+, OUT-) and the MAX3964A/ MAX3968 loss-of-signal outputs (LOS+, LOS-) are supply-referenced PECL outputs. Standard PECL termination at each output of 50Ω to (V_{CC} - 2V) is recommended for best performance.

TTL Outputs

The MAX3965 LOS outputs (LOS+, LOS-) are implemented with open-collector Schottky-clamped TTL-compatible outputs. The LOS outputs are pulled to V_{CC} internally with $2k\Omega$ resistors and do not require external pullup resistors.

Input Offset Correction

A low-frequency feedback loop around the limiting amplifier improves receiver sensitivity and powerdetector accuracy. The offset-correction loop's bandwidth is determined by an external capacitor (CAZ) connected between the CZP and CZN pins.

The offset correction is optimized for data streams with a 50% duty cycle. A different average duty cycle results in increased pulse-width distortion and loss of

power.

sensitivity. The offset-correction circuitry is less sensitive to variations of input duty cycle (for example, the 40% to 60% duty cycle encountered in 4B/5B coding) when the input is less than 30mV_{P-P}.

Loss-of-Signal Comparator

The LOS comparator indicates when the input signal power is below the programmed LOS threshold. To ensure supply and temperature independence. VTH is generated by a 1.2V bandgap reference. The op amp's external gain-setting resistors (R1 and R2) can be chosen to set V_{TH} between 1.2V and 2.4V. To ensure chatter-free operation, the LOS comparator is designed with approximately 5dB of hysteresis.

The squelch function disables the data outputs by forcing OUT- low and OUT+ high during a LOS condition. This function ensures that when there is a loss of signal, the limiting amplifier (and all downstream devices) does not respond to input noise or corrupt data. Connect SQUELCH to GND or leave it unconnected to disable squelch. Connect SQUELCH to VCC to enable data squelching.



Figure 2. LOS Assert Programming Resistor vs. LOS Assert Power (for Various PIN-TIA Gains)

Sauelch

up to 266Mbps, Maxim recommends the following:

$$C_{AZ} = 27 nF$$

Figure 2 provides information for selecting the LOS

threshold voltage (V_{TH}). If R1 is $100k\Omega$ and if the

responsivities of the photodiode and preamplifier are

known, then the value of R2 can be selected from

Figure 2 to provide LOS assert at the desired input

A typical MAX3964A/MAX3965/MAX3968 implementa-

tion requires four external capacitors (CAZ, CFILTER,

and two input coupling capacitors). For all applications

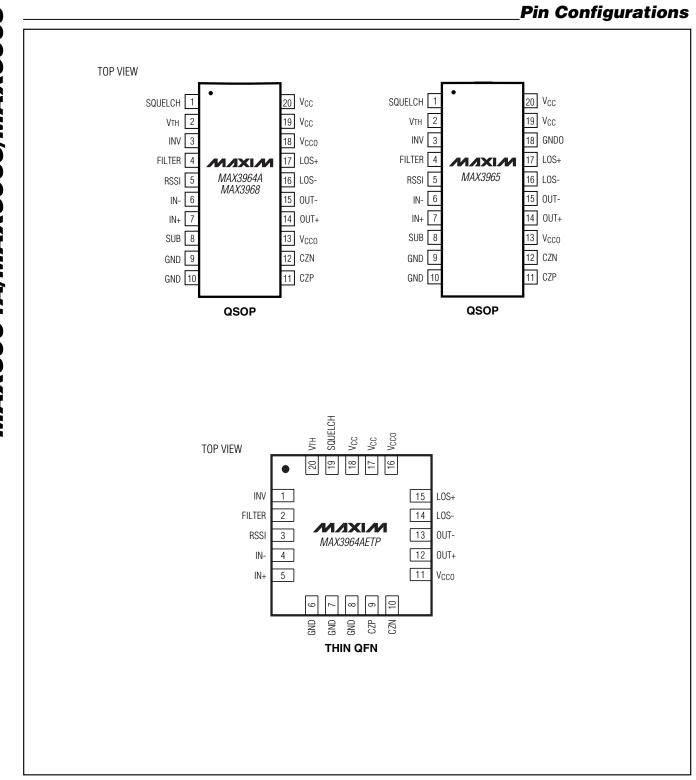
Applications Information

Program the LOS Threshold

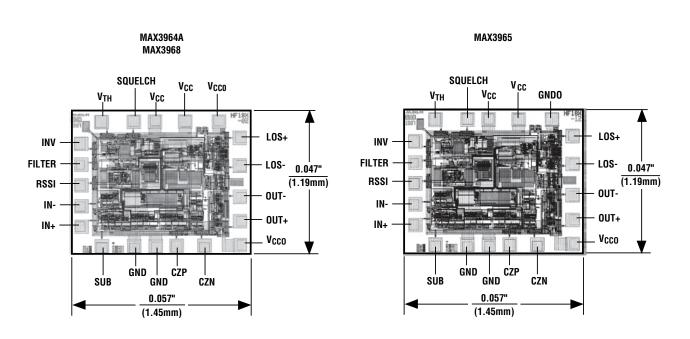
CFILTER = 10nF $C_{IN} = 10 nF$

Wire Bonding

Select Capacitors

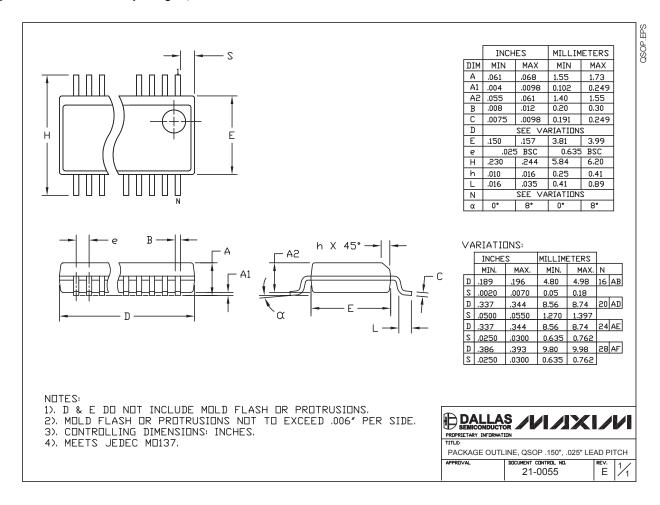

For high-current density and reliable operation, the MAX3964A series uses gold metalization. Diepad size is 4mils square with a 6mil pitch. Die thickness is 15mils.

Selector Guide

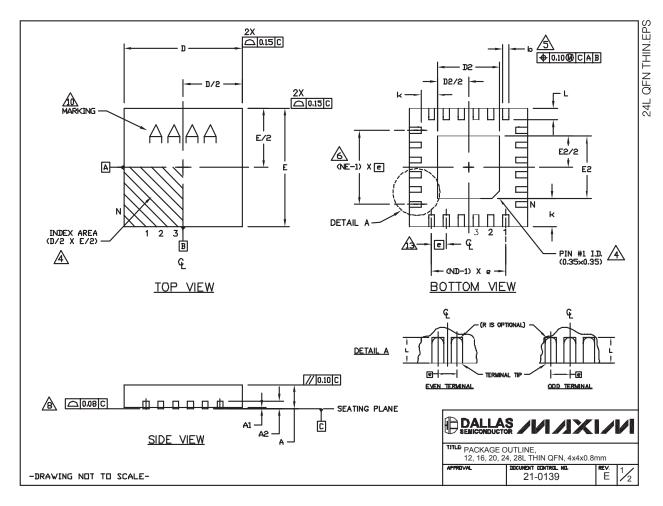

PART	DATA RATE (Mbps)	LOS OUTPUTS
MAX3964A*	125 to 155	PECL
MAX3965	125 to 155	TTL
MAX3968	125 to 266	PECL

*The MAX3964A is functionally equivalent to MAX3964, but offers slightly improved ESD tolerance. The MAX3969 is a recommended upgrade for the MAX3964, MAX3964A, MAX3965, and MAX3968.

MIXIM


Chip Topographies

TRANSISTOR COUNT: 915 SUBSTRATE CONNECTED TO SUB SUB CONNECTED TO GND ON MAX3964AETP


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <u>www.maxim-ic.com/packages</u>.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

				COMM	10N	DIME	IIZN	SNE									E	XPDS	ED	PAD	VAR	RIATI	DNS	
PKG	12	2L 4×	:4	16	L 4x	4	20	IL 4×	4	2	4L 4×	(4	28	8L 4×	(4		PKG.		D2			E2		DOWN
REF.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.		CODES	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	ALLOWE
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80		T1244-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
A1	0.0	0.02	0.05	0.0	20,0	0.05	0,0	0.02	0.05	0,0	0.02	0.05	0,0	0.02	0.05		T1244-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
A2	0	.20 RE	F	0.	20 RE	F	0.	20 RE	F	0	.20 RE	F	0	20 RE	F		T1644-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
b		0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30	0.15	0.20	0.25		T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
D	3,90		4,10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10		T2044-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
E	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10		T2044-3	1.95	2.10	2.25	1.95	2.10	2.25	ND
e		D.80 BS	<u> </u>		65 BS			50 BS	<u> </u>		0.50 BS	1		1.40 BS	<u> </u>	┨╽	T2444-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
<u>к</u>	0.25	-	- 0.65	0.25 0.45	- 0.55	-	0.25	- 0.55	- 0.65	0.25	- 0.40	- 0.50	0.25 0.30	- 0.40	- 0.50		T2444-3	2.45	2.60	2.63	2.45	2.60	2.63	YES
L	0.45		0.65	0.45		0.65	0.45		0.65	0.30		0.50	0.30		0.50		T2444-4	2.45	2.60	2.63	2.45	2.60	2.63	ND
		12 3			16 4			20 5			2 4 6			28		11	T2844-1	2.50	2.60	2.70	2.50	2.60	2.70	ND
NE		3			4			5			6			7										
edec		VGGB			VGGC			/GGD-:			WGGD-			VGGE										
2. 3.	dimens All din N IS T	MENSIO He tot	ns are Tal nut	e in mi Mener c	LUNETI DF TER	ERS, AN	IGLES	ARE IN	DEGR	EES.	ON SH	ALL CO	NFORM	τŋ										
1. 2. 3.	DIMENS ALL DIN N IS TI THE TE JESD 9 THE ZO DIMENS	MENSIO HE TOT RMINAL 5-1 S XNE INE SION 6	NS ARE TAL NUT _ #1 ID PP-012 DICATED APPLIE	E IN MI MBER C DENTIFIE 2. DETA 2. THE	LUMETE DF TERE TR AND ILS OF TERMIN	ERS. AN MINALS. TERMIN TERMIN AL #1	igles Val Ni Ial ∦1 Identii	ARE IN Imberii Identi Fier M	i degr Ng coi Fier ai Ay be	ees. Nventk Re opt Eithef	ional, R A MC	BUT M	ust be Marke	E LOCAT	TURE.									
1. 2. 3. 4. 5. 7.	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPU	MENSIO HE TOT RMINAL 5-1 S 5-1	NS ARE TAL NUT PP-012 DICATED APPLIE AL TIP. REFER	E IN MI MBER (2. Deta 2. Deta 3. The 3. To 1 To The DSSIBLE	LUMETI DF TERI TERMIN METALLI NUMB	ers. An minals. Termin termin al #1 Zed te er of Symme	IGLES VAL NU IAL ∦1 IDENTII RMINAL TERMII TRICAL	ARE IN IDENTI FIER M . AND WALS C FASHIK	I DEGR NG CO FIER A AY BE IS MEA IS MEA ON EAC	ees. Nventik Re opt Eithef Sured H d a	ndnal, R A MC Betwi ND E S	BUT M DLD OR EEN 0.: SIDE RE	UST BE MARKE 25 mm SPECTI	E LOCAT ED FEA AND I IVELY.	TURE.									
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZC DIMENS FROM 1 DIMENS FROM 1 DEPOPI COPLAN	MENSIO He tot Isminal 5-1 S Ine ine ion 6 Termin D ne f Ulation Narity	NS ARE TAL NUT PP-012 DICATED APPLIE AL TIP. REFER N IS PC APPLIE	E IN MI MEBER (DENTIFIE 2. DETA 0. THE 25 TO IN TO THE DSSIBLE 5 TO 1	LUMETI DF TERI TERMIN METALU NUMB	ERS. AN MINALS. TERMIN TERMIN AL #1 ZED TE ER OF SYMME POSED	IGLES IAL ML IDENTII RMINAL TERMII TRICAL HEAT :	ARE IN IDENTI FIER M . AND WALS C FASHK SINK S	I DEGR NG COM FIER AN AY BE IS MEA IS MEA IN EAC ON. ELUG A	ees. Nventik Re opt Eithef Sured H D A S Well	ND E S	BUT M DLD OR EEN 0.1 SIDE RE	UST BE MARKE 25 mm SPECTI MINALS	E LOCAT ED FEA AND IVELY.	TURE.									
1. 2. 3. 4. 5. 7. 6. 7. 8. 9.	DIMENS ALL DIM N IS THE THE TE JESD 9 THE ZC DIMENS FROM DIMENS FROM DIMENS COPLAN DRAWIN	MENSIO HE TOT RMINAL 5-1 S SNE INE SION 6 TERMIN D NE F ULATION NARITY IG CON	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER N IS PC APPLIE IFORMS	E IN MI MBER (DENTIFIE 2. DETA 2. DETA 2. THE 25 TO IN TO THE 25 TO IN 5 TO JE	LUMETI DF TER TER AND ILS OF TERMIN METALU IN METALU IN A THE EX IDEC M	ERS. AN MINALS. TERMIN TERMIN AL #1 ZED TE ER OF SYMME POSED 0220,	IGLES	ARE IN IMBERII IDENTI FIER M AND VALS C FASHK SINK S FOR	I DEGR NG CO FIER AI AY BE IS MEA IN EAC ON. ELUG AI T2444	ees. Nventik Re opt Eithef Sured H D A S Well	ND E S	BUT M DLD OR EEN 0.1 SIDE RE	UST BE MARKE 25 mm SPECTI MINALS	E LOCAT ED FEA AND IVELY.	TURE.									
1. 2. 3. 4. 7. 9. 9.	DIMENS ALL DIN N IS TI THE TE JESD 9 THE ZC DIMENS FROM 1 ND AND DEPOPU COPLAY DRAWIN (ARKING	MENSIO HE TOT RMINAL 5-1 S SONE INE SION & TERMIN D NE F ULATION NARITY IG CON G IS FC	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER N IS PO APPLIE IFORMS DR PAC	E IN MI MEBER (DENTIFIE 2. DETA 2. DETA 2. THE 25 TO IN 5 TO THE 5 TO T 5 TO JE KAGE (LUMETI DF TER TERMIN METALU ILS OF TERMIN METALU IN METALU IN A THE EXI DEC M DRIENTA	ERS. AN MINALS. TERMIN TERMIN VAL #1 ZED TE ER OF SYMME POSED 0220, TION R	IGLES	ARE IN IMBERII IDENTI FIER M AND VALS C FASHK SINK S FOR	I DEGR NG CO FIER AI AY BE IS MEA IN EAC ON. ELUG AI T2444	ees. Nventik Re opt Eithef Sured H D A S Well	ND E S	BUT M DLD OR EEN 0.1 SIDE RE	UST BE MARKE 25 mm SPECTI MINALS	E LOCAT ED FEA AND IVELY.	TURE.									
1. 2. 3. 4. 7. 9. 11.	DIMENS ALL DIN N IS TI THE TE JESD 9 THE ZC DIMENS FROM 1 DIMENS FROM 1 ND ANI DEPOPU COPLAN MARKING COPLAN	MENSIO HE TOT RMINAL 5-1 S DNE INE SION & TERMIN D NE F ULATION NARITY IG CON G IS FC ARITY S	NS ARE TAL NUI . #1 ID PP-012 DICATED APPLIE AL TIP. REFER N IS PC APPLIE IFORMS DR PAC SHALL N	E IN MI MEBER (DENTIFIE 2. DETA 2. DETA 2. DETA 2. DETA 3. TO IN 5. TO IN 5. TO I 5. TO I 5. TO JE KAGE (NOT EX	LUMETI DF TER TERMIN METALU IN A THE EXI DEC M DRIENTA CEED (ERS. AN MINALS. TERMIN TERMIN AL #1 ZED TE ER OF SYMME POSED 0220, TION R 0.08mm	IGLES	ARE IN IMBERII IDENTI FIER M AND VALS C FASHK SINK S FOR	I DEGR NG CO FIER AI AY BE IS MEA IN EAC ON. ELUG AI T2444	ees. Nventik Re opt Eithef Sured H D A S Well	ND E S	BUT M DLD OR EEN 0.1 SIDE RE	UST BE MARKE 25 mm SPECTI MINALS	E LOCAT ED FEA AND IVELY.	TURE.									
1. 2. 3. 4. 7. 9. 11. 12. 9. 11. 12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	DIMENS ALL DIN N IS TI THE TE JESD 9 THE ZC DIMENS FROM 1 ND AND DEPOPU COPLAY DRAWIN (ARKING	MENSIO HE TOT RMINAL 50-1 S 50-1 S 50-1 S 50-1 S 50-1 S 60-1 S 60-1 S 60-1 S 70-1 S 70	NS ARE TAL NUI APP-012 DICATED APPLIE APPLIE APPLIE IFORMS DR PAC SHALL NOT IN IS TO IN IS TO	E IN MI MIBER (DENTIFIE 2. DETA 2. DETA 2. THE 3. TO IN 3. TO THE 3. TO I 3. TO JE KAGE (NOT EX EXCEE 0. BE A	LLIMETI DF TERMIN ILS OF TERMIN METALLI IN METALLI IN M	ERS. AN MINALS. TERMIN TERMIN AL #1 ZED TE ER OF SYMME POSED 0220, TION R 0.08mm 0.08mm 0.08mm	IGLES	ARE IN IDENTI IDENTI FIER M AND VALS OF FASHIK SINK S FOR VCE OF	I DEGR NG CO FIER A AY BE IS MEA IN EAC ON. ELUG A T2444 NLY.	EES. MENTIK RE OPT ETTHEF SURED H D A S WELL -3, T2	10nal, R A MC BETWI ND E S AS TH 444-4	BUT M DLD OR EEN 0.3 SIDE RE HE TER AND 1	UST BE MARKE 25 mm SPECTI MINALS 2844-	E LOCAT ED FEA AND IVELY.	TURE.								X	1/1
1. 2. 3. 4. 7. 9. 11. 12. 9. 11. 1. 1. 1. 1. 1. 1. 1. 1.	DIMENS ALL DIM N IS T THE TE JESD 90 THE ZC DIMENS FROM 1 ND ANI DEPOPU COPLAN MARKING COPLAN/ VARPAGI EAD CE	MENSIO HE TOT RMINAL 50-1 S 50-1 S 50-1 S 50-1 S 50-1 S 60-1 S 60-1 S 60-1 S 70-1 S 70	NS ARE TAL NUI APP-012 DICATED APPLIE APPLIE APPLIE IFORMS DR PAC SHALL NOT INES TO	E IN MI MIBER (DENTIFIE 2. DETA 2. DETA 2. THE 3. TO IN 3. TO THE 3. TO I 4. TO JE KAGE (NOT EX EXCEE 0. BE A	LLIMETI DF TERMIN ILS OF TERMIN METALLI IN METALLI IN M	ERS. AN MINALS. TERMIN TERMIN AL #1 ZED TE ER OF SYMME POSED 0220, TION R 0.08mm 0.08mm 0.08mm	IGLES	ARE IN IDENTI IDENTI FIER M AND VALS OF FASHIK SINK S FOR VCE OF	I DEGR NG CO FIER A AY BE IS MEA IN EAC ON. ELUG A T2444 NLY.	EES. MENTIK RE OPT ETTHEF SURED H D A S WELL -3, T2	10nal, R A MC BETWI ND E S AS TH 444-4	BUT M DLD OR EEN 0.3 SIDE RE HE TER AND 1	UST BE MARKE 25 mm SPECTI MINALS 2844-	E LOCAT ED FEA AND IVELY.	TURE.			PAC	KAGE	OUTLI				i / l

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

MAX3964A/MAX3965/MAX3968

____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2006 Maxim Integrated Products

Printed USA *maxim* is a registered trademark of Maxim Integrated Products, Inc.