Silicon Controlled Rectifiers Reverse Blocking Triode Thyristors

... designed for industrial and consumer applications such as temperature, light and speed control; process and remote controls; warning systems; capacitive discharge circuits and MPU interface.

- Center Gate Geometry for Uniform Current Density
- All Diffused and Glass-Passivated Junctions for Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Low Trigger Currents, 200 μA Maximum for Direct Driving from Integrated Circuits

MCR310 Series

SCRs 10 AMPERES RMS 50 thru 800 VOLTS

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted.)

Rating		Symbol	Value	Unit	
Peak Repetitive Forward and Reverse Bi Voltage (Note 1) (T _J = -40 to 110°C) (1/2 Sine Wave, R _{GK} = 1 kΩ)	MCR310-2 MCR310-3 MCR310-4 MCR310-6 MCR310-8 MCR310-10	VDRM or VRRM	50 100 200 400 600 800	Volts	
On-State RMS Current (T _C = 75°C)		T(RMS)	10	Amps	
Peak Non-Repetitive Surge Current (1/2 Cycle, 60 Hz, TJ = -40 to 110°C)		ITSM	100	Amps	
Circuit Fusing (t = 8.3 ms)		I ² t	40	A ² s	
Peak Gate Voltage (t ≤ 10 μs)		V _{GM}	±5	Volts	
Peak Gate Current (t ≤ 10 μs)		IGМ	1	Amp	
Peak Gate Power (t ≤ 10 μs)		PGM	5	Watts	
Average Gate Power		P _G (AV)	0.75	Watt	
Operating Junction Temperature Range		TJ	-40 to +110	°C	
Storage Temperature Range		T _{stg}	-40 to +150	°C	
Mounting Torque		_	8	inlb.	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{ØJC}	2.2	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	60	°C/W

Note 1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Devices listed in bold, italic are Motorola preferred devices.

MCR310 Series

ELECTRICAL CHARACTERISTICS (T_C = 25°C, R_{GK} = 1 k Ω unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Forward Blocking Current (Note 1) {T _J = 110°C, V _D = Rated V _{DRM} }	$T_{C} = 110^{\circ}C$ $T_{C} = 25^{\circ}C$	IDRM	_	_	500 10	μA μA
Peak Reverse Blocking Current (Note 1) {T _J = 110°C, V _R = Rated V _{RRM} }	$T_C = 110^{\circ}C$ $T_C = 25^{\circ}C$	IRRM		=	500 10	μΑ μΑ
On-State Voltage ⟨I _{TM} = 20 A Peak, Pulse Width ≤ 1 ms, Duty Cycle ≤ 2%⟩		V _{TM}	_	1.7	2.2	Volts
Gate Trigger Current, Continuous dc (Note 2) (V _D = 12 V, R _L = 100 Ω)		^I GT		30	200	μΑ
Gate Trigger Voltage, Continuous dc ($V_D=12~V,~R_L=100~\Omega$) ($V_D=Rated~V_{DRM},~R_L=10~k\Omega,~T_J=10$)	10°C}	V _{GT}	0.1	0.5	1.5	Volts
Holding Current (V _D = 12 V, I _{TM} = 100 mA)		ľн	_	_	6	mA
Critical Rate of Rise of Forward Blocking Vo (V _D = Rated V _{DRM} , T _J = 110°C, Expone		dv/dt		10	_	V/μs
Gate Controlled Turn-On Time (VD = Rated VDRM, ITM = 20 A, IG = 2 mA)		tgt	_	1		μs

NOTES:

Ratings apply for negative gate voltage or R_{GK} = 1 kΩ. Devices shall not have a positive gate voltage concurrently with a negative voltage on the anode. Devices should not be tested with a constant current source for forward and reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.
 Does not include R_{GK} current.

Figure 1. Average Current Derating

PAV, AVERAGE POWER DISSIPATION (WATTS) 180 30° 2 4 6 8 IT(AV), AVERAGE ON-STATE CURRENT (AMPS) 10

Figure 2. On-State Power Dissipation

Figure 4. Gate Voltage