
## DEVICE PERFORMANCE SPECIFICATION

Revision 7.0 MTD/PS-0542 January 6, 2009



# KODAK KLI-4104 IMAGE SENSOR

HIGH-RESOLUTION QUADRI-LINEAR ARRAY 3 X 4080 CHROMA, 10UM SQUARE PIXELS AND

ARRAY 1 X 8160 LUMA, 5UM SQUARE PIXELS





## TABLE OF CONTENTS

| Summary Specification                                | 4          |
|------------------------------------------------------|------------|
| Description                                          | 4          |
| Features                                             | 4          |
| Ordering Information                                 | 5          |
| Device Description                                   | 6          |
| Architecture                                         | 6          |
| Chroma Imaging                                       | 7          |
| Luma Imaging                                         | 7          |
| Charge Transport and Sensing                         |            |
| Pin Description and Physical Orientation             | 8          |
| Imaging Performance                                  |            |
| Imaging Performance Operational Conditions           |            |
| Imaging Performance Specifications - Chroma Channels | 13         |
| Imaging Performance Specifications - Luma Channels   |            |
| Typical Performance Curves                           |            |
| Defect Definitions                                   |            |
| Color Filter Response And Description                |            |
| Filter Variation Parameters For Color Image Sensors  |            |
| Operation                                            |            |
| Absolute Maximum Ratings                             |            |
| Device Input ESD Protection Circuit (Schematic)      |            |
| DC Bias Operating Conditions                         |            |
| Typical Output Bias/Buffer Circuit                   |            |
| AC Operating Conditions                              |            |
| Clock Levels                                         |            |
| Electrical Characteristics AC                        |            |
| Clock Level Conditions For Operation                 |            |
| Clock Voltage Detail Characteristics <sup>1</sup>    |            |
| Clock Line Capacitance                               |            |
| Chroma                                               |            |
| Luma                                                 |            |
| Timing                                               |            |
| Edge Alignment                                       |            |
| Pixel Timing                                         |            |
| Pixel Timing Edge Alignment                          |            |
| Line Timing                                          | ۲۵۲۵<br>مو |
| Storage and Handling                                 |            |
| Storage Condititions<br>ESD                          |            |
| Cover Glass and Cleanliness                          |            |
| Environmental Exposure                               |            |
| Soldering Recommendations                            |            |
| Mechanical Information                               |            |
| Completed Assembly                                   |            |
| Quality Assurance and Reliability                    |            |
| Quality Strategy                                     |            |
| Replacement                                          |            |
| Liability of the Supplier                            |            |
|                                                      |            |



| Liability of the Customer                 |  |
|-------------------------------------------|--|
| Reliability                               |  |
| Test Data Retention                       |  |
| Mechanical                                |  |
| Warning: Life Support Applications Policy |  |
| Revision Changes                          |  |
| -                                         |  |

## TABLE OF FIGURES

| Figure 1: Block Diagram                                | 6                            |
|--------------------------------------------------------|------------------------------|
| Figure 2: Pinout Diagram<br>Figure 3: Device Schematic |                              |
| Figure 3: Device Schematic                             |                              |
| Figure 4: Channel Alignment Diagram                    |                              |
| Figure 5: Pixel Clock Video Output Table               |                              |
| Figure 6: Typical Response Non-Linearity (%), Luma     | Error! Bookmark not defined. |
| Figure 7: Typical Response Non-Linearity (%), Blue     | Error! Bookmark not defined. |
| Figure 8: Typical CTE Performance vs. H Clock Levels   |                              |
| Figure 9: Typical Fixed Charge Loss vs. OG at 30 MHz.  |                              |
| Figure 10: Defect Pixel Classification                 | Error! Bookmark not defined. |
| Figure 11: Typical Responsivity                        |                              |
| Figure 12: Device Input Protection Circuit             | 21                           |
| Figure 13: Typical Output Bias/Buffer Circuit          |                              |
| Figure 14: Transfer Timing Edge Alignment              | 27                           |
| Figure 15: Pixel Timing Detail                         | 27                           |
| Figure 16: H1 and H2 Edge Alignment                    |                              |
| Figure 17: Line Timing Diagram                         |                              |
| Figure 18: Transfer Timing Diagram                     |                              |
| Figure 19: Output Timing Diagram                       |                              |
| Figure 20: Completed Assembly (1 of 1)                 |                              |

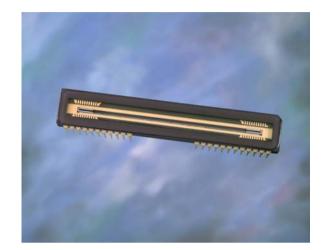


### SUMMARY SPECIFICATION

#### KODAK KLI-4104 IMAGE SENSOR

#### IMAGE SENSOR QUADRI-LINEAR CCD

#### DESCRIPTION


The KODAK KLI-4104 Image Sensor is a multi-spectral, linear solid-state image sensor for color scanning applications where fast high resolution is required. The imager consists of three parallel linear photodiode arrays, each with 4080 active photosites for the output of R, G, and B signals. The sensor contains a fourth channel for luminance information. This array has 8160 pixels segmented to transfer out data through one of four luminance outputs. This device offers high sensitivity, high data rates, low noise and negligible lag. Individual electronic exposure control for each of the Chroma and the Luma channel is provided, allowing the KLI-4104 sensor to be used under a variety of illumination conditions.

#### **FEATURES**

- Quad-linear array (G, R, B, L)
- High resolution: Luma (monochrome) array with 5um pixels with 8160 count.
- Luma channel has 4 outputs approaching 120MHz data rate
- High resolution: color (RGB) array with 10um pixels with 4080 count.
- Each color channel has 1 output approaching 30MHz data rate
- No Image Lag
- Two-Phase Register Clocking
- On-ship Dark Reference
- Electronic exposure control

#### APPLICATIONS

- Document scanning
- Industrial machine vision
- High resolution inspection



| Parameter                         | Value                                           |  |  |  |
|-----------------------------------|-------------------------------------------------|--|--|--|
| Total Number of Pixels            | 3x4134 Chroma,                                  |  |  |  |
|                                   | 1x8292 Luma                                     |  |  |  |
| Number of Effective Pixels        | 3x4128 Chroma,                                  |  |  |  |
|                                   | 1x8276 Luma                                     |  |  |  |
| Number of Active Pixels           | 3x4080 Chroma,                                  |  |  |  |
|                                   | 1x8160 Luma                                     |  |  |  |
| Pixel Size                        | 10 μm (H) x 10 μm (V) Chroma,                   |  |  |  |
|                                   | 5 μm (H) x 5 μm (V) Luma                        |  |  |  |
| Pixel Pitch                       | 10 μm Chroma,                                   |  |  |  |
|                                   | 5μm Luma                                        |  |  |  |
| Inter-Array Spacing, G to R,      | 90 μm (9 lines effective)                       |  |  |  |
| R to B                            | 122.5 μm                                        |  |  |  |
| B to L                            | (12.25 lines effective)                         |  |  |  |
| Chip Size                         | 50.5 mm (H) x 1.1 mm (V)                        |  |  |  |
| Saturation Signal                 | 121,000 electrons Chroma,                       |  |  |  |
|                                   | 110,000 electrons Luma                          |  |  |  |
| Quantum Efficiency                | 62%(B), 62%(G), 80%(R), 85%(L)                  |  |  |  |
| Output Sensitivity                | Chroma -14 $\mu$ V/electron                     |  |  |  |
|                                   | Luma -11 µV/electron                            |  |  |  |
| Responsivity (R/G/B/L)            | 17(B), 20(G), 32(R), 27(L) V/μJ/cm <sup>2</sup> |  |  |  |
| Total Read Noise                  | 120 electrons                                   |  |  |  |
| Dark Current                      | Chroma 0.007 pA/pixel                           |  |  |  |
|                                   | Luma 0.0008 pA/pixel                            |  |  |  |
| Dark Current Doubling Temperature | 9°C                                             |  |  |  |
| Dynamic Range                     | 60 dB (chroma)                                  |  |  |  |
| @ 30 MHz Data Rate                | 60 dB (luma)                                    |  |  |  |
| Photoresponse Non-uniformity      | 5% Peak-Peak                                    |  |  |  |
| Charge Transfer Efficiency        | 0.99999/Transfer                                |  |  |  |
| Total Number of Pixels            | 3x4134 Chroma                                   |  |  |  |
|                                   | 1x8292 Luma                                     |  |  |  |



## **ORDERING INFORMATION**

| Catalog<br>Number | Product Name                                                                                                                              | Description                                                                                                        | Marking Code              |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------|
| 4H0442            | KLI- 4104-AAA-CB-AA                                                                                                                       | Monochrome, No Microlens, CERDIP Package (sidebrazed), Clear Cover Glass (no coatings), Standard Grade             |                           |
| 4H0443            | KLI- 4104-AAA-CB-AE                                                                                                                       | Monochrome, No Microlens, CERDIP Package (sidebrazed), Clear Cover Glass (no coatings), Engineering Sample         | KLI-4104-A<br>(Lot Number |
| 4H0440            | KLI- 4104-AAA-CP-AA                                                                                                                       | Monochrome, No Microlens, CERDIP Package (sidebrazed), Taped Clear Cover<br>Glass, no coatings, Standard Grade     | Serial Number)            |
| 4H0441            | KLI- 4104-AAA-CP-AE                                                                                                                       | Monochrome, No Microlens, CERDIP Package (sidebrazed), Taped Clear Cover<br>Glass, no coatings, Engineering Sample |                           |
| 4H0393            | 393 KLI- 4104-DAA-CB-AA Color (RGB), No Microlens, CERDIP Package (sidebrazed), Clear Cover Glass (no coatings), Standard Grade           |                                                                                                                    |                           |
| 4H0394            | KLI- 4104-DAA-CB-AE         Color (RGB), No Microlens, CERDIP Package (sidebrazed), Clear Cover Glass (no coatings), Engineering Sample   |                                                                                                                    | KLI-4104-A<br>(Lot Number |
| 4H0294            | KLI- 4104-DAA-CP-AA                                                                                                                       | Color (RGB), No Microlens, CERDIP Package (sidebrazed), Taped Clear Cover Glass, no coatings, Standard Grade       | Serial Number)            |
| 4H0295            | 95 KLI- 4104-DAA-CP-AE Color (RGB), No Microlens, CERDIP Package (sidebrazed), Taped Clear Cover Glass<br>no coatings, Engineering Sample |                                                                                                                    |                           |
| 4H0349            | KEK-4H0349-KLI-4104-12-30                                                                                                                 | Evaluation Board (Complete Kit)                                                                                    |                           |

Please see ISS Application Note "Product Naming Convention" (MTD/PS-0892) for a full description of naming convention used for KODAK image sensors.

For all reference documentation, please visit our Web Site at www.kodak.com/go/imagers.

Please address all inquiries and purchase orders to:

Image Sensor Solutions Eastman Kodak Company Rochester, New York 14650-2010

Phone: (585) 722-4385 Fax: (585) 477-4947 E-mail: <u>imagers@kodak.com</u>

Kodak reserves the right to change any information contained herein without notice. All information furnished by Kodak is believed to be accurate.



## **DEVICE DESCRIPTION**

### ARCHITECTURE

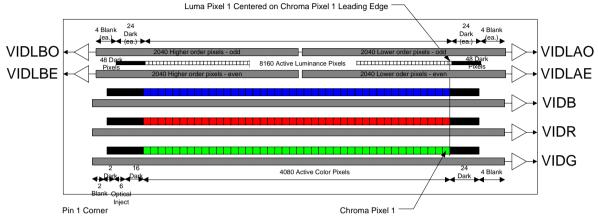



Figure 1: Block Diagram

The KLI-4104 is a high resolution, quadri-linear array designed for high-speed color scanning applications. Each device contains 3 rows of 4080 active photoelements, consisting of high performance 'pinned diodes' for improved sensitivity, lower noise and the elimination of lag. Each row is selectively covered with a red, green or blue integral filter stripe for unparalleled spectral separation. The pixel height and pitch is 10 micron and the center-to-center spacing between color channels is 90 microns, giving an effective nine line delay between adjacent channels during imaging.

Each device also contains 1 row of 8160 active photoelements. This channel has a monochrome response. The pixel height and pitch is 5 micron and the center-to-center spacing between this luminance channel and the blue color channel is 122.5 microns, giving an effective 12 ¼ line delay.

Readout of the pixel data for each color channel is accomplished through the use of a single CCD shift register allowing for a single output per channel with no multiplexing artifacts. Twenty-four light shielded photoelements are supplied at the start of each channel to act as a dark reference. After the 4080 active pixels, the trailing region contains 24 pixels dedicated for test. Only the first 16 pixels in this trailing group are configured to be dark reference pixels. The remaining pixels are used for internal testing. See the block diagram in Figure 1. Readout of the pixel data for the luminance channel is accomplished through the use of four CCD shift registers in an odd/even and left/right readout configuration. Forty-eight light shielded photoelements are supplied at the beginning of each output channel to act as its dark reference. In other words, twenty-four dark reference pixels are on the leading edge of each luma output, none trailing. See the block diagram in Figure 1.

The devices are manufactured using NMOS, buried channel processing and utilize dual layer polysilicon and dual layer metal technologies.

The die size is 50.50 mm X 1.10 mm and is housed in a custom 46-pin, 0.400" wide, dual in line package. The die center is located between the blue and red channels and the color channels are centered in the long direction of the die. The blue channel center line is displaced +30  $\mu$ m along the short dimension of the die from the die center, with pin 1 in the lower left corner.

#### Chroma Imaging

During the integration period, an image is obtained by gathering electrons generated by photons incident upon the photodiodes. The charge collected in the photodiode array is a linear function of the local exposure. The charge is stored in the photodiode itself and is isolated from the CCD shift registers during the integration period by the transfer gates TG1 and TG2, which are held at barrier potentials. At the end of the integration period. the CCD register clocking is stopped with the H1 and H2 gates being held in a 'high' and 'low' state respectively. Next, the TG gates are turned 'on' causing the charge to drain from the photodiode into the TG1 storage region. As TG1 is turned back 'off' charge is transferred through TG2 and into the PHI1 storage region. The TG2 gate is then turned 'off', isolating the shift registers from the accumulation region once again. Complementary clocking of the H1 and H2 phases now resumes for readout of the current line of data while the next line of data is integrated.

#### Luma Imaging

During the integration period, an image is obtained by gathering electrons generated by photons incident upon the photodiodes. The charge collected in the photodiode array is a linear function of the local exposure. The charge is stored in the photodiode and an accumulation region adjacent to the photodiode. This transfer occurs with the bias applied to TG1L. The accumulation storage region is isolated from the CCD shift registers during the integration period by the transfer gate TG2, which is held at barrier potentials. At the end of the integration period, the CCD register clocking is stopped with the H1Lx and H2Lx gates being held in a 'high' and 'low' state respectively. Next, the TG2 gate is turned 'on' causing the charge to drain from the accumulation region into H1 storage region. The TG2 gate is then turned 'off', isolating the shift registers from the accumulation region once again. Complementary clocking of the H1 and H2 phases now resumes for readout of the current line of data while the next line of data is integrated.

### CHARGE TRANSPORT AND SENSING

In either the chroma or luma cases, readout of the signal charge is accomplished by two-phase, complementary clocking of the H1 and H2 gates. (labeled H1Cx/H2Cx or H1Lx/H2Lx). The register architecture has been designed for high speed clocking with minimal transport and output signal degradation, while still maintaining low (7.25Vp-p min) clock swings for reduced power dissipation at 30MHz thereby, lowering clock noise and simplifying the driver design. The data in all registers is clocked simultaneously toward the output structures. The signal is then transferred to the output structures in a parallel format at the falling edge of the H2 clocks. Resettable floating diffusions are used for the charge-tovoltage conversion while source followers provide buffering to external connections. The potential change on the floating diffusion is dependent on the amount of signal charge and is given by dVFD = dQ/CFD. Prior to each pixel output, the floating diffusion is returned to the RD level by the reset clock, PHIR.



## PIN DESCRIPTION AND PHYSICAL ORIENTATION

|    | [ |          |         | ] |    |
|----|---|----------|---------|---|----|
| 1  |   | SUB(DA)  | RDLB    |   | 46 |
| 2  |   | LS       | OGLB    | þ | 45 |
| 3  |   | LOGB     | VDDLB   |   | 44 |
| 4  |   | LOGR     | PHIRLB  |   | 43 |
| 5  |   | LOGG     | VIDLBE  |   | 42 |
| 6  |   | TG1C     | SUBLB   |   | 41 |
| 7  |   | TG2C     | VIDLBO  |   | 40 |
| 8  |   | IDC      | H1LB    |   | 39 |
| 9  |   | IGC      | H2LB    |   | 38 |
| 10 |   | H2CB     | TG1L    |   | 37 |
| 11 |   | H1CB     | TG2L    |   | 36 |
| 12 |   | N/C      | N/C     |   | 35 |
|    |   |          |         |   |    |
| 13 |   | RDC      | RDLA    |   | 34 |
| 14 | [ | H2CA     | H2LA    |   | 33 |
| 15 |   | H1CA     | H1LA    |   | 32 |
| 16 |   | SUBG     | VIDLAO  |   | 31 |
| 17 |   | VIDG     | SUBLA   |   | 30 |
| 18 |   | SUBR     | VIDLAE  |   | 29 |
| 19 |   | VIDR     | PHIRLA  |   | 28 |
| 20 | [ | SUBB     | VDDLA   |   | 27 |
| 21 | [ | VIDB     | OGCLA   |   | 26 |
| 22 |   | PHIRC    | VDDC    |   | 25 |
| 23 |   | SUB (DA) | LOGL    |   | 24 |
|    |   | I        | Pixel 1 |   |    |

Figure 2: Pinout Diagram



| Pin | Name  | Description                                    |  |  |  |  |
|-----|-------|------------------------------------------------|--|--|--|--|
| 1   | SUB   | Substrate / Ground                             |  |  |  |  |
| 2   | LS    | Light Shield / Exposure Drain                  |  |  |  |  |
| 3   | LOGB  | Exposure Control, Blue                         |  |  |  |  |
| 4   | LOGR  | Exposure Control, Red                          |  |  |  |  |
| 5   | LOGG  | Exposure Control, Green                        |  |  |  |  |
| 6   | TG1C  | Transfer Gate 1 Clock, Chroma                  |  |  |  |  |
| 7   | TG2C  | Transfer Gate 2 Clock, Chroma                  |  |  |  |  |
| 8   | IDC   | Test Input, Input Diode, Chroma                |  |  |  |  |
| 9   | IGC   | Test Input, Input Gate, Chroma                 |  |  |  |  |
| 10  | H2CB  | Phase 2 CCD Clock, Chroma                      |  |  |  |  |
| 11  | H1CB  | Phase 1 CCD Clock, Chroma                      |  |  |  |  |
| 12  | N/C   | No Connection (recommend these pins at ground) |  |  |  |  |
| 13  | RDC   | Reset Drain Chroma                             |  |  |  |  |
| 14  | H2CA  | Phase 2 CCD Clock, Chroma                      |  |  |  |  |
| 15  | H1CA  | Phase 1 CCD Clock, Chroma                      |  |  |  |  |
| 16  | SUBG  | Ground Reference, Green                        |  |  |  |  |
| 17  | VIDG  | Output Video, Green                            |  |  |  |  |
| 18  | SUBR  | Ground Reference, Red                          |  |  |  |  |
| 19  | VIDR  | Output Video, Red                              |  |  |  |  |
| 20  | SUBB  | Ground Reference, Blue                         |  |  |  |  |
| 21  | VIDB  | Output Video, Blue                             |  |  |  |  |
| 22  | PHIRC | Reset Clock, Chroma                            |  |  |  |  |
| 23  | SUB   | Substrate / Ground                             |  |  |  |  |

| Pin | Name   | Description                                    |
|-----|--------|------------------------------------------------|
| 46  | RDLB   | Reset Drain, Low-, High Pixels, Luma           |
| 45  | OGLB   | Output Gate, High Pixels, Luma                 |
| 44  | VDDLB  | Amplifier Supply, Low- High Pixels, Luma       |
| 43  | PHIRLB | Reset Clock, Luma                              |
| 42  | VIDLBE | Output Video, Luma High Pixels, Even Channel   |
| 41  | SUBLB  | Ground Reference, Low- High Pixels, Luma       |
| 40  | VIDLBO | Output Video, Luma High Pixels, Odd Channel    |
| 39  | H1LB   | Phase 1 CCD Clock, Luma                        |
| 38  | H2LB   | Phase 2 CCD Clock, Luma                        |
| 37  | TG1L   | Transfer Gate 1 Bias, Luma                     |
| 36  | TG2L   | Transfer Gate 2 Clock, Luma                    |
| 35  | N/C    | No Connection (recommend these pins at ground) |
| 34  | RDLA   | Reset Drain, Low-, High Pixels, Luma           |
| 33  | H2LA   | Phase 2 CCD Clock, Luma                        |
| 32  | H1LA   | Phase 1 CCD Clock, Luma                        |
| 31  | VIDLA0 | Output Video, Luma Low Pixels, Odd Channel     |
| 30  | SUBLA  | Ground Reference, Low- High Pixels, Luma       |
| 29  | VISLAE | Output Video, Luma Low Pixels, Even Channel    |
| 28  | PHIRLA | Reset Clock, Luma                              |
| 27  | VDDLA  | Amplifier Supply, Low- High Pixels, Luma       |
| 26  | OGCLA  | Output Gate, Chroma and Low Pixels Luma        |
| 25  | VDDC   | Amplifier Supply, Chroma                       |
| 24  | LOGL   | Exposure Control, Luma                         |

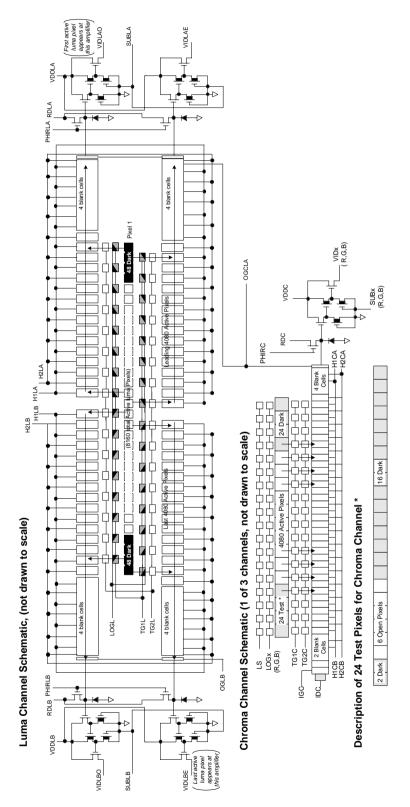
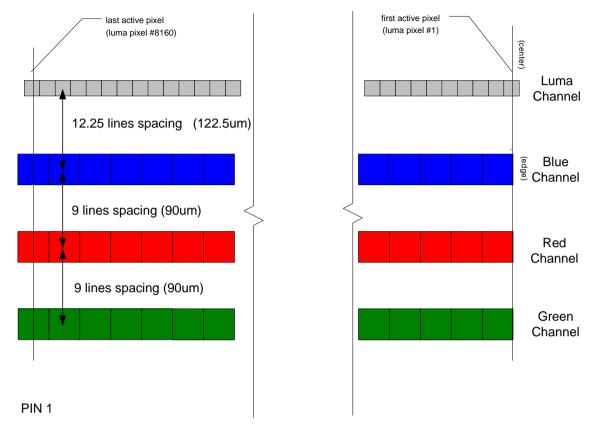




Figure 3: Device Schematic







|                                                    | Pixel Clock<br>Cycle                 | VIDR                                                                         | VIDG                                                                    | VIDB                                                                    | VIDLAO                                                                  | VIDLAE                                                                  | VIDLBO                                                                  | VIDBLE                                                                  |
|----------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
| L B<br>e I<br>a a<br>d n<br>i k<br>n s<br>g<br>(4) | 1<br>2<br>3<br>4                     | Blank(1)<br>Blank(2)<br>Blank(3)<br>Blank(4)                                 | Blank(1)<br>Blank(2)<br>Blank(3)<br>Blank(4)                            | Blank(1)<br>Blank(2)<br>Blank(3)<br>Blank(4)                            | Blank(1)<br>Blank(2)<br>Blank(3)<br>Blank(4)                            | Blank(1)<br>Blank(2)<br>Blank(3)<br>Blank(4)                            | Blank(1)<br>Blank(2)<br>Blank(3)<br>Blank(4)                            | Blank(1)<br>Blank(2)<br>Blank(3)<br>Blank(4)                            |
| L p<br>e D i<br>d R e<br>i K I<br>n s              | 5<br>6<br>7<br>8<br>9                | Dark(1)<br>Dark(2)<br>Dark(3)<br>Dark(4)<br>Dark(5)                          | Dark(1)<br>Dark(2)<br>Dark(3)<br>Dark(4)<br>Dark(5)                     | Dark(1)<br>Dark(2)<br>Dark(3)<br>Dark(4)<br>Dark(5)                     | Dark(1)<br>Dark(2)<br>Dark(3)<br>Dark(4)<br>Dark(5)                     | Dark(1)<br>Dark(2)<br>Dark(3)<br>Dark(4)<br>Dark(5)                     | Dark(1)<br>Dark(2)<br>Dark(3)<br>Dark(4)<br>Dark(5)                     | Dark(1)<br>Dark(2)<br>Dark(3)<br>Dark(4)<br>Dark(5)                     |
| g (24)                                             | 26<br>27<br>28                       | Dark(22)<br>Dark(23)<br>Dark(24)                                             | Dark(22)<br>Dark(23)<br>Dark(24)                                        | Dark(22)<br>Dark(23)<br>Dark(24)                                        | Dark(22)<br>Dark(23)<br>Dark(24)                                        | Dark(22)<br>Dark(23)<br>Dark(24)                                        | Dark(22)<br>Dark(23)<br>Dark(24)                                        | Dark(22)<br>Dark(23)<br>Dark(24)                                        |
| A<br>C<br>T                                        | 29<br>30<br>31<br>32                 | Active(1)<br>Active(2)<br>Active(3)<br>Active(4)                             | Active(1)<br>Active(2)<br>Active(3)<br>Active(4)                        | Active(1)<br>Active(2)<br>Active(3)<br>Active(4)                        | Active(1)<br>Active(3)<br>Active(5)<br>Active(7)                        | Active(2)<br>Active(4)<br>Active(6)<br>Active(8)                        | Active(8159)<br>Active(8157)<br>Active(8155)<br>Active(8153)            | Active(8160)<br>Active(8158)<br>Active(8156)<br>Active(8154)            |
| I<br>V<br>E                                        | 2066<br>2067<br>2068<br>2069         | Active(2038)<br>Active(2039)<br>Active(2040)<br><i>Clock</i><br>Active(2041) | Active(2039)<br>Active(2040)<br>hold during lun                         |                                                                         |                                                                         |                                                                         |                                                                         | Active(4084)                                                            |
| p<br>i<br>x<br>e<br>I                              | 2089<br>2070<br>2080                 | Active(2041)<br>Active(2042)<br>Active(2043)                                 | Active(2047)<br>Active(2042)<br>Active(2043)                            | Active(2042)                                                            | Active(1)<br>Active(3)<br>Active(5)                                     | Active(2)<br>Active(4)<br>Active(6)                                     | Active(8159)<br>Active(8157)<br>Active(8155)                            | Active(8158)<br>Active(8158)<br>Active(8156)                            |
| S                                                  | 4105<br>4106<br>4107<br>4108<br>4109 | Active(4077)<br>Active(4078)<br>Active(4079)<br>Active(4080)<br>Dark(1)      | Active(4077)<br>Active(4078)<br>Active(4079)<br>Active(4080)<br>Dark(1) | Active(4077)<br>Active(4078)<br>Active(4079)<br>Active(4080)<br>Dark(1) | Active(4073)<br>Active(4075)<br>Active(4077)<br>Active(4079)<br>Dark(1) | Active(4074)<br>Active(4076)<br>Active(4078)<br>Active(4080)<br>Dark(1) | Active(4087)<br>Active(4085)<br>Active(4083)<br>Active(4081)<br>Dark(1) | Active(4088)<br>Active(4086)<br>Active(4084)<br>Active(4082)<br>Dark(1) |
| L<br>Ta<br>Eg<br>Sgp<br>Tii                        | 4110                                 | Dark(2)                                                                      | Dark(2)                                                                 | Dark(2)                                                                 | Dark(2)                                                                 | Dark(2)                                                                 | Dark(2)                                                                 | Dark(2)                                                                 |
| Tii<br>nx<br>gge<br>r l<br>oDs                     | 4124<br>4125<br>4126<br>4127         | Dark(16)<br>Open(1)<br>Open(2)<br>Open(3)                                    | Dark(16)<br>Open(1)<br>Open(2)<br>Open(3)                               | Dark(16)<br>Open(1)<br>Open(2)<br>Open(3)                               | Dark(16)<br>Dark(17)<br>Dark(18)<br>Dark(19)                            | Dark(16)<br>Dark(17)<br>Dark(18)<br>Dark(19)                            | Dark(16)<br>Dark(17)<br>Dark(18)<br>Dark(19)                            | Dark(16)<br>Dark(17)<br>Dark(18)<br>Dark(19)                            |
| u A<br>p R<br>K<br>(24)                            | 4128<br>4129<br>4130<br>4131<br>4132 | Open(4)<br>Open(5)<br>Open(6)<br>Dark(17)<br>Dark(18)                        | Open(4)<br>Open(5)<br>Open(6)<br>Dark(17)<br>Dark(18)                   | Open(4)<br>Open(5)<br>Open(6)<br>Dark(17)<br>Dark(18)                   | Dark(20)<br>Dark(21)<br>Dark(22)<br>Dark(23)<br>Dark(24)                | Dark(20)<br>Dark(21)<br>Dark(22)<br>Dark(23)<br>Dark(24)                | Dark(20)<br>Dark(21)<br>Dark(22)<br>Dark(23)<br>Dark(24)                | Dark(20)<br>Dark(21)<br>Dark(22)<br>Dark(23)<br>Dark(24)                |
| Blanks<br>(2) chroma                               | 4133<br>4134                         | Blank(1)<br>Blank(2)                                                         | Blank(1)<br>Blank(2)                                                    | Blank(1)<br>Blank(2)                                                    | OVERCLOCK FOR SYMMETRY                                                  |                                                                         |                                                                         |                                                                         |

NOTE: 2 lines of luma channels per every chroma channel

Figure 5: Pixel Clock Video Output Table



### IMAGING PERFORMANCE

#### Imaging Performance Operational Conditions

Specifications given under nominally specified operating conditions for the given mode of operation @ 25°C, fCLK = 1 MHz, AR cover glass, color filters where applicable, no exposure control ( line time = integration time), and an active load as shown in Figure 13, unless otherwise specified. See notes on next page for further descriptions.

| Description                                                                                                                        | Symbol          | Min.     | Nom.                              | Max. | Units        | Notes                                 | Verification Plan                         |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|-----------------------------------|------|--------------|---------------------------------------|-------------------------------------------|
| Saturation Output Voltage, Chroma                                                                                                  | Vsat            | 1.5      | 1.7                               |      | Vp-p         | 1, 8, 9, 17                           | die <sup>21</sup>                         |
| Output Sensitivity, Chroma                                                                                                         | DeltaVo/deltaNe |          | 14                                |      | μV/e-        | 8,9                                   | design <sup>22</sup>                      |
| Saturation Signal Charge, Chroma                                                                                                   | Ne, sat         |          | 121K                              |      | electrons    | 1, 8, 9                               | design <sup>22</sup>                      |
| Responsitivity<br>Blue @ 460nm<br>Green @ 550nm<br>Red @ 650 nm                                                                    | R               |          | 17<br>20<br>32                    |      | V/microJ/cm2 | 2, 8, 9<br>± 10 %<br>± 10 %<br>± 10 % | design <sup>22</sup>                      |
| Dynamic Range, Chroma                                                                                                              | DR              |          | 60                                |      | dB           | 3                                     | design <sup>22</sup>                      |
| Dark Signal Non-Uniformity, Chroma                                                                                                 | DSNU            |          | 2                                 | 16   | mV           |                                       | die <sup>21</sup>                         |
| DC Gain, Amplifier, Chroma                                                                                                         | A <sub>DC</sub> |          | 0.74                              |      |              |                                       | design <sup>22</sup>                      |
| Dark Current, Chroma @ 40° <b>C</b>                                                                                                | ldark           |          | 0.007                             | 2    | PA/pixel     | 14, 17                                | die <sup>21</sup>                         |
| Charge Transfer Efficiency, Chroma @<br>30MHz Data Rate<br>Charge Transfer Efficiency, Chroma @                                    | CTE             | 0.000005 | 0.999992                          |      |              | ( 10                                  | design <sup>22</sup>                      |
| 2MHz Data Rate                                                                                                                     |                 | 0.999995 | 0.999997                          |      |              | 4,19                                  | die <sup>21</sup>                         |
| Lag, Chroma @ 30MHx Data Rate<br>Lag, Chroma @ 2MHx Data Rate                                                                      | L               |          | 1<br>0.005                        |      | %            | 15                                    | design <sup>22</sup><br>die <sup>21</sup> |
| DC Output, Offset, Chroma                                                                                                          | Vo, dc          |          | 8.6                               |      |              | 8, 9                                  | design <sup>22</sup>                      |
| Photoresponse Non-Uniformity, Chroma<br>Low Frequency                                                                              | PRNU, Low       |          | 4                                 | 15   | % p-p        | 5, 19                                 | die <sup>21</sup>                         |
| Photoresponse Non-Uniformity, Chroma<br>Medium Frequency                                                                           | PRNU, Medium    |          | 4                                 | 15   | % p-p        | 6, 19                                 | die <sup>21</sup>                         |
| Photoresponse Non-Uniformity, Chroma<br>High Frequency                                                                             | PRNU, High      |          | 4                                 | 15   | % p-p        | 7, 19                                 | die <sup>21</sup>                         |
| Smear<br>Smear, Chroma @ 450nm<br>Smear, Chroma @ 500nm<br>Smear, Chroma @ 550nm<br>Smear, Chroma @ 600nm<br>Smear, Chroma @ 650nm | Smear           |          | 0.03<br>0.05<br>0.1<br>0.2<br>0.3 |      | %            |                                       | design <sup>22</sup>                      |
| Response Non-Linearity                                                                                                             | RNL             |          | 3                                 |      | %            | 16                                    | design <sup>22</sup>                      |
| Darkfield Defect, Chroma Brightpoint                                                                                               | Dark Def        |          |                                   | 0    | Allowed      | 11, 17                                | die <sup>21</sup>                         |
| Brightfield Defect, Chroma Dark or Bright                                                                                          | Bfld Def        |          |                                   | 3    | Allowed      | 10, 12, 19                            | die <sup>21</sup>                         |
| Exposure Control Defects, Chroma<br>Channels                                                                                       | Exp Def         |          |                                   | 64   | Allowed      | 10, 13, 20<br>Figure 10               | die <sup>21</sup>                         |

#### Imaging Performance Specifications - Chroma Channels



## Imaging Performance Specifications - Luma Channels

| Description                                                                                                   | Symbol          | Min.     | Nom.     | Max. | Units        | Notes               | Verification Plan                         |
|---------------------------------------------------------------------------------------------------------------|-----------------|----------|----------|------|--------------|---------------------|-------------------------------------------|
| Saturation Output Voltage, Luma                                                                               | Vsat            | 1.0      | 1.3      |      | Vp-p         | 1, 8, 9, 17         | die <sup>21</sup>                         |
| Output Sensitivity, Luma                                                                                      | DeltaVo/deltaNe |          | 11.5     |      | μV/e-        | 8, 9                | design <sup>22</sup>                      |
| Saturation Signal Charge, Luma                                                                                | Ne, sat         |          | 110K     |      | electrons    | 8, 9                | design <sup>22</sup>                      |
| Responsivity, Luma (550nm)                                                                                    | R               |          | 6.5      |      | V/microJ/cm2 | 2, 8, 9 (±<br>10 %) | die <sup>21</sup>                         |
| Dynamic Range, Luma                                                                                           | DR              |          | 60       |      | dB           | 3                   | design <sup>22</sup>                      |
| Dark Signal Non-Uniformity, Luma                                                                              | DSNU            |          | 2        | 16   | mV           | 17                  | die <sup>21</sup>                         |
| DC Gain, Amplifier, Luma                                                                                      | A <sub>DC</sub> |          | 0.74     |      |              |                     | design <sup>22</sup>                      |
| Dark Current, Luma @ 40° <b>C</b>                                                                             | ldark           |          | 0.0008   | 0.02 | pA/pixel     | 14, 17              | die <sup>21</sup>                         |
| Charge Transfer Efficiency, Luma @<br>30MHz Data Rate<br>Charge Transfer Efficiency, Luma @<br>2MHz Data Rate | CTE             | 0.999995 | 0.999997 |      |              | 4, 19               | design <sup>22</sup><br>die <sup>21</sup> |
| Lag, Luma @ 30MHx Data Rate per Luma<br>Channel<br>Lag, Luma @ 2MHx Data Rate per Luma<br>Channel             | L               |          | 1        |      | %            | 15                  | die <sup>21</sup>                         |
| DC Output, Offset, Luma                                                                                       | Vo, dc          |          | 8.6      |      | Volts        | 8, 9                | design <sup>22</sup>                      |
| Photoresponse Non-Uniformity, Luma<br>Low Frequency                                                           | PRNU, Low       |          | 4        | 10   | % p-p        | 5, 19               | die <sup>21</sup>                         |
| Photoresponse Non-Uniformity, Luma<br>Medium Frequency                                                        | PRNU, Medium    |          | 4        | 10   | % p-p        | 6, 19               | die <sup>21</sup>                         |
| Photoresponse Non-Uniformity, Luma<br>High Frequency                                                          | PRNU, High      |          | 4        | 10   | % p-p        | 7, 19               | die <sup>21</sup>                         |
| Smear @ 550nm                                                                                                 | Smear           |          | 0.12     |      | %            |                     | design <sup>22</sup>                      |
| Response Non-Linearity                                                                                        | RNL             |          | 3.4      |      | %            | 16                  | design <sup>22</sup>                      |
| Darkfield Defect, Luma Brightpoint                                                                            | Dark Def        |          |          | 0    | Allowed      | 11, 17              | die <sup>21</sup>                         |
| Brightfield Defect, Luma Dark or Bright                                                                       | Bfld Def        |          |          | 6    | Allowed      | 17, 18, 19          | die <sup>21</sup>                         |
| Exposure Control Defects, Luma Channels                                                                       | Exp Def         |          |          | 128  | Allowed      | 13, 20<br>Figure 10 | die <sup>21</sup>                         |



- 1. Defined as the maximum output level achievable before linearity or PRNU performance is degraded beyond specification
- With color filter. Values specified at filter peaks. 50% bandwidth = ±30 nm. Color filter arrays become transparent after 710 nm. It is recommended that a suitable IR cut filter be used to maintain spectral balance and optimal MTF. See chart of typical responsivity later in this document.
- 3. As measured at 30 MHz data rate. This device utilizes 2-phase clocking for cancellation of driver displacement currents. Symmetry between PHI1 and PHI2 phases must be maintained to minimize clock noise.
- Measured per transfer. For a chroma line: (0.99999) \* 8268 = 0.92065. For a luma line: (0.99999) \* 2092 = 0.97930.
- 5. Low frequency response is measured across the entire array with a 1000 pixel-moving window and a 5 pixel median filter evaluated under a flat field illumination.
- 6. Medium frequency response is measured across the entire array with a 50 pixel-moving window and a 5 pixel median filter evaluated under a flat field illumination.
- 7. High frequency response non-uniformity represents individual pixel defects evaluated under a flat field illumination. An individual pixel value may deviate above or below the average response for the entire array. Zero individual defects allowed per this specification.
- 8. Increasing the current load (nominally 4.7 mA) to improve signal bandwidth will decrease these parameters.
- If resistive loads are used to set current, the amplifier gain will be reduced, thereby reducing the output sensitivity and net responsivity.

- 10. Defective pixels will be separated by at least one non-defective pixel within and across the color channels.
- 11. Pixels whose response is greater than the average response by the specified threshold, (16mV). See line 1 in Figure 5.
- Pixels whose response is greater or less than the average response by the specified threshold, (±15%). See lines 2 and 3 in Figure 5.
- 13. Pixels whose response deviates from the average pixel response by the specified threshold, [4.5mV for chroma, 5.5mV for luma], when operating in exposure control mode with an integration time that is 50% of the line time. See lines 4 and 5 in Figure 10. If dark pattern correction is used with exposure control, the dark pattern acquisition should be completed with exposure control actuated. Dark current tends to suppress the magnitude of these defects as observed in typical applications, hence line rate changes may affect perceived defect magnitude. Measured at 1MHz data rate.
- 14. Dark current doubles approximately every +9°C.
- 15. Residual charge in the first field after transfer is used to determine lag measurement.
- 16. Nominal value was measured at an output of 1.5V signal level at 30MHz. Expect linearity to be better than 10% over the entire range.
- 17. As measured at 1MHz data rate.
- Pixels whose response is greater or less than the average response by the specified threshold, (±10%). See lines 2 and 3 in Figure 5.
- 19. As measured at 1MHz data rate and with an average output level of 70% VSat.
- 20. As measured at 1MHz data rate and with an average output level of 100mV. With the exposure control active the timing is adjusted so exposure time = 50% \* integration time.
- 21. A parameter that is measured on every sensor during production testing.
- 22. A parameter that is quantified during the design verification activity.



## **TYPICAL PERFORMANCE CURVES**

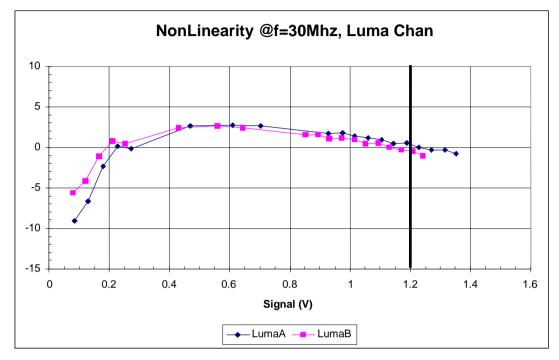



Figure 6: Typical Response Non-Linearity (%), Luma

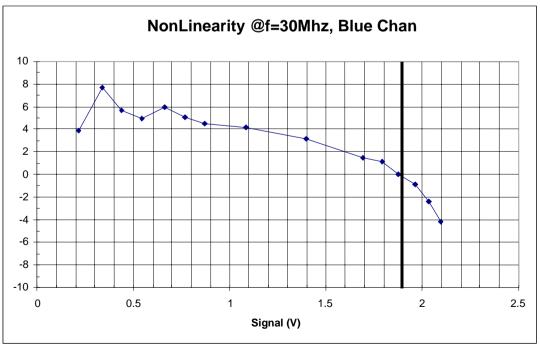



Figure 7: Typical Response Non-Linearity (%), Blue



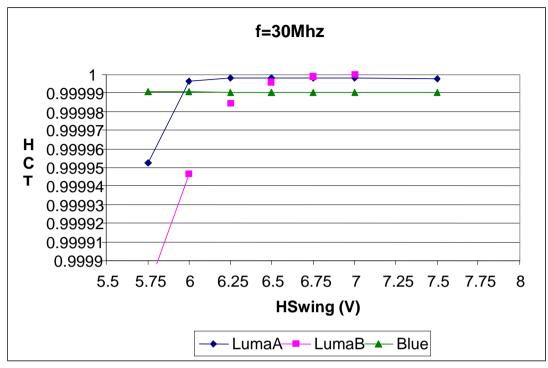



Figure 8: Typical CTE Performance vs. H Clock Levels

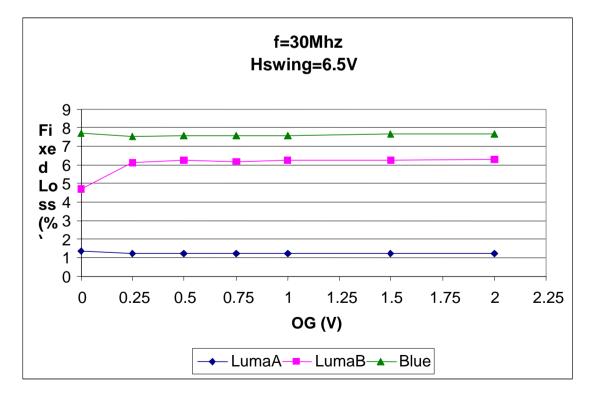



Figure 9: Typical Fixed Charge Loss vs. OG at 30 MHz.



### **DEFECT DEFINITIONS**

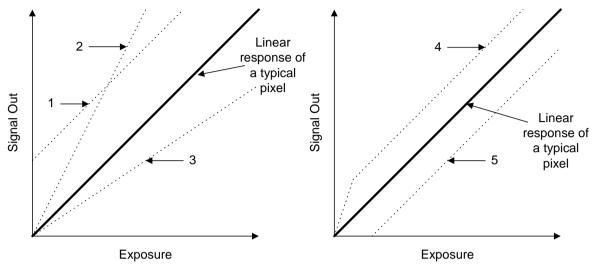



Figure 10: Defect Pixel Classification

Notes:

- 1 Dark Offset Error
- 2, 3 Brightfield Defects; bright (2), or dark (3)
- 4, 5 Exposure control mode defects, fast (4), or slow (5) pixels.

#### Color Filter Response And Description

- 1. A filter set has been implemented for a series of quad-linear image sensors optimized for high sensitivity color scanning. Values for the various nominal wavelength positions are shown below with corresponding tolerances for responsivity and wavelength as indicated for Color Image Sensors. See Figure 11 for clarification of parameters.
- 2. Independent of filter type, a degree of variation in the spectral response for the KLI-series quadlinear image sensors can be expected from the natural manufacturing tolerances of the process. This variation is due to the combined variations in filter properties (net density and filter peak wavelength position) and the device properties (sensitivity and film thickness variations).
- 3. Values for gauging filter performance are determined from Figure 11. The center (or peak) transmission wavelength is specified as 0, and the 50% points are given as 1 and 2, corresponding to the near and far wavelength sides of the filter pass band.
- 4. For the red filter, only the near wavelength value is presented. The red filter, as well as the blue and green filters, exhibits a high level of transmission beyond the 700nm (i.e., the filters become transparent). The far wavelength edge is assumed controlled by the system IR cut filter characteristics.



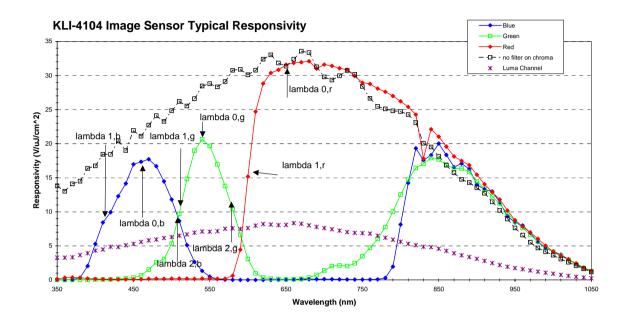



Figure 11: Typical Responsivity

| Filter Channel | Parameter | Wavelength (nm) (typical) | Responsivity Tolerance 3 sigma | Wavelength Tolerance (nm) (typical) |
|----------------|-----------|---------------------------|--------------------------------|-------------------------------------|
|                | λ0,g      | 540                       | ± 12%                          | ± 8                                 |
| Green          | λ 1,g     | 512                       | -                              | ± 8                                 |
|                | λ 2,g     | 580                       | -                              | ± 8                                 |
|                | λ0,b      | 462                       | ± 12%                          | ± 8                                 |
| Blue           | λ1,b      | 415                       | -                              | ± 8                                 |
|                | λ2,b      | 508                       | -                              | ± 8                                 |
|                | λ0,r      | 650                       | ± 12%                          | -                                   |
| Red            | λ1,r      | 602                       | -                              | ± 8                                 |

### Filter Variation Parameters For Color Image Sensors



### OPERATION

### ABSOLUTE MAXIMUM RATINGS

| Description             | Symbol    | Minimum | Maximum | Units | Notes |
|-------------------------|-----------|---------|---------|-------|-------|
| Gate Pin Voltages       | VGate     | 0       | 16      | V     | 1, 2  |
| Pin-to-Pin Voltage      | VPin-Pin  |         | 16      | V     | 1, 3  |
| Diode Pin Voltages      | VDiode    | -0.5    | 16      | V     | 1, 4  |
| Output Bias Current     | IDD       | -2      | -8      | mA    | 5     |
| Output Load Capacitance | CVID,Load |         | 10      | рF    | 7     |
| CCD Clocking Frequency  | fclk      |         | 30      | MHz   | 6     |

- 1. Referenced to substrate voltage.
- 2. Includes pins: H1CA, H2CA, H2CA, H2CB, H1LA, H1LB, H2LA, H2LB, TG1C, TG2C, TG1L, TG2L, PHIRC, PHIRLA, PHIRLB, OGCLA, OGLB, IGC, LOGR, and LOGG.
- 3. Voltage difference (either polarity) between any two pins.
- 4. Includes pins: VIDR, VIDG, VIDB, VIDLAO, VIDLAE, VIDLBO, VIDLBE, SUB(DA), SUBR, SUBG, SUBB, SUBLA, SUBLB, RDC, RDLA, RDLB, VDDC, VDDLA, VDDLB, LS and IDC.
- 5. Care must be taken not to short output pins to ground during operation as this may cause permanent damage to the output structures.
- 6. Charge transfer efficiency will degrade at frequencies higher than the maximum clocking frequency. VIDR, VIDG, VIDB, VIDLAO, VIDLAE, VIDLBO, and VIDLBE load current values may need to be adjusted as well.
- 7. Exceeding the upper limit on output load capacitance will greatly reduce the output frequency response. Thus, direct probing of the output pins with conventional oscilloscope probes is not recommended.
- 8. The absolute maximum ratings indicate the limits of this device beyond which damage may occur. The Operating ratings indicate the conditions where the design should operate the device. Operating at or near these ratings do not guarantee specific performance limits. Guaranteed specifications and test conditions are contained in the Image Specifications section.



## DEVICE INPUT ESD PROTECTION CIRCUIT (SCHEMATIC)

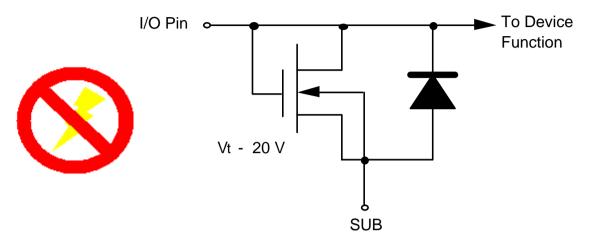



Figure 12: Device Input Protection Circuit

**CAUTION:** To allow for maximum performance, this device was designed with limited input protection; thus, it is sensitive to electrostatic induced damage. These devices should be installed in accordance with strict ESD handling procedures!



## DC BIAS OPERATING CONDITIONS

| Description                   | Symbol                                                                                                                           | Minimum | Nominal | Maximum | Units | Notes |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|-------|-------|
| Substrate                     | V <sub>SUBR</sub> ,<br>V <sub>SUBG</sub><br>V <sub>SUBB</sub><br>V <sub>SUBLA</sub><br>V <sub>SUBLB</sub><br>V <sub>SUBIDA</sub> |         | 0       |         | V     |       |
| Accumulation Phase Bias, Luma | V <sub>TG1L</sub>                                                                                                                |         | 0       | 0.5     | V     | 2, 3  |
| Reset Drain Bias              | V <sub>rdc</sub><br>V <sub>rdla,</sub><br>V <sub>rdlab,</sub>                                                                    | 10.5    | 11      | 11.5    | V     | 2     |
| Output Buffer Supply          | V <sub>VDD</sub><br>V <sub>VDD</sub><br>V <sub>VDD</sub><br>V <sub>VDD</sub>                                                     | 14.5    | 15      | 15.5    | V     | 2     |
| Output Bias Current/Channel   | I <sub>iddc</sub><br>I <sub>iddla</sub><br>I <sub>iddlb</sub>                                                                    | -2      | -4.7    | -8      | mA    | 1, 2  |
| Output Gate Bias              | V <sub>ogcla,</sub><br>V <sub>oglb</sub>                                                                                         | 0.5     | 0.7     | 0.9     | V     | 2, 3  |
| Light Shield / Drain Bias     | V <sub>LS</sub>                                                                                                                  | 12      | 15      | 15.5    | V     | 2     |
| Test Pin - Input Gate         | VIGC                                                                                                                             |         | 0       |         | V     | 2, 3  |
| Test Pin - Input Diode        | VIDC                                                                                                                             | 12      | 15      | 15.5    | V     | 2     |

Notes:

- 1. A current sink must be supplied for each output. Load capacitance should be minimized so as not to limit bandwidth. Circuit below is just one solution.
- 2. Referenced to substrate voltage.
- 3. Do not exceed absolute maximum levels for diode pins voltage.

#### Typical Output Bias/Buffer Circuit

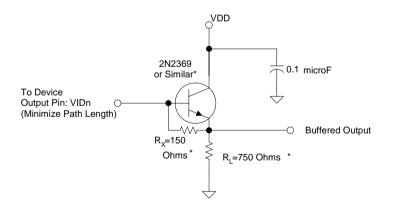



Figure 13: Typical Output Bias/Buffer Circuit

\*Rx serves as the load bias for the on-chip amplifiers. Choose the values of Rx and RL to optimize for specific operating frequency. Rx should not be less than 75 Ohms.

## AC OPERATING CONDITIONS

### **Clock Levels**

| Description                             | Symbol               | 30MHz Operation | 1MHz Operation | Maximum | Units | Notes             |
|-----------------------------------------|----------------------|-----------------|----------------|---------|-------|-------------------|
| CCD Element Duration                    | 1e = 1/fCLK          | 0.033           | 1              |         | μs    | 3, 1e count       |
| Line/Integration Period                 | 1L = tint, Chroma    | 138.4           | 4156           |         | μs    | 3, 4, 4156 counts |
| Line/Integration Period                 | 1L = tint, Luma      | 68.9            | 2087           |         | μs    | 3, 4, 2087 counts |
| PD-CCD Transfer Period                  | tpd, Chroma          | 0.533           | 16             |         | μs    | 3, 5, 16e counts  |
| PD-CCD Transfer Period                  | tpd, Luma            | 0.566           | 17             |         | μs    | 3, 5, 17e counts  |
| Transfer Gate 1 Clear                   | ttg1                 | 0.033           | 1              |         | μs    | 3, 1e count       |
| Transfer Gate 2 Clear                   | ttg2                 | 0.033           | 1              |         | μs    | 3, 1e count       |
| Charge Drain Duration as % of Line Time | tdr, Chroma          |                 |                | 90      | %     | 2                 |
| Charge Drain Duration as % of Line Time | tdr, Luma            |                 |                | 90      | %     | 2                 |
| Clamp to H2 Delay                       | tcd                  | 5               |                |         | ns    | 1                 |
| Sample to Reset Edge Delay              | tsd                  | 5               |                |         | ns    | 1                 |
| LOG Rise Time                           | t <sub>logrise</sub> | 0.066           | 2              |         | μs    | 3, 2e count       |
| LOG Fall Time                           | t <sub>logfall</sub> | 0.066           | 2              |         | μs    | 3, 2e count       |

- 1. Recommended delays for Correlated Double Sampling (CDS) of output.
- 2. Maximum value stated ensures proper linearity performance. Integration times shorter than 10% of the line time increase device non-linearity.
- 3. Where noted as a multiple of CCD element durations, scale the appropriate times listed if the clock element time changes.
- 4. This value represents the shortest line period. Integration time can be shorter than a line period with the use of electronic exposure control or by extending the line period with horizontal overclocking.
- 5. If the application uses values less than those listed here expect degradation in lag and/or exposure control performance, where appropriate.



## ELECTRICAL CHARACTERISTICS AC

| Description                    | Symbol                               | Minimum | 1MHz Operation | 30MHz Operation | Maximum | Units | Notes   |
|--------------------------------|--------------------------------------|---------|----------------|-----------------|---------|-------|---------|
| CCD Readout Clocks High        | VH1x <sub>H</sub> ,VH2x <sub>H</sub> | 6.25    | 6.5            | 7.25            | 9.0     | V     | 3, 7    |
| CCD Readout Clocks Low         | VH1x <sub>L</sub> ,VH2x <sub>L</sub> | -0.1    | 0.0            | 0.0             | 0.1     | V     | 1, 3    |
| Transfer Clocks High - Chroma  | VTGxC <sub>H</sub>                   | 6.25    | 6.5            | 7.25            | 9.0     | V     | 4,7     |
| Transfer Clocks High- Luma     | VTG2L <sub>H</sub>                   | 7.00    | 7.5            | 8.00            | 10.0    | V     | 7       |
| Transfer Clocks Low            | VTGxL                                | -0.1    | 0.0            | 0.0             | 0.1     | V     | 1,4     |
| Reset Clock High (Normal Mode) | VPHIRxн                              | 6.25    | 6.5            | 7.25            | 9.0     | V     | 5,7     |
| Reset Clock Low                | VPHIRx <sub>L</sub>                  | -0.1    | 0.0            | 0.0             | 0.1     | V     | 1, 5    |
| Exposure Clocks High           | VLOGx <sub>H</sub>                   | 6.25    | 6.5            | 7.25            | 9.0     | V     | 2, 6, 7 |
| Exposure Clocks Low            | VLOGxL                               | -0.1    | 0.0            | 0.0             | 0.1     | V     | 1, 2, 6 |

### CLOCK LEVEL CONDITIONS FOR OPERATION

- 1. Care should be taken to insure that low rail overshoot does not exceed -0.5 VDC. Exceeding this value may result in non-photogenerated charged being injected into the video signal.
- 2. Connect pin to ground potential for applications where exposure control is not required.
- 3. Where "x" can be "CA", "CB", "LA", or "LB".
- 4. Where "x" can be "1" or "2".
- 5. Where "x" can be "C", "LA", or "LB".
- 6. Where "x" can be "R", "G", or "B".
- 7. For high level clocks at 30MHz operation, use the values found in the "30MHz Operation" column. This value represents the recommended setting for operation. Operating ranges for the high level clocks should be held to a variation range of +/- 0.25. Clock levels below this range will result in loss of charge transfer efficiency and other performance degradations.



## Clock Voltage Detail Characteristics<sup>1</sup>

| Description                | Symbol | Minimum | Nominal | Maximum | Units | Notes               |
|----------------------------|--------|---------|---------|---------|-------|---------------------|
| TG1C High-level variation  | V1HH   | -       | 0.50    | 1       | V     | High-level coupling |
| TG2x High-level variation  | V2HL   | -       | 0.28    | 1       | V     | High-level coupling |
| TG2x Low-level variation   | V2LH   | -       | 0.46    | 1       | V     | Low-level coupling  |
| TG1C Low-level variation   | V1LL   | -       | 0.14    | 1       | V     | Low-level coupling  |
| H1x High-level variation   | H1HH   | -       | 0.30    | 1       | V     |                     |
| H1x High-level variation   | H1HL   | -       | 0.07    | 1       | V     |                     |
| H1 Low-level variation     | H1LH   | -       | 0.16    | 1       | V     |                     |
| H1x Low-level variation    | H1LL   | -       | 0.25    | 1       | V     |                     |
| H2x High-level variation   | H2HH   | -       | 0.40    | 1       | V     |                     |
| H2x High-level variation   | H2HL   | -       | 0.06    | 1       | V     |                     |
| H2x Low-level variation    | H2LH   | -       | 0.10    | 1       | V     |                     |
| H2x Low-level variation    | H2LL   | -       | 0.27    | 1       | V     |                     |
| H1x – H2x Cross-over       | H1CR1  | 40      | 50      | 60      | %     | Rising side of H1   |
| H1x – H2x Cross-over       | H1CR2  | 40      | 50      | 60      | %     | Falling side of H1  |
| PHIRx High-level variation | RGHH   | -       | 0.19    | 1       | V     |                     |
| PHIRx High-level variation | RGHL   | -       | 0.20    | 1       | V     |                     |
| PHIRx Low-level variation  | RGLH   | -       | 0.11    | 1       | V     |                     |
| PHIRx Low-level variation  | RGLL   | -       | 0.30    | 1       | V     |                     |
| TG1C Rise Time             | tV1r   | -       | 0.26    | 1       | us    | 2                   |
| TG2x Rise Time             | tV2r   | -       | 0.55    | 1       | us    | 2                   |
| TG1C Fall Time             | tV1f   | -       | 0.43    | 1       | us    | 2                   |
| TG2x Fall Time             | tV2f   | -       | 0.31    | 1       | us    | 2                   |
| H1 Rise Time               | tH1r   | -       | 9.0     | 10      | ns    | 2                   |
| H2 Rise Time               | tH2r   | -       | 6.9     | 10      | ns    | 2                   |
| H1 Fall Time               | tH1f   | -       | 5.8     | 10      | ns    | 2                   |
| H2 Fall Time               | tH2f   | -       | 5.4     | 10      | ns    | 2                   |
| PHIRx Rise Time            | tRGr   | -       | 2.0     | 4       | ns    | 2                   |
| PHIRx Fall Time            | tRGf   | -       | 2.2     | 4       | ns    | 2                   |
| Reset Pulse Width          | tRGw   | -       | 5.0     | -       | ns    |                     |

- 1. H1, H2 clock frequency: 30MHz. The maximum and minimum values in this table are supplied for reference. Testing against the device performance specifications is performed using the nominal values.
- 2. Longer times will degrade noise performance.



## CLOCK LINE CAPACITANCE

### Chroma

| Description                 | Symbol                                                      | Minimum | Nominal | Maximum | Units | Notes |
|-----------------------------|-------------------------------------------------------------|---------|---------|---------|-------|-------|
| Phase 1 Clock Capacitance   | C <sub>H1CA</sub><br>C <sub>H1CB</sub>                      |         | 330     |         | pF    | 1     |
| Phase 2 Clock Capacitance   | C <sub>H2CA</sub><br>C <sub>H2CB</sub>                      |         | 270     |         | pF    | 1     |
| Transfer Gate 1 Capacitance | C <sub>TG1C</sub>                                           |         | 185     |         | pF    |       |
| Transfer Gate 2 Capacitance | C <sub>TG2C</sub>                                           |         | 320     |         | рF    |       |
| Exposure Gate Capacitance   | C <sub>logr</sub><br>C <sub>logg</sub><br>C <sub>logb</sub> |         | 33      |         | pF    |       |
| Reset Gate Capacitance      | C <sub>PHIRC</sub>                                          |         | 10      |         | рF    |       |

#### Luma

| Description                 | Symbol                                            | Minimum | Nominal | Maximum | Units | Notes |
|-----------------------------|---------------------------------------------------|---------|---------|---------|-------|-------|
| Phase 1 Clock Capacitance   | C <sub>H1LA</sub><br>C <sub>H1LB</sub>            |         | 400     |         | рF    |       |
| Phase 2 Clock Capacitance   | C <sub>H2LA</sub><br>C <sub>H2LB</sub>            |         | 300     |         | рF    |       |
| Transfer Gate 2 Capacitance | C <sub>TG2L</sub>                                 |         | 230     |         | рF    |       |
| Exposure Gate Capacitance   | CLOGL                                             |         | 75      |         | рF    |       |
| Reset Gate Capacitance      | C <sub>phirla</sub><br>C <sub>phirl<b>b</b></sub> |         | 6       |         | pF    |       |

#### Notes:

1. The value listed is the effective value, or equal to ½ the total load capacitance per CCD phase. Since the CCDs are driven from both ends of the sensor, the total load capacitance per horizontal drive function is approximately twice the value listed. These values were calculated from design targets. These values do not take into account the device package.



## TIMING

## EDGE ALIGNMENT

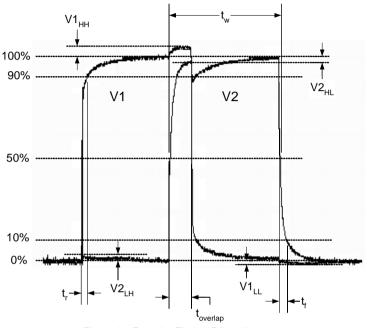
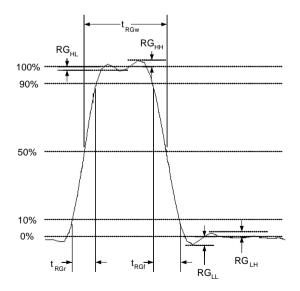
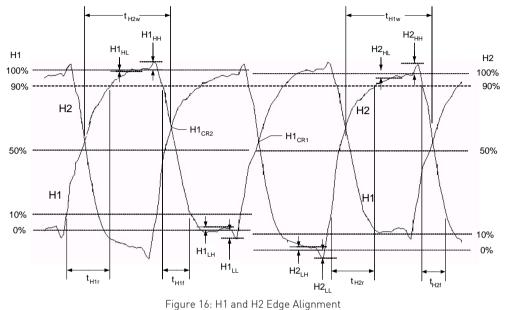
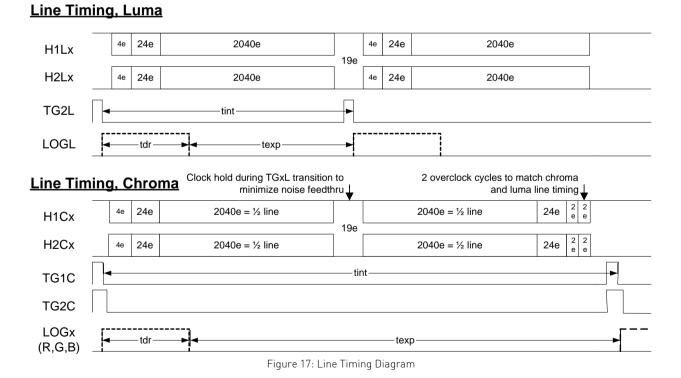



Figure 14: Transfer Timing Edge Alignment

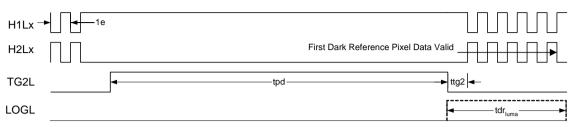
### **PIXEL TIMING**



Figure 15: Pixel Timing Detail



### PIXEL TIMING EDGE ALIGNMENT




#### LINE TIMING





#### Luma Accumulation Gate-to-CCD Transfer Timing



### Chroma Photodiode-to-CCD Transfer Timing

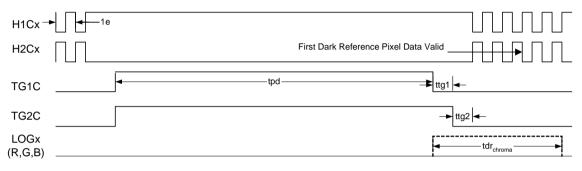
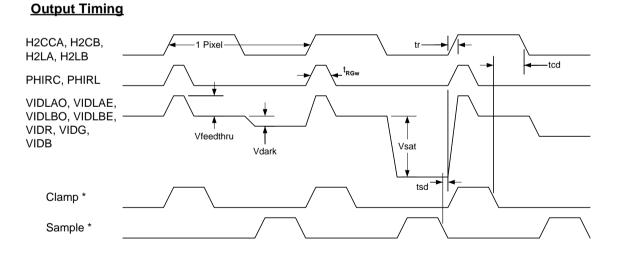




Figure 18: Transfer Timing Diagram



\* Required for Optional Off-Chip, Analog, Correlated Double Sampling (CDS) Signal Processing

Figure 19: Output Timing Diagram



## STORAGE AND HANDLING

## STORAGE CONDITITIONS

| Description                                 | Symbol          | Minimum | Maximum | Units | Notes |
|---------------------------------------------|-----------------|---------|---------|-------|-------|
| Storage<br>Temperature                      | T <sub>st</sub> | -25     | 80      | °C    | 1     |
| Humidity                                    | RH              | 5       | 90      | %     | 2     |
| Operating<br>Temperature                    | T <sub>op</sub> | 0       | 70      | °C    | 3     |
| Guaranteed<br>Temperature of<br>Performance | Τ <sub>sp</sub> | 25      | 40      | °C    | 4     |

Notes:

- 1. T=25°C. Excessive humidity will degrade MTTF.
- 2. Long-term storage toward the maximum temperature may accelerate color filter degradation.
- 3. Noise performance will degrade at higher temperatures.
- 4. See section for Imaging Performance Specifications.

### ESD

- This device contains limited protection against Electrostatic Discharge (ESD). CCD image sensors can be damaged by electrostatic discharge. Failure to do so may alter device performance and reliability.
- Devices should be handled in accordance with strict ESD procedures for Class 0 (<250V per JESD22 Human Body Model test), or Class A (<200V JESD22 Machine Model test) devices. Devices are shipped in static-safe containers and should only be handled at static-safe workstations.
- 3. See Application Note MTD/PS-1039 "Image Sensor Handling and Best Practices" for proper handling and grounding procedures. This application note also contains recommendations for workplace modifications for the minimization of electrostatic discharge.
- 4. Store devices in containers made of electroconductive materials.

### COVER GLASS AND CLEANLINESS

- 1. The cover glass is highly susceptible to particles and other contamination. Perform all assembly operations in a clean environment.
- 2. Touching the cover glass must be avoided
- 3. Improper cleaning of the cover glass may damage these devices. Refer to Application Note

MTD/PS-1039 "Image Sensor Handling and Best Practices"

### ENVIRONMENTAL EXPOSURE

- Do not expose to strong sun light for long periods of time. The color filters and/or microlenses may become discolored. Long time exposures to a static high contrast scene should be avoided. The image sensor may become discolored and localized changes in response may occur from color filter/microlens aging.
- 2. Exposure to temperatures exceeding the absolute maximum levels should be avoided for storage and operation. Failure to do so may alter device performance and reliability.
- 3. Avoid sudden temperature changes.
- 4. Exposure to excessive humidity will affect device characteristics and should be avoided. Failure to do so may alter device performance and reliability.
- 5. Avoid storage of the product in the presence of dust or corrosive agents or gases. Long-term storage should be avoided. Deterioration of lead solderability may occur. It is advised that the solderability of the device leads be re-inspected after an extended period of storage, over one year.

### SOLDERING RECOMMENDATIONS

- 1. The soldering iron tip temperature is not to exceed 370°C. Failure to do so may alter device performance and reliability.
- 2. Flow soldering method is not recommended. Solder dipping can cause damage to the glass and harm the imaging capability of the device. Recommended method is by partial heating. Kodak recommends the use of a grounded 30W soldering iron. Heat each pin for less than 2 seconds duration.
- 3. For circuit board repair, or de-soldering an image sensor, do not use solder suction equipment. In any instance, care should be given to minimize and eliminate electrostatic discharge.



## **MECHANICAL INFORMATION**

### COMPLETED ASSEMBLY

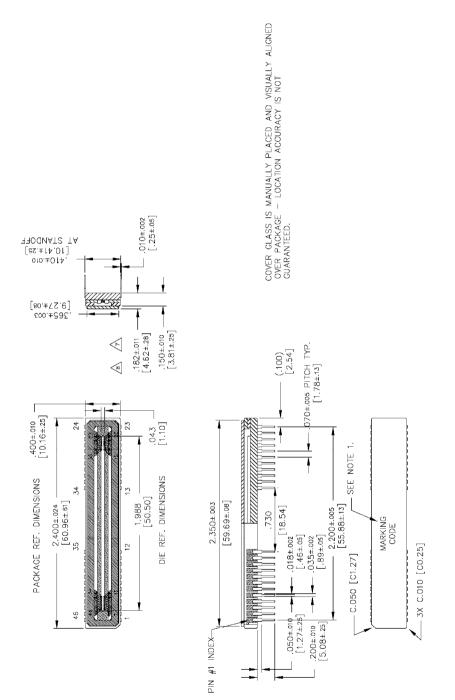



Figure 20: Completed Assembly (1 of 1)



## QUALITY ASSURANCE AND RELIABILITY

## QUALITY STRATEGY

All image sensors will conform to the specifications stated in this document. This will be accomplished through a combination of statistical process control and inspection at key points of the production process. Typical specification limits are not guaranteed but provided as a design target. For further information refer to ISS Application Note MTD/PS-0292, Quality and Reliability.

## REPLACEMENT

All devices are warranted against failure in accordance with the terms of Terms of Sale. This does not include failure due to mechanical and electrical causes defined as the liability of the customer below.

## LIABILITY OF THE SUPPLIER

A reject is defined as an image sensor that does not meet all of the specifications in this document upon receipt by the customer.

## LIABILITY OF THE CUSTOMER

Damage from mechanical (scratches or breakage), electrostatic discharge (ESD) damage, or other electrical misuse of the device beyond the stated absolute maximum ratings, which occurred after receipt of the sensor by the customer, shall be the responsibility of the customer.

### RELIABILITY

Information concerning the quality assurance and reliability testing procedures and results are available from the Image Sensor Solutions and can be supplied upon request. For further information refer to ISS Application Note MTD/PS-0292, Quality and Reliability.

### TEST DATA RETENTION

Image sensors shall have an identifying number traceable to a test data file. Test data shall be kept for a period of 2 years after date of delivery.

#### MECHANICAL

The device assembly drawing is provided as a reference. The device will conform to the published package tolerances.

Kodak reserves the right to change any information contained herein without notice. All information furnished by Kodak is believed to be accurate.

### WARNING: LIFE SUPPORT APPLICATIONS POLICY

Kodak image sensors are not authorized for and should not be used within Life Support Systems without the specific written consent of the Eastman Kodak Company. Product warranty is limited to replacement of defective components and does not cover injury or property or other consequential damages.



## **REVISION CHANGES**

| Revision |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number   | Description of Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.0      | Initial formal release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.0      | <ul> <li>Updated specification format. Clarification of test conditions adding Notes 19-22 for Imaging<br/>Performance</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3.0      | <ul> <li>ECO 628. Updated exposure control features for the chroma only. Luma channel does not have exposure control.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4.0      | <ul> <li>Performance values finalized per production characterization.</li> <li>Correction to general part description on page 6.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5.0      | <ul> <li>Page 3 charge capacity values updated based on characterization data .</li> <li>Page 4 pinout table corrected for labeling of VIDLBE (pin 42) and VIDLBO (pin 40). Page 5 schematic clarified for readability. Page 21 timing labels changed to reflect TG1C and TG2x level variations. Levels and values did not change. Removal of package drawing. Updated exposure control features to include the luma channel. Finally, page 28, (%) description added to linearity chart to clarify units.</li> <li>Sensitivity test added to Image Specification table.</li> <li>Page 4 LOGL (pin 24) added to table and diagram.</li> <li>Page 6 description of die center added to last paragraph.</li> <li>Page 11 20mV max for chroma and 17mV max for luma added to exposure defect described in note 13.</li> <li>Page 20 correction to signal names TG1C, TG2x in table.</li> <li>Page 23 5ns nominal reset pulse width added to table.</li> <li>Page 25 Figure 14 updated to use same name as Figure 10 for reset pulse width, tRGw</li> </ul> |
| 6.0      | Update of test conditions and specification format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.0      | Page 13 - Clarified test conditions as defined by test capabilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



This page intentionally left blank.



This page intentionally left blank.



©Eastman Kodak Company, 2009. Kodak and Pixelux are trademarks.