

S-5712 Series

LOW VOLTAGE OPERATION BOTH POLES / UNIPOLAR DETECTION TYPE HALL IC

www.sii-ic.com

© Seiko Instruments Inc., 2010-2011

Rev.4.0 00

The S-5712 Series, developed by CMOS technology, is a high-accuracy Hall IC that operates at a low voltage and low current consumption.

The output voltage changes when the S-5712 Series detects the intensity level of flux density. Using the S-5712 Series with a magnet makes it possible to detect the open/close state in various devices.

High-density mounting is possible by using the super-small SNT-4A or the small SOT-23-3 packages. Due to its low voltage operation and low current consumption, the S-5712 Series is suitable for battery-operated portable devices. Due to its high-accuracy magnetic characteristics, the S-5712 Series can make operation's dispersion in the system combined with magnet smaller.

■ Features

• Pole detection*1: Detection of both poles, south pole or north pole

Detection logic for magnetism*1: Active "L", active "H"

• Output form*1: Nch open drain output, CMOS output

Magnetic sensitivity^{*1}: B_{OP} = 3.0 mT typ., 4.5 mT typ.
 Operating cycle (current consumption): Product with both poles detection

50.50 ms (2.0 μA) typ.

Product with south pole or north pole detection

50.85 ms (1.4 μA) typ.

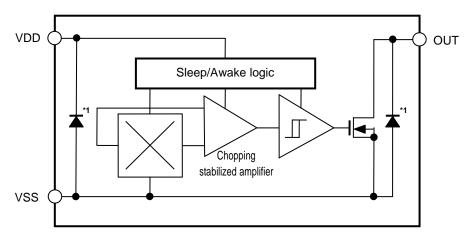
Power supply voltage range:
 Operation temperature range:
 1.6 V to 3.5 V
 -40°C to +85°C

• Lead-free (Sn 100%), halogen-free*2

*1. The Option can be selected.

*2. Refer to "■ Product Name Structure" for details.

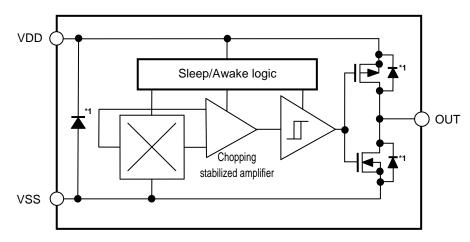
■ Applications


- Mobile phones (flip type, slide type, etc.)
- Laptop PCs
- Digital video cameras
- Playthings, portable games
- Home appliances

Packages

- SNT-4A
- SOT-23-3

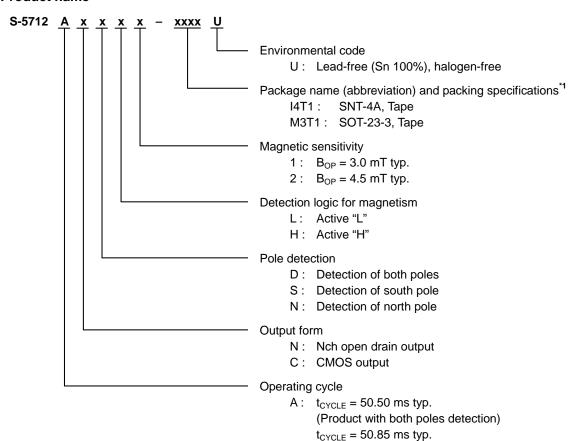
■ Block Diagrams


1. Nch open drain output product

*1. Parasitic diode

Figure 1

2. CMOS output product



*1. Parasitic diode

Figure 2

■ Product Name Structure

1. Product name

^{*1.} Refer to the tape specifications at the end of this book.

2. Packages

Package Name	Drawing Code						
	Package	Tape	Reel	Land			
SNT-4A	PF004-A-P-SD	PF004-A-C-SD	PF004-A-R-SD	PF004-A-L-SD			
SOT-23-3	MP003-C-P-SD	MP003-C-C-SD	MP003-Z-R-SD	_			

(Product with south pole or north pole detection)

3. Product name list

Table 1

Output Form	Pole Detection			SNT-4A	SOT-23-3
Nch open drain output	Both poles	Active "L"	3.0 mT typ.	S-5712ANDL1-I4T1U	S-5712ANDL1-M3T1U
Nch open drain output	Both poles	Active "L"	4.5 mT typ.	S-5712ANDL2-I4T1U	S-5712ANDL2-M3T1U
CMOS output	Both poles	Active "L"	3.0 mT typ.	S-5712ACDL1-I4T1U	S-5712ACDL1-M3T1U
CMOS output	Both poles	Active "L"	4.5 mT typ.	S-5712ACDL2-I4T1U	S-5712ACDL2-M3T1U
CMOS output	South pole	Active "L"	3.0 mT typ.	S-5712ACSL1-I4T1U	S-5712ACSL1-M3T1U
CMOS output	South pole	Active "L"	4.5 mT typ.	S-5712ACSL2-I4T1U	S-5712ACSL2-M3T1U
CMOS output	North pole	Active "L"	3.0 mT typ.	S-5712ACNL1-I4T1U	S-5712ACNL1-M3T1U
CMOS output	North pole	Active "L"	4.5 mT typ.	S-5712ACNL2-I4T1U	S-5712ACNL2-M3T1U

Remark Please contact our sales office for products other than the above.

LOW VOLTAGE OPERATION BOTH POLES / UNIPOLAR DETECTION TYPE HALL IC S-5712 Series Rev.4.0_00

■ Pin Configurations

SNT-4A Top view

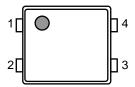


Figure 3

SOT-23-3 Top view

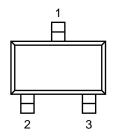


Figure 4

Table 2

Pin No.	Symbol	Pin Description
1	VDD	Power supply pin
2	VSS	GND pin
3	NC ^{*1}	No connection
4	OUT	Output pin

^{*1.} The NC pin is electrically open.

The NC pin can be connected to VDD or VSS.

Table 3

Pin No.	Symbol	Pin Description
1	VSS	GND pin
2	VDD	Power supply pin
3	OUT	Output pin

■ Absolute Maximum Ratings

Table 4

 $(Ta = +25^{\circ}C \text{ unless otherwise specified})$

Item		Symbol	Absolute Maximum Rating	Unit
Power supply voltage		V_{DD}	$V_{SS} - 0.3$ to $V_{SS} + 7.0$	V
Output current		I _{OUT}	±1.0	mA
Output voltage	Nch open drain output	V	$V_{SS} - 0.3$ to $V_{SS} + 7.0$	V
Output voltage	CMOS output	V _{OUT}	$V_{\text{SS}} - 0.3$ to $V_{\text{DD}} + 0.3$	V
Power dissipation	SNT-4A	P _D	300 ^{*1}	mW
rowei dissipation	SOT-23-3	r _D	430 ^{*1}	mW
Operating ambient temperature		T _{opr}	-40 to +85	°C
Storage temperature	Э	T _{stg}	-40 to +125	°C

^{*1.} When mounted on board

[Mounted board]

(1) Board size: 114.3 mm × 76.2 mm × t1.6 mm (2) Name: JEDEC STANDARD51-7

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

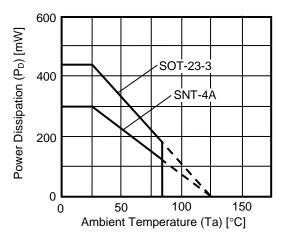


Figure 5 Power Dissipation of Package (When Mounted on Board)

■ Electrical Characteristics

1. Product with both poles detection

Table 5

(Ta = $+25^{\circ}$ C, V_{DD} = 1.85 V, V_{SS} = 0 V unless otherwise specified)

Item	Symbol	C	onditions	Min.	Тур.	Max.	Unit	Test Circuit
Power supply voltage	V_{DD}		_	1.60	1.85	3.50	V	_
Current consumption	I _{DD}	Average value	Average value			4.0	μΑ	1
	V _{OUT}	Nch open drain output product	Output transistor Nch, I _{OUT} = 0.5 mA	_	_	0.4	V	2
Output voltage		CMOS output product	Output transistor Nch, I _{OUT} = 0.5 mA	_	_	0.4	V	2
			Output transistor Pch, $I_{OUT} = -0.5 \text{ mA}$	V _{DD} – 0.4	_	_	٧	3
Leakage current	I _{LEAK}	•	Nch open drain output product Output transistor Nch, V _{OUT} = 3.5 V		_	1	μΑ	4
Awake mode time	t _{AW}		_		0.10	_	ms	_
Sleep mode time	t _{SL}		-		50.40	_	ms	_
Operating cycle	t _{CYCLE}	$t_{AW} + t_{SL}$		_	50.50	100.00	ms	_

2. Product with south pole and north pole detection

Table 6

(Ta = +25°C, V_{DD} = 1.85 V, V_{SS} = 0 V unless otherwise specified)

Item	Symbol	С	onditions	Min.	Тур.	Max.	Unit	Test Circuit
Power supply voltage	V_{DD}					3.50	V	-
Current consumption	I _{DD}	Average value		ı	1.4	3.0	μΑ	1
	V _{OUT}	Nch open drain output product	Output transistor Nch, I _{OUT} = 0.5 mA	1	1	0.4	>	2
Output voltage		CMOS output product	Output transistor Nch, I _{OUT} = 0.5 mA	-	ı	0.4	٧	2
			Output transistor Pch, $I_{OUT} = -0.5 \text{ mA}$	V _{DD} – 0.4	1	I	>	3
Leakage current	I _{LEAK}	Nch open drain of Output transistor		-	-	1	μΑ	4
Awake mode time	t _{AW}		_	-	0.05	-	ms	-
Sleep mode time	t _{SL}		_		50.80	1	ms	_
Operating cycle	t _{CYCLE}	$t_{AW} + t_{SL}$		_	50.85	100.00	ms	_

■ Magnetic Characteristics

1. Product with both poles detection

1. 1 $B_{OP} = 3.0 \text{ mT typ.}$

Table 7

(Ta = +25°C, V_{DD} = 1.85 V, V_{SS} = 0 V unless otherwise specified)

Item	•	Symbol	Conditions	Min.	Тур.	Max.	Unit	Test Circuit
Operating point*1	South pole	B _{OPS}	-	1.4	3.0	4.0	mT	5
	North pole	B _{OPN}	_	-4.0	-3.0	-1.4	mT	5
Release point*2	South pole	B _{RPS}	_	1.1	2.2	3.7	mT	5
	North pole	B _{RPN}	_	-3.7	-2.2	-1.1	mT	5
Hysteresis width*3	South pole	B _{HYSS}	$B_{HYSS} = B_{OPS} - B_{RPS}$	ı	0.8	ı	mT	5
	North pole	B _{HYSN}	$B_{HYSN} = B_{OPN} - B_{RPN} $	_	0.8	_	mT	5

1. 2 $B_{OP} = 4.5 \text{ mT typ.}$

Table 8

(Ta = +25°C, V_{DD} = 1.85 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Conditions	Min.	Тур.	Max.	Unit	Test Circuit
Operating point*1	South pole	B _{OPS}	_	2.5	4.5	6.0	mT	5
Operating point	North pole	B _{OPN}	_	-6.0	-4.5	-2.5	mT	5
Release point*2	South pole	B _{RPS}	_	2.0	3.5	5.5	mT	5
Release point	North pole	B _{RPN}	_	-5.5	-3.5	-2.0	mT	5
Hysteresis width*3	South pole	B _{HYSS}	$B_{HYSS} = B_{OPS} - B_{RPS}$	- 1	1.0	1	mT	5
mysteresis width	North pole	B _{HYSN}	$B_{HYSN} = B_{OPN} - B_{RPN} $		1.0		mT	5

2. Product with south pole detection

2. 1 $B_{OP} = 3.0 \text{ mT typ.}$

Table 9

(Ta = +25°C, V_{DD} = 1.85 V, V_{SS} = 0 V unless otherwise specified)

				- 7 00	, 00			/
Item		Symbol	Conditions	Min.	Тур.	Max.	Unit	Test Circuit
Operating point*1	South pole	B _{OPS}	_	1.4	3.0	4.0	mT	5
Release point*2	South pole	B _{RPS}	_	1.1	2.2	3.7	mT	5
Hysteresis width*3	South pole	B _{HYSS}	$B_{HYSS} = B_{OPS} - B_{RPS}$	_	8.0	ı	mT	5

2. 2 $B_{OP} = 4.5 \text{ mT typ.}$

Table 10

(Ta = +25°C, V_{DD} = 1.85 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Conditions	Min.	Тур.	Max.	Unit	Test Circuit
Operating point*1	South pole	B _{OPS}	_	2.5	4.5	6.0	mT	5
Release point*2	South pole	B _{RPS}	_	2.0	3.5	5.5	mT	5
Hysteresis width*3	South pole	B _{HYSS}	$B_{HYSS} = B_{OPS} - B_{RPS}$	_	1.0	_	mT	5

3. Product with north pole detection

3. 1 $B_{OP} = 3.0 \text{ mT typ.}$

Table 11

(Ta = +25°C, V_{DD} = 1.85 V, V_{SS} = 0 V unless otherwise specified)

					, 00			
Item		Symbol	Conditions	Min.	Тур.	Max.	Unit	Test Circuit
Operating point*1	North pole	B _{OPN}	-	-4.0	-3.0	-1.4	mT	5
Release point*2	North pole	B _{RPN}	_	-3.7	-2.2	-1.1	mT	5
Hysteresis width*3	North pole	B _{HYSN}	$B_{HYSN} = B_{OPN} - B_{RPN} $	ı	0.8	ı	mT	5

3. 2 $B_{OP} = 4.5 \text{ mT typ.}$

Table 12

(Ta = +25°C, V_{DD} = 1.85 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Conditions	Min.	Тур.	Max.	Unit	Test Circuit
Operating point*1	North pole	B _{OPN}	_	-6.0	-4.5	-2.5	mT	5
Release point*2	North pole	B _{RPN}	_	-5.5	-3.5	-2.0	mT	5
Hysteresis width*3	North pole	B _{HYSN}	$B_{HYSN} = B_{OPN} - B_{RPN} $	_	1.0	_	mT	5

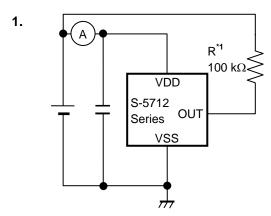
***1.** B_{OPN}, B_{OPS}: Operating points

The operating points are the values of magnetic flux density when the output voltage (V_{OUT}) is inverted after the magnetic flux density applied to the S-5712 Series by the magnet (north or south pole) is increased (the magnet is moved closer). Even when the magnetic flux density exceeds B_{OPN} or B_{OPS} , V_{OUT} retains the status.

*2. B_{RPN}, B_{RPS}: Release points

The release points are the values of magnetic flux density when the output voltage (V_{OUT}) is inverted after the magnetic flux density applied to the S-5712 Series by the magnet (north or south pole) is decreased (the magnet is moved further away).

Even when the magnetic flux density falls below B_{RPN} or $B_{\text{RPS}},\,V_{\text{OUT}}$ retains the status.


*3. B_{HYSN}, B_{HYSS}: Hysteresis widths

8

B_{HYSN} and B_{HYSS} are the difference between B_{OPN} and B_{RPN}, and B_{OPS} and B_{RPS}, respectively.

Remark The unit of magnetic density mT can be converted by using the formula 1 mT = 10 Gauss.

■ Test Circuits

*1. Resistor (R) is unnecessary for the CMOS output product.

Figure 6

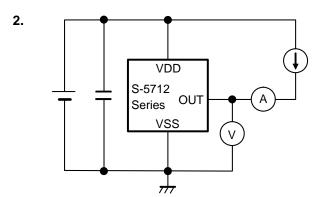
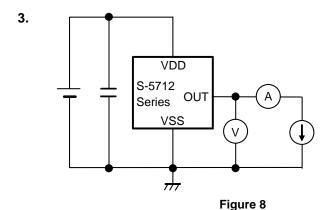



Figure 7

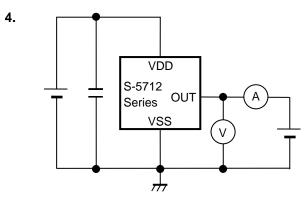
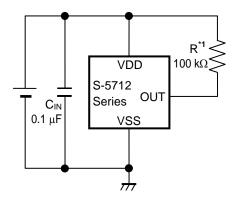


Figure 9


5.

R*1
100 kΩ
VDD
S-5712
Series
VSS
V

*1. Resistor (R) is unnecessary for the CMOS output product.

Figure 10

■ Standard Circuit

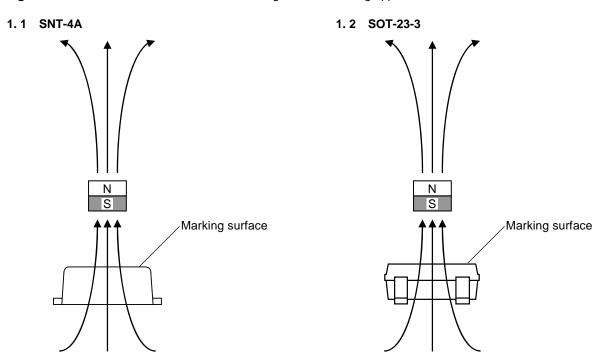
*1. Resistor (R) is unnecessary for the CMOS output product.

Figure 11

Caution The above connection diagram and constant will not guarantee successful operation. Perform thorough evaluation using the actual application to set the constant.

■ Operation

1. Direction of applied magnetic flux


The S-5712 Series detects the flux density which is vertical to the marking surface.

In products with detection of both poles, the output voltage (V_{OUT}) is inverted when the south or north pole is moved closer to the marking surface.

In products with detection of the south pole, the output voltage (V_{OUT}) is inverted when the south pole is moved closer to the marking surface.

In products with detection of the north pole, the output voltage (V_{OUT}) is inverted when the north pole is moved closer to the marking surface.

Figures 12 and 13 show the direction in which magnetic flux is being applied.

2. Position of Hall sensor

Figure 14

12

Figure 12

Figures 14 and 15 show the position of Hall sensor.

The center of this Hall sensor is located in the area indicated by a circle, which is in the center of a package as described below.

Figure 13

Figure 15

The following also shows the distance (typ. value) between the marking surface and the chip surface of a package.

Seiko Instruments Inc.

3. Basic operation

The S-5712 Series changes the output voltage level (V_{OUT}) according to the level of the magnetic flux density (north or south pole) applied by a magnet.

The following explains the operation when the magnetism detection logic is active "L".

3. 1 Products with detection of both poles

When the magnetic flux density vertical to the marking surface exceeds B_{OPN} or B_{OPS} after the south or north pole of a magnet is moved closer to the marking surface of the S-5712 Series, V_{OUT} changes from "H" to "L". When the south or north pole of a magnet is moved further away from the marking surface of the S-5712 Series and the magnetic flux density is lower than B_{RPN} or B_{RPS} , V_{OUT} changes from "L" to "H".

Figure 16 shows the relationship between the magnetic density and V_{OUT} .

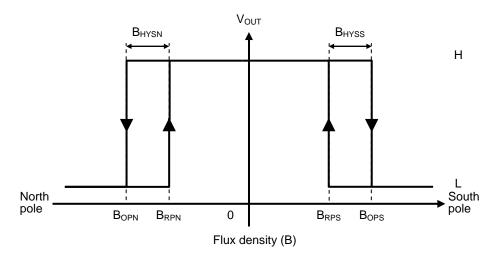


Figure 16

3. 2 Products with detection of south pole

When the magnetic flux density vertical to the marking surface exceeds B_{OPS} after the south pole of a magnet is moved closer to the marking surface of the S-5712 Series, V_{OUT} changes from "H" to "L". When the south pole of a magnet is moved further away from the marking surface of the S-5712 Series and the magnetic flux density is lower than B_{RPS} , V_{OUT} changes from "L" to "H".

Figure 17 shows the relationship between the magnetic density and V_{OUT}.

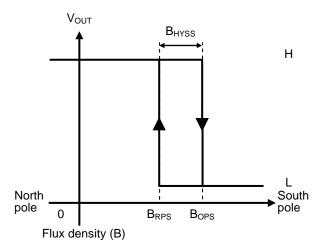


Figure 17

3. 3 Products with detection of north pole

When the magnetic flux density vertical to the marking surface exceeds B_{OPN} after the north pole of a magnet is moved closer to the marking surface of the S-5712 Series, V_{OUT} changes from "H" to "L". When the north pole of a magnet is moved further away from the marking surface of the S-5712 Series and the magnetic flux density is lower than B_{RPN} , V_{OUT} changes from "L" to "H".

Figure 18 shows the relationship between the magnetic density and V_{OUT} .

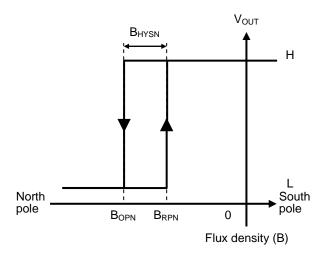
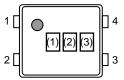


Figure 18

LOW VOLTAGE OPERATION BOTH POLES / UNIPOLAR DETECTION TYPE HALL ICRev.4.0_00 **S-5712 Series**

■ Precautions


- If the impedance of the power supply is high, the IC may malfunction due to a supply voltage drop caused by throughtype current. Take care with the pattern wiring to ensure that the impedance of the power supply is low.
- Note that the IC may malfunction if the power supply voltage rapidly changes.
- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.
- Large stress on this IC may affect on the magnetic characteristics. Avoid large stress which is caused by bend and distortion during mounting the IC on a board or handle after mounting.
- SII claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.

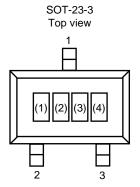
■ Marking Specifications

1. SNT-4A

SNT-4A Top view

(1) to (3): Product code (Refer to **Product name vs. Product code**.)

Product name vs. Product code


1. 1 Nch open drain output product

Product Name	Pro	Product Code			
Floduct Name	(1)	(2)	(3)		
S-5712ANDL1-I4T1U	Х	Α	В		
S-5712ANDL2-I4T1U	Х	Α	С		

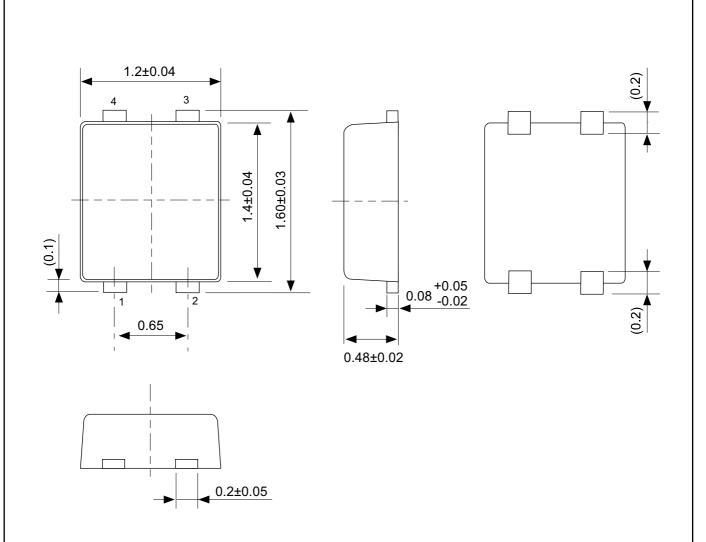
1. 2 CMOS output product

Product Name	Product Code		
Floduct Name	(1)	(2)	(3)
S-5712ACDL1-I4T1U	Χ	В	В
S-5712ACDL2-I4T1U	Х	В	С
S-5712ACSL1-I4T1U	Х	В	J
S-5712ACSL2-I4T1U	Х	В	K
S-5712ACNL1-I4T1U	Х	В	R
S-5712ACNL2-I4T1U	Х	В	S

2. SOT-23-3

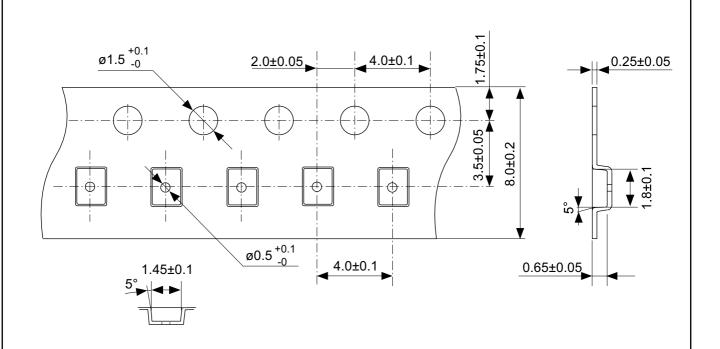
(1) to (3): Product code (Refer to **Product name vs. Product code**.)

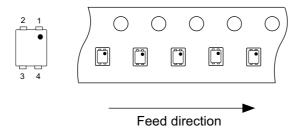
(4): Lot number


Product name vs. Product code

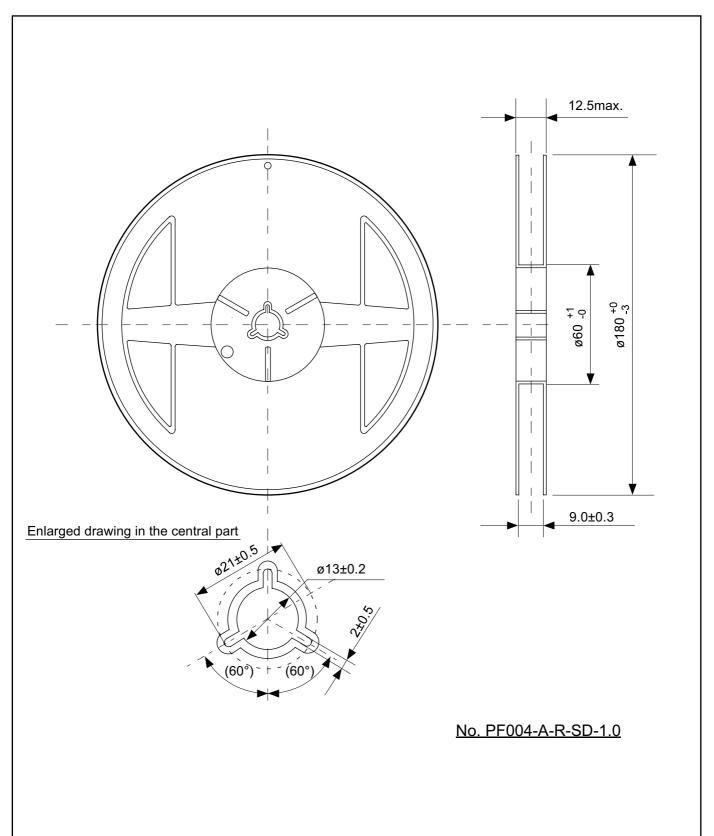
2. 1 Nch open drain output product

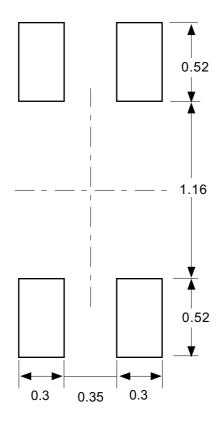
Product Name	Product Code			
Product Name	(1)	(2)	(3)	
S-5712ANDL1-M3T1U	Х	Α	В	
S-5712ANDL2-M3T1U	Х	Α	С	


2. 2 CMOS output product


<u> </u>			
Product Name	Product Code		
Floddet Name	(1)	(2)	(3)
S-5712ACDL1-M3T1U	Х	В	В
S-5712ACDL2-M3T1U	Х	В	С
S-5712ACSL2-M3T1U	X	В	J
S-5712ACSL2-M3T1U	X	В	K
S-5712ACNL2-M3T1U	Х	В	R
S-5712ACNL2-M3T1U	Х	В	S

No. PF004-A-P-SD-4.0

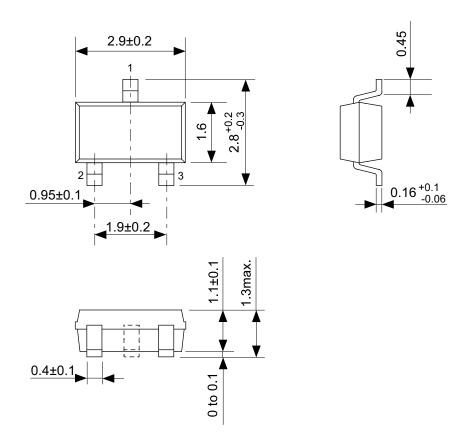

TITLE	SNT-4A-A-PKG Dimensions			
No.	PF004-A-P-SD-4.0			
SCALE				
UNIT	mm			
Seiko Instruments Inc.				



No. PF004-A-C-SD-1.0

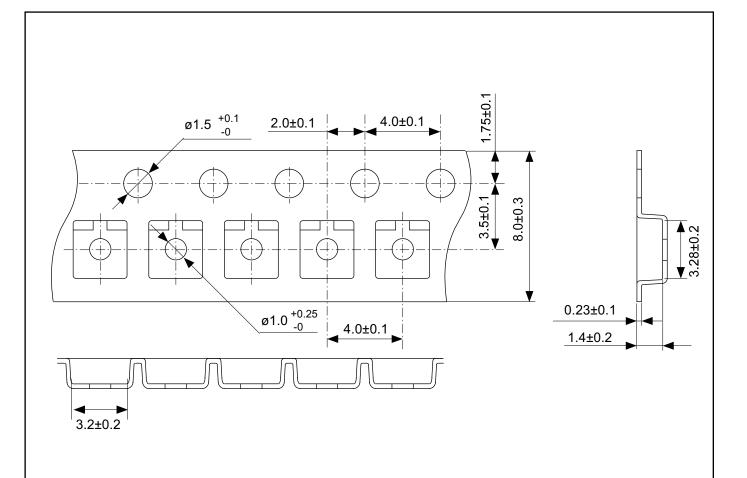
TITLE	SNT-4A-A-Carrier Tape		
No.	PF004-A-C-SD-1.0		
SCALE			
UNIT	mm		
Seiko Instruments Inc.			

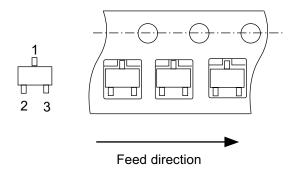
TITLE	SNT-4A-A-Reel				
No.	PF004-	A-R-SD-1	.0		
SCALE		QTY.	5,000		
UNIT	mm				
Seiko Instruments Inc.					



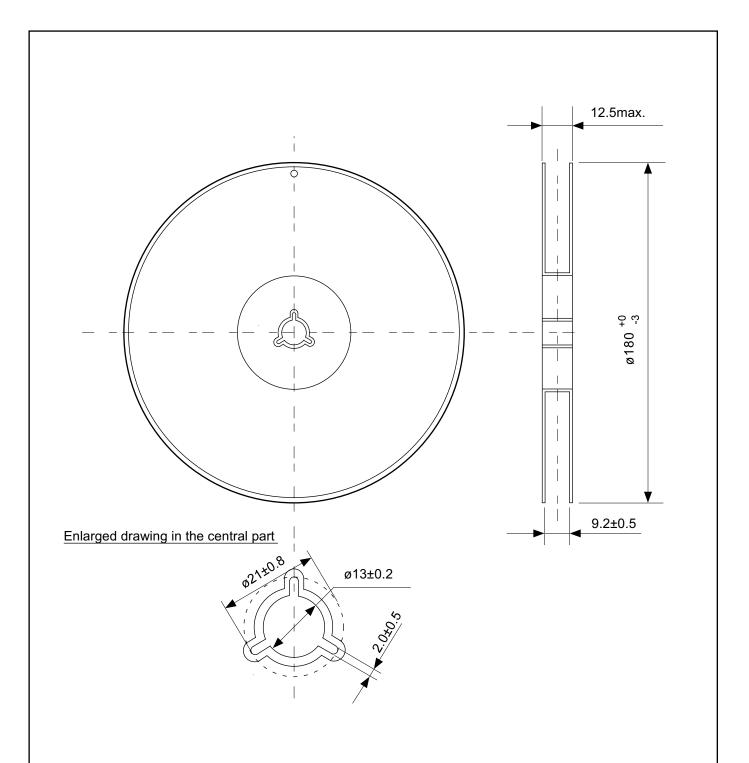
Caution Making the wire pattern under the package is possible. However, note that the package may be upraised due to the thickness made by the silk screen printing and of a solder resist on the pattern because this package does not have the standoff.

注意 パッケージ下への配線パターン形成は可能ですが、本パッケージはスタンドオフが無いので、パターン上のレジスト厚み、シルク印刷の厚みによってパッケージが持ち上がることがありますのでご配慮ください。


No. PF004-A-L-SD-3.0


	-		
TITLE	SNT-4A-A-Land Recommendation		
No.	PF004-A-L-SD-3.0		
SCALE			
UNIT	mm		
Seiko Instruments Inc.			

No. MP003-C-P-SD-1.0


TITLE	SOT233-C-PKG Dimensions		
No.	MP003-C-P-SD-1.0		
SCALE			
UNIT	mm		
Seiko Instruments Inc.			

No. MP003-C-C-SD-2.0

TITLE	SOT233-C-Carrier Tape		
No.	MP003-C-C-SD-2.0		
SCALE			
UNIT	mm		
Seiko Instruments Inc.			

No. MP003-Z-R-SD-1.0

TITLE	SOT233-C-Reel			
No.	MP003-Z-R-SD-1.0			
SCALE		QTY.	3,000	
UNIT	mm			
Seiko Instruments Inc.				

SII Seiko Instruments Inc. www.sii-ic.com

- The information described herein is subject to change without notice.
- Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein
 whose related industrial properties, patents, or other rights belong to third parties. The application circuit
 examples explain typical applications of the products, and do not guarantee the success of any specific
 mass-production design.
- When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.
- Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the
 failure or malfunction of semiconductor products may occur. The user of these products should therefore
 give thorough consideration to safety design, including redundancy, fire-prevention measures, and
 malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.