
Preliminary Datasheet

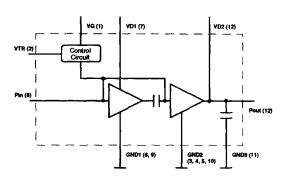
- * Power amplifier for GSM or AMPS application
- * Fully integrated 2 stage amplifier
- * Operating voltage range: 2.7 to 6 V
- * 2 W output power at 3.6 V
- * Overall power added efficiency 46 %
- * Input matched to 50 Ω , simple output match

ESD: Electrostatic discharge sensitive device, observe handling precautions!

Туре	Marking	Ordering code (taped)	Package 1)
CGY 94	CGY 94	Q68000-A9124	MW 12

Maximum ratings

Characteristics	Symbol	max. Value	Unit
Positive supply voltage	V_D	9	٧
Negative supply voltage 2)	٧G	-8	V
Supply current	I _D	2	A
Channel temperature	T _{Ch}	150	°C
Storage temperature	T _{stg}	-55+150	°C
Pulse peak power dissipation duty cycle 12.5%, ton=0.577ms	P _{Pulse}	9	W
Total power dissipation ($Ts \le 81$ °C) Ts: Temperature at soldering point	Ptot	5	W


Thermal Resistance

Channel-soldering point	R _{thChS}	≤14	K/W
Charmer-soldering point	いれいこ	>14	10.4

¹⁾ Plastic body Identical to SOT 223, dimensions see chapter Package Outlines

²⁾ $V_n = -8V$ only in combination with $V_{TR} = 0V$; $V_g = -6V$ while $V_{TR} \neq 0V$

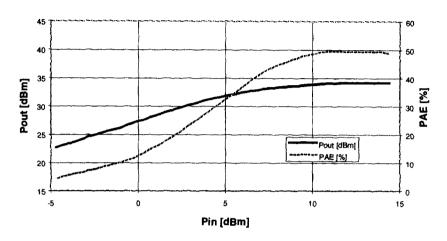
Functional block diagram:

Control circuit:

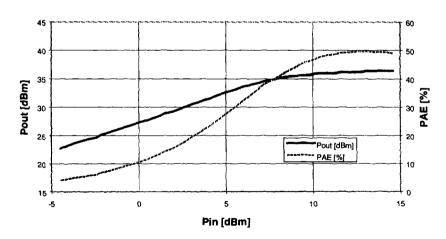
The drain current ID of the CGY 94 is adjusted by the internal control circuit. Therefore a negative voltage (-4V...-6V) has to be supplied at VG. For transmit operation VTR must be set to 0V. During receive operation VTR should be dis-connected (shut off mode).

Pin#	· ·	Configuration
1	VG	Negative voltage at control circuit (-4V6V)
2	VTR	Control voltage for transmit mode (0V) or receive mode (open)
3,4,5,10	GND 2	RF and DC ground of the 2nd stage
6,9	GND 1	RF and DC ground of the 1st stage
7	VDI	Positive drain voltage of the 1st stage
8	RFIn	RF input power
11	GND 3	Ground for internal output matching
12	VD2, RFout	Positive drain voltage of the 2nd stage, RF output power

DC characteristics

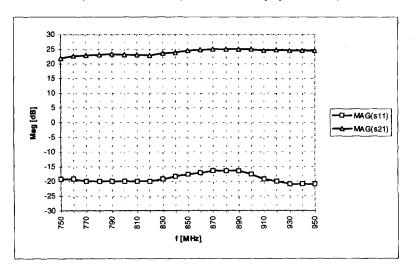

Characteristics	Symbol	Conditions	min	typ	max	Unit
Drain current stage 1	IDSS1	VD=3V, VG=0V, VTR n.c.	0.6	0.9	1.3	Α
stage 2	IDSS2		2.7	4.1	5.9	Α
Drain current with active current control	ID	VD=3V, VG=-4V, VTR=0V	-	1.1	-	А
Transconductance	gfs1	VD=3V, ID=350mA	0.25	0.32	-	s
(stage 1 and 2)	gfs2	VD=3V, ID=700mA	1.1	1.3	-	S
Pinch off voltage	Vp	VD=3V, ID<500μA	-3.8	-2.8	-1.8	٧
		(all stages)				

Electrical characteristics

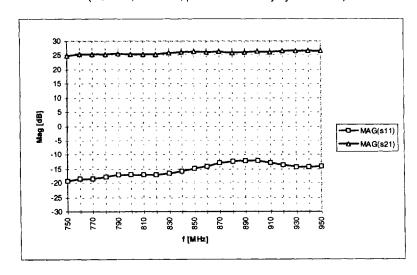

(T_A = 25°C , f=0.9 GHz, Z_S = Z_L =50 Ohm, VD=3.6V, VG=-4V, VTR pin connected to ground, unless otherwise specified; pulsed with a duty cycle of 10%, ton=0.33ms)

Characteristics	Symbol	min	typ	max	Unit
Supply current VD=3.0V; Pin=10dBm	IDD	-	1.18	-	Α
Negative supply current (normal operation)	IG	ļ	2	-	mA
Shut-off current VTR n.c.	ID	-	400	*	μA
Negative supply current (shut off mode, VTR pin n.c.)	l _G	-	10	-	μΑ
Gain P _{in} =-5dBm	G	27.0	29.0	-	dB
Power gain VD=3.6V; P _{in} =10dBm	G	22.8	23.6	•	dB
Output Power VD=3.0V; P _{in} =10dBm	Po	31.5	32.3	•	dBm
Output Power VD=3.6V; P _{in} =10dBm	Po	32.8	33.6	-	dBm
Output Power VD=5V; P _{in} =10dBm	Po	34.5	35.5	-	dBm
Overall Power added Efficiency VD=3.0V; P _{in} =10dBm	η	43	48	-	%
Overall Power added Efficiency VD=3.6V; P _{in} =10dBm	η	42	47	-	%
Overall Power added Efficiency VD=5V; P _{in} =10dBm	η	41	46	-	%
Harmonics (Pin=10dBm, CW) 2f ₀	-	-	-49	-	dBc
VD=3.6V; (P _{OUI} =33.1dBm) 3f ₀	-	-	-45	-	dBc
Input VSWR VD=3.6V;	-	-	1.5 : 1	2.0 : 1	-

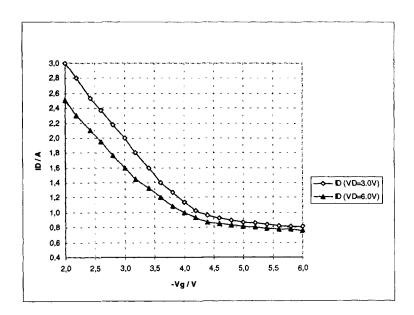
Pout and PAE vs. Pin (VD=3.6V, VG=-4V, VTR=0V, f=900GHz, pulsed with a duty cycle of 10%, ton=0.33ms)



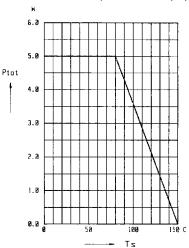
Pout and PAE vs. Pin (VD=5V, VG=-4V, VTR=0V, f=900GHz, pulsed with a duty cycle of 10%, ton=0.33ms)

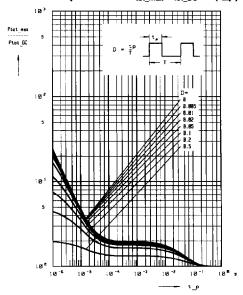

S-Parameter at VD=3.6V and Pin=9dBm

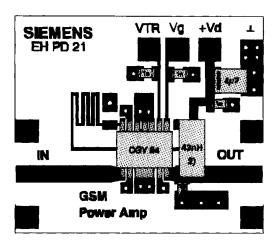
(VG=-4V, VTR=0V, pulsed with a duty cycle of 10%)



S-Parameter at VD=5V and Pin=9dBm

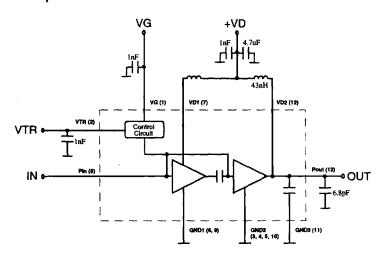

(VG=-4V, VTR=0V, pulsed with a duty cycle of 10%)


Performance of internal bias control circuit (VTR=0V)


Total Power Dissipation Ptot=f(Ts)

Permissible pulse load Ptot_max/Ptot_DC = f(t_p)

Test circuit board:


the CGY94 device (2-5mm).

Note:

By changing the position of the 6.8 pF capacitor at pin # 12 It is possible to tune the board for max. Pout or max. PAE. To achieve the maximum output power place the capacitor close to the CGY94. For a better PAE increase the distance between the capacitor and

Principal circuit:

 Collectaft SMD Spring Inductor distribution by Ginsbury Electronic GmbH, Am Moosfeld 85 D-81829 München, Tel. 089/45170-223

APPLICATION - HINTS

1. CW - capability of the CGY94

Proving the possibility of CW - operation there must be known the total power dissipation of the device. This value can be found as a function of the temperature in the datasheet (page 7). The CGY94 has a maximum total power dissipation of $P_{tot} = 5 \text{ W}$.

As an example we take the operating point with a drain voltage $V_D = 3 \text{ V}$ and a typical drain current of $I_D=1.0 \text{ A}$. So the maximum DC - power can be calculated to:

$$P_{DC} = V_D \cdot I_D = 3W$$

This value is smaller than 5 W and CW - operation is possible.

By decoupling RF power out of the CGY94 the power dissipation of the device can be further reduced. Assuming a power added efficiency (PAE) of 40 % the total power dissipation P_{tot} can be calculated using the following formula:

$$P_{tot} = P_{DC}(1 - PAE) = 3W(1 - 0.40) = 1.8W$$

2. Operation without using the internal current control

If you don't want to use the internal current control, it is recommended to connect the negative supply voltage at pin 1 (V_{TR}) instead of pin 2 (V_G). In that case V_G is not connected.

3. Biasing and use considerations

Biasing should be timed in such a way, that the gate voltage (V_G) is always applied before the drain voltage (V_D) , and when returning to the standby mode, the drain voltage has to be removed before the gate voltage.

Semiconductor Group 1597 10.95