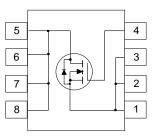
December 2000

FDS3570

80V N-Channel PowerTrench[®] MOSFET

General Description

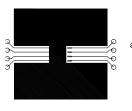
This N-Channel Logic Level MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers.


These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable $R_{\text{DS(on)}}$ specifications resulting in DC/DC power supply designs with higher overall efficiency.

Features

• 9 A, 80 V. $R_{DS(ON)} = 0.020 \ \Omega \ @ V_{GS} = 10 \ V$ $R_{DS(ON)} = 0.023 \ \Omega \ @ V_{GS} = 6 \ V.$

- Fast switching speed.
- High performance trench technology for extremely low $\rm R_{\rm DS(ON)}.$
- High power and current handling capability.

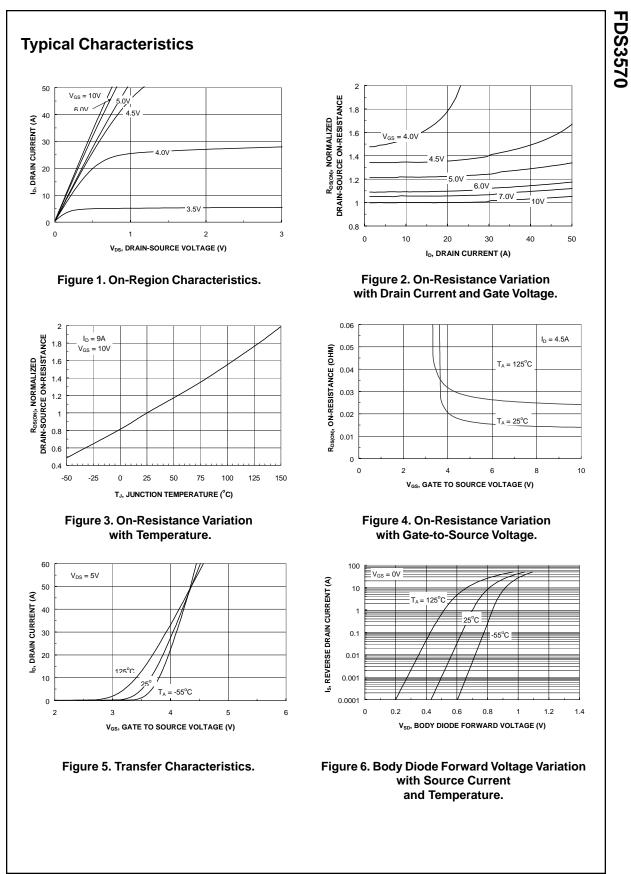


Absolute Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

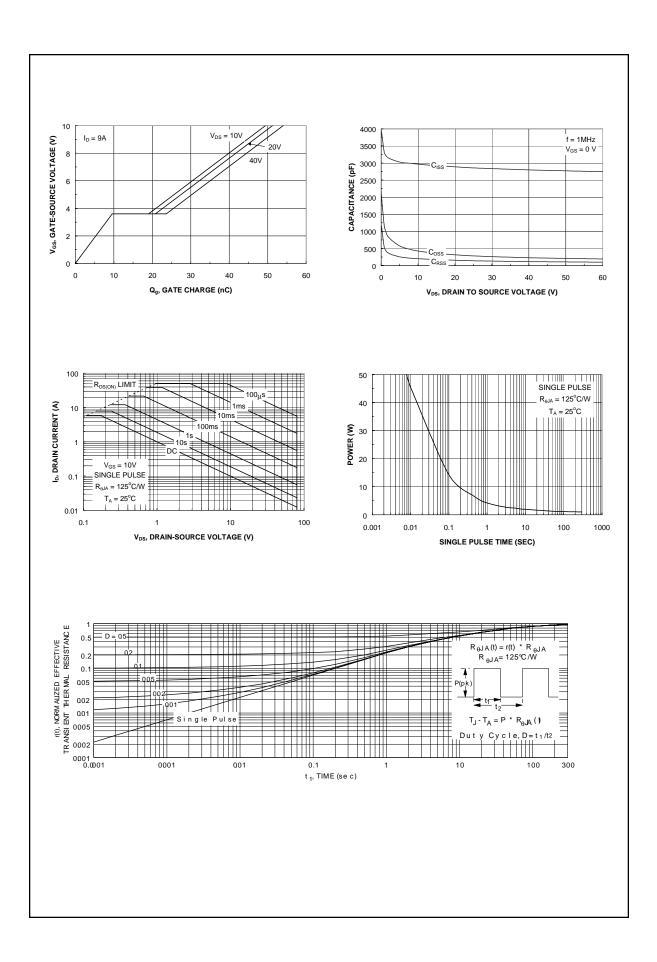
Symbol		Parameter		Ratings	Units	
V _{DSS}	Drain-Source Vo	ltage		80	V	
V _{GSS}	Gate-Source Vol	tage		±20	V	
ID	Drain Current -	Continuous	(Note 1a)	9	A	
	-	Pulsed		50		
P _D	Power Dissipatio	on for Single Operation	(Note 1a)	2.5	W	
			(Note 1b)	1.2		
			(Note 1c)	1		
TJ, T _{stg}	Operating and S	Storage Junction Temperature Range		-55 to +150	°C	
	•		•			
Therma R _{eJA}	I Characteri Thermal Resista	stics nce, Junction-to-Ambient	t (Note 1a)	50	°C/W	
R _{eJA}	Thermal Resista	nce, Junction-to-Ambient	. ,			
R _e JA R _e JC Packag	Thermal Resista Thermal Resista		(Note 1)	50 25 Tape Width	°C/W °C/W Quantity	

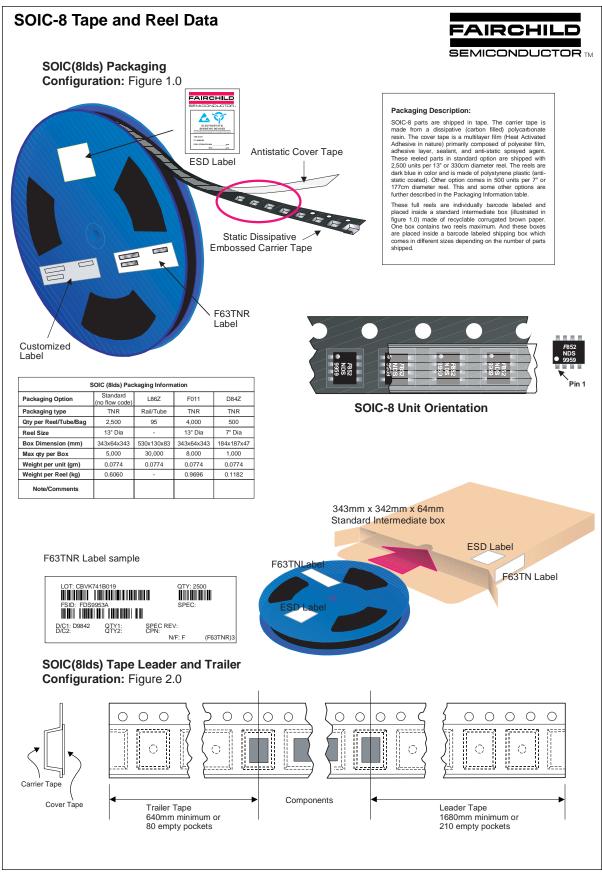
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	ource Avalanche Ratings (Note 2)					
N _{DSS}	Single Pulse Drain-Source	$V_{DD} = 40 \text{ V}, I_D = 9 \text{ A}$			360	mJ
AR	Avalanche Energy Maximum Drain-Source Avalanche Cu	Irrent			9	Α
					-	
<u>Jff Char</u> 3V _{DSS}	acteristics Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	80	<u> </u>		V
	Breakdown Voltage Temperature	$V_{GS} = 0.0$, $I_D = 250 \mu\text{A}$ $I_D = 250 \mu\text{A}$, Referenced to	00	77		mV/°C
$\Delta T_{.1}$	Coefficient	$1_{\rm D} = 250$ PA, Referenced to $25^{\circ}{\rm C}$				
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 64 \text{ V}, V_{GS} = 0 \text{ V}$			1	μд
GSSF	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
GSSR	Gate-Body Leakage, Reverse	V_{GS} = -20 V, V_{DS} = 0 V			-100	nA
On Char	acteristics (Note 2)					
/ _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	2	2.4	4	V
VGS(th)	Gate Threshold Voltage	$I_{\rm D} = 250 \ \mu \text{A}$, Referenced to		-7		mV/°C
ΔT_{J}	Temperature Coefficient	25°C				
20(011)	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_D = 9 \text{ A}$		0.015	0.020	Ω
		$V_{GS} = 10 \text{ V}, I_D = 9 \text{ A}, T_J = 125^{\circ}\text{C}$ $V_{GS} = 6 \text{ V}, I_D = 8.4 \text{ A}$		0.027	0.038	
D(on)	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	25			Α
FS	Forward Transconductance	V _{DS} = 5 V, I _D = 7.6 A		40		S
Jynamic	Characteristics					
Dynamic C _{iss}	Input Capacitance	$V_{DS} = 25 V, V_{GS} = 0 V,$		2750		pF
Coss	Output Capacitance	f = 1.0 MHz		280		pF
	Reverse Transfer Capacitance			140		pF
d(on)	Turn-On Delay Time	$V_{DD} = 40 \text{ V}, \text{ I}_{D} = 1 \text{ A},$		20	32	ns
r	Turn-On Rise Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		12	24	ns
d(off)	Turn-Off Delay Time			60	95	ns
	Turn-Off Fall Time			24	38	ns
λ ^g	Total Gate Charge	$V_{DS} = 40 \text{ V}, \text{ I}_{D} = 9 \text{ A},$		54	76	nC
ג ג _{gs}	Gate-Source Charge	V _{GS} = 10 V		9.6		nC
2 _{gd}	Gate-Drain Charge			14		nC
		d Maximum Datinga				
s S	Durce Diode Characteristics ar Maximum Continuous Drain-Source D				2.1	А
s / _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = 2.1 \text{ A}$ (Note 2)		0.72	1.2	V
es:				0.72	L 2	v

Scale 1 : 1 on letter size paper

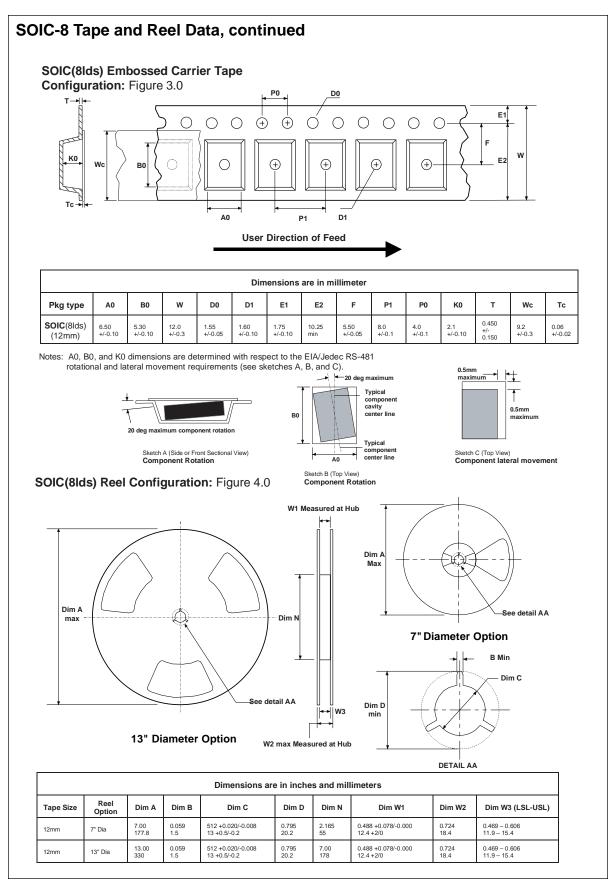

2. Pulse Test: Pulse Width $\leq 300~\mu\text{s},$ Duty Cycle $\leq 2.0\%$

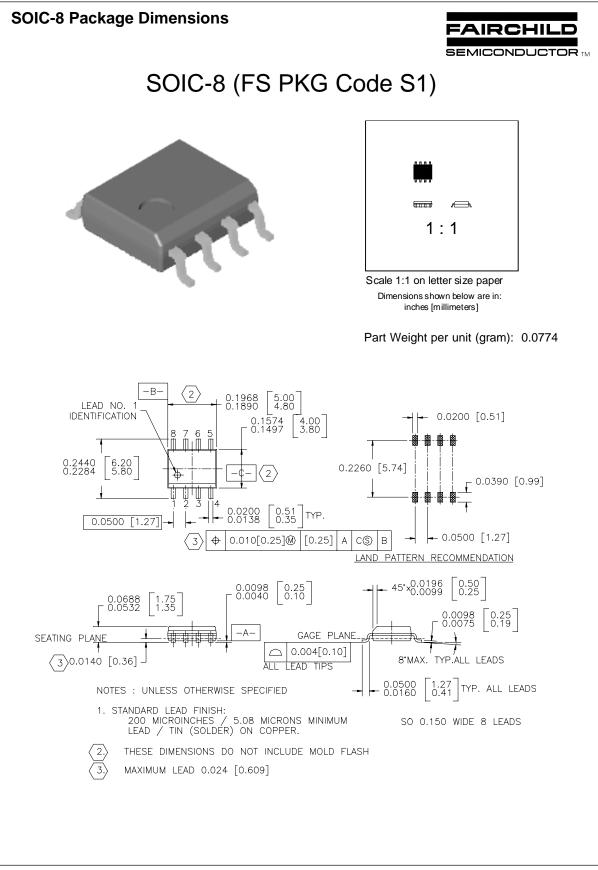
b) 105° C/W when mounted on a 0.04 in² pad of 2 oz. copper.




c) 125° C/W when mounted on a minimum pad.

FDS3570


FDS3570 Rev. C



©2000 Fairchild Semiconductor International

July 1999, Rev. B

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series[™] FAST[®]

FASTr™ GlobalOptoisolator™ GTO™ HiSeC™ **ISOPLANAR™** MICROWIRE™ OPTOLOGIC™ **OPTOPLANAR™** PACMAN™ POP™

PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER® SMART START™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8

SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	1	Rev G