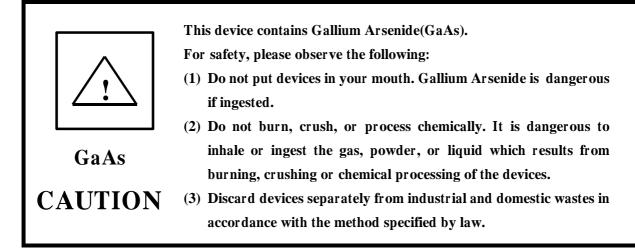
EMY1441HI Datasheet Rev1.1 EMY1441HI

11.3 Gb/s Direct Modulation Driver IC for +3.3V Supplied Voltage

1. Abstract

- 1) Operation speed over 11.3Gb/s
- 2) Output Modulation Current:60mA (typ.,250hm Load)
- **3**) Power Supply Voltage : +3.3V
- 4) Duty Ratio Adjustable
- 5) Output Shutdown Control
- 6) Internal Input 50 ohm Termination
- 7) Modulation Current monitor / Bias Current Monitor
- 8) 4.0mm x 4.0mm 24-pin Hermetically Sealed Ceramic Package


2. Absolute Maximum Ratings

The semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. The normal logic operation is not assured even within the ratings.

Parameter	Symbol	Value	Unit
Supply Voltage	VDD	-0.5 to 7.0	V
Output Termination Voltage	VTT	-0.5 to 7.0	V
Input Voltage(Din,DinB)	VIN	-1.0 to 3.0	V
Power Supply Current	Iss	250	mA
Modulation Current Control Voltage	VIP	-1.0 to 5.0	V
Bias Current Control Voltage	VIB	-1.0 to 5.0	V
Duty Control Voltage	VDUTY	-1.0 to 5.0	V
Output Shut Down Control Voltage	VSD	-1.0 to 5.0	V
Output Voltage(Dout,DoutB,IBout)	Vout	-0.5 to 6.0	V
Storage Temperature	Tstg	-55 to 125	degC

Table 2-1. Maximum Ratings

Eudyna Device Inc. assumes customer's agreement on the notes in the last page for use of the information in this document.

3. Recommended Operating Conditions

The recommended operating conditions are the recommended values assuring normal operation and long term reliability.

			Limit			.	
Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit	
Supply Voltage	Vdd		3.07	3.3	3.47	v	
Output Termination Voltage	VTT		4.65	5.0	5.25	v	
Input Data Swing	VIND	Differ ential Input (AC coupled)	0.15		1.0	Vpp	
Input Data Swing	VINS	Single-ended Input (AC coupled)	0.3		1.0	Vpp	
Modulation Current Control Voltage	VIP		0		1.0	V	
Bias Current Control Voltage	VIB		0	-	0.8	v	
Output Shut down	VSDH		1.6	1.8	2.0	v	
Control Voltage	VSDL		0	0.6	0.8	V	
Duty Control Voltage	V _{DUTY}		0.6	1.2	1.8	v	
Case Temperature	T _C		-10		85	degC	

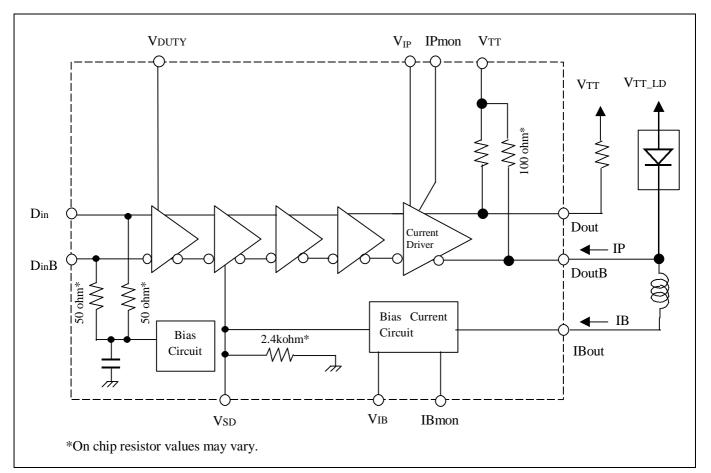
Table 3-1. Recommended Operating Conditions

Note a) Power on sequence: 1) VDD, 2) VTT, 3) V_{DUTY}, VSD, 4) VIB, VIP

b)For operation with single-ended data input, a capacitor should be connected between Complimentary input and GND

c) External capacitors are necessary at data input terminals(Din,DinB) for DC blocking.

EMY1441HI Datasheet Rev1.1 4. Electrical Characteristics


Table4-1. Electrical Characteristics

January,2006

Table4-1. Electrical Characteristics	-			Limit	(L	=25ohm)
Parameter	Parameter Symbol Condition		Min.	Typ.	Max.	Unit
Maximum Data Rate	fb	NRZ	11.3			Gb/s
Power Supply Current	IDD	VIP=0.0V VIB=0.0V	60	100	120	mA
Maximum Modulation Current	ІРмах	VIP=1.0V,VIB=Vss VsD="L"	40	60		mA
Maximum Modulation Current @Tc=85degC	IPMAX85	VIP=1.0V,VIB=Vss VsD="L",Tc=85degC	55	75		mA
Minimum Modulation Current	IPMIN	VIP=0.0V,VIB=0.0V VSD="L"		2.0	8.0	mA
Maximum Bias Current	ІВмах	VIB=0.8V VIP=0.0V VSD="L"	40	60		mA
Minimum Bias Current	IBMIN	VIB=0.0V VIP=0.0V VSD="L"		4.0	12.5	mA
Modulation Current Leakage (Shutdown)	IPsd	VIP=1.0V VSD="H"		4.0	7.0	mA
Bias Current Leakage (Shutdown)	IBsd	VIB=0.8V VSD="H"		2.0	3.0	mA
Rise Time	Tr	fb=2.5Gb/s 1,0,1,0Alternative Pattern		25	35	ps
Fall Time	Tf	20 to 80 % VIP=1.0V VSD="L"		25	35	ps
	CRSmin	fb=11.3Gb/s,NRZ PRBS 2 ³¹ -1			40	%
Crossing Adjustment Range	CRSmax	- VIND =0.5Vpp Input Crossing Point:50% VIP =1.0V VSD="L"	60			%
Jitter RMS	Jitter	fb=11.3Gb/s,NRZ PRBS 2 ³¹ -1 VIND =0.5Vpp Input Crossing Point:50% Output Crossing Point:50% VIP =1.0V VSD="L"		2.5	3.5	ps

EMY1441HI Datasheet Rev1.1 5. Block Diagram

Figure 5-1. Block Diagram

Table 5-1 Truth Table of Data I/O *Note 1)

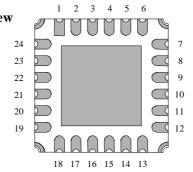
Din	DinB	Dout	DoutB	Optical output from DM-LD at Dout	Optical output from DM-LD at DoutB
L	Н	L	Н	ON	OFF
Н	L	Н	L	OFF	ON

Note 1) DM-LD connection at cathode with the IC.

Table 5-2 Truth Table of Shutdown Function

VSD Modulation Current		Bias Current	
L or Open	Enabled	Enabled	
Н	Disabled *Note 2)	Disabled	

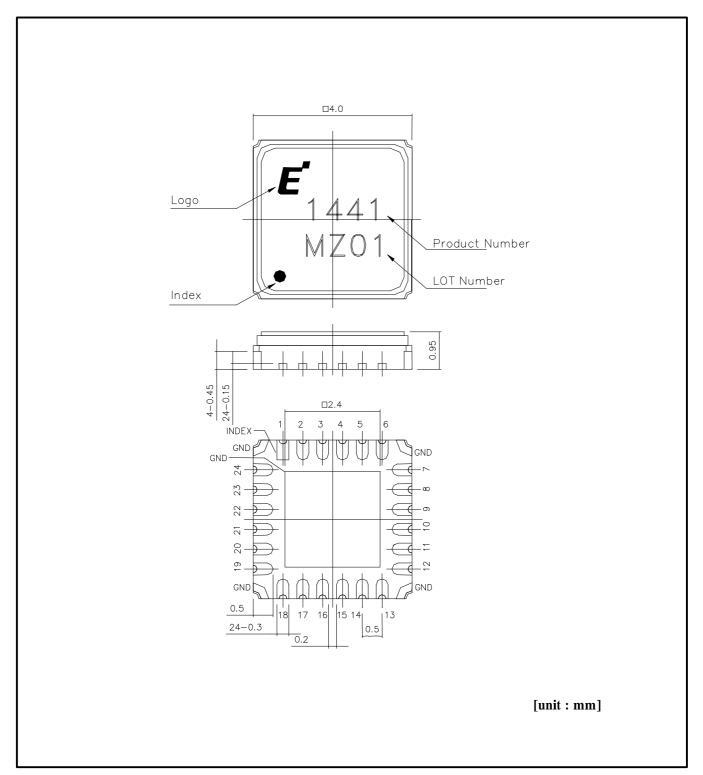
Note 2) DoutB is fixed at H (Optical output OFF) and Dout is fixed at L (Optical output ON).


January,2006

EMY1441HI Datasheet Rev1.1 6. Pin Description

Table 7-1 Pin Description

Pin Number	Symbol	I/O	Function	Remarks
1	GND		GND	
2	Din	Ι	Data Input	
3	GND		GND	
4	GND		GND	
5	DinB	Ι	Complementary Data Input	
6	GND		GND	
7	VSD	Ι	Shut Down Control Voltage	
8	VDD		Supply Voltage	
9	VTT		Termination Voltage	
10	GND		GND	
11	GND		GND	
12	IBmon	0	Bias Current Monitor Output Voltage	
13	IBout	0	Bias Current Output	
14	DoutB	0	Complementary Data Output	
15	GND		GND	
16	GND		GND	
17	Dout	0	Data Output	
18	VTT		Termination Voltage	
19	IPmon	0	Modulation Current Monitor Output Voltage	
20	VIB	Ι	Bias Current Control Voltage	
21	GND		GND	
22	VIP	Ι	Modulation Current Control Voltage	
23	VDD		Supply Voltage	
24	VDUTY	Ι	Duty Control(Cross Point Control)	


Bottom View

No:ECM-A00-218 Eudyna Device Inc.

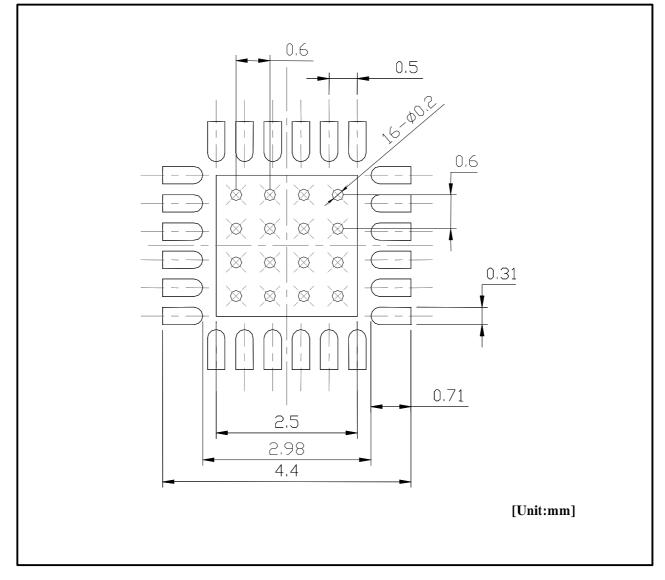
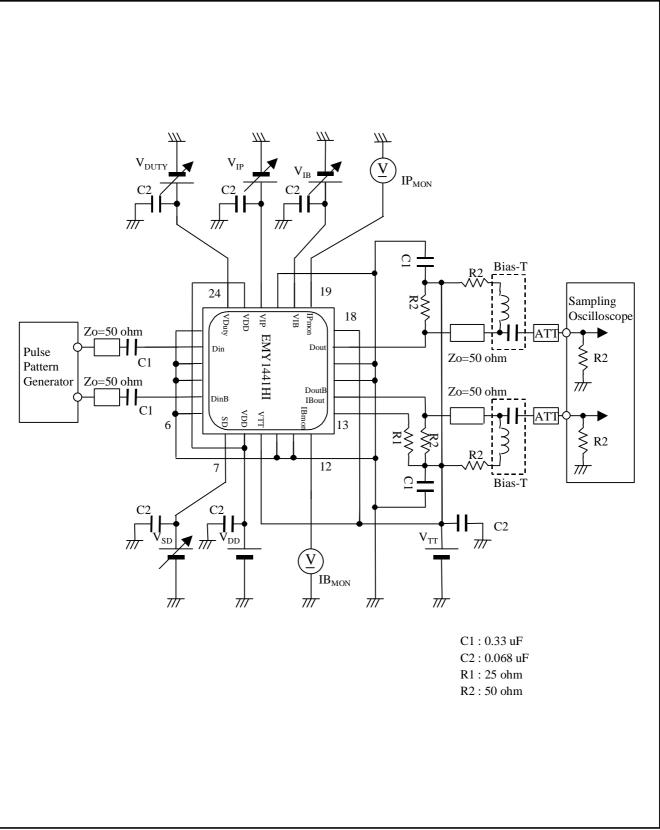

EMY1441HI Datasheet Rev1.1 7. Package

Fig.7-1 Package Outline


EMY1441HI Datasheet Rev1.1

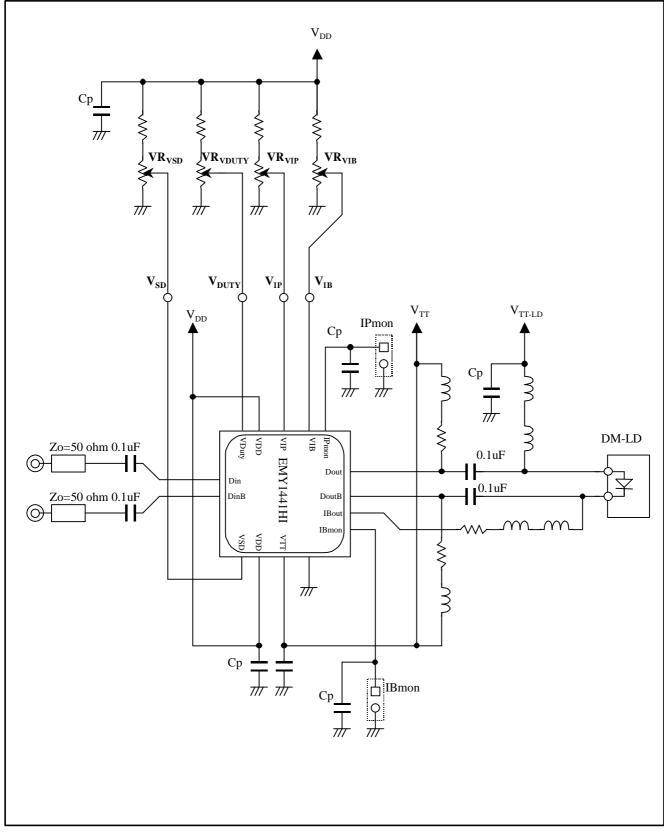
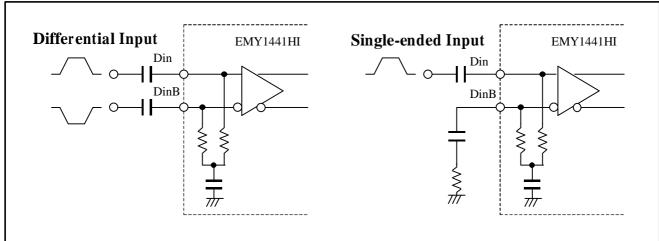

8. Test Circuit

Figure 8-1 Schematic Diagram of Test Circuit for EMY1441HI

9. Application Reference


Figure 9-1 Schematic Diagram of EMY1441HI Application Example

9.1. Input RF Signal

There are 500hm termination resistors to ground on EMY1441HI die. The input RF signal must be fed into the IC through 500hm lines with DC block capacitors. The IC operates with either differential or single-ended input signal. For operation with single-ended input, the unused input pin should be connected to ground with a capacitor for better stability in internally generated reference voltage.

Schematic diagram of the differential and single-ended input circuit is shown in Figure 9-2.

Figure 9-2 Schematic Diagram of Single-Ended Input Circuit

9.2. DM-LD Drive and Output Circuit

It is recommended to connect DoutB from EMY1441HI to cathode pin of a DM-LD, when shutdown function of the IC should be used in the system. Anode pin of the DM-LD should be connected to V_{TT} , together with Dout load resistor and back-termination resistors in the IC. The RF signal line should be impedance-controlled. Design for complementary signal termination is important for good optical performance, as well as the signal line design for DM-LD.

When IBout terminal is not used, IBout should be connected to VTT through load resistor.

9.3. RF Signal Line Design

Low loss material for PCB must be used for good signal quality. Careful designs must be taken for the layout, such as bends, land patterns, via-holes, etc., in order to minimize impedance discontinuity that may degrade the waveforms. It is recommended to make physically and electrically symmetric design for differential RF signal line at both input and output, as much as possible.

9.4. Bias De-coupling

It is recommended to have bypass capacitors for power supply and DC control voltage pins. Having two or more different capacitors (for example, ranging from some 10⁻¹¹ to 10⁻⁶ farads) at each node will be effective to obtain a good de-coupling over wide frequency range.

EMY1441HI Datasheet Rev1.1 9.5. Power Supply Sequence

It is recommended to follow the power supply sequence to avoid damaging the IC.

- 1. Set V_{DUTY} , V_{IP} , V_{IB} and V_{SD} to ground, increase or turn on V_{DD} , then V_{TT} .
- 2. Adjust $V_{IP},\,V_{IB}$ and V_{DUTY} for desired output waveforms.
- 3. Return V_{DUTY} , V_{IP} , V_{IB} and V_{SD} to ground, then decrease or turn off V_{TT} , then V_{DD} .

Such care may not be necessary when the control circuit for V_{DUTY} , V_{IP} , V_{IB} , and V_{SD} are designed properly to generate the voltage within the absolute maximum ratings for each pin.

9.6. Modulation Current Monitoring

There is a resistor, R_{IP} (10hm Typ.) between IP_{MON} pin and ground of in EMY1441HI for monitoring total modulation current, IP, as a voltage drop across R_{IP} .

IP	$= IP_{BT} + IP_{LD}$	$= \mathbf{V}_{IPMON} / \mathbf{R}_{IP}$	$= \mathbf{V}_{\mathbf{IPMON}}$	(9-1 a)
IP _{LD}	$= IP \mathcal{R}_{BT} / (\mathcal{R}_{LD} +$	R_{BT})		(9-1b)
IP _{BT}	$= IP \mathcal{R}_{LD} / (\mathcal{R}_{LD} +$	R_{BT})		(9-1 c)

The modulation current includes the current through back termination resistor and LD. The relationship between V_{IMOD} and I_{IP} is shown in Figure 10-13.

9.7. Bias Current Monitoring

There is a resistor, R_{IB} (10hm Typ.) between IB_{MON} pin and ground of in EMY1441HI for monitoring modulation current, IB, as a voltage drop across R_{IB} . The relationship between I_B and V_{IB} is shown in Figure 10-14.

$$\mathbf{IB} = \mathbf{V}_{\mathbf{IBMON}} / \mathbf{R}_{\mathbf{IB}} = \mathbf{V}_{\mathbf{IBMON}}$$
(9-2)

9.8. Power Dissipation

Power dissipation of EMY1441HI can be estimated with the equations from 9-4a to 9-4f, with current flow shown in Figure 9-2 and voltage swing at input, V_{IN} , and output, V_{OUT} .

PD	$= \mathbf{P}_{\mathbf{IN}} + \mathbf{P}_{\mathbf{DD}} + \mathbf{P}_{\mathbf{IP}} + \mathbf{P}_{\mathbf{IB}} - \mathbf{P}_{\mathbf{OUT}}$	(9-4a)
P _{IN}	$= 0.5 V_{IN}^2 / R_I = V_{IN}^2 / 100$	(9-4 b)
P _{DD}	$= \mathbf{V}_{\mathbf{D}\mathbf{D}} \mathbf{I}_{\mathbf{D}\mathbf{D}}$	(9-4c)
P _{IP}	$= \mathbf{V}_{\mathrm{TT}} \mathbf{I} \mathbf{P}$	(9-4d)
P _{IB}	$= \mathbf{V}_{\mathrm{TT}} \mathbf{I} \mathbf{B}$	(9-4e)
Pout	$= IP_{LD}^{2} \bullet R_{LD} + IB^{2} \bullet R_{LD}$	(9-4f)

9.9. Thermal Design

The EMY1441HI die is attached to the heat sink at the bottom of the package (face up). Proper design of heat transfer path (Ex. thermal VIA) from the heat sink to module base plate or outside of the system should be taken to keep the IC case temperature, T_C, within the recommended operating conditions for normal operation and long term reliability.

EMY1441HI Datasheet Rev1.1 10. Typical Performance Data

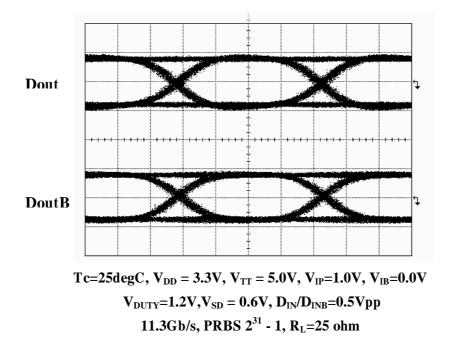
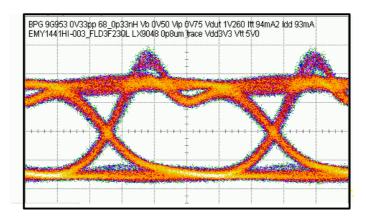



Figure 10-1 Electrical Waveforms (H:20ps/div.,V:1.0V/div.)

 $\label{eq:total_$

Figure 10-2 Optical Waveforms without filter at back to back (H:20ps/div.)

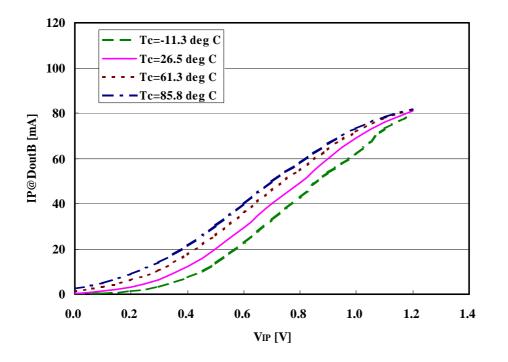


Figure 10-3 Modulation Current(I_P) vs. Control Voltage(V_{IP}) Relationship (V_{DD}=3.3V, V_{TT}=5.0V,Tc dependency)

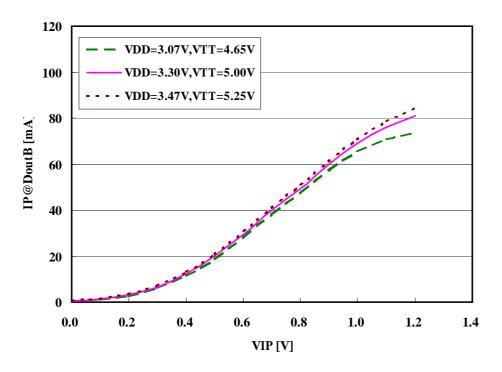


Figure 10-4 Modulation Current(I_P) vs. Control Voltage(V_{IP}) Relationship (Tc=25degC, VDD/VTT dependency)

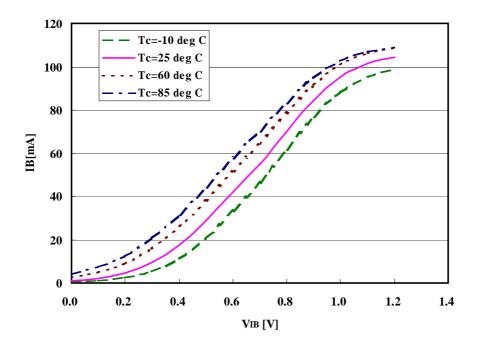


Figure 10-5 Bias Current (I_B) vs. Control Voltage(V_{IB}) Relationship (Vdd=3.3V, Vtt=5.0V Tc dependency)

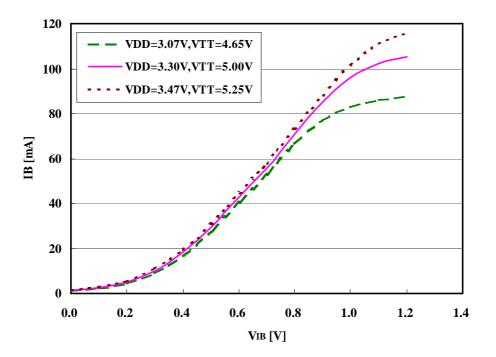
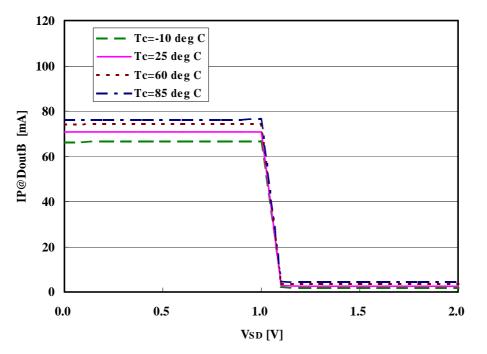



Figure 10-6 Bias Current (I_B) vs. Control Voltage (V_{IB}) Relationship (Tc=25degC, VDD/VTT dependency)

No:ECM-A00-218 Eudyna Device Inc.

 $\label{eq:sdef} Figure 10-7 \ Modulation \ Current(IP) \ vs. \ Shutdown \ Control \ Voltage(V_{SD} \) \ Relationship \\ (V_{DD}=3.3V, \ V_{TT}=5.0V, \ V_{IP}=1.0V, Tc \ dependency)$

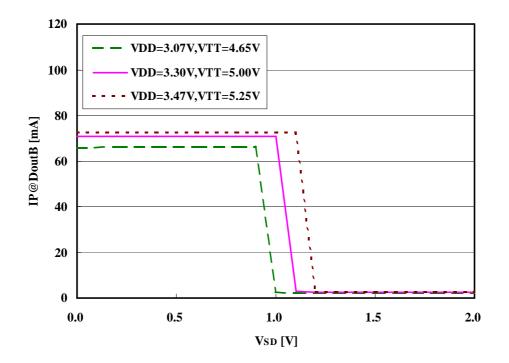


Figure 10-8 Modulation Current(IP) vs. Shutdown Control Voltage(V_{SD}) Relationship (Tc =25deg,VIP=1.0V, VDD/VTT dependency)

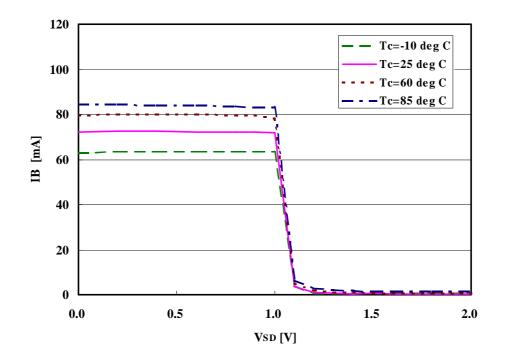


Figure 10-9 Bias Current(IB) vs. Shutdown Control Voltage(V_{SD}) Relationship (VDD=3.3V, VTT=5.0V, VIP=1.0V,Tc dependency)

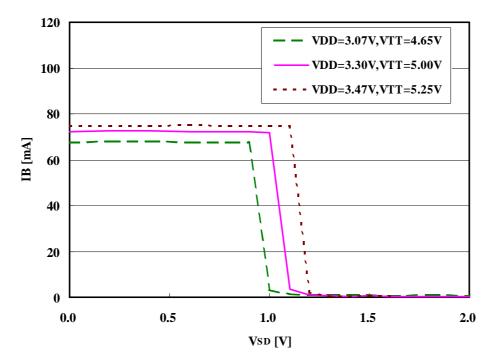


Figure 10-10 Bias Current(IB) vs. Shutdown Control Voltage(V_{SD}) Relationship (Tc =25deg,VIP=1.0V, VDD/VTT dependency)

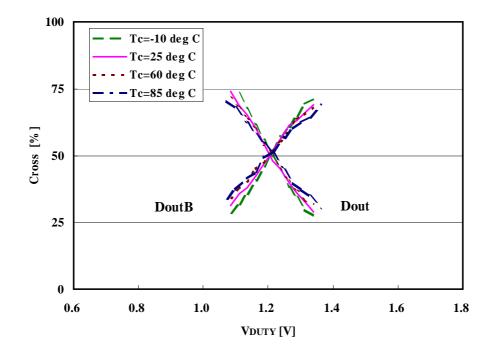


Figure 10-11 Cross Point vs. Duty Control Voltage (VDUTY) Relationship (Tc =25deg,VIP=1.0V, VDD/VTT dependency)

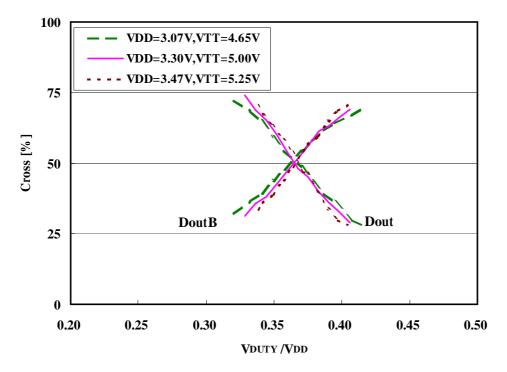


Figure 10-12 Cross Point vs. Duty Control Voltage (VDUTY /VDD) Relationship (Tc =25deg,VIP=1.0V, VDD/VTT dependency)

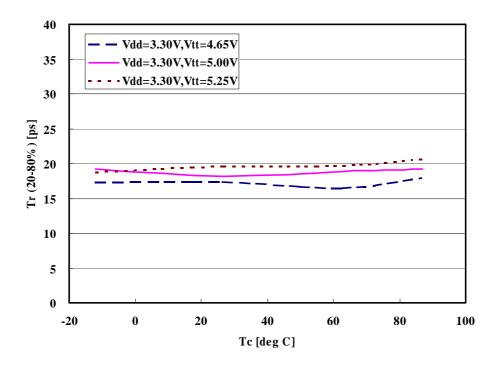


Figure 10-13 Rise Time(Tr)vs. Case Temperature (T_C) Relationship (Tc =25deg,VIP=1.0V, VDD/VTT dependency)

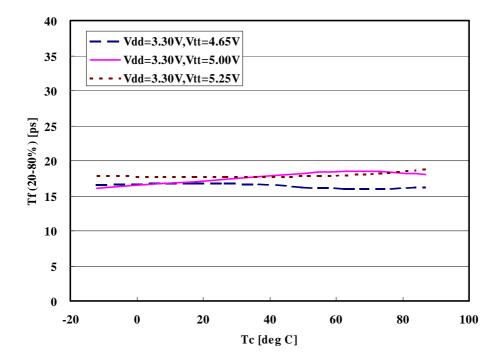


Figure 10-14 Fall Time (Tf) vs. Case Temperature (T_C) Relationship (Tc =25deg,V_{IP}=1.0V, V_{DD}/V_{TT} dependency)

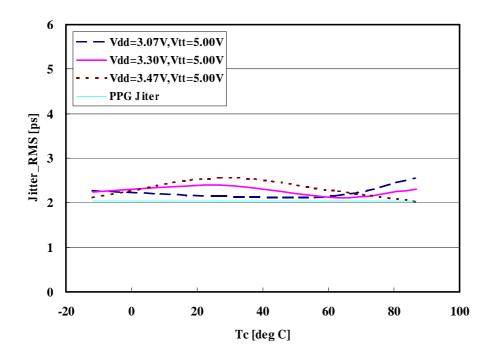


Figure 10-15 Jitter_RMS vs. Case Temperature (T_c) Relationship (Tc =25deg,VIP=1.0V, VDD/VTT dependency)

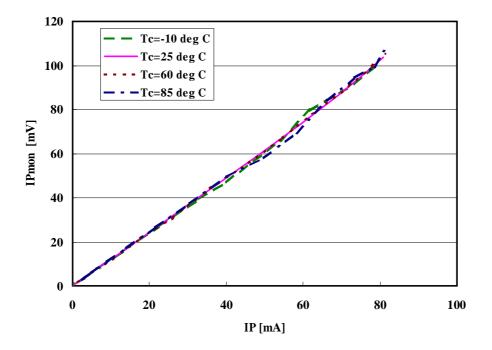


Figure 10-16 Modulation Current monitor Voltage(IPmon) vs. Modulation Current(IP)Relationship (VDD=3.3V, VTT=5.0V,Tc dependency)

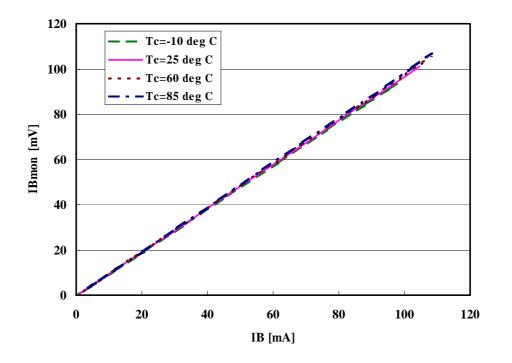


Figure 10-17 Bias Current Monitor Voltage(IBmon) vs. Bias Current (IBout) Relationship (VDD=3.3V, VTT=5.0V, Tc dependency)

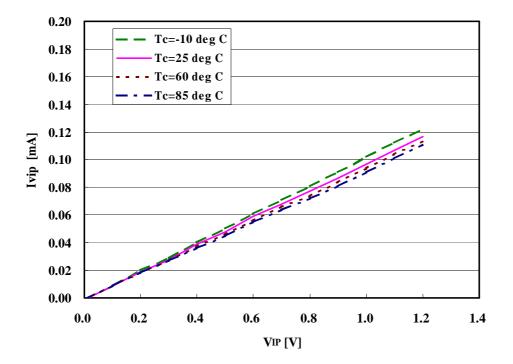


Figure 10-18 V_{IP} Terminal Current (I_{VIP})vs. Control Voltage(V_{IP}) Relationship (VDD=3.3V, VTT=5.0V, VIP=1.0V,Tc dependency)

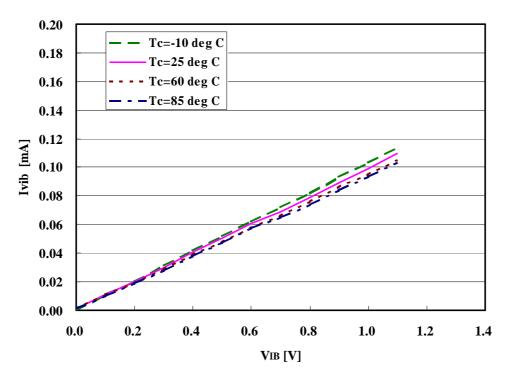


Figure 10-19 V_{IB} Terminal Voltage (I_{VIB})vs. Control Voltage(V_{IB}) Relationship (Tc dependency)

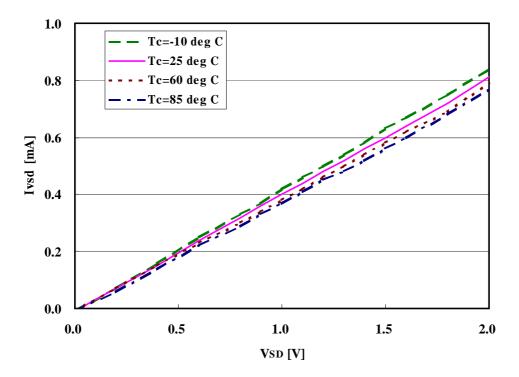


Figure 10-20 V_{SD} Terminal Currnet (I_{SD})vs. Contorl Voltage(V_{SD})Relationship (Tc dependency)

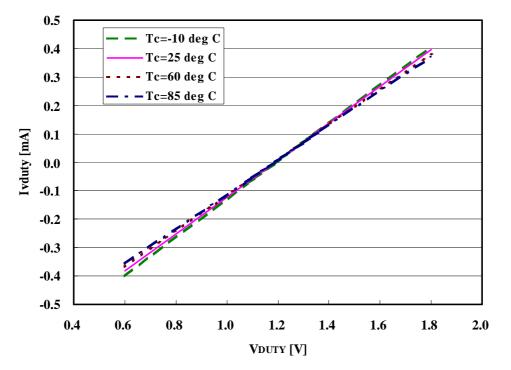


Figure 10-21 V_{VDUTY} Terminal Current (I_{VDUTY})vs. Control Voltage (V_{VDUTY})Relationship (Tc dependency)

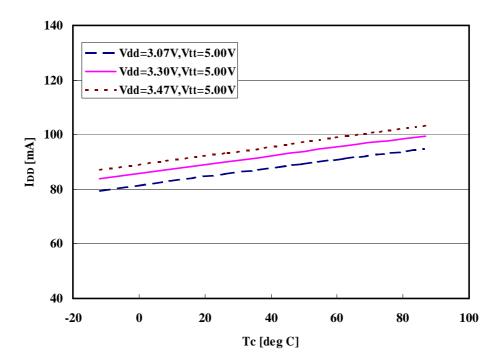


Figure 10-22 Power Supply Currnet (I_{DD})vs. Case Temperature (T_C) Relationship(VIP=0.0V, VIB=0.0V)

Notice:

1) This document contains preliminary information on new products. The specification is subject to change without notice.

EMY1441HI Datasheet Rev1.1

Customers are advised to consult with Eudyna Device Inc. sales representatives before ordering.

2) The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Eudyna Device Inc. semiconductor device; Eudyna Device Inc. does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Eudyna Device Inc. assumes no liability for any damages whatsoever arising out of the use of the information.

3) Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Eudyna Device Inc. or any third party or does Eudyna Device Inc. warrant non-infringement of any third-party's intellectual property right or other right by using such information. Eudyna Device Inc. assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

4) The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Eudyna Device Inc. will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

5) Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

6) If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

Eudyna Devices Inc.

http://www.eudyna.com/ www-sales@eudyna.com

For further information please contact:

Eudyna Devices Inc. Yokohama(HQ) 1,Kanai-cho,Sakae-ku,Yokohama, Kanagawa 244-0845,Japan Tel:+81-45-853-8151 Fax:+81-45-8538173

Eudyna Devices USA inc. 2355 Zanker Rd. San Jose, CA 95131-1138,U.S.A. Tel:(408)232-9500 Fax:(408)428-9111

Eudyna Devices Asia Pte. Ltd. Suite 1906B, Tower 6, China Hong Kong City, 33 Canton Road, Tsimshatsui, Kowloon, Hong Kong. Tel: (852)2377-0227 Fax: (852)2377-3921 Eudyna Devices Inc. Yamanashi Plant 1000 Kamisukiahara, Showa-cho, Nakakoma-gun, Yamanashi 409-3883,Japan (Kokubo Industrial Park) Tel:+81-55-275-4411 Fax:+81-55-275-9461

Eudyna Devices Europe Ltd. Network House Norreys Drive Maidenhead, Berkshire SL6 4FJ,U.K. Tel:+44 (0)1628 504800 Fax:+44(0)1628 504888

Eudyna Devices International s.r.l Via Teglio 8/2 - 20158, Milano, Italy Tel: +39-02-8738-1695