HIGH-SPEED BICMOS MEMORY DRIVERS PRELIMINARY IDT54/74FBT2240 IDT54/74FBT2240A #### **FEATURES:** - IDT54/74FBT2240 equivalent to the 54/74BCT2240 - IDT54/74FBT2240A 25% faster than the 2240 - 25 Ω output resistors reduce overshoot and undershoot when driving MOS RAMs - Significant reduction in ground bounce from standard CMOS devices - · TTL compatible input and output levels - Higher static VoH for improved noise immunity and reduced system power dissipation - ±10% power supply for both military and commercial grades - JEDEC standard pinout for DIP, SOIC and LCC packages - Military product compliant to MIL-STD-883, Class B # **DESCRIPTION:** The FBT series of BiCMOS Memory Drivers is built using advanced BiCEMOS™, a dual metal BiCMOS technology. This technology is designed to supply the highest device speeds while maintaining CMOS power levels. The IDT54/74FBT2240 series are octal buffers/line drivers where each output is terminated with a 25Ω series resistor. The FBT series of bus interface devices are ideal for use in designs needing to drive large capacitive loads with low static (DC) current loading. All data inputs have a 200mV typical input hysteresis for improved noise rejection. The output buffers are designed to guarantee a static VOH of 2.7V. This higher output level in the high state results in a significant reduction in overall system power dissipation and improved noise immunity when driving DRAMS and SRAMS. # **FUNCTIONAL BLOCK DIAGRAM** ### **PIN CONFIGURATIONS** # DIP/SOIC/CERPACK TOP VIEW **TOP VIEW** BiCEMOS is a trademark of Integrated Device Technology, Inc. # 6 ### PIN DESCRIPTION | Pin Names | Description | |-----------|---| | ОЕА, ОЕВ | 3-State Output Enable Inputs (Active LOW) | | Dxx | Inputs | | Ōxx | Outputs | 2642 tbl 01 # **FUNCTION TABLE**(1) | inp | Output | | |--------------|--------|-----| | OEA, OEB Dxx | | Oxx | | L L | | Н | | L | H | L | | Н | Х | Z | #### NOTE: 2642 tbl 02 - H = HIGH Voltage Level L = LOW Voltage Level - X = Don't Care - Z = Don't Care Z = High Impedance # CAPACITANCE (TA = +25°C, f = 1.0MHz) | Symbol | Parameter ⁽¹⁾ | Conditions | Type | Max. | Unit | |--------|--------------------------|------------|------|------|------| | CIN | Input Capacitance | VIN = 0V | 6 | 10 | рF | | Cout | Output
Capacitance | Vout = 0V | 8 | 12 | pF | #### NOTE: 2642 tbl 04 1. This parameter is measured at characterization but not tested. # ABSOLUTE MAXIMUM RATINGS(1) | Symbol | Rating | Commercial | Military | Unit | |----------------------|--------------------------------------|-------------|--------------|------| | VTERM ⁽²⁾ | Terminal Voltage with Respect to GND | 0.5 to +7.0 | -0.5 to +7.0 | ٧ | | VTERM ⁽³⁾ | Terminal Voltage with Respect to GND | -0.5 to Vcc | –0.5 to Vcc | ٧ | | Та | Operating
Temperature | 0 to +70 | -55 to +125 | ô | | TBIAS | Temperature
Under Bias | -55 to +125 | -65 to +135 | ô | | Тѕтс | Storage
Temperature | -55 to +125 | -65 to +150 | ů | | PT | Power Dissipation | 0.5 | 0.5 | W | | lout | DC Output Current | 120 | 120 | mΑ | #### NOTES: 2642 thi 03 - 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted. - 2. Input and Vcc terminals only. - Outputs and I/O terminals only. # DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE Following Conditions Apply Unless Otherwise Specified: VLc = 0.2V; VHc = Vcc - 0.2V Commercial: TA = 0°C to +70°C, Vcc = $5.0V \pm 10\%$; Military: TA = -55°C to +125°C, Vcc = $5.0V \pm 10\%$ | Symbol | Parameter | Test Cond | Min. | Typ. ⁽²⁾ | Max. | Unit | | |----------------------|-----------------------------------|--------------------------------|-----------------------------|---------------------|------|------|-----| | ViH | Input HIGH Level | Guaranteed Logic HIGH Le | Guaranteed Logic HIGH Level | | | | V | | VIL | Input LOW Level | Guaranteed Logic LOW Le | Guaranteed Logic LOW Level | | | 0.8 | V | | lin . | Input HIGH Current | Vcc = Max., VI = 2.7V | | _ | | 10 | μA | | lıL | Input LOW Current | Vcc = Max., Vi = 0.5V | | | | -10 | μA | | lozн | High Impedance | Vcc = Max. | Vo = 2.7V | | | 50 | μA | | lozi | Output Current | | Vo = 0.5V | | | -50 | | | 11 | Input HIGH Current | Vcc = Max., Vcc (Max.) | | | | 100 | μA | | Vik | Clamp Diode Voltage | Vcc = Min., In = -18mA | | | -0.7 | -1.2 | ٧ | | ЮВН | Output Drive Current | Vcc = Min., Vo = 2.25V | Vcc = Min., Vo = 2.25V | | | | mA | | lopu | Output Drive Current | Vcc = Min., Vo = 2.25V | | | | | mA | | los | Short Circuit Current | Vcc = Max., Vo = GND(3) | | | | -225 | mA | | Voн | Output HIGH Voltage | Vcc = Min. | | | Vcc | _ | V | | | ' | VIN = VIH or VIL | loн = -1mA | 2.7 | 3.8 | | 1 | | | | 1 | IOH = -8mA
IOH = -12mA | | 3.3 | | 1 | | | | | | | 3.2 | | | | Vol | Output LOW Voltage | Vcc = Min. | IOL = 300μA ⁽⁴⁾ | | GND | VLC | _ v | | | 1 | VIN = VIH or VIL | IoL = 1mA | | 0.1 | 0.5 |] | | | | | IOL = 12mA | | 0.35 | 0.8 | | | VH | Input Hysteresis | | | | 200 | | m۷ | | ICCH
ICCZ
ICCL | Quiescent Power
Supply Current | Vcc = Max.
Vin = GND or Vcc | | | 0.2 | 1.5 | mA | ## NOTES: 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type. Typical values are at Vcc = 5.0V, +25°C ambient and maximum loading. 3. Not more than one output should be shorted at one time. Duration of the short circuit test should not exceed one second. 4. This condition is guaranteed but not tested. 2642 tbl 05 # 6 # **POWER SUPPLY CHARACTERISTICS** | Symbol | Parameter | Test Conditions ⁽¹⁾ | | | Typ. ⁽²⁾ | Max. | Unit | |--------|---|--|-------------------------|-----|---------------------|---------------------|------------| | ΔΙος | Quiescent Power Supply
Current (Inputs TTL HIGH) | Vcc = Max.
Vin = 3.4V ⁽³⁾ | _ | 0.5 | 2.0 | mA | | | ICCD | Dynamic Power Supply
Current ⁽⁴⁾ | Vcc = Max., Outputs Open Vin = Vcc OEA = OE8 = GND Vin = GND One Input Toggling 50% Duty Cycle | | | 0.3 | 0.40 | mA/
MHz | | lc | Total Power Supply
Current ⁽⁶⁾ | Vcc = Max., Outputs Open
fi = 10MHz, 50% Duty Cycle | VIN = VCC
VIN = GND | _ | 3.2 | 5.5 | mA | | | | $\overline{OEA} = \overline{OEB} = GND$ One Bit Toggling | VIN = 3.4V
VIN = GND | _ | 3.5 | 6.5 | | | | | Vcc = Max., Outputs Open
fi = 2.5MHz, 50% Duty Cycle | VIN = VCC
VIN = GND | _ | 6.2 | 9.5 ⁽⁵⁾ | | | | | OEA = OEB = GND
Eight Bits Toggling | VIN = 3.4V
VIN = GND | _ | 8.2 | 17.5 ⁽⁵⁾ | | #### NOTES: - 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type. - 2. Typical values are at Vcc = 5.0V, +25°C ambient. - 3. Per TTL driven input (VIN = 3.4V); all other inputs at Vcc or GND. - 4. This parameter is not directly testable, but is derived for use in Total Power Supply calculations. - 5. Values for these conditions are examples of the lcc formula. These limits are guaranteed but not tested. - 5. IC = IQUIESCENT + INPUTS + IDYNAMIC - IC = ICC + AICC DHNT + ICCD (fCP/2 + fi Ni) - Icc = Quiescent Current - ΔICC = Power Supply Current for a TTL High Input (Vin = 3.4V) - DH = Duty Cycle for TTL Inputs High - NT = Number of TTL inputs at DH - ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL) - fcP = Clock Frequency for Register Devices (Zero for Non-Register Devices) - f. = Input Frequency - Ni = Number of Inputs at fi - All currents are in milliamps and all frequencies are in megahertz ### SWITCHING CHARACTERISTICS OVER OPERATING RANGE | | | | IDT54/74FBT2240 | | | IDT54/74FBT2240A | | | | | | |--------------|---------------------------------|--------------------------|---------------------|------|---------------------|------------------|---------------------|------|---------------------|------|------| | | | | Con | n'l. | М | il. | Con | n'l. | M | II. | | | Symbol | Parameter | Condition ⁽¹⁾ | Min. ⁽²⁾ | Max. | Unit | | tPLH
tPHL | Propagation Delay
Dxx to Oxx | CL = 50pF
RL = 500Ω | 1.5 | 5.7 | 1.5 | 6.3 | 1.5 | 4.8 | 1.5 | 5.1 | ns | | tPZH
tPZL | Output Enable Time | | 1.5 | 8.0 | 1.5 | 8.5 | 1.5 | 6.2 | 1.5 | 6.5 | ns | | tPHZ
tPLZ | Output Disable Time | | 1.5 | 7.0 | 1.5 | 7.5 | 1.5 | 5.6 | 1.5 | 5.9 | ns | #### NOTES: - 1. See test circuit and waveforms. - 2. Minimum limits are guaranteed but not tested on Propagation Delays. 2642 tbl 07 2642 tbl 06