AXIAL DIODES

SILICON DIFFUSED JUNCTION DIODES

The ZS100 and ZS120 series of diffused junction DO7 glass encapsulated diodes have been designed for general purpose applications of up to 800 volts requiring forward currents of up to 400mA and 250mA respectively.

The ZS100 series is BS/CECC APPROVED to 50001-057.

SELECTOR TABLE

V _{RWM}	50 Volts	100 Volts	200 Volts	300 Volts	400 Volts	600 Volts	800 Volts
0.2μΑ	ZS100	ZS101	ZS102	ZS103	ZS104	ZS106	ZS108
0.5μΑ	ZS120	ZS121	ZS122	ZS123	ZS124	_	-

ZS100 SERIES:

Max. $I_{F(AV)} = 400 \text{ mA}$

Max. $I_{FRM} = 4 A$

Max. $V_F(at I_F = 400 \text{ mA}) = 1 \text{ V}$

ZS120 SERIES:

Max. $I_{F(AV)} = 250 \text{ mA}$ Max. $I_{FRM} = 1.25 \text{ A}$

Max. $V_{E}(at I_{E} = 250 \text{ mA}) = 1.1 \text{ V}$

SILICON PLANAR EPITAXIAL LOW LEAKAGE DIODES

The ZS150 series of DO7 glass encapsulated diodes have been designed for applications which demand a very low leakage current, a high degree of reliability and fast recovery characteristics. The ZS150 and ZS151 are APPROVED to BS 9300 C642 and BS 9300 C643 respectively.

SELECTOR TABLE

I _R (at V _{RWM}) V _{RWM}	1nA	5nA	100nA
50V	ZS150	ZS152	ZS154
100V	ZS151	ZS153	ZS155

ZS150 SERIES:

Max. $I_{F(AV)} = 250 \text{ mA}$

Max. $I_{FSM} = 3A$

Max. V_F (at $I_F = 200 \text{ mA}$) = 1.2V

Typ. $T_{rr} = 250 \text{ ns} \text{ (at } I_F = 600 \text{ mA}, I_R = 100 \text{ mA)}$

Max. $t_{fr} = 10 \text{ ns} \text{ (at } I_F = 10 \text{ mA)}$