

VVC1 VVC2 Voltage Controlled Crystal Oscillator

The VVC1 Voltage Controlled Crystal Oscillator

Features

- VCXO with a CMOS output
- Small 5.0 X 7.0 X 1.9 mm package
- Output frequencies to 66 MHz
- 5.0 or 3.3 V operation
- Low Jitter < 6 pS rms, f_o>12MHz
- Tri-State Output for test and board debug
- 0/70 or -40/85 °C operating temperature
- Hermetically sealed ceramic SMD package
- Lead free construction
- Product is compliant to RoHS directive value
 and fully compatible with lead free assembly

Applications

- SONET/SDH/DWDM
- Ethernet, Gigabit Ethernet
- xDSL/PCMCIA cards
- Digital Video
- Broadband Access

Description

Vectron's VVC1/VVC2 Voltage Controlled Crystal Oscillator (VCXO) is a quartz stabilized square wave generator with a CMOS output and is tested at CMOS and TTL (5.0 volt operation) logic levels.

The VVC1/VVC2 uses fundamental crystals resulting in low jitter performance and a monolithic IC which improves reliability and reduces cost.

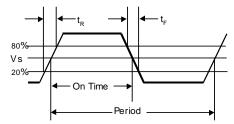
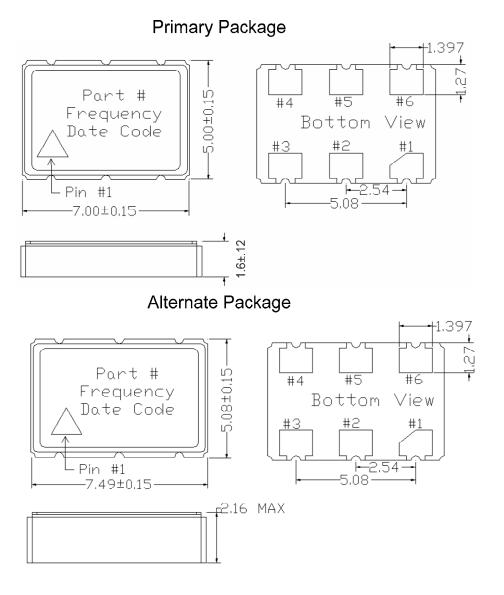

Performance Characteristics

Table 1. Electrical Performance					
Parameter	Symbol	Min	Typical	Maximum	Units
Frequency	f _o	1.544		65.536	MHz
Supply Voltage 1 (+5.0 V ± 5%)	V _{DD}	4.750	5.0	5.250	V
(+3.3 V ± 5%)		3.135	3.3	3.465	
Supply Current (+5.0 V)	I _{DD}			55	mA
(+3.3 V)				40	
Output Logic Levels					
Output Logic High ²	V _{он}	0.9^*V_{DD}			V
Output Logic Low ²	V _{OL}			$0.1V_{DD}$	V
Transition Times					
Rise Time ²	t _R			5	ns
Fall Time ²	t _F			5	ns
Symmetry or Duty Cycle ³	SYM	45	50	55	%
Operating temperature (ordering option)			°C		
Total Pull Range (ordering option)		±:	ppm		
Or					
Absolute Pull Range		±50, ±80 or ±100			
Test Conditions for APR (+5V option)	Vc	0.5		4.5	V
Test Conditions for APR (+3.3V option)	Vc	0.3		3.0	V
Gain Transfer (See Figure 3)			ppm/V		
Control Voltage Impedance			90		Kohm
Control Voltage Bandwidth (-3dB)	BW	10			kHz
Package Size			5.0 x 7.0 x 1	.9	mm

1. A 0.01uF and a 0.1uF capacitor should be located as close to the supply as possible (to ground) is recommended.

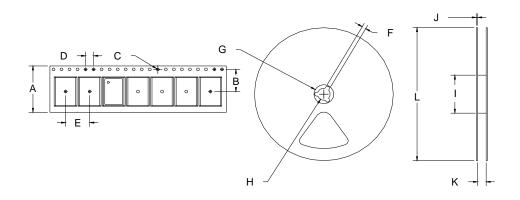
2. Figure 1 defines these parameters. Figure 2 illustrates the equivalent five gate TTL load and operating conditions under which these parameters are tested and specified.

3. Symmetry is defined as (ON TIME/PERIOD with Vs= 1.4 V for TTL and Vs=2.5 V for CMOS, 5 volt operation, and Vs=1.65V for 3.3 Volt operation.



 $V_{DD} \stackrel{+}{\underbrace{}}_{0} .1 \mu F \stackrel{-}{=} .01 \mu F \stackrel{-}{=} \stackrel{6}{\underbrace{}}_{1} \stackrel{-}{\underbrace{}}_{1} \stackrel{-}$

Figure 1. Output Waveform


Figure 2. Typical Output Test Conditions (25±5°C)

Outline Diagram, Pad Layout and Pin Out

Pin #	Symbol	Function		
1	Vc	Control Voltage		
2	NC or Tri-state	No Connect or Tri-state		
3	GND	Ground		
4	fo	Output Frequency		
5	Tri-state or NC	Logic low disables output		
		Logic high or no connection enables output waveform		
6	V _{DD}	Supply Voltage		

Tape and Reel

Table 2. Tape and Reel Dimensions (mm)													
Tape Dimensions Reel Dimensions							# Per						
Product	Α	В	_ C	D	E	F	G	н		J	K	_ L _	Reel
VVC1/2	16	7.5	1.5	4	8	2	21	13	60	2	17	180	1000

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied at these or any other conditions in excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

Table 3. Absolute Maximum Ratings							
Parameter	Symbol	Ratings	Unit				
Power Supply	V _{DD}	6	Vdc				
Storage Temperature	Tstorage	-55/125	°C				
Voltage Control Range	V _C	Gnd to V _{DD}	V				

Reliability

The VVC1/VVC2 is capable of meeting the following qualification tests.

Table 4. Environnemental Compliance						
Parameter	Conditions					
Mechanical Shock	MIL-STD-883 Method 2002					
Mechanical Vibration	MIL-STD-883 Method 2007					
Solderability	MIL-STD-883 Method 2003					
Gross and Fine Leak	MIL-STD-883 Method 1014					
Resistance to Solvents	MIL-STD-883 Method 2016					
Moisture Sensitivity Level	1					

Handling Precautions

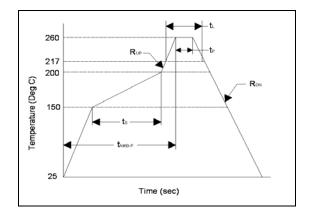
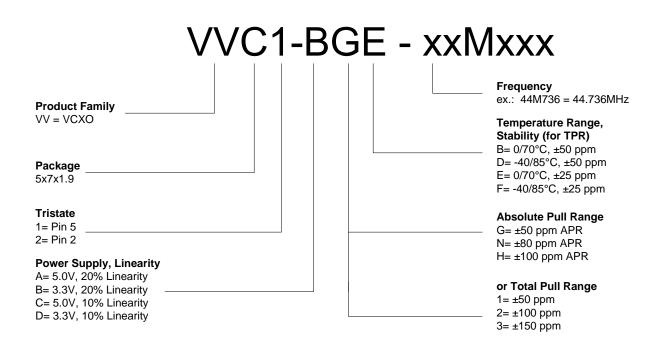

Although ESD protection circuitry has been designed into the the VVC1/VVC2, proper precautions should be taken when handling and mounting. VI employs a Human Body Model and a Charged-Device Model (CDM) for ESD susceptibility testing and design protection evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry wide standard has been adopted for the CDM, a standard HBM of resistance = 1.5kohms and capacitance = 100pF is widely used and therefore can be used for comparison purposes.

Table 5. ESD Ratings		
Model	Minimum	Conditions
Human Body Model	1500	MIL-STD-883 Method 3115
Charged Device Model	1000	JESD 22-C101

Suggested IR profile

Devices are built using lead free epoxy and can also be subjected to standard lead free IR reflow conditions.

Parameter	Symbol	Value
PreHeat Time	ts	60 sec Min, 200 sec Max
amp Up	R _{UP}	3 °C/sec Max
ime Above 217 °C	tL	60 sec Min, 150 sec Max
me To Peak Temperature	t _{AMB-P}	480 sec Max
me At 260 °C (max)	t _P	20 sec Min, 40 sec Max
me At 240°C (max)	tp2	60 sec MAX
amp Down	R _{DN}	6 °C/sec Max



VVC1, VVC2 Voltage Controlled Crystal Oscillator

Table 7. Standard Frequencies (MHz)							
1.544	2.048	4.096	8.192	10.000			
12.000	12.288	12.352	13.000	14.318			
15.440	16.000	16.384	18.432	19.440			
20.000	20.480	24.576	24.704	27.000			
30.000	32.000	32.768	34.368	35.328			
38.880	40.000	40.960	44.736	51.840			
52.000	62.208	65.536					

Other frequencies may be available upon request. Standard frequencies are frequencies which the crystal has been designed and does not imply a stock position.

Ordering Information

NOTE: Not all combinations of options are available. Higher frequencies have less pull capability, especially at +3.3 volts supply, and higher pull can result in 20% linearity instead of 10%. Consult factory or your local sales representative with application requirements.

www.vectron.com

Vectron International reserves the right to make changes to the product(s) and/or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information. VVC1 (October 4, 2006)