Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT

 μ PD16732

384-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 64-GRAY SCALES)

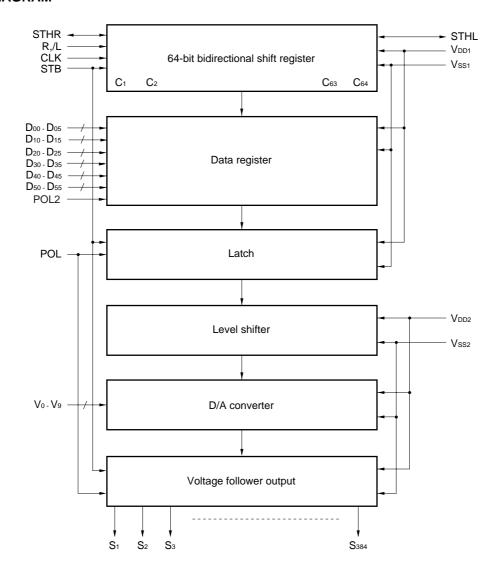
* The μPD16732 is a source driver for TFT-LCDs capable of dealing with displays with 64-gray scales. Data input is based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors by output of 64 values γ-corrected by an internal D/A converter and 5-by-2 external power modules. Because the output dynamic range is as large as V_{SS2}+0.1 V to V_{DD2}-0.1 V, level inversion operation of the LCD's common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion and column line inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a maximum clock frequency of 40 MHz when driving at 3.0 V, this driver is applicable to XGA-standard TFT-LCD panels by input display signal 2 systems (Clock divide).

FEATURES

- 384 Outputs
- · Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter
- Output dynamic range: Vss2+0.1 V to Vdd2-0.1 V
- Logic part power supply voltage (VDD1): 3.3 ± 0.3 V
- ◆ Driver part power supply voltage (VDD2): 8.5 ± 0.5 V
 - CMOS level input
 - Input of 6 bits (gradation data) by 6 dots
 - High-speed data transfer: fmax. = 40 MHz (internal data transfer speed when operating at 3.0 V)
 - Apply for dot-line inversion, n-line inversion and column line inversion
 - Single bank arrangement is possible (loaded with slim or bending TCP) (POL)
 - Display data inversion function (POL2)

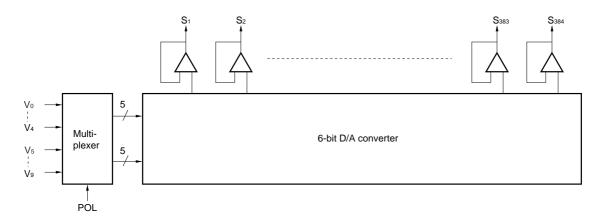
ORDERING INFORMATION

Part Number	Package
μ PD16732N-×××	TCP (TAB package)

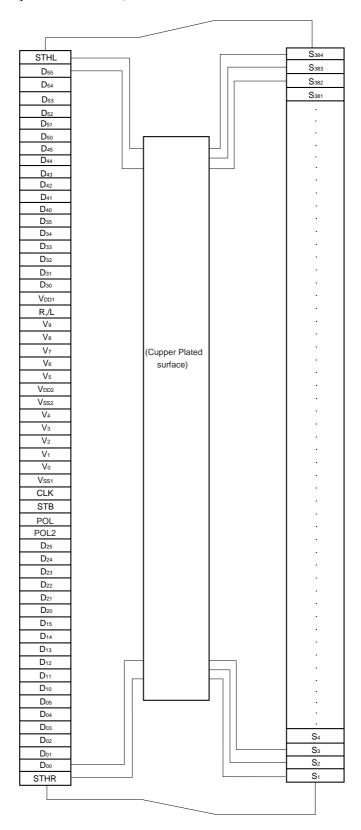

Remark The TCP's external shape is customized. To order your TCP's external shape, please contact a NEC salesperson.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.



BLOCK DIAGRAM


Remark /xxx indicates active low signal.

RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER

PIN CONFIGURATION (μ PD16732N- \times \times)

Remark This figure does not specify the TCP package.

1. PIN FUNCTIONS

Pin Symbol	Pin Name	Description
S ₁ to S ₃₈₄	Driver output	The D/A converted 64-gray-scale analog voltage is output.
D ₀₀ to D ₀₅	Display data input	The display data is input with a width of 36 bits, viz., the gray scale data (6 bits)
D ₁₀ to D ₁₅		by 6 dots (2 pixels).
D ₂₀ to D ₂₅		Dxo: LSB, Dxs: MSB
D ₃₀ to D ₃₅		
D40 to D45		
D ₅₀ to D ₅₅		
R,/L	Shift direction control input	These refer to the start pulse input/output pins when driver ICs are connected in cascade. The shift directions of the shift registers are as follows. R,/L = H: STHR input, S1 \rightarrow S384, STHL output R,/L = L: STHL input, S384 \rightarrow S1, STHR output
STHR	Right shift start pulse input/output	R,/L = H: Becomes the start pulse input pin. R,/L = L: Becomes the start pulse output pin.
STHL	Left shift start pulse input/output	R,/L = H: Becomes the start pulse output pin. R,/L = L: Becomes the start pulse input pin.
CLK	Shift clock input	Refers to the shift register's shift clock input. The display data is incorporated into the data register at the rising edge. At the rising edge of the 64th clock after the start pulse input, the start pulse output reaches the high level, thus becoming the start pulse of the next-level driver.
STB	Latch input	The contents of the data register are transferred to the latch circuit at the rising edge. And, at the falling edge, the gray scale voltage is supplied to the driver. It is necessary to ensure input of one pulse per horizontal period.
POL	Polarity input	POL = L: The S_{2n-1} output uses V_0 to V_4 as the reference supply. The S_{2n} output uses V_5 to V_9 as the reference supply. POL = H: The S_{2n-1} output uses V_5 to V_9 as the reference supply. The S_{2n} output uses V_0 to V_4 as the reference supply. S_{2n-1} indicates the odd output: and S_{2n} indicates the even output. Input of the POL signal is allowed the setup time(tpol-stb) with respect to STB's rising edge.
POL2	Data inversion	POL2 = H: Display data is inverted. POL2 = L: Display data is not inverted.
V ₀ to V ₉	γ -corrected power supplies	Input the γ -corrected power supplies from outside by using operational amplifier. Make sure to maintain the following relationships. During the gray scale voltage output, be sure to keep the gray scale level power supply at a constant level. $V_{DD2} > V_0 > V_1 > V_2 > V_3 > V_4 > V_5 > V_6 > V_7 > V_8 > V_9 > V_{SS2}$
V _{DD1}	Logic power supply	3.3 V ± 0.3 V
V _{DD2}	Driver power supply	8.5 V ± 0.5 V
V _{SS1}	Logic ground	Grounding
Vss2	Driver ground	Grounding

- Cautions 1. The power start sequence must be V_{DD1}, logic input, and V_{DD2} & V₀ to V₉ in that order. Reverse this sequence to shut down. (Simultaneous power application to V_{DD2} and V₀ to V₉ is possible.)
 - 2. To stabilize the supply voltage, please be sure to insert a 0.1 μ F bypass capacitor between V_{DD1}-V_{SS1} and V_{DD2}-V_{SS2}. Furthermore, for increased precision of the D/A converter, insertion of a bypass capacitor of about 0.01 μ F is also advised between the γ -corrected power supply terminals (V₀, V₁, V₂, ..., V₉) and V_{SS2}.

2. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE

This product incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD's counter electrode (common electrode) voltage. The D/A converter consists of ladder resistors and switches.

Figure 2–1 shows the relationship between the driving voltages such as liquid-crystal driving voltages V_{DD2} and V_{SS2} , common electrode potential V_{COM} , and γ -corrected voltages V_0 to V_9 and the input data. Be sure to maintain the voltage relationships of $V_{DD2} > V_0 > V_1 > V_2 > V_3 > V_4 > V_5 > V_6 > V_7 > V_8 > V_9 > V_{SS2}$.

Figures 2–2 and 2–3 show the relationship between the input data and the output data. This driver IC is designed for only single-sided mounting. Therefore, please do not use it for γ -corrected power supply level inversion in double-sided mounting.

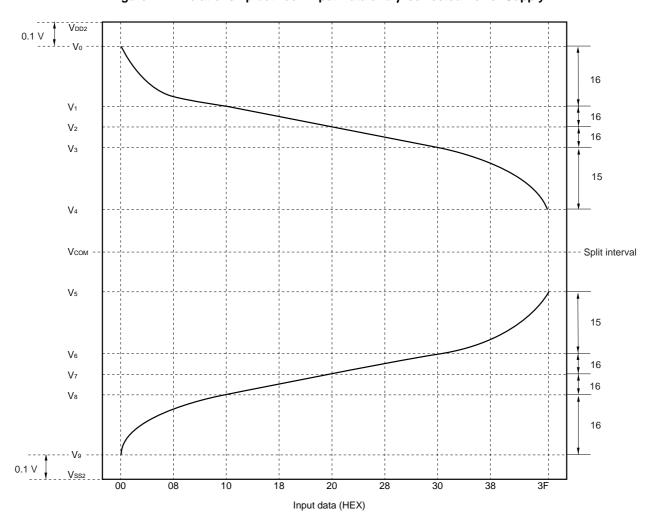


Figure 2–1. Relationship between Input Data and γ -corrected Power Supply

 (Ω)

800 750

700

650

600

400 400

350 350

350

300

300

250

200

200 200

150 150

150 150

100

100 100

100 100

100

100

100

100

100

100 100

100

100 100

100

100

100

100

100

100

100 100

100

100

150 150

250

300

500 800

15850

ro

r1

r2

ľЗ

r4

r8 **r**9

r10

r11

r12

r13

r14

r15

r16

r17 **r**18 **r**19

r20

r22

r24 **r**25

r26

r27

r29 **r**30

r32

r33

r34

r35

r36

r38

r39 **r**40

r41

r42

r43

r44

r45

r47

r49

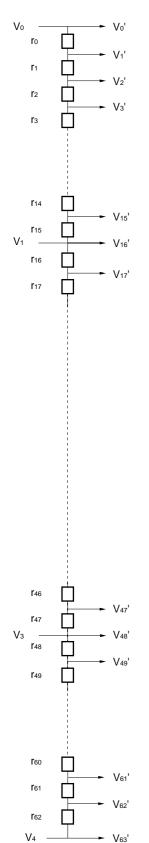
r50

r51

r52

r54

r56 **r**57 **r**58


r59

r60

r61

Figure 2–2. Relationship between Input Data and Output Voltage(1/2) $V_{DD2} > V_0 > V_1 > V_2 > V_3 > V_4 > V_5$, POL2 = L

	1							
Data	D _{X5}	D _{X4}	Dxз	D _{X2}	D _{X1}	D _{X0}		Output Voltage
00н	0	0	0	0	0	0	V ₀ '	V ₀
01н	0	0	0	0	0	1	V1'	V1+(V0-V1)×7250/8050
02н 03н	0	0	0	0	1	0	V ₂ ' V ₃ '	V ₁ +(V ₀ -V ₁)×6500/8050 V ₁ +(V ₀ -V ₁)×5800/8050
03н	0	0	0	1	0	0	V3 V4'	V ₁ +(V ₀ -V ₁)×5150/8050
05н	0	0	0	1	0	1	V5'	V ₁ +(V ₀ -V ₁)×4550/8050
06н	0	0	0	1	1	0	V ₆ '	V ₁ +(V ₀ -V ₁)×4000/8050
07н	0	0	0	1	1	1	V ₇ '	V ₁ +(V ₀ -V ₁)×3450/8050
08н	0	0	1	0	0	0	V8'	V ₁ +(V ₀ -V ₁)×2950/8050
09н	0	0	1	0	0	1	V ₉ '	V ₁ +(V ₀ -V ₁)×2450/8050
0Ан	0	0	1	0	1	<u>0</u>	V ₁₀ '	V ₁ +(V ₀ -V ₁)×2050/8050
0Вн 0Сн	0	0	1	<u>0</u>	0	0	V ₁₁ '	V ₁ +(V ₀ -V ₁)×1650/8050 V ₁ +(V ₀ -V ₁)×1300/8050
0Сн 0Dн	0	0	1	1	0	1	V ₁₂	V ₁ +(V ₀ -V ₁)× 950/8050
0Ен	0	0	1	1	1	0	V ₁₄ '	$V_1+(V_0-V_1)\times 600/8050$
0Fн	0	0	1	1	1	1	V ₁₅ '	V ₁ +(V ₀ -V ₁)× 300/8050
10н	0	1	0	0	0	0	V16'	V ₁
11н	0	1	0	0	0	1	V ₁₇ '	V ₂ +(V ₁ -V ₂)×2450/2750
12 _H	0	1	0	0	1	0	V ₁₈ '	V ₂ +(V ₁ -V ₂)×2200/2750
13н 14н	0	1	0	0 1	0	0	V ₁₉ '	V ₂ +(V ₁ -V ₂)×1950/2750 V ₂ +(V ₁ -V ₂)×1700/2750
14H 15H	0	1	0	1	0	1	V ₂₀	V ₂ +(V ₁ -V ₂)×1700/2750 V ₂ +(V ₁ -V ₂)×1500/2750
16 _H	0	1	0	1	1	0	V ₂₁ '	V ₂ +(V ₁ -V ₂)×1300/2750
17 _H	0	1	0	1	1	1	V ₂₃ '	V ₂ +(V ₁ -V ₂)×1100/2750
18н	0	1	1	0	0	0	V ₂₄ '	V ₂ +(V ₁ -V ₂)× 950/2750
19н	0	1	1	0	0	1	V ₂₅ '	V ₂ +(V ₁ -V ₂)× 800/2750
1Ан	0	1	1	0	1	0	V ₂₆ '	V ₂ +(V ₁ -V ₂)× 650/2750
1B _H	0	1	1	0	1	1	V ₂₇ '	V ₂ +(V ₁ -V ₂)× 500/2750
1Сн 1Dн	0	1	1	1	0	0 1	V ₂₈ '	$V_2+(V_1-V_2)\times 400/2750$
1E _H	0	1	1	1	1	0	V 29 V30'	V ₂ +(V ₁ -V ₂)× 300/2750 V ₂ +(V ₁ -V ₂)× 200/2750
1FH	0	1	1	1	1	1	V30 V31'	V ₂ +(V ₁ -V ₂)× 200/2750
20н	1	0	0	0	0	0	V ₃₂ '	V2
21н	1	0	0	0	0	1	V ₃₃ '	V ₃ +(V ₂ -V ₃)×1500/1600
22н	1	0	0	0	1	0	V ₃₄ '	V ₃ +(V ₂ -V ₃)×1400/1600
23н	1	0	0	0	1	1	V35'	V ₃ +(V ₂ -V ₃)×1300/1600
24н	1	0	0	1	0	0	V36'	V ₃ +(V ₂ -V ₃)×1200/1600
25н	1	0	0	1	0	1	V37'	V ₃ +(V ₂ -V ₃)×1100/1600
26н 27н	1	0	0	1	1	0 1	V ₃₈ '	V ₃ +(V ₂ -V ₃)×1000/1600 V ₃ +(V ₂ -V ₃)× 900/1600
28H	1	0	1	0	0	0	V ₃₉	V ₃ +(V ₂ -V ₃)× 800/1600
29н	1	0	1	0	0	1	V ₄₁ '	$V_3+(V_2-V_3)\times 700/1600$
2Ан	1	0	1	0	1	0	V ₄₂ '	V ₃ +(V ₂ -V ₃)× 600/1600
2Вн	1	0	1	0	1	1	V ₄₃ '	V ₃ +(V ₂ -V ₃)× 500/1600
2Сн	1	0	1	1	0	0	V ₄₄ '	V ₃ +(V ₂ -V ₃)× 400/1600
2D _H	1	0	1	1	0	1	V ₄₅ '	$V_3+(V_2-V_3)\times 300/1600$
2Ен 2Fн	1	0	1	1	1	<u>0</u>	V ₄₆ ' V ₄₇ '	V ₃ +(V ₂ -V ₃)× 200/1600 V ₃ +(V ₂ -V ₃)× 100/1600
2Гн 30н	1	1	0	0	0	0	V47 V48'	V3+(V2-V3)X 100/1600
31н	1	1	0	0	0	1	V ₄₉ '	V ₄ +(V ₃ -V ₄)×3350/3450
32н	1	1	0	0	1	0	V50'	V ₄ +(V ₃ -V ₄)×3250/3450
33н	1	1	0	0	1	1	V ₅₁ '	V ₄ +(V ₃ -V ₄)×3150/3450
34н	1	1	0	1	0	0	V ₅₂ '	V ₄ +(V ₃ -V ₄)×3050/3450
35н	1	1	0	1	0	1	V53'	V ₄ +(V ₃ -V ₄)×2950/3450
36H	1	1	0	1	1	0	V ₅₄ '	V ₄ +(V ₃ -V ₄)×2800/3450
37н 38н	1	1	0 1	0	0	1	V ₅₅ '	V ₄ +(V ₃ -V ₄)×2650/3450 V ₄ +(V ₃ -V ₄)×2500/3450
30н 39н	1	1	1	0	0	0 1	V 56 V57'	V ₄ +(V ₃ -V ₄)×2300/3450
3Ан	1	1	1	0	1	0	V ₅₇	V4+(V3-V4)×2100/3450
3Вн	1	1	1	0	1	1	V ₅₉ '	V ₄ +(V ₃ -V ₄)×1850/3450
3Сн	1	1	1	1	0	0	V ₆₀ '	V ₄ +(V ₃ -V ₄)×1600/3450
3DH	1	1	1	1	0	1	V ₆₁ '	V ₄ +(V ₃ -V ₄)×1300/3450
3E _H	1	1	1	1	1	0	V ₆₂ '	V ₄ +(V ₃ -V ₄)× 800/3450
3Fн	1	1	1	1	1	1	V ₆₃ '	V ₄

Caution Between V₄ and V₅ terminal is not connected in the chip.

rn

r62

r61

r60

r58

r₅₇

r54

r53

r52

r51

r49

r48

r46

r45

r44

r43

r42

r40

r38

r37

r36

r35

r33

r31

r30

r29

r28

r27

r26

r24

r23

r22

r20

r19

ľ17 **ľ**16 **ľ**15

r14

r12

r10

r9

r₈

r7

r6 r5

r3

r₂

ro

 (Ω)

800 500

300 250

250

200

150 150

150

100

100 100

100

100

100

100

100

100

100

100 100

100

100

100 100

100 100

100

100

100

100

100

100

150 150

150

150

200

200 200

250 250

250 300 300

300

350 350 350

400

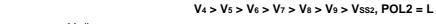
400

500

500

550 550

600


700

800

15850

Figure 2–3. Relationship between Input Data and Output Voltage(2/2)

	 	V ₆₃ " V ₆₂ " V ₆₁ " V ₆₀ "
V ₆	Г49 Г48 Г47	V49" V48" V47"
V8	[17 [16 [15	V17" V16" V15"
1	r1 r0	- V₂" - V₁"

Data	D _{X5}	D _{X4}	D _{X3}	D _{X2}	D _{X1}	Dxo		Output Voltage
3Fн	1	1	1	1	1	1	V ₆₃ ''	V ₅
3Ен	1	1	1	1	1	0	V62''	V6+(V5-V6)×2650/3450
3Dн	1	1	1	1	0	1	V ₆₁ ''	V ₆ +(V ₅ -V ₆)×2150/3450
3Сн	1	1	1	1	0	0	V ₆₀ ''	V ₆ +(V ₅ -V ₆)×1850/3450
3Вн	1	1	1	0	1	1	V59''	V ₆ +(V ₅ -V ₆)×1600/3450
ЗАн	1	1	1	0	1	0	V58''	V ₆ +(V ₅ -V ₆)×1350/3450
39н	1	1	1	0	0	1	V ₅₇ ''	V ₆ +(V ₅ -V ₆)×1150/3450
38н	1	1	1	0	0	0	V56"	V ₆ +(V ₅ -V ₆)× 950/3450
37н	1	1	0	1	1	1	V55''	V ₆ +(V ₅ -V ₆)× 800/3450
36н	1	1	0	1	1	0	V ₅₄ ''	V ₆ +(V ₅ -V ₆)× 650/3450
35н	1	1	0	1	0	1	V53"	V ₆ +(V ₅ -V ₆)× 500/3450
34н	1 1	1	0	1	0	0	V ₅₂ ''	V ₆ +(V ₅ -V ₆)× 400/3450
33н	1	1	0	0	1	1	V51"	V ₆ +(V ₅ -V ₆)× 300/3450
32н	 i	1	0	0	1	0	V ₅₀ ''	V ₆ +(V ₅ -V ₆)× 200/3450
31н	 i	1	0	0	0	1	V ₄₉ ''	V ₆ +(V ₅ -V ₆)× 100/3450
30н	1	1	0	0	0	0	V ₄₈ "	V61 (V5 V6)× 100/3430
2Fн	1 1	0	1	1	1	1	V 48 V47''	V ₇ +(V ₆ -V ₇)×1500/1600
<u>2Гн</u> 2Ен	1	0	1	1	1	0	V 47 V 46"	V7+(V6-V7)×1500/1600 V7+(V6-V7)×1400/1600
								`
2D _H	1	0	1	1	0	1	V ₄₅ "	V7+(V6-V7)×1300/1600
2Сн	1	0	1	1	0	0	V44"	V7+(V6-V7)×1200/1600
2BH	1	0	1	0	1	1	V43"	V7+(V6-V7)×1100/1600
2Ан	1	0	1	0	1	0	V ₄₂ "	V ₇ +(V ₆ -V ₇)×1000/1600
29н	1	0	1	0	0	1	V41"	$V_7+(V_6-V_7)\times 900/1600$
28н	1	0	1	0	0	0	V ₄₀ ''	$V_7+(V_6-V_7)\times 800/1600$
27н	1	0	0	1	1	1	V39''	$V_7+(V_6-V_7)\times 700/1600$
26н	1	0	0	1	1	0	V38''	$V_7+(V_6-V_7)\times 600/1600$
25н	1	0	0	1	0	1	V37''	$V_7+(V_6-V_7)\times 500/1600$
24н	1	0	0	1	0	0	V36"	V7+(V6-V7)× 400/1600
23н	1	0	0	0	1	1	V35"	$V_7+(V_6-V_7)\times 300/1600$
22н	1	0	0	0	1	0	V ₃₄ ''	$V_7+(V_6-V_7)\times 200/1600$
21н	1	0	0	0	0	1	V33''	V ₇ +(V ₆ -V ₇)× 100/1600
20н	1	0	0	0	0	0	V32''	V ₇
1F _H	0	1	1	1	1	1	V31"	V ₈ +(V ₇ -V ₈)×2650/2750
1Ен	0	1	1	1	1	0	V30''	V ₈ +(V ₇ -V ₈)×2550/2750
1D _H	0	1	1	1	0	1	V ₂₉ "	V ₈ +(V ₇ -V ₈)×2450/2750
1CH	0	1	1	1	0	0	V ₂₈ "	V ₈ +(V ₇ -V ₈)×2350/2750
1Вн	0	1	1	0	1	1	V ₂₇ "	V ₈ +(V ₇ -V ₈)×2250/2750
1A _H	0	1	1	0	1	0	V ₂₆ "	V ₈ +(V ₇ -V ₈)×2100/2750
19н	0	1	1	0	0	1	V ₂₅ "	V ₈ +(V ₇ -V ₈)×1950/2750
18н	0	1	1	0	0	0	V23	V ₈ +(V ₇ -V ₈)×1800/2750
17н	0	1	0	1	1	1	V24	V ₈ +(V ₇ -V ₈)×1650/2750
17н 16н	0	1	0	1	1	0	V 23 V22''	V ₈ +(V ₇ -V ₈)×1050/2750
	_	1		1	0	1		
15 _H	0		0				V ₂₁ "	V ₈ +(V ₇ -V ₈)×1250/2750
14 _H	0	1	0	1	0	0	V ₂₀ "	V ₈ +(V ₇ -V ₈)×1050/2750
13 _H	0	1	0	0	1	1	V ₁₉ "	$V_8+(V_7-V_8)\times 800/2750$
12 _H	0	1	0	0	1	0	V ₁₈ "	V ₈ +(V ₇ -V ₈)× 550/2750
11 _H	0	1	0	0	0	1	V ₁₇ "	V ₈ +(V ₇ -V ₈)× 300/2750
10 _H	0	1	0	0	0	0	V ₁₆ "	V ₈
<u>0</u> Fн	0	0	1	1	1	1	V ₁₅ "	V9+(V8-V8)×7750/8050
0Ен	0	0	1	1	1	0	V ₁₄ "	V ₉ +(V ₈ -V ₈)×7450/8050
0DH	0	0	1	1	0	1	V13"	V9+(V8-V8)×7100/8050
0Сн	0	0	1	1	0	0	V ₁₂ "	V ₉ +(V ₈ -V ₈)×6750/8050
0Вн	0	0	1	0	1	1	V ₁₁ "	V9+(V8-V8)×6400/8050
0Ан	0	0	1	0	1	0	V ₁₀ ''	V9+(V8-V8)×6000/8050
09н	0	0	1	0	0	1	V ₉ ''	V9+(V8-V8)×5600/8050
08н	0	0	1	0	0	0	V8''	V9+(V8-V8)×5100/8050
07н	0	0	0	1	1	1	V ₇ ''	V9+(V8-V8)×4600/8050
06н	0	0	0	1	1	0	V6''	V9+(V8-V8)×4050/8050
05н	0	0	0	1	0	1	V5''	V9+(V8-V8)×3500/8050
04н	0	0	0	1	0	0	V4''	V9+(V8-V8)×2900/8050
03н	Ö	Ö	Ö	Ö	1	1	V3''	V9+(V8-V8)×2250/8050
02н	0	0	0	0	1	0	V ₂ ''	V ₉ +(V ₈ -V ₈)×1550/8050
01н	0	0	0	0	0	1	V ₁ ''	V9+(V8-V8)× 800/8050
							V ₀ ''	1

Caution Between V_4 and V_5 terminal is not connected in the chip.

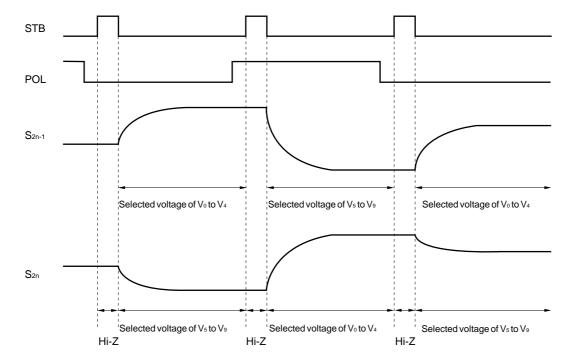
3. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN

Data format: 6 bits × 2 RGBs (6 dots) Input width: 36 bits (2-pixel data)

R,/L = H (Right shift)

Output	S ₁	S ₂	S ₃	S ₄	 S383	S ₃₈₄
Data	D ₀₀ to D ₀₅	D ₁₀ to D ₁₅	D ₂₀ to D ₂₅	D ₃₀ to D ₃₅	 D40 to D45	D50 to D55

R,/L = L (Left shift)


Output	S ₁	S ₂	S ₃	S ₄	 S 383	S ₃₈₄
Data	D ₀₀ to D ₀₅	D ₁₀ to D ₁₅	D ₂₀ to D ₂₅	D ₃₀ to D ₃₅	 D40 to D45	D ₅₀ to D ₅₅

POL	S _{2n-1} Note	S _{2n} Note
L	V ₀ to V ₄	V ₅ to V ₉
Н	V ₅ to V ₉	Vo to V4

Note S_{2n-1} (Odd output), S_{2n} (Even output)

4. RELATIONSHIP BETWEEN STB, POL, AND OUTPUT WAVEFORM

The output voltage is written to the LCD panel synchronized with the STB falling edge.

5. ELECTRICAL SPECIFICATION

Absolute Maximum Ratings (TA = +25 °C, Vss1 = Vss2 = 0 V)

Parameter	Symbol	Rating	Unit
Logic Part Supply Voltage	V _{DD1}	-0.5 to +5.0	V
Driver Part Supply Voltage	V _{DD2}	-0.5 to +10.0	V
Logic Part Input Voltage	Vıı	-0.5 to V _{DD1} +0.5	V
Driver Part Input Voltage	V ₁₂	-0.5 to V _{DD2} +0.5	V
Logic Part Output Voltage	V ₀₁	-0.5 to V _{DD1} +0.5	V
Driver Part Output Voltage	V _{O2}	-0.5 to V _{DD2} +0.5	V
Operating Temperature Range	TA	-10 to +75	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

Caution If the absolute maximum rating of even one of the above parameters is exceeded even momentarily, the quality of the product may be degraded. Absolute maximum ratings, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product within the range of the absolute maximum ratings.

Recommended Operating Range (T_A = -10 to +75 °C, Vss₁ = Vss₂ = 0 V)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Logic Part Supply Voltage	V _{DD1}	3.0	3.3	3.6	V
Driver Part Supply Voltage	V _{DD2}	8.0	8.5	9.0	V
High-Level Input Voltage	VIH	0.7 V _{DD1}		V _{DD1}	V
Low-Level Input Voltage	VIL	0		0.3 V _{DD1}	V
γ -Corrected Voltage	Vo to V9	Vss2		V _{DD2}	V
Driver Part Output Voltage	Vo	Vss2 + 0.1		V _{DD2} – 0.1	V
Maximum Clock Frequency	fmax.	40			MHz

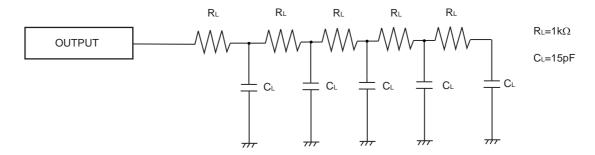
Electrical Specifications (TA = -10 to +75 °C, $VDD1 = 3.3 \text{ V} \pm 0.3 \text{ V}$, $VDD2 = 8.5 \text{ V} \pm 0.5 \text{ V}$, VSS1 = VSS2 = 0 V)

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Input Leak Current	lı∟					±1.0	μΑ
High-Level Output Voltage	Vон	STHR (STHL), Ion = 0 mA		V _{DD1} – 0.1			٧
Low-Level Output Voltage	Vol	STHR (STHL), IoL = 0 mA				0.1	V
γ-Corrected Supply Current	lγ	V_0 to $V_4 = V_5$ to $V_9 = 4.0 \text{ V}$	V ₀ pin, V ₄ pin	126	252	504	μΑ
			V₅ pin, V ₉ pin	-504	-252	-126	μΑ
Driver Output Current	Іvон	$Vx = 7.0 \text{ V}, Vout = 6.5 \text{ V}^{\text{Note}}$				-30	μΑ
	Ivol	$Vx = 1.0 \text{ V}, Vout = 1.5 \text{ V}^{Note}$		30			μΑ
Output Voltage Deviation	ΔVο	VDD1 = 3.3 V, VDD2 = 8.5 V,			±7	±20	mV
Output swing difference deviation	ΔV _{P-P}	Vout = 2.0 V, 4.25 V, 6.5 V			±2	±15	mV
Output Voltage Range	Vo	Input data		0.1		V _{DD2} – 0.1	٧
Logic Part Dynamic Current Consumption	I _{DD1}	V _{DD1} , with no load			2.0	10	mA
Driver Part Dynamic Current Consumption	I _{DD2}	V _{DD2} , with no load			3.0	10	mA

Note Vx refers to the output voltage of analog output pins S₁ to S₃₈₄.

Vout refers to the voltage applied to analog output pins S1 to S384.

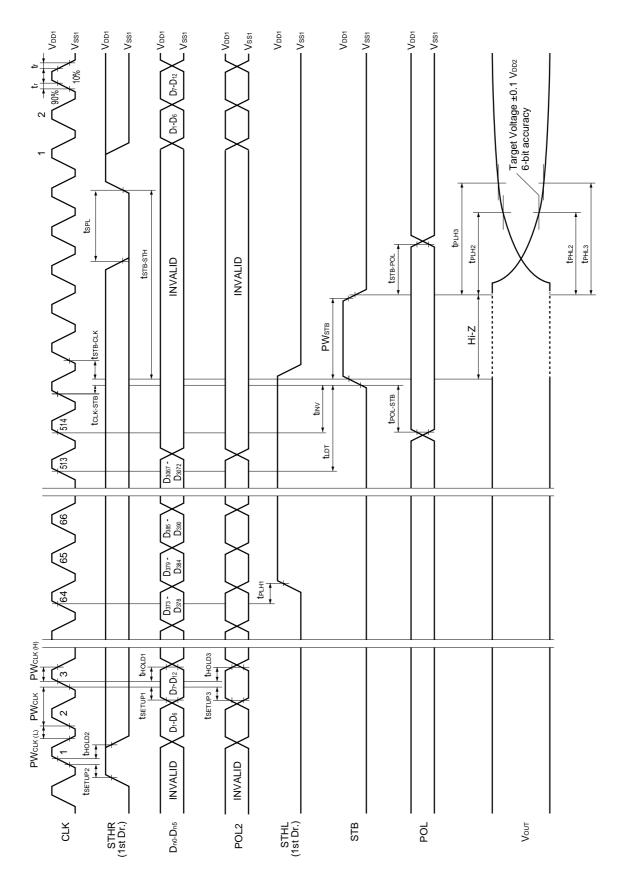
Cautions 1. The STB cycle is defined to be 20 μ s at fclk = 40 MHz.


- 2. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in the dot checkerboard input pattern.
- 3. Refers to the current consumption per driver when cascades are connected under the assumption of XGA single-sided mounting (8 units).

Switching Characteristics (TA = -10 to +75 °C, VDD1 = 3.3 V ± 0.3 V, VDD2 = 8.5 V ± 0.5 V, Vss1 = Vss2 = 0 V)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Start Pulse Delay Time	t PLH1	C _L = 10 pF		10	20	ns
Driver Output Delay Time	t PLH2	$C_L = 75 \text{ pF}, R_L = 5 \text{ k}\Omega,$		2.5	4	μs
	t PLH3	V _{DD1} = 3.3 V, V _{DD2} = 9.0 V		5	7	μs
	tPHL2			2.5	4	μs
	t PHL3			5	7	μs
Input Capacitance	Cı1	STHR (STHL) excluded, T _A = 25°C		5	10	pF
	C ₁₂	STHR (STHL),T _A = 25°C		5	10	pF

Measurement Condition


Timing Requirement (T_A = -10 to +75 °C, V_{DD1} = 3.3 V ± 0.3 V, Vss1 = Vss2 = 0 V)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock Pulse Width	PWclk		25			ns
Clock Pulse High Period	PW _{CLK(H)}		4			ns
Clock Pulse Low Period	PW _{CLK(L)}		4			ns
Data Setup Time	tsetup1		4			ns
Data Hold Time	tHOLD1		0			ns
Start Pulse Setup Time	tsetup2		4			ns
Start Pulse Hold Time	tHOLD2		0			ns
POL2 Setup Time	tsetup3		4			ns
POL2 Hold Time	t HOLD3		0			ns
Start Pulse Low Period	t spl		6			ns
STB Pulse Width	PWstb		2			CLK
					4	μs
Data Invalid Period	tinv		1			CLK
Last Data Timing	t ldt		2			CLK
CLK-STB Time	t ськ-sтв	$CLK \uparrow \to STB \uparrow$	6			ns
STB-CLK Time	tsтв-clк	$STB \uparrow \to CLK \uparrow$	6			ns
Time Between STB and Start Pulse	tsтв-sтн	STB $\uparrow \rightarrow$ STHR(STHL) \uparrow	2			CLK
POL-STB Time	tpol-stb	POL \uparrow or \downarrow → STB \uparrow	-5			ns
STB-POL Time	tstb-pol	$STB \downarrow \to POL \downarrow or \uparrow$	6			ns

*6. SWITCHING CHARACTERISTICS WAVEFORM (R,/L = H)

(Unless otherwise specified, the input level is defined to be $V_{IH} = 0.7 \ V_{DD1}, \ V_{IL} = 0.3 \ V_{DD1},$)

7. RECOMMENDED SOLDERING CONDITIONS

The following conditions must be met for soldering conditions of the μ PD16732.

For more details, refer to the Semiconductor Device Mounting Technology Manual (C10535E).

Please consult with our sales offices in case other soldering process is used, or in case the soldering is done under different conditions.

Type of Surface Mount Device

 μ PD16732N-xxx : TCP (TAB package)

Mounting Condition	Mounting Method	Condition
Thermocompression	Soldering	Heating tool 300 to 350°C: heating for 2 to 3 seconds: pressure 100g (per solder)
	ACF (Adhesive Conductive Film)	Temporary bonding 70 to 100°C: pressure 3 to 8 kg/cm²: time 3 to 5 secs. Real bonding 165 to 180°C: pressure 25 to 45 kg/cm²: time 30 to 40 secs. (When using the anisotropy conductive film SUMIZAC1003 of Sumitomo Bakelite, Ltd.)

Caution To find out the detailed conditions for packaging the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more packaging methods at a time.

[MEMO]

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Reference Documents

NEC Semiconductor Device Reliability / Quality Control System (C10983E)

Quality Grades to NEC's Semiconductor Devices (C11531E)

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.