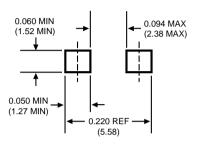

New Product

Vishay Semiconductor


Surface Mount TransZorb® Transient Voltage Suppressors

Steady State Power 1W Peak Pulse Power 300W Reverse Voltage 530,550V

- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Protects power IC controllers such as TOPSwitch®
- Glass passivated junction
- High temperature soldering guaranteed: 250°C/10 seconds at terminals
- Excellent clamping capability
- · Available in unidirectional only

Mounting Pad Layout

Mechanical Data

Case: JEDEC DO-214AC molded plastic body over passivated chip

Terminals: Solder plated, solderable per MIL-STD-750, Method 2026

Polarity: The band denotes the cathode, which is positive with respect to the anode under normal TVS operation

Mounting Position: Any Weight: 0.002oz., 0.064q

Packaging Codes – Options (Antistatic):

51 - 1K per Bulk box, 20K/carton

61 – 1.8K per 7" plastic Reel (12mm tape), 36K/carton

5A - 7.5K per 13" plastic Reel (12mm tape), 75K/carton

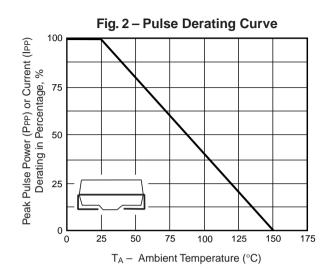
Maximum Ratings and Thermal Characteristics TA = 25°C unless otherwise noted.

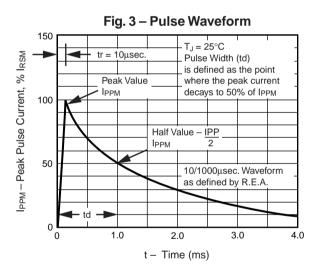
Parameter	Symbol	SMAJ530	SMAJ550	Unit
Device marking code		HD	SB	
Steady state power dissipation ⁽³⁾	P _{M(AV)}	1.0		W
Peak pulse power dissipation ⁽¹⁾⁽²⁾⁽⁵⁾ (Fig. 1)	P _{PPM}	Minimum 300		W
Stand-off voltage	Vwm	477	495	V
Typical thermal resistance junction-to-lead	R _θ JL	27		°C/W
Typical thermal resistance junction-to-ambient	R _θ JA	75		°C/W
Operating junction and storage temperature range	TJ, TSTG	-55 to +150		°C

Electrical Characteristics TA = 25°C unless otherwise noted.

Minimum breakdown voltage	e at 100μA	V _(BR)	530 550		V
Max. clamping voltage at 40	0mA, 10/1000μs-waveform	Vc	660		V
Maximum DC reverse leaka	ge current at V _{WM}	ID	5.0		μΑ
Typical temperature coefficient of V _(BR)			650		mV°C
Typical capacitance ⁽⁴⁾	at 0V at 200V	СЈ	9 7.	0 5	pF

Notes: (1) Non repetitive current pulse per Fig.3 and derated above 25°C per Fig. 2


- (2) Mounted on 5.0mm² copper pads to each terminal
- (3) Lead temperature at 75°C = T_L


- (4) Measured at 1MHz
- (5) Peak pulse power waveform is 10/1000μs.

Vishay Semiconductor

Ratings and Characteristic Curves (TA = 25°C unless otherwise noted)

Fig. 1 – Peak Pulse Power Rating Curve 100 Non-repetitive Pulse Waveform shown in Fig. 3 PPPM - Peak Pulse Power (kW) $T_A = 25^{\circ}C$ 10 1.0µs 0.1μs 1.0ms 10ms 10µs 100μs td - Pulse Width (sec.)

Application Notes

- Respect Thermal Resistance (PCB Layout) as the temperature coefficient also contributes to the clamping voltage.
- Select minimum breakdown voltage, so you get acceptable power dissipation and PCB tie point temperature. Devices with higher breakdown voltage will have a shorter conduction time and will dissipate less power.
- · Clamping voltage is influenced by internal resistance design approximation is 7V per 100mA slope.
- Keep temperature of TVS lower than TOPSwitch® as a recommendation.
- Maximum current is determined by the maximum T_J and can be higher than 300mA. Contact supplier for different clamping voltage / current arrangements.
- Minimum breakdown voltage can be customized for other applications. Contact supplier.
- TOPSwitch® is a registered trademark of Power Integrations, Inc.

14-Dec-01