CMOS MICROPROCESSOR-COMPATIBLE 12-BIT A/D CONVERTER

Precision Monolithics Inc

FEATURES

- Low Cost
- Low Transition Noise Between Codes
- 12-Bit Accurate
 - ±1/2 LSB Nonlinearity Error Over Temperature No Missing Codes at All Temperatures
- 12 Microsecond Conversion Time
- Internal or External Clock
- Fast 90ns Bus Access and Disconnect Time
- 8 or 16-Bit Data Bus Compatible
- Improved ESD Resistant Design
- Low 95mW Power Consumption
- Space Saving 24-Pin 0.3" DIP or 24-Lead SQL
- Available in Die Form

APPLICATIONS

- Data Acquisition Systems
- DSP System Front End
- Process Control Systems
- Portable Instrumentation

ORDERING INFORMATION[†]

INL (LSB)	MILITARY"†† TEMPERATURE -55°C TO +125°C	EXTENDED INDUSTRIAL†† TEMPERATURE -40°C TO +85°C	COMMERCIAL TEMPERATURE 0°C TO +70°C	
±1/2	ADC912BW	ADC912EP	_	
±1		ADC912FW		
±1	_	ADC912FP	ADC912HP	
±1	_	ADC912FS	ADC912HS++	

For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.

CODE REPETITION

GENERAL DESCRIPTION

The ADC-912 is a monolithic 12-bit accurate CMOS A/D converter. It contains a complete successive approximation A/D converter built with a high accuracy D/A converter, a precision bipolar transistor high-speed comparator, and successive approximation logic including three-state bus interface for logic compatibility. The accuracy of the ADC-912 results from the addition of precision bipolar transistors to PMI's advanced-oxide isolated silicongate CMOS process. Particular attention was paid to the reduction of transition noise between adjacent codes achieving a 1/6 LSB uncertainty. The low noise design produces the same digital output for DC analog inputs not located at a transition voltage, see the Code Repetition and Transition Noise plots below. NPN transistors also provide excellent bus interface timing, 90ns access and bus disconnect time which results in faster data transfer without the need for wait states. An external 1MHz clock provides a 12 us conversion time.

In stand-alone applications an internal clock can be used with an external crystal.

An external negative five-volt reference sets the 0 to ±10 volt input range. Plus five and minus 12 volt power supplies result in 95mW of total power consumption.

PIN CONNECTIONS

TRANSITION NOISE CROSS PLOT

[†] Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages. For ordering information, see PMI's Data Book, Section 2.

tf For availability and burn-in information, contact your local sales office.

ANALOG-TO-DIGITAL CONVERTERS

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS ($T_A = +25$ °C, unless
otherwise noted)
V_{DD} to DGND
V _{SS} to DGND +0.3V to -17V
V _{BEE} IN to AGNDV _{SS} , V _{DI}
$V_{\rm REF}^{-}$ IN to AGND $V_{\rm SS}, V_{\rm D}$ AGND to DGND $-0.3V, V_{\rm DD} + 0.3V$
A _{IN} to AGND15V to +15V
Digital Input Voltage to DGND
Pins 17, 19-21 –0.3V, V _{DD} + 0.3V
Digital Output Voltage to DGND
Pins 4-11, 13-16, 18, 220.3V, V _{DD} + 0.3V
Operating Temperature Range
HP, HS 0°C to +70°C
EP, FP, FW, FS40°C to +85°C
BW, BTC55°C to +125°C
Junction Temperature+150°C
•

Storage Temperature65°C to +150°C Lead Temperature (Soldering, 60 sec)					
PACKAGE TYPE	⊖ _j ≜ (Note 1)	θ _{iC}	UNITS		
20-Pin Hermetic DIP (Z)	76	11	°C/W		
20-Pin Plastic DIP (P)	69	27	*C/W		
20-Pin SOL (S)	88	25	°C/W		

NOTE:

 Θ_{jA} is specified for worst case mounting conditions, i.e., Θ_{jA} is specified for device in socket for CerDIP and P-DIP packages; Θ_{jA} is specified for device soldered to printed circuit board for SOL package.

CAUTION:

Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS at $V_{DD} = +5V$, $V_{SS} = -12$ or -15V, $V_{REF} = -5V$, Analog Input 0 to +10V; $f_{CLK} = 1$ MHz; -40° C $\leq T_{A} \leq +85^{\circ}$ C for ADC-912E/F, 0° C $\leq T_{A} \leq +70^{\circ}$ C for ADC-912H, -55° C $\leq T_{A} \leq +125^{\circ}$ C for ADC-912B, unless otherwise noted. Specifications apply to Slow-Memory Mode. (Note 7)

			ADC-912				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
4.4	B/E	B/E Grades	-1/2	_	+1/2		
Integral Nonlinearity	INL	F/H Grades	-1		+1	LSB	
Differential Nonlinearity	DNL		-1	_	+1	LSB	
Offset Error	V _{ZSE}		-5		+5	LSB	
Gain Error	G _{FSE}	<u> </u>	-8	-	+8	LSB	

ELECTRICAL CHARACTERISTICS at $V_{DD} = +5V$, $V_{SS} = -12$ or -15V, $V_{REF} = -5V$, Analog Input 0 to +10V; $f_{CLK} = 1$ MHz; $-40^{\circ}C \le T_{A} \le +85^{\circ}C$ for ADC-912E/F, $0^{\circ}C \le T_{A} \le +70^{\circ}C$ for ADC-912H, $-55^{\circ}C \le T_{A} \le +125^{\circ}C$ for ADC-912B, unless otherwise noted. Specifications apply to Slow-Memory Mode. *Continued*

				ADC-912		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Full-Scale Tempco (Note 1)	TCG _{FS}			. 5	+15	ppm/°C
Input Voltage Range	V _{IN}		0		+10	V
Input Current Range	IiN		0	_	+3	mA
Power Supply Rejection Ratio	PSRR+ PSRR-	$\Delta V_{DD} = \pm 5\%$ $\Delta V_{SS} = \pm 5\%$	_	1/2 1/8	4 4	LSB
Logic Input High Voltage	V _{INH}	CS, RD, HBEN	2.4		-	v
Logic Input Low Voltage	V _{INL}	CS, RD, HBEN	_		0.8	٧
Logic Input Current	I _{IN}	CS, RD, HBEN	_	_	±1	Αц
Digital Input Capacitance	C _{IN}	Digital Input, CS, RD, HBEN, CLK IN (Note 1)	_	7	10	pF
Logic Output High Voltage	V _{OH}	I _{SOURCE} = 0.2mA	4	_		V
Logic Output Low Voltage	V _{OL}	I _{SINK} = 1.6mA	_	_	0.4	v
Three-State Output Leakage	loz	D11-D0/8		-	10	μА
Digital Output Capacitance	Cout	D11-D0/8 (Note 1)	_	8	15	ρF
Positive Supply Current	t _{DD}	V _{DD} = +5V (Note 2)		5	7	mA
Negative Supply Current	l _{ss}	V _{SS} = -12V (Note 2)		3	5	mA
Power Consumption	P _{diss}	V _{DD} = +5V, V _{SS} = -12V (Note 2)		70	95	mW
Conversion Time	T _c	f _{CLK} = 1MHz (Note 6) Synchronous Clock Asynchronous Clock	_ 12		12.5 13.5	μS
TIMING CHARACTERISTICS (Note See Figures 3 to 6	s 1, 3)					
CS to RD Set-up Time	t ₁		20	_		ns
RD to BUSY Propagation Delay	t ₂		-		150	ns
Data Access Time After RD	t ₃	(Note 4) $C_L = 20pF$ $C_L = 100pF$	-	50 6 5	90 125	ns
Read Pulse Width	t ₄	(Note 4)	90			ns
CS to RD Hold Time	t ₅		0			ns
New Data Valid After BUSY	t ₆	C _L = 100pF (Note 4)		-30	0	ns
Bus Disconnect Time	t ₇	(Note 5)	20	50	90	ns
HBEN to RD Set-up Time	t ₈		20	_	_	ns
HBEN to RD Hold Time	t _e		0	_		ns
Delay Between Successive Read Operations	t ₁₀		250	200	-	ns

NOTES:

- 1. Guaranteed by design
- 2. Converter inactive; CS, RD= HIGH, AIN=+10V.
- 3. All input control signals are specified with $t_r = t_f = 5$ ns (10% to 90% of +5V) and timed from a voltage level of 1.6V.
- 4. t_3 , t_4 and t_6 are measured with the load circuits of Figure 1 and timed for an output to cross 0.8V or 2.4V.
- t₇ is the time required for the data lines to change 0.5V when loaded with the circuits of Figure 2.
- 6. See Synchronizing Start Conversion information in Converter Operation Details.
- Typicals (TYP) are median values measured at 25°C. See Typical Performance Characteristics for additional information.

DBN O

SM.1

DBN O

DBN

FIGURE 1: Load Circuits for Access Time

FIGURE 2: Load Circuits for Output Float Delay

TABLE 1: Pin Function Description

PIN	MNEMONIC	DESCRIPTION												
1	Ain	Analog Input. 0 t	o +10 v	olts.										
2	VREHN	Voltage Reference	e Input	. Requir	es exter	nal −5 v	olt refer	rence.						
3	AGND	Analog Ground												
411	$D_{11} \dots D_4$	Three State data outputs become active when CS and RD are brought low.												
_ ''	D _{3/11} D _{0/8}	•	Individual pin function is dependent upon High Byte Enable (HBEN) input. DATA BUS OUTPUT, CS & RD - LOW											
			Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9	Pin 10	Pln 11	Pln 13	Pin 14	Pin 15	Pin 16
		MNEMONIC*	D ₁₁	D ₁₀	D ₉	D ₈	D ₇	D ₆	D ₅	D ₄	D _{3/11}	D _{2/10}	D _{1/9}	D _{0/8}
		HBEN = LOW	DB ₁₁	DB 10	DB ₀	DB ₈	DB ₇	DB ₆	DB ₅	DB4	DB ₃	DB ₂	DB ₁	DB ₀
		HBEN = HIGH	DB ₁₁	DB 10	DB,	DB ₈	LOW	LOW	LOW	LOW	DB 11	DB 10	DB,	DB,
		NOTES: *D ₁₁ D _{0/8} are the A DE ₁₁ DB ₀ are the				1 is the M	SB.							
12	DGND	Digital Ground												
		· ·												
17	CLK IN	Clock Input pin. ceramic resonate											crystal (or
17 18	CLK IN	Clock Input pin.	or may i n. An in	be conn verted C	ected b	etween signal ap	CLK IN opears a	(Pin 17) and Cl	LK OUT	(Pin 18	3).		
		Clock Input pin. ceramic resonate Clock Output pir	or may i n. An in descrip e input. its (4 M	be conn verted C tion for Its prim SBs or 8	ected be CLK IN s crystal (lary fund LSBs).	etween ignal ap resonat ction is	CLK IN opears a or). to multi	(Pin 17) at CLK (plex the) and Cl OUT wh 12 bits	LK OUT en an e of conv	(Pin 18 xternal d	i). clock is lata onto	used. So	ee
18	CLK OUT	Clock Input pin. ceramic resonate Clock Output pir CLK IN (Pin 17) High Byte Enabl D ₇ D _{0/8} outpu	or may in. An in descrip e input. Its (4 Ms when He sactive	be conn verted C tion for Its prim SBs or 8 IBEN is LOW si	ected be CLK IN s crystal (eary fund LSBs). high. gnal, in	etween signal appresent resonate ction is See Pir conjunc	CLK IN opears a or). to multi of description with the control of t	(Pin 17 at CLK (Pin 17 plex the ption 4.) and Cl OUT wh 12 bits 11 and	en an e of conv d 13	(Pin 18 xternal d ersion o 16. Also	i). clock is lata onto disable	used. So the lov	ee wer
18 19	CLK OUT	Clock Input pin. ceramic resonate Clock Output pin CLK IN (Pin 17) High Byte Enabl D ₇ D _{0/8} output conversion start READ input. This	or may in An in descripte input. Its (4 MS when He sactive tes a comput. The	be conniverted Contion for Its prime SBs or 8 IBEN is LOW significant to the conversion is active	ected be CLK IN a crystal (eary fund B LSBs). high. gnal, in n if CS a e LOW s	etween signal appresent ction is See Pir conjunct and HBI signal, ir	CLK IN opears a or). to multi o description with EN are less to conjur	(Pin 17 at CLK (Piex the ption 4.) th CS is ow.) and Ci OUT wh 12 bits 11 and used to	LK OUT en an e of conv d 13 enable	(Pin 18 xternal dersion of 16. Also the out	i). clock is lata onto disable put data	used. So the lov s three-s	ee wer state
18 19 20	CLK OUT HBEN	Clock Input pin. ceramic resonate Clock Output pin CLK IN (Pin 17) High Byte Enabl D ₇ D _{0/8} output conversion start READ input. This drivers and initial CHIP SELECT in ceramic resonate ceramic resonate r	or may be not may be not may be input. Its (4 Ms when H is active tes a comput. The sand in the may be not may	be conniverted Contion for Its prime SBs or 8 IBEN is LOW singular to the conversion active nitiates a	ected be CLK IN a crystal (eary fund LSBs). high. gnal, in n if CS a e LOW s	etween signal ar resonate tion is See Pir conjuncted HBI signal, ir signal, ir signal if it is to it i	CLK IN opears a or). to multin description with a conjuration of the conjuration and and and and and and and and and an	(Pin 17 tht CLK (plex the option 4. th CS is ow. notion where we have a continuous to the continuous) and Cl DUT wh 12 bits 11 and used to with RD is are low.	en an e of conv d 13 enable	(Pin 18 xternal dersion of 16. Also the out	i). clock is lata onto disable put data	used. So the lov s three-s	ee wer state
18 19 20 21	CLK OUT HBEN RD CS	Clock Input pin. ceramic resonate Clock Output pin CLK IN (Pin 17) High Byte Enabl D ₇ D _{0/8} output conversion start READ input. This drivers and initial CHIP SELECT is three-state drivers.	or may in the control of the control	be conniverted Cition for Its prim SBs or 8 IBEN is LOW significant active initiates a converte	ected be CLK IN a crystal (eary fund LSBs). high. gnal, in n if CS a e LOW s	etween signal ar resonate tion is See Pir conjuncted HBI signal, ir signal, ir signal if it is to it i	CLK IN opears a or). to multin description with a conjuration of the conjuration and and and and and and and and and an	(Pin 17 tht CLK (plex the option 4. th CS is ow. notion where we have a continuous to the continuous) and Cl DUT wh 12 bits 11 and used to with RD is are low.	en an e of conv d 13 enable	(Pin 18 xternal dersion of 16. Also the out	i). clock is lata onto disable put data	used. So the lov s three-s	ee wer state

TABLE 2: Analog Input to Digital Output Code Conversion

	ANALOG H	NPUT VOLTAGE	OUTPUT CODE*		
	0 TO +10Y	-10V TO +10V	DB ₁₁ (MSB)	DB ₀ (LSB)	
+FS-1LSB	9.9976V	9.9951V	1111 11	11 1111	
+FS - 11/2LSB	9.9964	9.9927	1111 11	11 111¢	
Mid Scale + 1/2LSB	5.0012	0.0024	1000 00	00 000φ	
Mid Scale	5.0000	0.0000	1000 00	00 0000	
-FS + 1/LSB	0.0012	-9.9976	0000 000	00 000φ	
-FS	0.0000	10.0000	0000 00	0000 00	

^{*}The symbol "\phi" indicates a 0 or 1 with equal probability.

DICE CHARACTERISTICS

DIE SIZE 0.122 × 0.148 inch, 18,056 sq. mils (3.098 × 3.759 mm, 11.65 sq. mm)

	10. 5
1. A _{IN}	13. D _{3/11}
2. V _{REF} IN	14. D _{2/10}
3. AGND	15. D _{1/9}
4. D ₁₁	16. D _{0/8}
5. D ₁₀	17. CLK IN
6. D ₉	18. CLK OUT
7. D ₈	19. HBEN
8. D ₇	20. RD
9. D ₆	21. CS
10. D ₅	22. BUSY
11. D ₄	23. V _{SS}
12. DGND	24. Von (Substrate)

For additional DICE ordering information, refer to PMI's Data Book, Section 2.

WAFER TEST LIMITS at $V_{DD} = +5V$, $V_{SS} = -12V$ or -15V, $V_{REF} = -5V$, $A_{IN} = 0V$ to +10V, and $T_A = +25^{\circ}C$, unless otherwise noted.

-			ADC-912G	
PARAMETER	SYMBOL	CONDITIONS	LIMIT	UNITS
Integral Nonlinearity	INL		±1	LSB MAX
Differential Nonlinearity	DNL		±1	LSB MAX
Offset Error	V _{ZSE}	Guaranteed by Design	±8	LSB MAX
Gain Error	G _{FSE}		±8	LSB MAX
Analog Input Resistance	R _{AIN}		4/6	KΩ MIN/MAX
Logic Input High Voltage	V _{INH}	CS, RD, HBEN	2.4	V MIN
Logic Input Low Voltage	VINL	CS, RD, HBEN	0.8	V MAX
Logic Input Current	IIN	CS, RD, HBEN	±1	μΑ ΜΑΧ
Logic Output High Voltage	V _{OH}	I _{SOURCE} = 0.2mA	4	V MIN
Logic Output Low Voltage	VoL	I _{SINK} = 1.6mA	0.4	V MAX
Positive Supply Current	I _{DD}	$V_{DD} = +5V$, $\overline{CS} = \overline{RD} = V_{DD}$, $A_{IN} = +10V$	7	mA MAX
Negative Supply Current	Iss	V _{SS} = -12V, $\overline{\text{CS}} = \overline{\text{RD}} = \text{V}_{\text{DD}}, \text{A}_{\text{IN}} = +10\text{V}$	5	mA MAX

NOTE:

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TYPICAL PERFORMANCE CHARACTERISTICS

12

FIGURE 3: Parallel Read Timing Diagram, Slow-Memory Mode (HBEN = LOW)

FIGURE 4: Two-Byte Read Timing Diagram, Slow-Memory Mode

FIGURE 5: Parallel Read Timing Diagram, ROM Mode (HBEN = LOW)

FIGURE 6: Two-Byte Read Timing Diagram, ROM Mode

CIRCUIT CHARACTERISTICS

The characteristic curves provide more complete static and dynamic accuracy information necessary for repetitive sampling applications often used in DSP processing. One of the important characteristic curves provided displays integral nonlinearity error (INL) versus output code with a typical value of $\pm 1/4$ LSB. Another very important characteristic associated with INL is the transition noise shown in the transition noise cross plot. The ADC-912 offers extremely small, $\pm 1/6$ LSB, transition noise which maintains the system signal-to-noise ratio in DSP processing applications. Code repetition plots show the precision internal comparator of the ADC-912 making the same decision every time for DC input voltages. Code repetition along with no missing codes assures proper performance where the ADC-912 is used in servo-control systems.

FIGURE 7: Basic Connection Diagram

CONVERTER OPERATION DETAILS

The CS, RD and HBEN digital inputs control the start of conversion. A high-to-low transition on both CS and RD initiate a conversion sequence. The HBEN high-byte-enable input must be low or coincident with the read RD input edge. The start of conversion resets the internal successive approximation register (SAR) and enables the three-state outputs. See Figure 8. The busy line is active low during the conversion process.

During conversion, the SAR sequences the voltage output DAC from the most-significant-bit (MSB) to the least-significant-bit (LSB). The analog input connects to the comparator via a $5k\Omega$ resistor. The DAC which has a 2.5kΩ output resistance connects to the same comparator input. The comparator, performing a zero crossing detection, tests the addition of successively weighted bits from the DAC output versus the analog input signal. The MSB decision occurs after the second negative edge of the CLK IN following conversion initiation. The remaining 11-bit trials occur on the next 11 negative CLK IN edges. Once a conversion cycle is started it cannot be stopped or restarted, without upsetting the remaining bit decisions. Every conversion cycle must have 13 negative CLK IN edges. At the end of conversion the comparator input voltage is zero. The SAR contains the 12-bit data word representing the analog input voltage. The BUSY line returns to logic high, signalling end of conversion. The SAR transfers the new data to the 12-bit latch.

FIGURE 8: Simplified Analog Input Circuitry of ADC-912

SYNCHRONIZING START CONVERSION

Aligning the negative edge of RD with the rising edge of CLK IN provides synchronization of the internal start conversion signal to other system devices for sampling applications.

When the negative edge of RD is aligned with the positive edge of CLK IN, the conversion will take 12.5 microseconds. The minimum setup time between the negative clock edge and the negative edge of RD is 180ns. Without synchronization the conversion time will vary from 12 to 13 clock cycles. See Figure 9.

FIGURE 9: External Clock Input Synchronization

POWER ON INITIALIZATION

During system power-up the ADC-912 comes up in a random state. Once the clock is operating or an external clock is applied, the first valid conversion begins with the application of a high-to-low transition on both CS and RD. The next 13 negative clock edges complete the first conversion producing valid data at the digital outputs. This is important in battery operated systems where power supplies are shut down between measurement times.

DRIVING THE ANALOG INPUT

During conversion, the internal DAC output current modulates the analog input current at the CLK IN frequency of 1MHz. The analog input to the ADC-912 must not change during the conversion process. This requires an external buffer with low output impedance at 1MHz. Suitable devices meeting this requirement include the OP-27. OP-42, and the SMP-11.

INTERNAL CLOCK OSCILLATOR

Figure 10 shows the ADC-912 internal clock circuit. The clock oscillates at the external crystal or ceramic resonator frequency. The 1MHz crystal or ceramic resonator connects between the CLK IN (pin 17) and the CLK OUT (pin 18). Capacitance values (C_1 , C_2) depend on the crystal or ceramic resonator manufacturer recommendations. Typical values range from 30pF to 100pF.

EXTERNAL CLOCK INPUT

A TTL compatible signal connected to CLK IN provides proper converter clock operation. No connection is necessary to the CLK OUT pin. The duty cycle of the external clock input can range from 45% to 55%. Figure 9 shows the important waveforms.

EXTERNAL REFERENCE

A low-output resistance negative-five volt reference is necessary. The external reference should be able to supply 3mA of reference current. A bypass capacitor is necessary on the reference input lead to minimize system noise as the internal DAC switches. A 0.01 µF capacitor should be located next to the ADC-912. The reference input to the internal DAC is code dependent

requiring anywhere from zero to 3mA. The reference voltage tolerance has a direct influence on A/D converter full-scale voltage, and the maximum input full-scale voltage equals 2 X $-V_{\rm REF}$. The ADC-912 is not designed for ratiometric operation; the range for reference input voltage should be limited to $\pm 5\%$. Figure 11 provides a good negative-five volt reference.

FIGURE 10: ADC-912 Simplified Internal Clock Circuit

FIGURE 11: Negative-Five Volt Reference

UNIPOLAR ANALOG INPUT OPERATION

Figure 12 shows the ideal input/output characteristic for the 0 to 10 volt input range of the ADC-912. The designed output code transitions occur midway between successive integer LSB values (i.e., 0.5 LSB, 1.5 LSBs, 2.5 LSBs, ..., FS – 1.5 LSBs). The output code is natural binary with 1 LSB = FS/4096 = (10/4096)V = 2.44 mV. The maximum full-scale input voltage is $(10 \times 4095/4096)V = 9.9976V$, which is 0.5 LSB higher than the last code transition.

FIGURE 12: Ideal ADC-912 Input/Output Transfer Characteristic

OFFSET AND FULL-SCALE ERROR ADJUSTMENT, UNIPOLAR OPERATION

In applications where absolute accuracy is important then offset and full-scale error can be adjusted to zero. Figure 13 shows the extra components required for full-scale error adjustment. Zero offset is achieved by adjusting the null offset of the op amp driving A_{IN}.

FIGURE 13: Unipolar 0V to +10V Operation

Adjust the zero-scale first by applying 1.22mV (equivalent to 0.5 LSB input) to V_{iN} . Adjust the op amp offset control until the digital output toggles between 0000 0000 0000 and 0000 0000 0001. The next step is adjustment of full scale. Apply 9.9964V (equivalent to FS – 1.5 LSB) to V_{iN} and adjust R1 until the digital output toggles between 1111 1111 1110 and 1111 1111 1111.

BIPOLAR ANALOG INPUT OPERATION

Bipolar analog input operation is achieved with an external amplifier providing an analog offset. Figures 14 and 15 show two circuit topologies that result in different digital-output coding. In Figure 14, offset binary coding is produced when the external amplifier is connected in the noninverting mode. In Figure 15, complementary-offset binary coding is produced when the external amplifier is connected in the inverting mode. Figure 16 shows the ideal transfer characteristics for both the inverting and noninverting configurations given in Figures 14 and 15.

FIGURE 14: Noninverting Bipolar Analog Input Operation

FIGURE 15: Inverting Bipolar Analog Input Operation

FIGURE 16: Ideal Input/Output Transfer Characteristics for Bipolar Input Circuits

The scaling resistors chosen in bipolar applications should be the same type from the same manufacturer to obtain good performance over temperature. When potentiometers are used for absolute adjustment, 0.1% tolerance resistors should still be used as shown in Figures 14 and 15 to minimize temperature coefficient errors.

Calibration of the bipolar analog input circuits (Figures 14 and 15) should begin with zero adjustment first. Apply a $\pm 1/2$ LSB analog input to A_{IN}, (see Tables 3 and 4) and adjust R_Z until the successive digital output codes flicker between the following codes:

For noninverting, Figure 14	1000 0000 0000 1000 0000 0001
For inverting, Figure 15	0111 1111 1111
roi inventing, rigate to	0111 1111 1110

Next, adjust full scale by applying a FS-3/2 LSB analog input to $A_{\rm IN}$. (see Tables 3 and 4) and adjust $R_{\rm FS}$ until the successive digital output codes flicker between the following codes:

For noninverting, Figure 14	1111 1111 1110
For inverting, Figure 15	0000 0000 0001 0000 0000 0000

TABLE 3: Resistor and Potentiometer Values Required for Figure 14

V _{IN} RANGE (VOLTS)	R_3 (k Ω)	R ₄ (kΩ)	R _Z (kΩ)	R _{FS} (kΩ)	1/2 LSB (mV)	FS/2-3/2 LSE (VOLTS)
±2.5	0	40.2	0.5	0.5	0.61	2.49817
±5.0	20.0	19.8	0.5	1.0	1.22	4.99634
±10.0	29.8	10.0	0.5	0.5	2.44	9.99268

TABLE 4: Resistor and Potentiometer Values Required for Figure 15

V _{IN} RANGE (VOLTS)	R, (kΩ)	R ₂ (kΩ)	R ₃ (kΩ)	R _Z (kΩ)	R_{FS} (k Ω)	1/2 LSB (mV)	FS/2-3/2 LSB (VOLTS)
±2.5	20,0	41.2	40.2	2	1	0.61	2.49817
±5.0	20.0	20.5	20.0	1	1	1.22	4.99634
±10.0	20.0	10.5	10.2	0.5	1	2.44	9.99268

MICROPROCESSOR INTERFACING

The ADC-912 has self-contained logic for both 8-bit and 16-bit data bus interfacing. The output data can be formatted into either a 12-bit parallel word for a 16-bit data bus or an 8-bit data word pair for an 8-bit data bus. Data is always right justified, i.e., LSB is the most right-hand bit in a 16-bit word. For a two-byte read, only data outputs $D_7 \dots D_{0/8}$ are used. Byte selection is governed by the HBEN input which controls an internal digital

FIGURE 17: Internal Logic for Control Inputs CS, AD, and HBEN

ANALOG-TO-DIGITAL CONVERTERS

multiplexer. This multiplexes the 12-bits of conversion data onto the lower $D_7\dots D_{0/8}$ outputs (4 MSBs or 8 LSBs) where it can be read in two read cycles. The 4 MSBs always appear on $D_{11}\dots D_8$ whenever the three-state output drivers are turned on. See Figure 17.

Two A/D conversion modes of operation are available for both data bus sizes: the ROM mode and the Slow-Memory mode.

In the ROM mode each READ instruction obtains new, valid data assuming the minimum timing requirements are satisfied. However, since the data output from a current READ instruction was generated from a conversion initiated by a previous READ operation, the current data may be out-of-date. To be sure of obtaining up-to-date data, READ instructions may be coded in pairs (with some NOPs between them); use only the data from the second READ in each pair. The first READ starts the conversion, the second READ gets the results.

The Slow-Memory mode is the simplest mode. It is the method of choice where compact coding is essential, or where software bugs are a hazard. In this mode, a single READ instruction will initiate a data conversion, interrupt the microprocessor until completion (WAIT states are introduced), then read the results. If the system throughput tolerates WAIT states, and the hardware is correct, then the Slow-Memory mode is virtually immune to subsequent software modifications. Placing the microprocessor in the WAIT state has an additional advantage of quieting the digital system to reduce noise pickup in the analog conversion circuitry. The 12-bit parallel Slow-Memory mode provides the fastest analog sampling rate combined with digital data transfer rate for sampled-data systems.

PARALLEL READ, SLOW-MEMORY MODE (HBEN = LOW)

Figure 3 shows the timing diagram and data bus status for Parallel Read, Slow-Memory Mode. CS and RD going low triggers a conversion and the ADC-912 acknowledges by taking BUSY low. Data from the previous conversion appears on the three-state data outputs. BUSY returns high at the end of conversion, when the output latches have been updated, and the conversion result is placed on data outputs D₁₁... D_{0/8}.

TWO-BYTE READ, SLOW-MEMORY MODE

For a two-byte read only the 8 data outputs $D_7...D_{0/8}$ are used. Conversion start procedure and data output status for the first read operation is identical to Parallel Read, Slow-Memory Mode. See Figure 4, Timing Diagram and Data Bus Status. At the end of conversion, the low data byte $(DB_7...DB_0)$ is read from the A/D converter. A second READ operation with HBEN high, places the high byte on data outputs $D_{3/11}...D_{0/8}$ and disables conversion start. Note the 4 MSBs appear on data outputs $D_{11}...D_{8}$ during these two READ operations.

PARALLEL READ, ROM MODE (HBEN = LOW)

A conversion is started with a READ operation. The 12 bits of data from the previous conversion are available on data outputs $D_{11}\dots D_{0/8}$ (see Figure 5). This data may be disregarded if not required. A second READ operation reads the new data (DB $_{11}\dots DB_{0}$) and starts another conversion. A delay at least as long as the ADC-912 conversion time must be allowed between READ operations. If a READ takes place prior to the end of 13 CLKS of the ADC conversion, the remaining bits not yet tested will be invalid.

TWO-BYTE READ, ROM MODE

For a two-byte read only the data outputs $D_7\dots D_{0/8}$ are used. Conversion is started in the same way with a READ operation and the data output status is the same as the Parallel Read, ROM Mode. See Figure 6, Two-Byte Read Timing Diagram. Two more READ operations are required to obtain the new conversion result. A delay equal to the ADC-912 conversion time must be allowed between conversion start and the second data READ operation. The second READ operation, with HBEN high, disables conversion start and places the high byte (4 MSBs) on data outputs $D_{3/11}\dots D_{0/8}$. A third READ operation accesses the low data byte $(DB_7\dots DB_0)$ and starts another conversion. The 4 MSBs appear on data outputs $D_{11}\dots D_8$ during all three read operations above.

CIRCUIT LAYOUT GUIDELINES

As with any high speed A/D converters good circuit layout practice is essential. Wire-wrap boards are not recommended due to stray pickup of the high frequency digital noise. A PC board offers the best results. Digital and analog-grounds should be separated even if they are ground planes instead of ground traces. Don't lay digital traces adjacent to high impedance analog traces. Avoid digital layouts that radiate high frequency clock signals, i.e., don't lay out digital signal lines and ground returns in the shape of a loop antenna. Shield the analog input if it comes from a different PC board source. Set up a single point ground at AGND (pin 3) of the ADC-912. Tie all other analog grounds to this point. Also tie the logic power supply ground, but no other digital grounds to this point (see Figure 18). Low impedance analog and digital power supply common returns are essential to low noise operation of the ADC. Their trace widths should be as wide as possible. Good power supply bypass capacitors located near the ADC package insure quiet operation. Place a 10μF capacitor in parallel with a 0.01μF ceramic capacitor across VDD to ground and VSS to ground (near pin 3).

In applications where the ADC-912 data outputs and control signals are connected to a continuously active microprocessor bus, it is possible to get LSB level errors in conversion results. These errors are due to a feedthrough from the microprocessor to the internal comparator. The problem can be minimized by forcing the microprocessor into a WAIT state during conversion

FIGURE 18: Power Supply Grounding

(see Slow-Memory Mode microprocessor interfacing). An alternate method is isolation of the data bus with three-state buffers, such as the 74HC541.

INTERFACING TO THE TMS32010 DSP PROCESSOR

Figure 19 shows an ADC-912 to TMS32010 interface. The ADC-912 is operating in the ROM Mode. The interface is designed for a maximum TMS32010 clock frequency of 18.6MHz but will typically work over the full 20MHz TMS32010 clock frequency range.

The ADC-912 is mapped at a user-selected port address (PA). The following I/O instruction starts a conversion and reads the previous conversion into the data memory.

IN DATA, PA PA = Port Address
DATA = Data Memory Location

When conversion is complete, a second I/O instruction reads the new data into the data memory and starts another conversion. Sufficient A/D conversion time must be allowed between I/O instructions. The very first data read after system power-up should be discarded.

USING WAIT STATES

The TMS32020 DSP processor has the added capability of WAIT states. This feature simplifies the hardware required for slow memory devices by extending the microprocessor bus access time. Figure 20 shows an ADC-912 to TMS32020

interface using one WAIT state to guarantee data interface at the full 20MHz clock frequency. This WAIT state extends the bus access time by 200ns. In this circuit the ADC-912 operates in the ROM mode where each input instruction (IN DATA, PA) takes the previous conversion result and stores it in memory. The next input instruction must be delayed for the length of the A/D conversion time so that a new conversion result can be read.

FIGURE 19: ADC-912 to TMS32010 DSP Processor Interface

FIGURE 20: ADC-912 to TMS32020 Interface Using WAIT States

12

SLOW-MEMORY MODE OPERATION USING WAIT STATES

The WAIT state feature of the TMS32020 can also be used to operate the ADC-912 in the Slow-Memory mode. This is accomplished by driving the clock input of the 7474 flip-flop in Figure 20, from the BUSY output of the ADC-912, instead of the CLK OUT1 of the TMS32020. Once a conversion has started the READY input of the TMS32020 is not released until the ADC-912 completes its 12-bit A/D conversion. This stops the

TMS32020 during the conversion process reducing microprocessor system noise generation. Another advantage for the system software is the single instruction IN MEM, PA used to start, process, and read the results of the A/D conversion. This makes the software code more transportable between systems operating at different clock speeds. The disadvantage is some loss in instruction processing time.

BURN-IN CIRCUIT

