Digital code output type

- Description

FUJI AC series rotary switches offer a wide choice of output codes. They feature sliding Au-flashed contacts for high contact reliability. Inhibitor and parity check circuits guard against switch malfunctions caused by error signals. With only seven connections to make, these switches are an economical solution to multiposition switching needs.

- Features

- Au-flashed contacts for high contact reliability.
- Ratings

Volts	Operational current (A) (resistive load)
50 V AC	0.05
5 V AC	0.5
25 V DC	0.05
5 V DC	0.25

- The protection of operator section meets the IP65 (IEC), so these switches can be used in oil-splash environments, such as on machine tool control panels.
- A wide choice of output codes fits a broad range of applications.
Available step angles are 15, 30, and $360^{\circ} / 26\left(13.85^{\circ}\right)$. Real binary code, complementary binary code, and rea gray code are available.
- Switches are available with connectors or with lock rings for easy handling.
- Stopper screw positions are user selectable.

■ Performance

Rated insulation voltage Operating temperature Humidity	60 V	
Service life	Mechanical	45 to $+70^{\circ} \mathrm{C}$
	Electrical	50,000 operations
	Between terminals	50,000 operations
Dielectric	Between terminals and ground	$250 \mathrm{~V} \mathrm{AC}, 1$ minute
strength	Between terminals	$500 \mathrm{~V} \mathrm{AC}, 1$ minute
Insulation resistance	Between terminals and ground	$5,000 \mathrm{M} \Omega$ or more
Degree of protection (operator section)	IP65 (IEC)	

■ Type number nomenclature

0 to 12: $360^{\circ} / 13$ (27.69 $)$
0 to 23: 15°
0 to 25: $360^{\circ} / 26\left(13.85^{\circ}\right)$

End position

Available step angle

0 to 11: 30°
0 to 12: $360^{\circ} / 13\left(27.69^{\circ}\right)$
0 to 23: 15°
0 to 25: $360^{\circ} / 26\left(13.85^{\circ}\right)$

Note: When shorter action than the maximum range of switch action is used, stopper screws are used However, stopper screws are not used if the maximum action range is used when either 15° (symbol Y) or $360^{\circ} / 26$ (symbol Z) is specified.
－M9 nut mounting

Angle of step	Connector	Lock ring	Type ${ }^{* 1} \star_{2} \star_{3}$		
			Real binary code	Complementary binary code	Real gray code
30°	Without connector	Without lock ring With lock ring With adhesive lock ring	AC09－RX \square / \square（） AC09－RX $\square / \square()$（0007 AC09－RX $\square \square()$（10009	AC09－CX $\square \square$（） AC09－CX $\square / \square()$（0007 AC09－CX $\square / \square()$（0009	AC09－GX $\square / \square() \square$ AC09－GX $\square / \square() \square / 0007$ AC09－GX $\square \square() \square / 0009$
	With right angle connector	Without lock ring With lock ring With adhesive lock ring	AC09－RX $\square \square()$（）01 AC09－RX \square／（）（）01／0007 AC09－RX \square（ ${ }^{(1) \text { 01／0009 }}$	AC09－CX $\square \square()$（ 01 AC09－CX \square／（）（）01／0007 AC09－CX \square（П（ ）01／0009	AC09－GX $\square \square()$（ 01 AC09－GX \square / \square（ ）01／0007 AC09－GX $\square \square()$（ $01 / 0009$
	With straight connector	Without lock ring With lock ring With adhesive lock ring	AC09－RX \square / \square（） 02 AC09－RXロ／ロ（）02／0007 AC09－RX $\square \square()$（ $02 / 0009$	AC09－CX $\square / \square() \quad 02$ AC09－CX \square / \square（） $\mathbf{~ 0 2 / 0 0 0 7 ~}$ AC09－CX $\square \square()$（ $02 / 0009$	AC09－GX $\square / \square(){ }^{-1} 02$ AC09－GX $\square \square()$（02／0007 AC09－GX $\square \square()$（ $02 / 0009$
$\begin{aligned} & 360^{\circ} / 13 \\ & \left(27.69^{\circ}\right) \end{aligned}$	Without connector	Without lock ring With lock ring With adhesive lock ring	AC09－RW \square / \square（） AC09－RW \square / \square（）■／0007 AC09－RW $\square \square() \square / 0009$	AC09－CW $\square \square() \square$ AC09－CWD／D（）■／0007 AC09－CW $\square \square() \square / 0009$	
	With right angle connector	Without lock ring With lock ring With adhesive lock ring	AC09－RW $\square / \square() \square 01$ AC09－RW $\square \square(\square 01 / 0007$ AC09－RW $\square \square() \square 01 / 0009$	AC09－CW $\square \square() \square 01$ AC09－CW $\square \square(\square 01 / 0007$ AC09－CW $\square \square \square() \square 01 / 0009$	
	With straight connector	Without lock ring With lock ring With adhesive lock ring	AC09－RW $\square / \square() \square 02$ AC09－RW $\square / \square(\square 02 / 0007$ AC09－RW $\square \square() \square 02 / 0009$	AC09－CW $\square \square() \square 02$ AC09－CW $\square \square() \square 02 / 0007$ AC09－CW $\square \square() \square 02 / 0009$	
15°	Without connector	Without lock ring With lock ring With adhesive lock ring	AC09－RY \square / \square（ ） AC09－RY $\square / \square()$（0007 AC09－RY \square / \square（）\quad／0009	AC09－CY \square / \square（） AC09－CY \square / \square（ ）\quad／0007 AC09－CY \square / \square（）■／0009	AC09－GY $\square \square()$ AC09－GYロ／ロ（）■／0007 AC09－GY $\square \square()$（ \quad／0009
	With right angle connector	Without lock ring With lock ring With adhesive lock ring	AC09－RY \square / \square（）${ }^{01}$ AC09－RYロ／D（）01／0007 AC09－RYロ／D（）01／0009	AC09－CY \square / \square（）${ }^{-1}$ AC09－CY $\square / \square()$ 01／0007 AC09－CY $\square / \square()$（ \quad 1／0009	AC09－GY $\square \square(){ }^{(1)}$ AC09－GY \square（（）01／0007 AC09－GY $\square \square()$（01／0009
	With straight connector	Without lock ring With lock ring With adhesive lock ring	AC09－RYロ／ロ（） 02 AC09－RY \square / \square（ ）02／0007 AC09－RY \square（ ${ }^{(1) \text { 02／0009 }}$	AC09－CY \square / \square（） 02 AC09－CY \square / \square（ ）02／0007 AC09－CYロ／D（ ）02／0009	AC09－GY $\square / \square() \square 02$ AC09－GY $\square / \square() 02 / 0007$ AC09－GY $\square / \square() \square 02 / 0009$
$\begin{aligned} & 360^{\circ} / 26 \\ & \left(13.85^{\circ}\right) \end{aligned}$	Without connector	Without lock ring With lock ring With adhesive lock ring	AC09－RZ $\square / \square() \square$ AC09－RZ—П（）■／0007 AC09－RZD／（）$/ 0009$	AC09－CZ $\square / \square() \square$ AC09－CZ $\square \square$（）■／0007 AC09－CZ $\square \square() \square 0009$	$\begin{aligned} & \text { AC09-GZ } \\ & \text { AC09-GZ } \square(\square) \square \\ & \text { AC09-GZ }) \end{aligned}$
	With right angle connector	Without lock ring With lock ring With adhesive lock ring	AC09－RZ $/ \square() \square 01$ AC09－RZ AC09－RZ $\square(\square) \square 01 / 0007$	AC09－CZ \square / \square（）$\quad 01$ AC09－CZ $\square \square()$（） $01 / 0007$ AC09－CZ $\square \square(\square$（）01／0009	AC09－GZ \square / \square（） 01 AC09－GZ $\square / \square()$（01／0007 AC09－GZ $\square / \square()$（ ${ }^{(1 / 0009}$
	With straight connector	Without lock ring With lock ring With adhesive lock ring	$\begin{aligned} & \text { AC09-RZ } \square / \square() \square 02 \\ & \text { AC09-RZ } \square() \square 02 / 0007 \\ & \text { AC09-RZ } \square() \square 02 / 0009 \end{aligned}$	AC09－CZ $\square / \square() \llbracket 02$ AC09－CZ $\square \square() \square 02 / 0007$ AC09－CZ $\square \square() \square 02 / 0009$	AC09－GZ \square（）${ }^{(102}$ AC09－GZ $/ \square$（ ） $02 / 0007$ AC09－GZ \square（ ）02／0009

Notes：
＊1 Replace the $\square \square$ marks by the Start and End positions

Step angle	30°	$360^{\circ} / 13$	15°	$360^{\circ} / 26$
Start and End positions	0 to 11	0 to 12	0 to 23	0 to 25

＊2 Replace the（ ）mark by the shaft length code
L1： $16 \mathrm{~mm} \quad$ L2： $18 \mathrm{~mm} \quad$ L3： $20 \mathrm{~mm} \quad$ L4： 22 mm
${ }^{* 3}$ Replace the \square mark by the connector
Blank：8－terminal，without connector
A01： 8 －terminal，with right angle connector A02： 8 －terminal，with straight connector B00：7－terminal，without connector
B01：7－terminal，with right angle connector
B02：7－terminal，with straight connector
－M16 adapter mounting

Angle of step	Connector	Type ${ }^{* 1}$＊2		
		Real binary code	Complementary binary code	Real gray code
30°	Without connector With right angle connector With straight connector	AC16－RX \square / \square L4■ AC16－RX \square / \square L4■01 AC16－RX \square / \square L4■02	AC16－CX $\square \square$ L4■ AC16－CX $\square \square$ L4■01 AC16－CX $\square \square L 4$ ® 2	AC16－GX \square / \square L4 AC16－GXD／ロL4■02
$\begin{aligned} & 360^{\circ} / 13 \\ & \left(27.69^{\circ}\right) \end{aligned}$	Without connector With right angle connector With straight connector	AC16－RW \square / \square L4■ AC16－RW—／DL4 01 AC16－RWロ／ロL4蔮	AC16－CW \square / \square L4■ AC16－CWロ／ロL4蔮	
15°	Without connector With right angle connector With straight connector	AC16－RY \square / \square L4 AC16－RY $\square \square$ L4■01 AC16－RY $\square \square$ L4 02	AC16－CY $\square \square$ L4■ AC16－CY $\square \square L 4{ }^{(1)} 01$ AC16－CY $\square \square L 4{ }^{-1} 02$	AC16－GY \square / \square L4 AC16－GY \square／\square L4■01 AC16－GY $\square / \square L 4{ }^{(1)} 02$
$\begin{aligned} & 360^{\circ} / 26 \\ & \left(13.85^{\circ}\right) \end{aligned}$	Without connector With right angle connector With straight connector	AC16－RZ \square / \square L4■ AC16－RZロ／ロL4■01 AC16－RZ—／ロL4■02	AC16－CZ \square / \square L4■ AC16－CZ \square／ L 4 － 01 AC16－CZ \square / \square L4■02	AC16－GZ \square / \square L4 AC16－GZ \square / \square L4■01 AC16－GZ \square / \square L4 02

Notes：
＊1 Replace the $\square \square$ marks by the Start and End positions

Step angle	30°	$360^{\circ} / 13$	15°	$360^{\circ} / 26$
Start and End positions	0 to 11	0 to 12	0 to 23	0 to 25

[^0]
－Adaptor mounting（32mm mounting pitch）

Angle of step	Connector	Type ${ }^{* 1} * 2$＊3		
		Real binary code	Complementary binary code	Real gray code
30°	Without connector With right angle connector With straight connector	AC32－RX $\square \square() \square$ AC32－RX $\square() \square 01$ AC32－RX $\square \square() \square 02$	AC32－CX $\square \square() \square$ AC32－CX $\square \square() \square 01$ AC32－CX $\square \square$（） 02	$\begin{aligned} & \text { AC32-GX■/ロ()■ } \\ & \text { AC32-GXロ/ロ()■01 } \\ & \text { AC32-GX■/ロ()■02 } \end{aligned}$
$\begin{aligned} & 360^{\circ} / 13 \\ & \left(27.69^{\circ}\right) \end{aligned}$	Without connector With right angle connector With straight connector	AC32－RW $\square / \square() \square$ AC32－RW $\square / \square() 01$ AC32－RW $\square \square() \square 02$	AC32－CW $\square / \square() \square$ AC32－CW $\square \square() \square 01$ AC32－CW $\square \square() \square 02$	
15°	Without connector With right angle connector With straight connector	AC32－RYロ／ロ（）■ AC32－RY $\square \square() \square 01$ AC32－RY $\square \square()$	АС32－СҮロП（）${ }^{(02}$	$\begin{aligned} & \text { AC32-GYロ/ロ()■ } \\ & \text { AC32-GY } \square / \square() \square 01 \\ & \text { AC32-GY } \square \square() \llbracket 02 \end{aligned}$
$\begin{aligned} & 360^{\circ} / 26 \\ & \left(13.85^{\circ}\right) \end{aligned}$	Without connector With right angle connector With straight connector	AC32－RZ $\square / \square() \square$ AC32－RZ AC32－RZ $\square \square() \square 01$	$\begin{aligned} & \text { AC32-CZ } \square \square() \square \\ & \text { AC32-CZ } \square() \square 01 \\ & \text { AC32-CZ } \square \square() \square 02 \end{aligned}$	

Notes：
${ }^{* 1}$ Replace the $\square \square$ marks by the Start and End positions

Step angle	30°	$360^{\circ} / 13$	15°	$360^{\circ} / 26$
Start and End positions	0 to 11	0 to 12	0 to 23	0 to 25

${ }^{* 2}$ Replace the（）mark by the shaft length
L1： $14.5 \mathrm{~mm} \quad \mathrm{~L} 2: 16.5 \mathrm{~mm} \quad \mathrm{~L} 3: 18.5 \mathrm{~mm} \quad \mathrm{~L} 4: 20.5 \mathrm{~mm}$
${ }^{* 3}$ Replace the \square mark by the connector
Blank： 8 －terminal，without connector
A01：8－terminal，with right angle connector
A02： 8 －terminal，with straight connector
B00：7－terminal，without connector
B01：7－terminal，with right angle connector
B02：7－terminal，with straight connector

C: Complementary binary code

Terminal No.	$\begin{array}{\|l\|} \hline \text { Bit } \\ \text { No. } \end{array}$	Setting position																										
		0		1	2	3	4	5	6	7	8		9	10	11	12	13	14	415	\|16	61	17	18	19	20	21		23
A	1				\bullet		\bullet		\bullet		\bullet			\bullet		\bullet		\bullet		-			-		\bullet		\bullet	
F	2			-			\bullet	\bullet			\bullet		-			\bullet	\bullet					-			\bullet	\bullet		
B	4		-	-	\bullet	\bullet					\bullet		-	-	\bullet							-	-	-				
E	8		-	-	\bullet	-	\bullet	\bullet	-	\bullet										\bullet		-	\bullet	\bullet	\bullet	-	\bullet	\bullet
C	16	\bullet	-	\bullet	-	\bullet	-	-	-	\bullet	-		-	-	-	\bullet	-	\bullet	-									
G	INH																											
D	C																											

G: Real gray code

Terminal No.	$\begin{array}{\|l\|} \hline \text { Bit } \\ \text { No. } \end{array}$	Setting position																							
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17		19		021		23
A	a		\bullet	-			-	-			\bullet	-			-	-			\bullet	-			-	\bullet	
F	b			-	-	-	-					-	\bullet	\bullet	\bullet					\bullet	-	-	-		
B	c					\bullet	-	-	\bullet	\bullet	\bullet	-	\bullet										-	-	\bullet
E	d									\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet	-	\bullet	-	-	-	-	\bullet
C	e																	\bullet	-	\bullet	-	-	-	-	\bullet
G	P		\bullet																						
D	C																								

- 26-position

R: Real binary code

Terminal No.	$\begin{array}{\|l\|} \hline \text { Bit } \\ \text { No. } \end{array}$	Setting position																														
		0	1	2	2	3	4	5		6	7	8		9	10	11	12	213	131	14		16	617		81		20	21	22	23		
A	1		\bullet			\bullet		-			\bullet			-		\bullet			\bullet		\bullet		-		\bullet	-		\bullet		\bullet		\bullet
F	2			-		-				-	\bullet				-	-				-	\bullet				-				-	\bullet		
B	4						-	-		-	\bullet						-		\bullet	\bullet	\bullet						-	-	\bullet	\bullet		
E	8											\bullet	-	-	\bullet	\bullet	-	-	-	-	\bullet										-	\bullet
C	16																					-	-	-	-	-	-	-	-	-	-	\bullet
G	INH																															
D	C																															

C: Complementary binary code

Terminal No.	Bit No.	Setting position																									
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
A	1	\bullet																									
F	2	\bullet	\bullet			\bullet	\bullet																				
B	4	\bullet	-	-	\bullet					\bullet	\bullet	\bullet	\bullet					\bullet	\bullet	\bullet	\bullet					\bullet	\bullet
E	8	\bullet	-	-	-	-	\bullet	-	\bullet									\bullet	\bullet	-	-	-	-	-	\bullet		
C	16	\bullet	-	-	-	-	\bullet	-	-	-	-	-	-	\bullet	-	-	\bullet										
G	INH																										
D	C																										

Terminal No.	$\begin{array}{\|l\|} \hline \text { Bit } \\ \text { No. } \end{array}$	Setting position																									
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
A	a		\bullet	\bullet			\bullet	\bullet			-	-			\bullet	-			\bullet	\bullet			-	\bullet			\bullet
F	b			\bullet	-	-	\bullet					\bullet	-	\bullet	\bullet					\bullet	\bullet	\bullet	\bullet				
B	c					\bullet	\bullet	\bullet	\bullet	-	\bullet	-	-									\bullet	-	\bullet	\bullet	-	\bullet
E	d									\bullet	\bullet	-	-	\bullet	\bullet	\bullet	-	\bullet	\bullet	\bullet	\bullet	-	-	\bullet	\bullet		
C	e																	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet	\bullet	-	\bullet
G	P		\bullet																								
D	C																										

- 12-position

R: Real binary code

Terminal No.	$\begin{aligned} & \hline \text { Bit } \\ & \text { No. } \end{aligned}$	Setting position									
		0	12	3	$4{ }^{5}$	56	67	78			
A	1		\bullet	-	-	-	\bullet	\bullet	\bullet		\bullet
F	2			\bullet			- \bullet	-			\bullet
B	4				-	$\bullet \cdot$	- \cdot	\cdot			
E	8							-	-	-	\bullet
C	P		$\bullet \bullet$		-						\bullet
G	$\mathrm{INH} \bullet \bullet$										
D	C										

C: Complementary binary code

Terminal	Bit		ettin	IP	posi						
No.	No.	0	1	2	34	5	6	7	8	910	
A	1	\bullet		-	-		-		\bullet	\bullet	
F	2	\bullet	\bullet		-	-			-	-	
B	4	\bullet	-	-					-		\bullet
E	8	\bullet	\bullet	-	- \cdot	-	\bullet	\bullet			
C	P		\bullet		-						\bullet
G	$\mathrm{INH} \bullet \bullet$										
D	C										

G: Real gray code

Terminal No.	$\begin{aligned} & \hline \text { Bit } \\ & \text { No. } \end{aligned}$	Setting position											
		0	1	2	3	4	5	6	7	8	89		
A	a		\bullet	-			\bullet	-				-	
F	b			-	-	-	-					-	\bullet
B	c					-	-	-	-	-	-	\bullet	\bullet
E	d									-	-	-	\bullet
C	P		\bullet		\bullet		\bullet		-		-		\bullet
G													
D	C												

- 13-position

R: Real binary code

Terminal No.	$\begin{aligned} & \hline \text { Bit } \\ & \text { No. } \end{aligned}$	Setting position											
		0	1	2	34	5	6	7	78	8			
A	1		\bullet		-	-		\bullet	-	-		-	-
F	2			-	-		-	\bullet	-		-	-	-
B	4				-	-	-	-	-				\bullet
E	8								-	-	-		\bullet
C	P		\bullet	-	-				-	-		-	-
G	$\mathrm{INH} \bullet \bullet$												
D	C												

C: Complementary binary code

Terminal No.	$\begin{aligned} & \text { Bit } \\ & \text { No. } \end{aligned}$	Setting position													
		0	1	2	3	4	5	6		7	8				
A	1	\bullet		\bullet		\bullet		\bullet			\bullet		\bullet		\bullet
F	2	\bullet	-			\bullet	-				-	-			\bullet
B	4	\bullet	-	-	-						-	-	-	-	
E	8	-	-	-	-	-	-	-		-					
C	P		-	-		\bullet				-	-			-	
G	INH $\bullet^{\circ} \bullet \bullet$														
D	C														

[^1]\section*{- Accessories
 Lead wire with connector (8-terminal)
 | Length of lead wire (m) | Type | Mass (g) |
| :--- | :--- | :---: |
| 0.5 | ACX011-805 | 11 |
| 1.0 (Standard) | ACX011-810 | 19 |
| 2.0 | ACX011-820 | 33 |

 $\mathrm{L}: 0.5,1.0,2.0 \mathrm{~m}$}

Dimensions, mm

AC09

Shaft length	L1	L2	L3	L4
$*$	16	18	20	22
Mass (g)				
Without connector	41	42	43	44
With connector	42	43	44	45

Panel cutting

AC32

$*$ $*$				
	L1	L2	L3	L4
	14.5	16.5	18.5	20.5
Mass (g)	47	48	49	50

Panel cutting

- Installation

AC09
Pass the switch body through the hole from the back of the panel, and secure it by tightening the hexagonal nut with a flat washer and a toothed lock washer.
The recommended tightening torque for the hexagonal nut is 1.5 to $2 \mathrm{~N} \cdot \mathrm{~m}$.
Insert the lock ring (ACX001) between the panel and the flat washer, and the adhesive lock ring (ACX001A) between the switch body and the panel.

AC16

Pass the switch body with a bezel through the hole from the back of the panel, and secure it with a $\phi 16$ mounting nut. The recommended tightening torque for the nut is 0.6 to $1 \mathrm{~N} \cdot \mathrm{~m}$.

AC32

Pass the switch body through the hole from the back of the panel, and secure it with two flat head screws from the face of the panel. The recommended tightening torque for the flat head screws is 0.3 to $0.5 \mathrm{~N} \cdot \mathrm{~m}$.

- Notes on use

1. Connecting wires

Note the following points when soldering:

- The power of the soldering iron must not be over 30W.
- Use solder with resin flux core.
- Complete soldering within 5 seconds if using a 30 W soldering iron, or within 10 seconds if using a 20W soldering iron.

2. Note on the case linkage

3. Number of stopper screws shipped

- AC09 and AC32
- Step angle: 30° (symbol X)

Positions 0/11 (0 to 11): one screw. User-selectable start and stop positions: two screws (one for start position, one for end position).

- Step angle: 15° (symbol Y)

Positions 0/22 (0 to 22): one screw. User-selectable start and stop positions: two screws (one for start position, one for end position).

- Step angle: $360^{\circ} / 26$ (symbol Z)

Positions 0/24 (0 to 24): one screw. User-selectable start and stop positions: two screws (one for start position, one for end position).

- AC16

Customers can specify the stopper screw positions. The switch is then shipped with stopper screws already in the specified positions.

4. Stopper screw positions

Insert stopper screws into the switch body holes marked with letters, as shown in the insertion example on the right. These tables below show that the start position stopper screw is inserted in the hole on the left of the position setting and the end positions stopper screw is inserted in the hole on the right.

5. Installing a stopper screw

The maximum tightening torque for a stopper screw is $0.1 \mathrm{~N} \cdot \mathrm{~m}$. Screw the stopper screw into position until it hits the body frame rib. Do not overtighten the screw.

Insertion example 1

- If symbol (1) (step angle) is X-----type AC09-CX0/7L1:

Insert the start side stopper screw in hole A and the end side screw in hole Q.

- If symbol (1) (step angle) is W-----type AC09-CW0/7L1:

Insert the start side stopper screw in hole A and the end side screw in hole Q.

- If symbol (1) (step angle) is Y-----type AC09-CY0/7L1:

Insert the start side stopper screw in hole A and the end side screw in hole J.

Notes: 1. If the range of action is designated as $0 / 22$ (0 to 22), insert a stopper screw into hole A only.
2. If the range of action is designated as $0 / 23$ (0 to 23), no stopper screws are inserted (symbol (4) is E).

- If symbol (1) (step angle) is Z-----type AC09-CZ0/7L1:

Insert the start side stopper screw in hole A and the end side screw in hole J.

Notes: 1. If the range of action is designated as $0 / 24$ (0 to 24), insert a stopper screw in hole A only, 2. If the range of action is designated as $0 / 25$ (0 to 25), no stopper screws are inserted (symbol (4) is E).

Insertion example 2

[^0]: ${ }^{* 2}$ Replace the \square mark by the connector
 Blank：8－terminal，without connector
 A01： 8 －terminal，with right angle connector
 A02： 8 －terminal，with straight connector
 B00：7－terminal，without connector
 B01：7－terminal，with right angle connector
 B02：7－terminal，with straight connector

[^1]: NH: Inhibit terminal
 P: Parity check terminal
 C : Common terminal

 - Turned ON

