

MOS INTEGRATED CIRCUIT μ PD442012A-X

2M-BIT CMOS STATIC RAM 128K-WORD BY 16-BIT EXTENDED TEMPERATURE OPERATION

Description

The μPD442012A-X is a high speed, low power, 2,097,152 bits (131,072 words by 16 bits) CMOS static RAM.

The μ PD442012A-X has two chip enable pins (/CE1, CE2) to extend the capacity.

The µPD442012A-X is packed in 48-pin PLASTIC TSOP (I) (Normal bent).

Features

• 131,072 words by 16 bits organization

• Fast access time: 50, 55, 70, 85, 100, 120 ns (MAX.)

• Byte data control : /LB (I/O1 - I/O8), /UB (I/O9 - I/O16)

• Low voltage operation

(BB version: Vcc = 2.7 to 3.6 V, BC version: Vcc = 2.2 to 3.6 V, DD version: Vcc = 1.8 to 2.2 V)

• Low Vcc data retention: 1.0 V (MIN.)

• Operating ambient temperature : T_A = -25 to +85 °C

• Output Enable input for easy application

• Two Chip Enable inputs : /CE1, CE2

Part number	Access time	Operating supply	Operating ambient	Supply current			
	ns (MAX.)	voltage	temperature	At operating	At standby	At data retention	
		V	°C	mA (MAX.)	μA (MAX.)	μA (MAX.)	
μPD442012A-BBxxX	50 Note 1, 55, 70, 85	2.7 to 3.6	-25 to +85	30 Note 2	4	2	
				35 Note 3			
				40 Note 4			
μPD442012A-BCxxX	70, 85, 100	2.2 to 3.6		30			
μPD442012A-DDxxX	85, 100, 120	1.8 to 2.2		15	3		

Notes 1. Vcc ≥ 3.0 V

2. Cycle time \geq 70 ns

3. Cycle time = 55 ns

4. Cycle time = 50 ns

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

Document No. M14671EJ9V0DS00 (9th edition) Date Published September 2006 NS CP (K) Printed in Japan

Ordering Information

Part number	Package	Access time ns (MAX.)	Operating supply voltage	Operating temperature °C	Remark
μPD442012AGY-BB55X-MJH	48-pin PLASTIC TSOP (I)	55, 50 Note	2.7 to 3.6	–25 to +85	BB version
μPD442012AGY-BB70X-MJH	(12×18) (Normal bent)	70			
μPD442012AGY-BB85X-MJH		85			
μPD442012AGY-BC70X-MJH		70	2.2 to 3.6		BC version
μPD442012AGY-BC85X-MJH		85			
μPD442012AGY-BC10X-MJH		100			
μPD442012AGY-DD85X-MJH		85	1.8 to 2.2		DD version
μPD442012AGY-DD10X-MJH		100			
μPD442012AGY-DD12X-MJH		120			
μPD442012AGY-BB55X-MJH-A		55, 50 Note	2.7 to 3.6		BB version
μPD442012AGY-BB70X-MJH-A		70			
μPD442012AGY-BB85X-MJH-A		85			
μPD442012AGY-BC70X-MJH-A		70	2.2 to 3.6		BC version
μPD442012AGY-BC85X-MJH-A		85			
μPD442012AGY-BC10X-MJH-A		100			
μPD442012AGY-DD85X-MJH-A		85	1.8 to 2.2		DD version
μPD442012AGY-DD10X-MJH-A		100			
μPD442012AGY-DD12X-MJH-A		120			

Note $Vcc \ge 3.0 V$

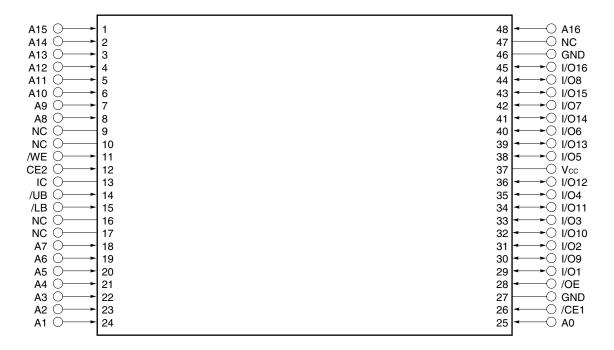
Remark Products with -A at the end of the part number are lead-free products.

Pin Configuration (Marking Side)

/xxx indicates active low signal.

48-pin PLASTIC TSOP (I) (12×18) (Normal bent)

[μ PD442012AGY-BBxxX-MJH]


[μ PD442012AGY-BCxxX-MJH]

[μ PD442012AGY-DDxxX-MJH]

[μ PD442012AGY-BBxxX-MJH-A]

[μ PD442012AGY-BCxxX-MJH-A]

[μ PD442012AGY-DDxxX-MJH-A]

A0 - A16 : Address inputs

I/O1 - I/O16 : Data inputs / outputs

/CE1, CE2 : Chip Enable 1, 2

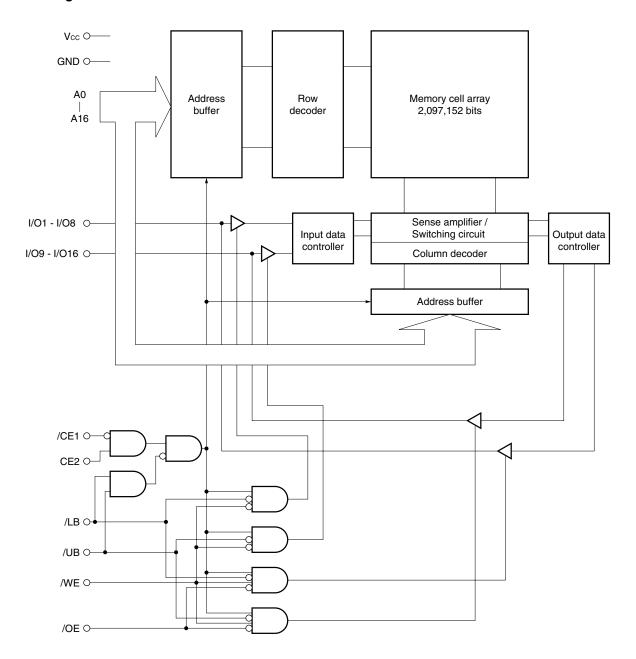
/WE : Write Enable

/OE : Output Enable

/LB, /UB : Byte data select

Vcc : Power supply

GND : Ground


NC : No Connection
IC Note : Internal Connection

Note Leave this pin unconnected or connect to GND.

Remark Refer to **Package Drawing** for the 1-pin index mark.

3

Block Diagram

Truth Table

/CE1	CE2	/OE	/WE	/LB	/UB	Mode	1/	0	Supply current
							I/O1 - I/O8	I/O9 - I/O16	
Н	×	×	×	×	×	Not selected	High impedance	High impedance	Isa
×	L	×	×	×	×	Not selected	High impedance	High impedance	
×	×	×	×	Н	Н	Not selected	High impedance	High impedance	
L	Н	Н	Н	L	×	Output disable	High impedance	High impedance	ICCA
				×	L	Output disable	High impedance	High impedance	
		L	Н	L	L	Word read	D оит	D оит	
				L	Н	Lower byte read	D оит	High impedance	
				Н	L	Upper byte read	High impedance	D оит	
		×	L	L	L	Word write	Din	Din	
				L	Н	Lower byte write	Din	High impedance	
				Н	L	Upper byte write	High impedance	Din	

 $\textbf{Remark} \quad \times \, : \, V_{IH} \,\, or \,\, V_{IL}$

5

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Product	Rating	Unit
Supply voltage	Vcc	μPD442012A-BBxxX, μPD442012A-BCxxX	-0.5 ^{Note} to +4.0	V
		μPD442012A-DDxxX	-0.5 ^{Note} to +2.7	
Input / Output voltage	VT	μPD442012A-BBxxX, μPD442012A-BCxxX	-0.5 Note to Vcc+0.4 (4.0 V MAX.)	V
		μPD442012A-DDxxX	-0.5 Note to Vcc+0.4 (2.7 V MAX.)	
Operating ambient temperature	TA		–25 to +85	°C
Storage temperature	T _{stg}		-55 to +125	°C

Note -3.0 V (MIN.) (Pulse width: 30 ns)

Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	μPD44201	2A-BBxxX	μPD44201	2A-BCxxX	μPD44201	Unit	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Supply voltage	Vcc		2.7	3.6	2.2	3.6	1.8	2.2	V
High level input voltage	VIH	2.7 V ≤ Vcc ≤ 3.6 V	2.4	Vcc+0.4	2.4	Vcc+0.4	_	_	V
		2.2 V ≤ Vcc < 2.7 V	-	_	2.0	Vcc+0.3	_	_	
		1.8 V ≤ Vcc < 2.2 V	-	_	_	_	1.6	Vcc+0.2	
Low level input voltage	VIL		-0.3 Note	+0.5	-0.3 Note	+0.4	-0.2 Note	+0.2	V
Operating ambient	TA		-25	+85	-25	+85	-25	+85	°C
temperature									

Note -1.0 V (MIN.) (Pulse width : 20 ns)

Capacitance (T_A = 25 °C, f = 1 MHz)

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	V _{IN} = 0 V			8	pF
Input / Output capacitance	C _{I/O}	V _{1/O} = 0 V			10	pF

Remarks 1. Vin: Input voltage

VI/o: Input / Output voltage

2. These parameters are not 100% tested.

DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted) (1/2)

Parameter	Symbol	Test con	dition	μPD	442012A-B	BxxX	Unit
				MIN.	TYP.	MAX.	
Input leakage current	lu	V _{IN} = 0 V to V _{CC}		-1.0		+1.0	μΑ
I/O leakage current	ILO	V _{I/O} = 0 V to V _{CC} , /CE1 =	V _{IH} or	-1.0		+1.0	μΑ
		CE2 = VIL or /WE = VIL or	r /OE = VIH				
Operating supply current	ICCA1	/CE1 = V _{IL} , CE2 = V _{IH} ,	/CE1 = V _{IL} , CE2 = V _{IH} , Cycle time = 50 ns				mA
		I _{I/O} = 0 mA,	I _{I/O} = 0 mA, Cycle time = 55 ns				
		Minimum cycle time	Cycle time ≥ 70 ns		_	30	
	ICCA2	/CE1 = V _{IL} , CE2 = V _{IH} ,			_	4	
		I _{I/O} = 0 mA, Cycle time =	∞				
	Іссаз	/CE1 ≤ 0.2 V, CE2 ≥ Vcc	– 0.2 V,		_	4	
		Cycle time = 1 μ s, I _{I/O} = 0) mA,				
		$V_{\text{IL}} \leq 0.2 \text{ V, } V_{\text{IH}} \geq V_{\text{CC}} - 0$.2 V				
Standby supply current	IsB	/CE1 = VIH or CE2 = VIL 0	or /LB = /UB = V _{IH}		_	0.6	mA
	I _{SB1}	/CE1 ≥ Vcc - 0.2 V, CE2	\geq Vcc $-$ 0.2 V		0.3	4	μΑ
	I _{SB2}	CE2 ≤ 0.2 V			0.3	4	
	I _{SB3}	/LB = /UB ≥ Vcc - 0.2 V,			0.3	4	
		/CE1 ≤ 0.2 V, CE2 ≥ Vcc	– 0.2 V				
High level output voltage	Vон	Iон = -0.5 mA		2.4			V
Low level output voltage	Vol	IoL = 1.0 mA				0.4	V

Remarks 1. VIN: Input voltage

Vi/o : Input / Output voltage

2. These DC characteristics are in common regardless of product specification.

7

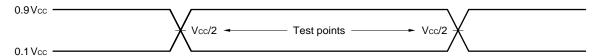
DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted) (2/2)

Parameter	Symbol	Test condition	on	μPD44	42012A-	BCxxX	μPD4	42012A-	DDxxX	Unit
				MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input leakage current	lu	V _{IN} = 0 V to V _{CC}		-1.0		+1.0	-1.0		+1.0	μΑ
I/O leakage current	ILO	V _{I/O} = 0 V to V _{CC} , /CE1 =	V _{IH} or	-1.0		+1.0	-1.0		+1.0	μΑ
		CE2 = V _{IL} or /WE = V _{IL} o	r /OE = V _{IH}							
Operating supply current	ICCA1	/CE1 = V _{IL} , CE2 = V _{IH} ,			_	30		_	_	mA
		Ivo = 0 mA,	Vcc ≤ 2.7 V		-	25		-	_	
		Minimum cycle time	Vcc ≤ 2.2 V		-	-		-	15	
	Icca2	/CE1 = V _{IL} , CE2 = V _{IH} ,			-	4		-	_	
		Ivo = 0 mA,	Vcc ≤ 2.7 V		-	2		-	_	
		Cycle time = ∞	Vcc ≤ 2.2 V		-	-		-	1	
	Іссаз	/CE1 ≤ 0.2 V, CE2 ≥ Vcc	- 0.2 V,		-	4		-	-	
		Cycle time = 1 μ s, I _{I/O} = 0	mA,							
		V _{IL} ≤ 0.2 V,	Vcc ≤ 2.7 V		_	3		_	_	
		V _{IH} ≥ V _{CC} − 0.2 V	Vcc ≤ 2.2 V		_	_		_	3	
Standby supply current	IsB	Invo = 0 mA, Minimum cycle time /CE1 = VIL, CE2 = VIH, Invo = 0 mA, Cycle time = ∞ /CE1 ≤ 0.2 V, CE2 ≥ Vcc — Cycle time = 1 μ s, Invo = 0 m VIL ≤ 0.2 V, VIH ≥ Vcc — 0.2 V /CE1 = VIH or CE2 = VIL or /LB = /UB = VIH /CE2 ≥ Vcc — 0.2 V /CE2 ≥ Vcc — 0.2 V /CE3 = VIL S ≥ Vcc → 0.2 V /CE4 = VIL S ≥ Vcc → 0.2 V /CE5 ≥ Vcc → 0.2 V	or		_	0.6		_	_	mA
		/LB = /UB = V _{IH}	Vcc ≤ 2.7 V		_	0.6		_	_	
			Vcc ≤ 2.2 V		_	_		_	0.6	
	I _{SB1}	/CE1 ≥ Vcc - 0.2 V,			0.3	4		_	_	μΑ
		CE2 ≥ Vcc - 0.2 V	Vcc ≤ 2.7 V		0.25	3.5		_	_	
			Vcc ≤ 2.2 V		_	_		0.2	3	
	I _{SB2}	CE2 ≤ 0.2 V			0.3	4		-	-	
			Vcc ≤ 2.7 V		0.25	3.5		-	-	
			Vcc ≤ 2.2 V		-	_		0.2	3	
	I _{SB3}	/LB = /UB ≥ Vcc - 0.2 V,			0.3	4		_	_	
		/CE1 ≤ 0.2 V,	Vcc ≤ 2.7 V		0.25	3.5		-	-	
		CE2 ≥ Vcc - 0.2 V	Vcc ≤ 2.2 V		-	-		0.2	3	
High level output voltage	Vон	Iон = -0.5 mA		2.4			_			V
			Vcc ≤ 2.7 V	1.8			_			
			Vcc ≤ 2.2 V	_			1.5			
Low level output voltage	Vol	IoL = 1.0 mA				0.4			_	V
			Vcc ≤ 2.7 V			0.4			_	
			Vcc ≤ 2.2 V			_			0.4	

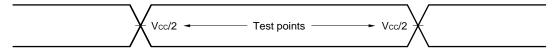
Remarks 1. VIN: Input voltage

V_{VO}: Input / Output voltage

2. These DC characteristics are in common regardless of product specification.



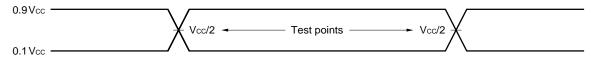
AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)


AC Test Conditions

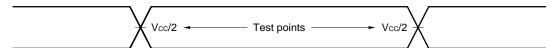
[μ PD442012A-BB55X, μ PD442012A-BB70X, μ PD442012A-BB85X]

Input Waveform (Rise and Fall Time ≤ 5 ns)

Output Waveform



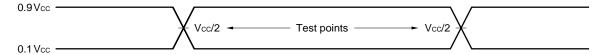
Output Load


1TTL + 50 pF

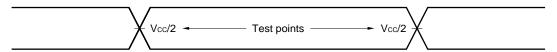
[μ PD442012A-BC70X, μ PD442012A-BC85X, μ PD442012A-BC10X]

Input Waveform (Rise and Fall Time ≤ 5 ns)

Output Waveform



Output Load


1TTL + 30 pF

[μ PD442012A-DD85X, μ PD442012A-DD10X, μ PD442012A-DD12X]

Input Waveform (Rise and Fall Time ≤ 5 ns)

Output Waveform

Output Load

1TTL + 30 pF

Read Cycle (1/3) (BB version)

Parameter	Symbol	μF	D44201	2A-BB5	5X	μPD44	2012A	μPD442012A		Unit	Condition
		Vcc≥	3.0 V			-BB	70X	-BB85X			
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Read cycle time	t RC	50		55		70		85		ns	
Address access time	t AA		50		55		70		85	ns	Note 1
/CE1 access time	t co1		50		55		70		85	ns	
CE2 access time	t co2		50		55		70		85	ns	
/OE to output valid	toe		30		30		35		40	ns	
/LB, /UB to output valid	t BA		50		55		70		85	ns	
Output hold from address change	tон	10		10		10		10		ns	
/CE1 to output in low impedance	t LZ1	10		10		10		10		ns	Note 2
CE2 to output in low impedance	t _{LZ2}	10		10		10		10		ns	
/OE to output in low impedance	tolz	5		5		5		5		ns	
/LB, /UB to output in low impedance	t BLZ	10		10		10		10		ns	
/CE1 to output in high impedance	t HZ1		20		20		25		30	ns	
CE2 to output in high impedance	t HZ2		20		20		25		30	ns	
/OE to output in high impedance	tонz		20		20		25		30	ns	
/LB, /UB to output in high impedance	t BHZ		20	_	20		25		30	ns	

Notes 1. The output load is 1TTL + 50 pF.

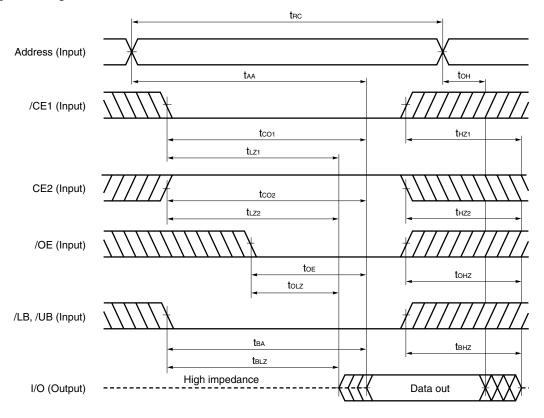
2. The output load is 1TTL + 5 pF.

Read Cycle (2/3) (BC version)

Parameter	Symbol	•	2012A 70X	'	2012A 85X	·	12012A 10X	Unit	Condition
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Read cycle time	t RC	70		85		100		ns	
Address access time	t AA		70		85		100	ns	Note 1
/CE1 access time	t co1		70		85		100	ns	
CE2 access time	tc02		70		85		100	ns	
/OE to output valid	t oe		35		40		50	ns	
/LB, /UB to output valid	t BA		70		85		100	ns	
Output hold from address change	tон	10		10		10		ns	
/CE1 to output in low impedance	t _{LZ1}	10		10		10		ns	Note 2
CE2 to output in low impedance	t _{LZ2}	10		10		10		ns	
/OE to output in low impedance	tolz	5		5		5		ns	
/LB, /UB to output in low impedance	t BLZ	10		10		10		ns	
/CE1 to output in high impedance	t HZ1		25		30		35	ns	
CE2 to output in high impedance	t _{HZ2}		25		30		35	ns	
/OE to output in high impedance	t onz		25		30		35	ns	
/LB, /UB to output in high impedance	t BHZ		25		30		35	ns	

Notes 1. The output load is 1TTL + 30 pF.

2. The output load is 1TTL + 5 pF.


Read Cycle (3/3) (DD version)

Parameter	Symbol	•	2012A 85X	l '	2012A 10X	· ·	2012A 12X	Unit	Condition
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Read cycle time	t RC	85		100		120		ns	
Address access time	taa		85		100		120	ns	Note 1
/CE1 access time	t co1		85		100		120	ns	
CE2 access time	tc02		85		100		120	ns	
/OE to output valid	toe		40		50		60	ns	
/LB, /UB to output valid	t BA		85		100		120	ns	
Output hold from address change	tон	10		10		10		ns	
/CE1 to output in low impedance	t LZ1	10		10		10		ns	Note 2
CE2 to output in low impedance	t _{LZ2}	10		10		10		ns	
/OE to output in low impedance	tolz	5		5		5		ns	
/LB, /UB to output in low impedance	t BLZ	10		10		10		ns	
/CE1 to output in high impedance	t _{HZ1}		30		35		40	ns	
CE2 to output in high impedance	t _{HZ2}		30		35		40	ns	
/OE to output in high impedance	tонz		30		35		40	ns	
/LB, /UB to output in high impedance	t BHZ		30		35		40	ns	

Notes 1. The output load is 1TTL + 30 pF.

2. The output load is 1TTL + 5 pF.

Read Cycle Timing Chart

Remark In read cycle, /WE should be fixed to high level.

Write Cycle (1/3) (BB version)

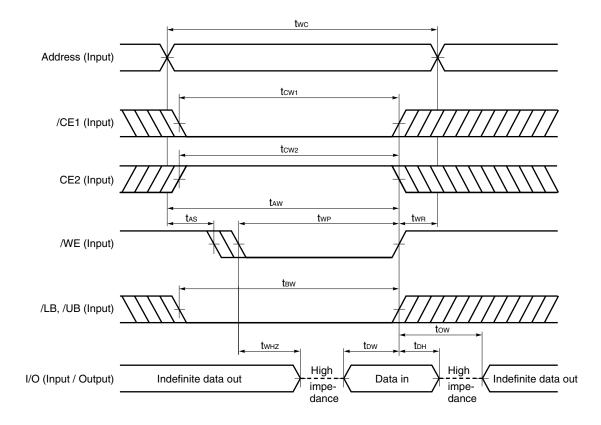
Parameter	Symbol	μF	D44201	2A-BB5	5X	μPD44	2012A	μPD44	2012A	Unit	Condition
		Vcc≥	Vcc ≥ 3.0 V				-BB70X		85X		
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	50		55		70		85		ns	
/CE1 to end of write	tcw1	45		50		55		70		ns	
CE2 to end of write	tcw2	45		50		55		70		ns	
/LB, /UB to end of write	tвw	45		50		55		70		ns	
Address valid to end of write	taw	45		50		55		70		ns	
Address setup time	tas	0		0		0		0		ns	
Write pulse width	twp	40		45		50		55		ns	
Write recovery time	twr	0		0		0		0		ns	
Data valid to end of write	tow	25		25		30		35		ns	
Data hold time	tон	0		0		0		0		ns	
/WE to output in high impedance	twнz		20		20		25		30	ns	Note
Output active from end of write	tow	5		5		5		5		ns	

Note The output load is 1TTL + 5 pF.

Write Cycle (2/3) (BC version)

Parameter	Symbol	μPD442012A -BC70X		μPD442012A -BC85X		μPD442012A -BC10X		Unit	Condition
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	70		85		100		ns	
/CE1 to end of write	tcw1	55		70		80		ns	
CE2 to end of write	tcw2	55		70		80		ns	
/LB, /UB to end of write	tвw	55		70		80		ns	
Address valid to end of write	taw	55		70		80		ns	
Address setup time	tas	0		0		0		ns	
Write pulse width	twp	50		55		60		ns	
Write recovery time	twr	0		0		0		ns	
Data valid to end of write	tow	30		35		40		ns	
Data hold time	t DH	0		0		0		ns	
/WE to output in high impedance	twнz		25		30		35	ns	Note
Output active from end of write	tow	5		5		5		ns	

Note The output load is 1TTL + 5 pF.

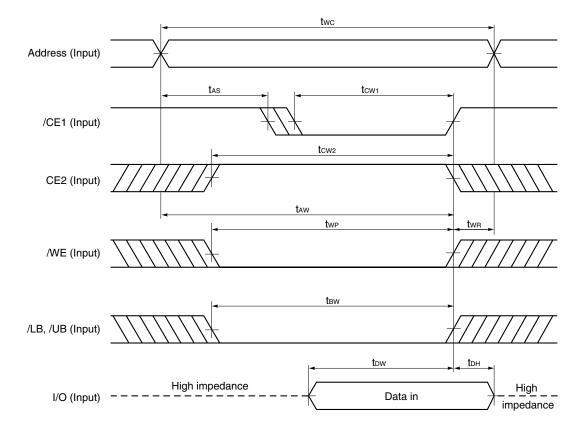

Write Cycle (3/3) (DD version)

Parameter	Symbol	μPD442012A -DD85X		μPD442012A -DD10X		μPD442012A -DD12X		Unit	Condition
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	85		100		120		ns	
/CE1 to end of write	tcw1	70		80		100		ns	
CE2 to end of write	tcw2	70		80		100		ns	
/LB, /UB to end of write	t _{BW}	70		80		100		ns	
Address valid to end of write	taw	70		80		100		ns	
Address setup time	tas	0		0		0		ns	
Write pulse width	twp	55		60		85		ns	
Write recovery time	twr	0		0		0		ns	
Data valid to end of write	t ow	35		40		60		ns	
Data hold time	tон	0		0		0		ns	
/WE to output in high impedance	twнz		30		35		40	ns	Note
Output active from end of write	tow	5		5		5		ns	

Note The output load is 1TTL + 5 pF.

13

Write Cycle Timing Chart 1 (/WE Controlled)

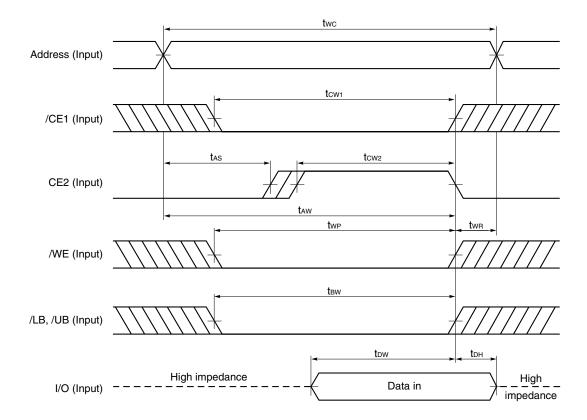

Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.

2. Do not input data to the I/O pins while they are in the output state.

Remarks 1. Write operation is done during the overlap time of a low level /CE1, a low level /WE, a low level /LB (or low level /UB) and a high level CE2.

- 2. If /CE1 changes to low level at the same time or after the change of /WE to low level, or if CE2 changes to high level at the same time or after the change of /WE to low level, the I/O pins will remain high impedance state.
- 3. When /WE is at low level, the I/O pins are always high impedance. When /WE is at high level, read operation is executed. Therefore /OE should be at high level to make the I/O pins high impedance.

Write Cycle Timing Chart 2 (/CE1 Controlled)

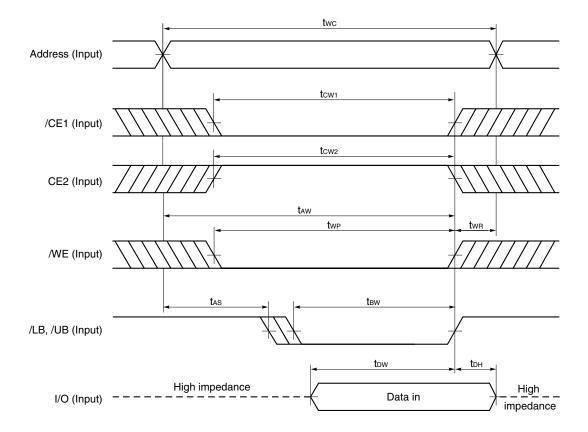


Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.

2. Do not input data to the I/O pins while they are in the output state.

Remark Write operation is done during the overlap time of a low level /CE1, a low level /WE, a low level /LB (or low level /UB) and a high level CE2.

Write Cycle Timing Chart 3 (CE2 Controlled)



Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.

2. Do not input data to the I/O pins while they are in the output state.

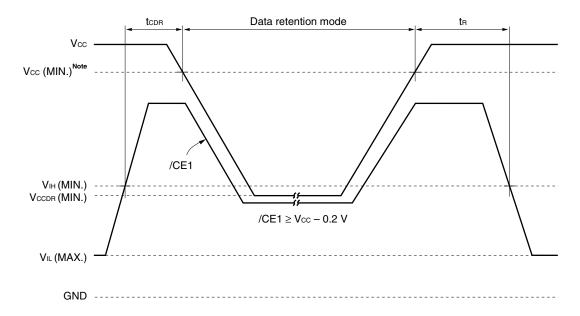
Remark Write operation is done during the overlap time of a low level /CE1, a low level /WE, a low level /LB (or low level /UB) and a high level CE2.

Write Cycle Timing Chart 4 (/LB, /UB Controlled)

Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.

2. Do not input data to the I/O pins while they are in the output state.

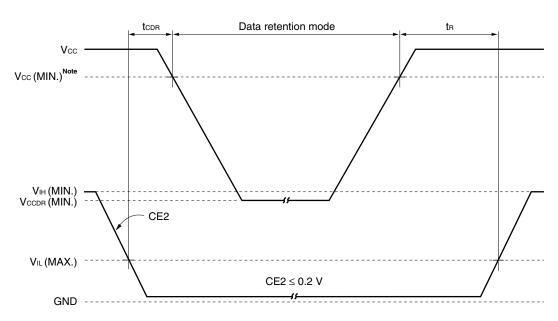
Remark Write operation is done during the overlap time of a low level /CE1, a low level /WE, a low level /LB (or low level /UB) and a high level CE2.


Low Vcc Data Retention Characteristics (T_A = -25 to +85 °C)

Parameter	Parameter Symbol Test Condition		μPI	μPD442012A			μPD442012A			μPD442012A		
				-BBxxX			-BCxxX			-DDxxX		
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Data retention	Vccdr1	/CE1 ≥ Vcc - 0.2 V,	1.0		3.6	1.0		3.6	1.0		2.2	٧
supply voltage		$CE2 \geq V_{\text{CC}} - 0.2 \text{ V}$										
	Vccdr2	CE2 ≤ 0.2 V	1.0		3.6	1.0		3.6	1.0		2.2	
	Vccdr3	$/LB = /UB \ge Vcc - 0.2 V$,	1.0		3.6	1.0		3.6	1.0		2.2	
		/CE1 \leq 0.2 V, CE2 \geq Vcc $-$ 0.2 V										
Data retention	ICCDR1	Vcc = 1.2 V, /CE1 ≥ Vcc – 0.2 V,		0.15	2		0.15	2		0.15	2	μΑ
supply current		$CE2 \geq Vcc - 0.2 V$										
	Iccdr2	Vcc = 1.2 V, CE2 ≤ 0.2 V		0.15	2		0.15	2		0.15	2	
	ICCDR3	$Vcc = 1.2 \text{ V}, /LB = /UB \ge Vcc - 0.2 \text{ V},$		0.15	2		0.15	2		0.15	2	
		/CE1 \leq 0.2 V, CE2 \geq Vcc $-$ 0.2 V										
Chip deselection	t cdr		0			0			0			ns
to data retention												
mode												
Operation	t R		trc Note			t _{RC} Note			trc ^{Note}			ns
recovery time												

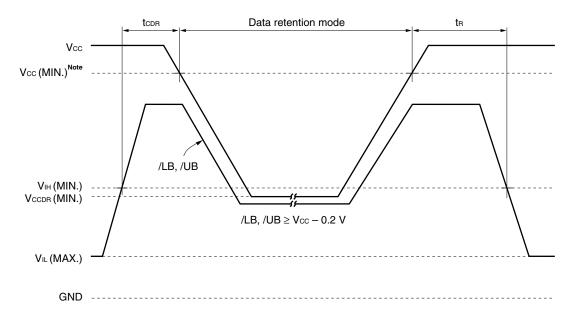
 $\textbf{Note} \quad t_{\text{RC}} : \text{Read cycle time}$

Data Retention Timing Chart


(1) /CE1 Controlled

Note BB version : 2.7 V, BC version : 2.2 V, DD version : 1.8 V

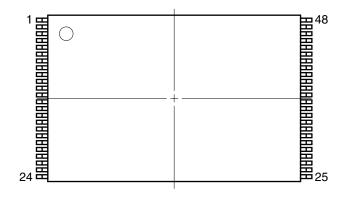
Remark On the data retention mode by controlling /CE1, the input level of CE2 must be \geq Vcc - 0.2 V or \leq 0.2 V. The other pins (Address, I/O, /WE, /OE, /LB, /UB) can be in high impedance state.

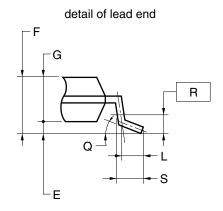

(2) CE2 Controlled

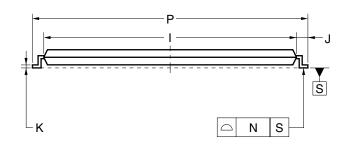
Note BB version: 2.7 V, BC version: 2.2 V, DD version: 1.8 V

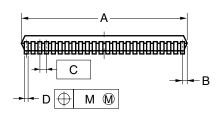
Remark On the data retention mode by controlling CE2, the other pins (/CE1, Address, I/O, /WE, /OE, /LB, /UB) can be in high impedance state.

(3) /LB, /UB Controlled


Note BB version: 2.7 V, BC version: 2.2 V, DD version: 1.8 V


Remark On the data retention mode by controlling /LB and /UB, the input level of /CE1 and CE2 must be $\geq Vcc - 0.2 \text{ V or } \leq 0.2 \text{ V}$. The other pins (Address, I/O, /WE, /OE) can be in high impedance state.




Package Drawing

48-PIN PLASTIC TSOP(I) (12x18)

NOTES

- Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.
- 2. "A" excludes mold flash. (Includes mold flash: 12.4 mm MAX.)

ITEM	MILLIMETERS			
A	12.0±0.1			
В	0.45 MAX.			
C	0.5 (T.P.)			
D	0.22±0.05			
E	0.1±0.05			
F	1.2 MAX.			
G	1.0±0.05			
ı	16.4±0.1			
J	0.8±0.2			
K	0.145±0.05			
L	0.5			
М	0.10			
N	0.10			
P	18.0±0.2			
Q	3°+5° -3°			
R	0.25			
S	0.60±0.15			

S48GY-50-MJH1-1

Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD442012A-X.

Types of Surface Mount Device

```
μPD442012AGY-BBxxX-MJH : 48-pin PLASTIC TSOP (I) (12×18) (Normal bent) μPD442012AGY-BCxxX-MJH : 48-pin PLASTIC TSOP (I) (12×18) (Normal bent) μPD442012AGY-DDxxX-MJH : 48-pin PLASTIC TSOP (I) (12×18) (Normal bent) μPD442012AGY-BBxxX-MJH-A : 48-pin PLASTIC TSOP (I) (12×18) (Normal bent) μPD442012AGY-BCxxX-MJH-A : 48-pin PLASTIC TSOP (I) (12×18) (Normal bent) μPD442012AGY-DDxxX-MJH-A : 48-pin PLASTIC TSOP (I) (12×18) (Normal bent)
```

<R> Quality Grade

- A quality grade of the products is "Standard".
- Anti-radioactive design is not implemented in the products.
- Semiconductor devices have the possibility of unexpected defects by affection of cosmic ray that reach to the ground and so forth.

Revision History

Edition/	Page		Type of	Location	Description				
Date	This	Previous	revision		(Previous edition $ o$ This edition)				
	edition	edition							
9th edition/	p.22	p.22	Addition	Quality Grade	Section of Quality Grade has been added.				
Sep. 2006									

[MEMO]

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES —

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN).

② HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

- The information in this document is current as of September, 2006. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
 property rights of third parties by or arising from the use of NEC Electronics products listed in this document
 or any other liability arising from the use of such products. No license, express, implied or otherwise, is
 granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).