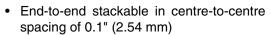


Universal LED, Ø 1.8 mm Tinted Diffused Miniplast Package


PRODUCT GROUP AND PACKAGE DATA

• Product group: LED

· Package: 1.8 mm (miniplast) · Product series: standard Angle of half intensity: ± 20°

FEATURES

- · Three colors
- · For DC and pulse operation
- · Luminous intensity categorized

• Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

· General indicating and lighting purposes

PARTS TABLE		
PART	COLOR, LUMINOUS INTENSITY	TECHNOLOGY
TLUO2400	Red, I _V > 1.6 mcd	GaAsP on GaP
TLUO2401	Red, I _V = (4 to 20) mcd	GaAsP on GaP
TLUO2401-AS12	Red, I _V = (4 to 20) mcd	GaAsP on GaP
TLUY2400	Yellow, I _V > 1 mcd	GaAsP on GaP
TLUY2400-AS12	Yellow, I _V > 1 mcd	GaAsP on GaP
TLUY2401	Yellow, I _V = (2.5 to 12.5) mcd	GaAsP on GaP
TLUY2401-AS12	Yellow, I _V = (2.5 to 12.5) mcd	GaAsP on GaP
TLUY2401-AS12Z	Yellow, I _V = (2.5 to 12.5) mcd	GaAsP on GaP
TLUG2400	Green, I _V > 1.6 mcd	GaP on GaP
TLUG2400-AS12Z	Green, I _V > 1.6 mcd	GaP on GaP
TLUG2400-ASZ	Green, I _V > 1.6 mcd	GaP on GaP
TLUG2400-MS12Z	Green, I _V > 1.6 mcd	GaP on GaP
TLUG2400-MS21Z	Green, I _V > 1.6 mcd	GaP on GaP
TLUG2401	Green, I _V = (4 to 20) mcd	GaP on GaP
TLUG2401-AS12	Green, I _V = (4 to 20) mcd	GaP on GaP
TLUG2401-AS12Z	Green, I _V = (4 to 20) mcd	GaP on GaP

^{**} Please see document "Vishay Material Category Policy": www.vishav.com/doc?99902

TLUG240., TLUO240., TLUY240.

Vishay Semiconductors

PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT
Reverse voltage			V _R	6	V
		TLUO240.	I _F	30	mA
DC forward current		TLUY240.	I _F	30	mA
		TLUG240.	I _F	30	mA
Surge forward current	t _p ≤ 10 μs		I _{FSM}	1	Α
		TLUO240.	P _V	100	mW
Power dissipation	$T_{amb} \le 55 ^{\circ}C$	TLUY240.	P _V	100	mW
		TLUG240.	P _V	100	mW
Junction temperature			T _j	100	°C
Operating temperature range			T _{amb}	- 40 to + 100	°C
Storage temperature range			T _{stg}	- 55 to + 100	°C
Caldaria a tama a satura	$t \le 3 \text{ s}, 2 \text{ mm from body}$		T _{sd}	260	°C
Soldering temperature	$t \le 5$ s, 4 mm from body		T _{sd}	260	°C
		TLUO240.	R_{thJA}	450	K/W
Thermal resistance junction/ ambient		TLUY240.	R _{thJA}	450	K/W
ambient		TLUG240.	R_{thJA}	450	K/W

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, unless otherwise specified) TLUO240. , RED							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
1	I _E = 10 mA	TLUO2400	Ι _V	1.6	2		mcd
Luminous intensity 1)	IF - 10 IIIA	TLUO2401	I _V	4	5	20	mcd
Dominant wavelength	I _F = 10 mA		λ_{d}	612		625	nm
Peak wavelength	I _F = 10 mA		λ_{p}		630		nm
Angle of half intensity	I _F = 10 mA		φ		± 20		deg
Forward voltage	I _F = 20 mA		V_{F}		2	3	V
Reverse voltage	I _R = 10 μA		V_R	6	15		V
Junction capacitance	V _R = 0, f = 1 MHz		C _j		50		pF

 $^{^{1)}~}$ in one packing unit $I_{Vmin.}/I_{Vmax.} \leq 0.5$

OPTICAL AND ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified) TLUY240., YELLOW							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
1)	I _E = 10 mA	TLUY2400	I _V	1	4		mcd
Luminous intensity 1)	IF = 10 IIIA	TLUY2401	I _V	2.5	8	12.5	mcd
Dominant wavelength	I _F = 10 mA		λ_{d}	581		594	nm
Peak wavelength	I _F = 10 mA		λ_{p}		585		nm
Angle of half intensity	I _F = 10 mA		φ		± 20		deg
Forward voltage	I _F = 20 mA		V_{F}		2.4	3	V
Reverse voltage	I _R = 10 μA		V_R	6	15		V
Junction capacitance	V _R = 0, f = 1 MHz		C _j		50		pF

Note:

 $^{^{1)}\,}$ in one packing unit $I_{Vmin.}/I_{Vmax.} \leq 0.5\,$

OPTICAL AND ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified) TLUG240., GREEN							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
1)	I _E = 10 mA	TLUG2400	I _V	1.6	5		mcd
Luminous intensity 1)	I _F = 10 mA	ensity '' $I_F = 10 \text{ IIA}$ TLUG2401 I_V	I _V	4	12	20	mcd
Dominant wavelength	I _F = 10 mA		λ_{d}	562		575	nm
Peak wavelength	I _F = 10 mA		λ_{p}		565		nm
Angle of half intensity	I _F = 10 mA		φ		± 20		deg
Forward voltage	I _F = 20 mA		V _F		2.4	3	V
Reverse voltage	I _R = 10 μA		V_R	6	15		V
Junction capacitance	V _R = 0, f = 1 MHz		C _i		50		pF

Note:

¹⁾ in one packing unit $I_{Vmin.}/I_{Vmax.} \le 0.5$

LUMINOUS INTENSITY CLASSIFICATION					
GROUP	LIGHT INTENSITY (mcd)				
STANDARD	MIN.	MAX.			
L	1	2			
M	1.6	3.2			
N	2.5	5			
P	4	8			
Q	6.3	12.5			

Luminous intensity is tested at a current pulse duration of 25 ms and an accuracy of ± 11 %.

These type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each bag (there will be no mixing of two groups on each bag). In order to ensure availability, single brightness groups will not be

orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on

any one bag. In order to ensure availability, single wavelength groups will not be orderable.

COLO	COLOR CLASSIFICATION						
	DOM. WAVELENGTH (nm)						
GROUP	YELLOW GF		GRI	EEN			
	MIN.	MAX.	MIN.	MAX.			
1	581	584					
2	583	586					
3	585	588	562	565			
4	587	590	564	567			
5	589	592	566	569			
6	591	594	568	571			
7			570	573			
8			572	575			

Note:

Wavelengths are tested at a current pulse duration of 25 ms.

TYPICAL CHARACTERISTICS

T_{amb} = 25 °C, unless otherwise specified

Figure 1. Forward Current vs. Ambient Temperature

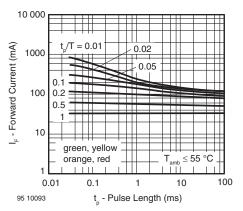


Figure 2. Forward Current vs. Pulse Length

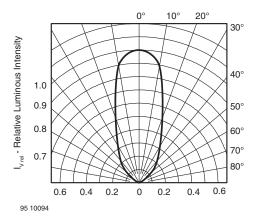
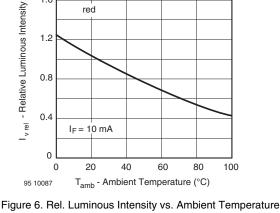



Figure 3. Rel. Luminous Intensity vs. Angular Displacement

1.6

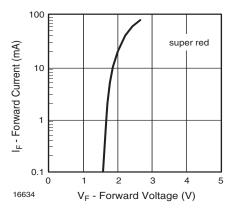


Figure 4. Forward Current vs. Forward Voltage

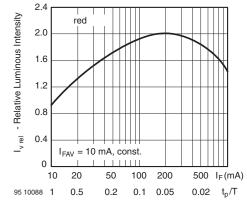


Figure 7. Rel. Lumin. Intensity vs. Forw. Current/Duty Cycle

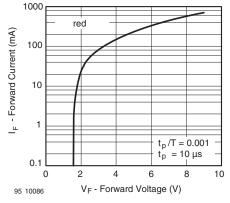


Figure 5. Forward Current vs. Forward Voltage

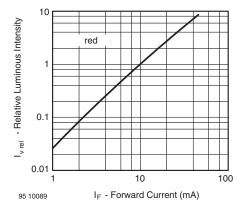


Figure 8. Relative Luminous Intensity vs. Forward Current

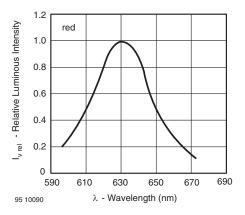


Figure 9. Relative Intensity vs. Wavelength

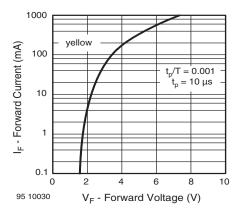


Figure 10. Forward Current vs. Forward Voltage

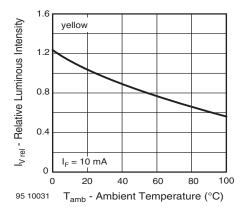


Figure 11. Rel. Luminous Intensity vs. Ambient Temperature

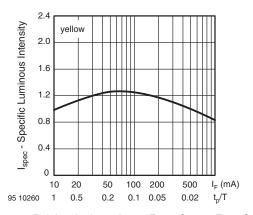


Figure 12. Rel. Lumin. Intensity vs. Forw. Current/Duty Cycle



Figure 13. Relative Luminous Intensity vs. Forward Current

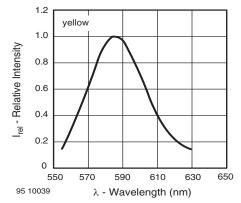


Figure 14. Relative Intensity vs. Wavelength

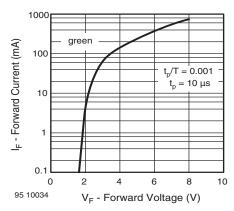


Figure 15. Forward Current vs. Forward Voltage

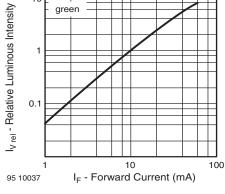


Figure 18. Relative Luminous Intensity vs. Forward Current

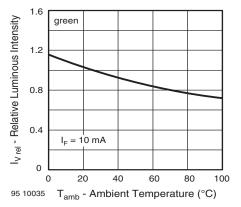


Figure 16. Rel. Luminous Intensity vs. Ambient Temperature

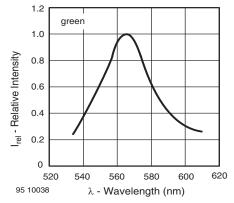


Figure 19. Relative Intensity vs. Wavelength

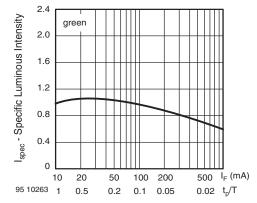
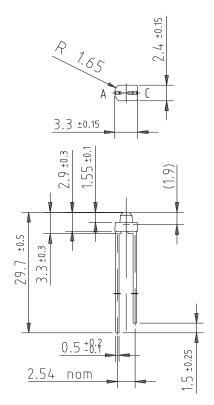
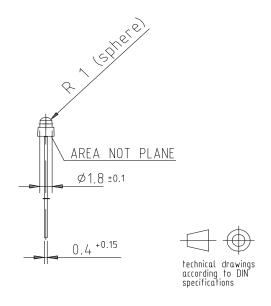



Figure 17. Specific Luminous Intensity vs. Forward Current


PACKAGE DIMENSIONS in millimeters

Drawing-No.: 6.544-5052.01-4

Issue: 1; 12.10.95

95 11262

REEL DIMENSIONS in millimeters

355 52 max. 90 Identification label: Vishay/type/group/tape code/production code/quantity 948641

Figure 20. Reel

TAPE

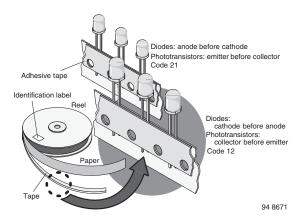


Figure 21. LED in Tape

AMMOPACK

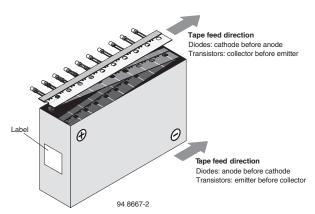
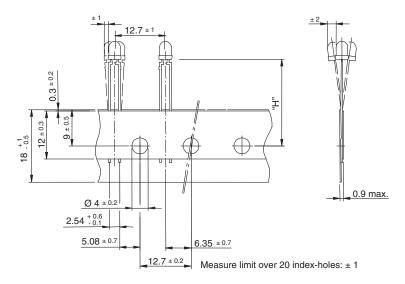
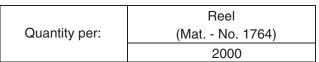




Figure 22. Tape Direction

The new nomenclature for ammopack is ASZ only, without suffix for the LED orientation. The carton box has to be turned to the desired position: "+" for anode first, or "-" for cathode first. AS12Z and AS21Z are still valid for already existing types, BUT NOT FOR NEW

TAPE DIMENSIONS in millimeters

94 8171

Option	Dim. "H" ± 0.5 mm
AS	17.3
MS	25.5

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com Revision: 11-Mar-11