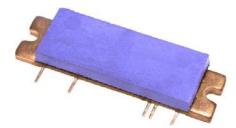



# **Product Description**

Sirenza Microdevices' XD010-24S-D2F 12W power module is a robust 2stage Class A/AB amplifier module for use in the driver stages of CDMA RF power amplifiers. The power transistors are fabricated using Sirenza's latest, high performance LDMOS process. This unit operates from a single voltage and has internal temperature compensation of the bias voltage to ensure consistant performance over the full temperature range. It is internally matched to 50 ohms.

# **Functional Block Diagram**




Case Flange = Ground

## **Kev Specifications**

# XD010-24S-D2F XD010-24S-D2FY



1930-1990 MHz Class A/AB **12W CDMA Driver Amplifier** 



### **Product Features**

- Available in RoHS compliant packaging
- 50  $\Omega$  RF impedance
- 12W Output P<sub>1dB</sub>
- Single Supply Operation : Nominally 28V
- High Gain: 28 dB at 1960 MHz •
- High Efficiency: 26% at 1960 MHz
- Advanced, XeMOS LDMOS II FETS
- Temperature Compensation

### **Applications**

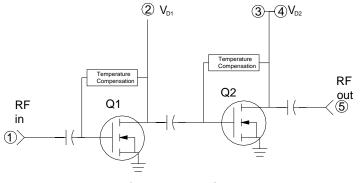
- ٠ **Base Station PA driver**
- Repeater
- **CDMA**
- **GSM / EDGE** ٠

| Parameter                                                                                                  | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Тур.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency of Operation                                                                                     | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Output Power at 1dB Compression                                                                            | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Gain at 1W Output Power                                                                                    | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Peak to Peak Gain Variation, 1930-1990MHz                                                                  | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Input Return Loss 1W Output Power, 1930-1990MHz                                                            | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Drain Efficiency at 10W CW output                                                                          | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Drain Efficiency at 2W CDMA (Single Carrier IS-95, 9 Ch Fwd)                                               | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Drain Efficiency at 1W CDMA (Single Carrier IS-95, 9 Ch Fwd)                                               | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ACPR at 1W CDMA Power Output (Single Carrier IS-95, 9 Ch<br>Fwd, Offset=750KHz, ACPR Integrated Bandwidth) | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ALT-1 at 2W CDMA (Single Carrier IS-95, 9 Ch Fwd,<br>Offset=1980 KHz, ACPR Integrated Bandwidth)           | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3 <sup>rd</sup> Order IMD at 10W PEP (Two Tone; 1MHz)                                                      | dBc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Signal Delay from Pin 1 to Pin 5                                                                           | nS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Deviation from Linear Phase (Peak to Peak)                                                                 | Deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Thermal Resistance Stage 1 (Junction to Case)                                                              | °C/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Thermal Resistance Stage 2 (Junction to Case)                                                              | °C/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                            | Frequency of Operation   Output Power at 1dB Compression   Gain at 1W Output Power   Peak to Peak Gain Variation, 1930-1990MHz   Input Return Loss 1W Output Power, 1930-1990MHz   Drain Efficiency at 10W CW output   Drain Efficiency at 2W CDMA (Single Carrier IS-95, 9 Ch Fwd)   Drain Efficiency at 1W CDMA (Single Carrier IS-95, 9 Ch Fwd)   Drain Efficiency at 1W CDMA (Single Carrier IS-95, 9 Ch Fwd)   ACPR at 1W CDMA Power Output (Single Carrier IS-95, 9 Ch Fwd, Offset=750KHz, ACPR Integrated Bandwidth)   ALT-1 at 2W CDMA (Single Carrier IS-95, 9 Ch Fwd, Offset=1980 KHz, ACPR Integrated Bandwidth)   3rd Order IMD at 10W PEP (Two Tone; 1MHz)   Signal Delay from Pin 1 to Pin 5   Deviation from Linear Phase (Peak to Peak) | Frequency of OperationMHzOutput Power at 1dB CompressionWGain at 1W Output PowerdBPeak to Peak Gain Variation, 1930-1990MHzdBInput Return Loss 1W Output Power, 1930-1990MHzdBDrain Efficiency at 10W CW output%Drain Efficiency at 2W CDMA (Single Carrier IS-95, 9 Ch Fwd)%Drain Efficiency at 1W CDMA (Single Carrier IS-95, 9 Ch Fwd)%ACPR at 1W CDMA Power Output (Single Carrier IS-95, 9 Ch Fwd)%ACPR at 1W CDMA (Single Carrier IS-95, 9 Ch Fwd, Offset=750KHz, ACPR Integrated Bandwidth)dBALT-1 at 2W CDMA (Single Carrier IS-95, 9 Ch Fwd, Offset=1980 KHz, ACPR Integrated Bandwidth)dB3'rd Order IMD at 10W PEP (Two Tone; 1MHz)dBcSignal Delay from Pin 1 to Pin 5nSDeviation from Linear Phase (Peak to Peak)Deg | Frequency of OperationMHz1930Output Power at 1dB CompressionW10Gain at 1W Output PowerdB26Peak to Peak Gain Variation, 1930-1990MHzdB10Input Return Loss 1W Output Power, 1930-1990MHzdB10Drain Efficiency at 10W CW output%20Drain Efficiency at 2W CDMA (Single Carrier IS-95, 9 Ch Fwd)%20Drain Efficiency at 1W CDMA (Single Carrier IS-95, 9 Ch Fwd)%4BACPR at 1W CDMA Power Output (Single Carrier IS-95, 9 Ch Fwd)%4BALT-1 at 2W CDMA (Single Carrier IS-95, 9 Ch Fwd, Offset=750KHz, ACPR Integrated Bandwidth)dB-273'rd Order IMD at 10W PEP (Two Tone; 1MHz)dBc-27Signal Delay from Pin 1 to Pin 5nSDeg-27 | Frequency of OperationMHz1930Output Power at 1dB CompressionW1012Gain at 1W Output PowerdB2628Peak to Peak Gain Variation, 1930-1990MHzdB0.4Input Return Loss 1W Output Power, 1930-1990MHzdB1014Drain Efficiency at 10W CW output%2026Drain Efficiency at 2W CDMA (Single Carrier IS-95, 9 Ch Fwd)%12Drain Efficiency at 1W CDMA (Single Carrier IS-95, 9 Ch Fwd)%6.5ACPR at 1W CDMA Power Output (Single Carrier IS-95, 9 Ch Fwd)%-58ALT-1 at 2W CDMA (Single Carrier IS-95, 9 Ch Fwd,<br>Offset=750KHz, ACPR Integrated Bandwidth)dB-703'rd Order IMD at 10W PEP (Two Tone; 1MHz)dBc-27-32Signal Delay from Pin 1 to Pin 5nS2.90.5Deviation from Linear Phase (Peak to Peak)Deg0.5 |

The information provided herein is believed to be reliable at oress time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions, Sirenza Microdevices assumes no responsibility for the use of this information, and all such The minimum provided network is believed to be reliable at press time. Unlet at indication because a submer in the spontability in the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the base of unleaded above to be spontability of the



### XD010-24S-D2F 1930-1990 MHz 12W Power Amp Module


### **Quality Specifications**

| Parameter  |                                                  | Unit | Typical               |
|------------|--------------------------------------------------|------|-----------------------|
| ESD Rating | Human Body Model, JEDEC Document - JESD22-A114-B | V    | 8000                  |
| MTTF       | 85°C Baseplate, 200°C Channel                    | Н    | 1.2 X 10 <sup>6</sup> |

### **Pin Out Description**

| Pin #  | Function        | Description                                                                                                                                                                                             |  |
|--------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1      | RF Input        | Module RF input. Care must be taken to protect against video transients that may damage the active devices.                                                                                             |  |
| 2      | V <sub>D1</sub> | This is the bias feed for the 1 <sup>st</sup> stage of the amplifier module. The gate bias is temperature compensated to maintain constant current over the operating temperature range. See Note 1.    |  |
| 3,4    | V <sub>D2</sub> | This is the bias feed for the 2 <sup>nd</sup> stage of the amplifier module. The gate bias is temperature compensated to maintain constant current over the operating temperature range. See Note 1.    |  |
| 5      | RF Output       | Module RF output. Care must be taken to protect against video transients that may damage the active devices.                                                                                            |  |
| Flange | Gnd             | Exposed area on the bottom side of the package needs to be mechanically attached to the ground plane of the board for optimum thermal and RF performance. See mounting instructions for recommendation. |  |

### **Simplified Device Schematic**



Case Flange = Ground

### **Absolute Maximum Ratings**

| 0                                                           |                                       |      |  |
|-------------------------------------------------------------|---------------------------------------|------|--|
| Parameters                                                  | Value                                 | Unit |  |
| 1 <sup>st</sup> Stage Bias Voltage (V <sub>D1</sub> )       | 35                                    | V    |  |
| 2 <sup>nd</sup> Stage Bias Voltage (V <sub>D2</sub> )       | 35                                    | V    |  |
| RF Input Power +20 dB                                       |                                       | dBm  |  |
| Load Impedance for Continuous Operation Without Damage      | ace for Continuous Operation 5:1 VSWR |      |  |
| Output Device Channel Temperature                           | +200                                  | °C   |  |
| Operating Temperature Range                                 | -20 to +90                            | ٥C   |  |
| Storage Temperature Range                                   | -40 to<br>+100                        | °C   |  |
| Operation of this device beyond any and of these limits may |                                       |      |  |

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation see typical setup values specified in the table on page one.



#### **Caution: ESD Sensitive**

Appropriate precaution in handling, packaging and testing devices must be observed.

303 S. Technology Court Broomfield, CO 80021 Phone: (800) SMI-MMIC 2

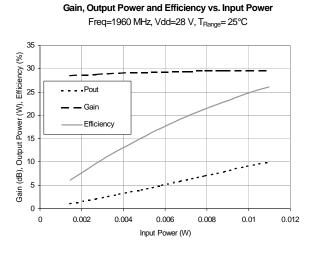
#### Note 1:

The internally generated gate voltage is thermally compensated to maintain constant quiescent current over the temperature range listed in the data sheet. No compensation is provided for gain changes with temperature. This can only be accomplished with AGC external to the module.

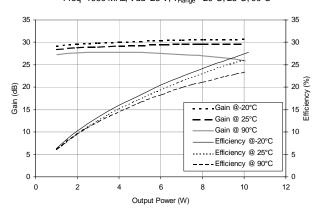
#### Note 2:

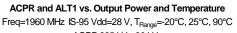
Internal RF decoupling is included on all bias leads. No additional bypass elements are required, however some applications may require energy storage on the drain leads to accommodate time-varying waveforms.

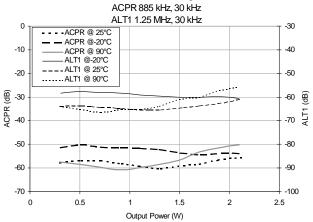
#### Note 3:


This module was designed to have its leads hand soldered to an adjacent PCB. The maximum soldering iron tip temperature should not exceed 700° F, and the soldering iron tip should not be in direct contact with the lead for longer than 10 seconds. Refer to app note AN060 (www.sirenza.com) for further installation instructions.

http://www.sirenza.com EDS-102932 Rev E

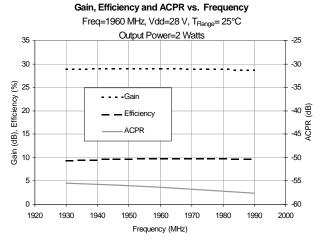




#### XD010-24S-D2F 1930-1990 MHz 12W Power Amp Module

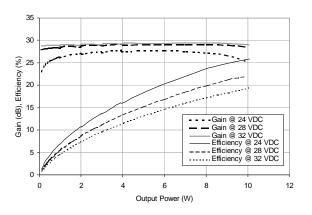

### **Typical Performance Curves**



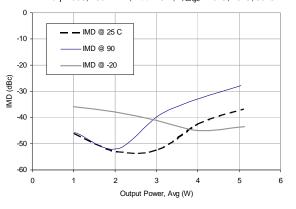
Gain and Efficiency vs. Output Power and Temperature Freq=1960 MHz, Vdd=28 V, T<sub>Flange</sub>=-20°C, 25°C, 90°C






303 S. Technology Court Broomfield, CO 80021

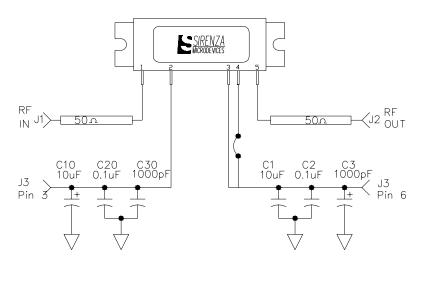

Phone: (800) SMI-MMIC 3



Gain and Efficiency vs. Output Power and Voltage Freq=1960 MHz, Vdd=24V, 28 V, 32 V T<sub>Flance</sub>= 25°C



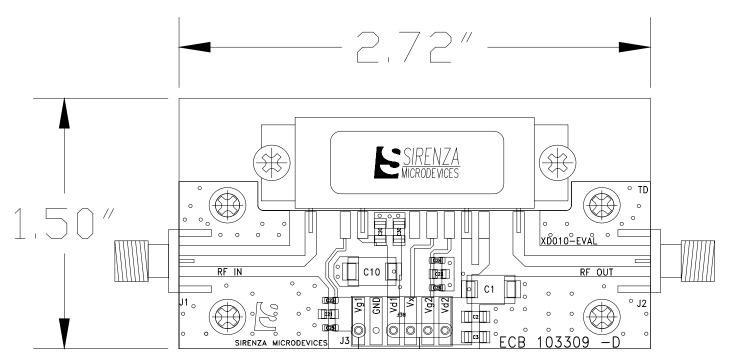
Two Tone IMD vs. Output Power and Temperature Freq=1960, 1961 MHz, Vdd=28 V, T<sub>Flange</sub>=-20°C, 25°C, 90°C




http://www.sirenza.com EDS-102932 Rev E



XD010-24S-D2F 1930-1990 MHz 12W Power Amp Module

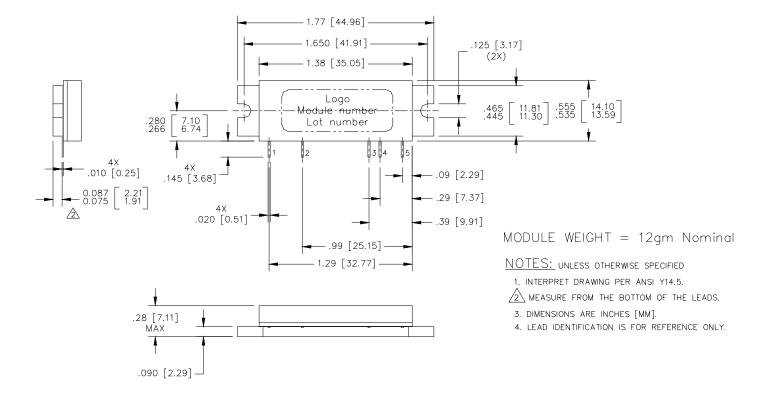

# Test Board Schematic with module attachments shown



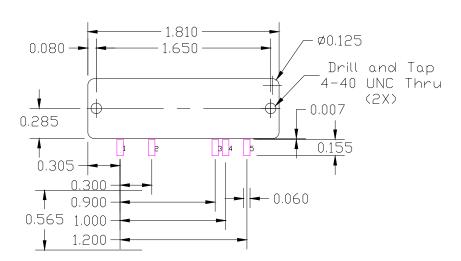
# **Test Board Bill of Materials**

| Component          | Description                                                         | Manufacturer |
|--------------------|---------------------------------------------------------------------|--------------|
| РСВ                | Rogers 4350, <i>ε</i> <sub>r</sub> =3.5<br>Thickness=30mils         | Rogers       |
| J1, J2             | SMA, RF, Panel Mount Tab W /<br>Flange                              | Johnson      |
| J3                 | MTA Post Header, 6 Pin, Rect-<br>angle, Polarized, Surface<br>Mount | AMP          |
| C1, C10            | Cap, 10 $\mu$ F, 35V, 10%, Tant,<br>Elect, D                        | Kemet        |
| C2, C20            | Cap, 0.1 $\mu$ F, 100V, 10%, 1206                                   | Johanson     |
| C3, C30            | Cap, 1000pF, 100V, 10%, 1206                                        | Johanson     |
| C25, C26           | Cap, 68pF, 250V, 5%, 0603                                           | ATC          |
| C21, C22           | Cap, 0.1 $\mu$ F, 100V, 10%, 0805                                   | Panasonic    |
| C23, C24           | Cap, 1000pF, 100V, 10%, 0603                                        | AVX          |
| Mounting<br>Screws | 4-40 X 0.250"                                                       | Various      |

# **Test Board Layout**




To receive Gerber files, DXF drawings, a detailed BOM, and assembly recommendations for the test board with fixture, contact applications support at <a href="mailto:support@sirenza.com">support@sirenza.com</a>. Data sheet for evaluation circuit (XD010-EVAL) available from Sirenza website.


303 S. Technology Court Broomfield, CO 80021 Phone: (800) SMI-MMIC 4 http://www.sirenza.com EDS-102932 Rev E







# **Recommended PCB Cutout and Landing Pads for the D2F Package**



Note 3: Dimensions are in inches

Refer to Application note AN-060 "Installation Instructions for XD Module Series" for additional mounting info. App note available at at www.sirenza.com

303 S. Technology Court Broomfield, CO 80021 Phone: (800) SMI-MMIC 5 http://www.sirenza.com EDS-102932 Rev E