1200V/150A
 THREE PHASE BRIDGE FEM WITH BRAKE

 M.S.KENNEDY CORP.

 M.S.KENNEDY CORP.
 MST

88
(315) 701-6751

FEATURES:

- Full Three Phase Bridge Configuration with SCR/IGBT Brake
- 1200V Rated Voltage
- 150A Continuous Output Current
- Internal Zener Clamps on Gates
- Proprietary Encapsulation Provides Near Hermetic Performance
- MIL-PRF-38534 Screening Available (Modified)
- Light Weight Domed ALSIC Baseplate
- Robust Mechanical Design for Hi-Rel Applications
- Ultra-Low Inductance Internal Layout
- Withstands 96 Hours HAST and Thermal Cycling ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)
- Contact MSK for MIL-PRF-38534 Qualification Status

DESCRIPTION:

The MSK 4852 is one of a family of plastic encapsulated modules (PEM) developed specifically for use in military, aerospace and other severe environment applications. The Three Phase Bridge configuration along with the SCR/IGBT brake circuit and 1200 volt/ 150 amp rating make it ideal for use in high current motor drive and inverter applications. The Aluminum Silicon Carbide (AISiC) baseplate offers superior flatness and light w eight; far better than the copper or copper alloys found in most high pow er plastic modules. The high thermal conductivity materials used to construct the MSK 4852 allow high power outputs at elevated baseplate temperatures. Our proprietary coating, SEES ${ }^{\text {m }}$ - Severe Environment Encapsulation System - protects the internal circuitry of MSK PEM's from moisture and contamination, allow ing them to pass the rugged environmental screening requirements of military and aerospace applications. MSK PEM 's are also available with industry standard silicone gel coatings for a low er cost option.

EQUVALENT SCHEMATIC

TYPICAL APPLICATIONS

- Motor Drives
- Inverters

ABSOLUTE MAXIMUM RATING

(10)

VCE
Vge
Iout
Collector to Emitter Voltage
Gate to Emitter Voltage
1200V
$\pm 20 \mathrm{~V}$
150A
300A
100A
ISCR/REG
ISCR/REG
Current (Continuous) 150A

VCASE Case Isolation Voltage
Tst Storage Temperature Range . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TJ J unction Temperature $150^{\circ} \mathrm{C}$

Tc Case Operating Temperature Range

MSK $4852 \mathrm{H} / \mathrm{E}$. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

MSK 4852
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS

Parameter (6)	Test Conditions	Group A	MSK 4852 H/E			MSK 4852			Units
		Subgroup	Min.	Typ.	Max.	Min.	Typ.	Max.	
Collector-Emitter Saturation Voltage 8	8) $\mathrm{IC}=150 \mathrm{~A}, \mathrm{VGE}=15 \mathrm{~V}$	1	-	1.9	2.5	-	1.9	2.6	V
		2	-	2.3	2.9	-	2.3	3.0	V
		3	-	1.9	2.5	-	1.9	2.5	V
Collector-Emitter Saturation Voltage (7)	(7) $\mathrm{IC}=150 \mathrm{~A}, \mathrm{VGE}=15 \mathrm{~V}$	1,3	-	1.7	-	-	1.7	-	V
		2	-	1.9	-	-	1.9	-	V
Collector-Emitter Leakage Current	$\mathrm{VCE}=1000 \mathrm{~V}, \mathrm{VGE}=0 \mathrm{~V}$	1	-	0.05	6	-	0.05	8	mA
		2	-	0.1	10	-	0.1	12	mA
		(1) 3	-	0.05	6	-	0.05	8	mA
Gate Threshold Voltage	$\mathrm{IC}=6 \mathrm{~mA}, \mathrm{VCE}=\mathrm{VGE}$	1	4.0	5.8	6.5	4.0	5.8	6.6	V
		2	3.5	5.0	6.0	3.5	5.0	6.1	V
		3	4.0	5.9	6.6	4.0	5.9	6.7	V
Gate Leakage Current	$V C E=0 V, V G E= \pm 15 \mathrm{~V}$	1,3	-10	0.10	10	-12	0.10	12	UA
		2	-10	0.15	10	-12	0.15	12	uA
Diode Forward Voltage (8)	$I C=150 A$	1	-	1.8	2.4	-	1.8	2.5	V
		2	-	1.8	2.4	-	1.8	2.5	V
		3	-	1.7	2.4	-	1.7	2.5	V
Diode Forward Voltage (7)	$I C=150 \mathrm{~A}$	1,2	-	1.7	-	-	1.7	-	V
		3	-	1.6	-	-	1.6	-	V
SCR Reverse Leakage	VRRM $=1000 \mathrm{~V}$	1,2,3	-	0.01	10	-	0.01	12	mA
SCR On Voltage (8)	$I F=100 A$	1	-	1.1	1.35	-	1.1	1.4	V
		2	-	1.0	1.35	-	1.0	1.4	V
		3	-	1.2	1.5	-	1.2	1.6	V
SCR Holding Current		1	-	100	300	-	100	325	mA
		2	-	90	300	-	90	325	mA
		3	-	110	300	-	110	325	mA
Regen Diode Forward Voltage	$I F=50 A$	1	-	1.5	2.2	-	1.3	2.3	V
		2	-	1.5	2.2	-	1.5	2.3	V
		3	-	1.4	2.2	-	1.4	2.3	V
Total Gate Charge (1)	$\mathrm{V}=600 \mathrm{~V}, \mathrm{IC}=150 \mathrm{~A}$	4	-	1000	1500	-	1000	1600	nC
Turn-On Delay (1) V	$\mathrm{V}=600 \mathrm{~V}, \mathrm{IC}=150 \mathrm{~A}, \mathrm{RG}=20 \Omega$	4	-	300	450	-	300	475	nS
Rise Time (1) V	$\mathrm{V}=600 \mathrm{~V}, \mathrm{IC}=150 \mathrm{~A}, \mathrm{RG}=20 \Omega$	4	-	70	110	-	70	120	nS
E(on) (1) $\quad \mathrm{V}=600 \mathrm{~V}, \mathrm{IC}=15$	$50 \mathrm{~A}, \mathrm{RG}=20 \Omega, \mathrm{VGE}=-7 /+15 \mathrm{~V}$	4	-	23	-	-	23	-	mJ
		5	-	31	-	-	31	-	mJ
E(off) (1) V $\quad \mathrm{C}=600 \mathrm{~V}, \mathrm{IC}=15$	50A, $\mathrm{RG}=10 \Omega, \mathrm{VGE}=-7 /+15 \mathrm{~V}$	4	-	12	-	-	12	-	mJ
		5	-	17	-	-	17	-	mJ
Turn-Off Delay (1) V	$\mathrm{V}=600 \mathrm{~V}, \mathrm{IC}=150 \mathrm{~A}, \mathrm{RG}=10 \Omega$	4	-	650	975	-	650	995	uS
Fall Time (1) V	$\mathrm{V}=600 \mathrm{~V}, \mathrm{IC}=150 \mathrm{~A}, \mathrm{RG}=10 \Omega$	4	-	75	125	-	75	135	nS
Diode Reverse Recovery Time (1) I	$\mathrm{IE}=150 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=1250 \mathrm{~A} / \mathrm{uS}$	4	-	460	650	-	460	675	nS
Diode Reverse Recovery Charge (1) I	$\mathrm{IE}=150 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=1250 \mathrm{~A} / \mathrm{uS}$	4	-	13.4	20	-	13.4	25	uC
Thermal Resistance (1) BR	IGBT @ TJ=125 ${ }^{\circ} \mathrm{C}$	4	-	0.16	0.2	-	0.16	0.21	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	BRIDGE DIODE @ $\mathrm{TJ}=125^{\circ} \mathrm{C}$	4	-	0.26	0.32	-	0.26	0.33	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	REGEN SCR	4	-	0.16	0.2	-	0.16	0.21	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	REGEN DIODE	4	-	0.35	0.43	-	0.35	0.44	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:

(1) Guaranteed by design but not tested. Typical parameters are representative of actual device performance but are for reference only.
(2) Industrial grade and "E" suffix devices shall be tested to subgroup 1 unless otherwise specified.
(3) Military grade devices ("H" suffix) shall be 100% tested to subgroups 1,2 and sample tested to subgroup 3 .
(4) Subgroups 4, 5 and 6 testing available upon request.
(5) Subgroup 1, $4 \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
$2,5 \mathrm{TA}=+125^{\circ} \mathrm{C}$
$3,6 \mathrm{TA}=-55^{\circ} \mathrm{C}$
(6) All specifications apply to both the upper and lower sections of the half bridge.
(7) Measurements are made by forcing current through the power lugs and measuring the actual die drop at the small signal terminals. Measurements are provided for determining thermal dissipation on the IGBT/diode.
(8) Measurements includes die, substrate, wire bond and power lug.
(9) VGE $=15 \mathrm{~V}$ unless otherw ise specified.
(10) Continuous operation at or above absolute maximum ratings may adversly effect the device performance and/or life cycle.

APPLICATION NOTES

THERMAL CALCULATIONS

Pow er dissipation and maximum allow able temperature rise involve many variables w orking together. Collector current, PWM duty cycle and switching frequency all factor into power dissipation. DC losses or "ON-TIME" losses are simply VCE(SAT) x Collector Current x PWM duty cycle. For the MSK 4852, VCE(SAT) $=1.9 \mathrm{~V}$ typically, and at 150 amps and a PWM duty cycle of 30%, DC losses equal 85.5 w atts. Switching losses, in milli-joules, vary proportionally with switching frequency. The MSK 4852 typical sw itching losses at $\mathrm{VCE}=600 \mathrm{~V}$ and $\mathrm{ICE}=150 \mathrm{~A}$ are about 48 mJ , which is simply the sum of the turn-on switching loss and the turn-off sw itching loss. Multiplying the switching frequency times the sw itching losses will result in a power dissipation number for sw itching. The MSK 4852, at 10 KHz , will exhibit switching power dissipation of 480 w atts. The total losses are the sum of DC losses plus sw itching losses, or in this case, 565.5 w atts total.
565.5 w atts $\times 0.20^{\circ} \mathrm{C} / \mathrm{W}$ thermal resistance equals 113 degrees of temperature rise betw een the case and the junction. Subtracting $113^{\circ} \mathrm{C}$ from the maximum junction temperature of $150^{\circ} \mathrm{C}$ equals $37^{\circ} \mathrm{C}$ maximum case temperature for this example.

VCE(SAT) \times IC \times PWM duty cycle $=1.9 \mathrm{~V} \times 150 \mathrm{amps} \times 30 \%=85.5 \mathrm{w}$ atts DC losses
Turn-on sw itching loss + Turn-off switching loss $=$ Total switching losses $=31+17=48 \mathrm{~mJ}$
Total sw itching loss \times PWM frequency $=$ Total switching pow er dissipation $=48 \mathrm{~mJ} \times 10 \mathrm{KHz}=480 \mathrm{w}$ atts
Total power dissipation $=$ DC losses + switching losses $=85.5+480=565.5 \mathrm{w}$ atts
J unction temperature rise above case $=$ Total power dissipation x thermal resistance
565.5 w atts $\times 0.2^{\circ} \mathrm{C} / \mathrm{W}=113^{\circ} \mathrm{C}$ temperature rise above case

Maximum junction temperature - junction temperature rise $=$ maximum baseplate temperature

$$
150^{\circ} \mathrm{C}-113^{\circ} \mathrm{C}=37^{\circ} \mathrm{C}
$$

TBD

OPERATION IN ACCORDANCE WITH MIL-PRF-38534	INDUSTRIAL	CLASS E	CLASS H
QUALIFICATION (MODIFIED)	NO	NO	YES
ELEMENT EVALUATION	NO	YES	YES
CLEAN ROOM PROCESSING	YES	YES	YES
NON DESTRUCT BOND PULL SAMPLE	YES	YES	YES
CERTIFIED OPERATORS	NO	YES	YES
MIL LINE PROCESSING	YES	YES	YES
MAX REWORK SPECIFIED	NO	YES	YES
ENCAPSULANT	GEL COAT	SEES ${ }^{\text {TM }}$	SEES ${ }^{\text {TM }}$
PRE-CAP VISUAL	YES - INDUSTRIAL	YES - CLASS H	YES - CLASS H
TEMP CYCLE ($-55^{\circ} \mathrm{C}$ TO $\left.+125^{\circ} \mathrm{C}\right)$	NO	YES	YES
BURN-IN	NO	YES - 96 HOURS	YES - 160 HOURS
ELECTRICAL TESTING	YES - $25^{\circ} \mathrm{C}$	YES - $25^{\circ} \mathrm{C}$	YES - FULL TEMP
EXTERNAL VISUAL	YES - SAMPLE	YES - SAMPLE	YES
XRAY	NO	NO	NO
PIN FINISH	NI	NI	NI

NOTE: ADDITIONAL SCREENING IS AVAILABLE SUCH AS XRAY, CSAM, MECHANICAL SHOCK, ETC. CONTACT FACTORY FOR QUAL STATUS.

ORDERING INFORMATION

MSK4852 H

SCREENING

BLANK = INDUSTRIAL; E=EXTENDED RELIA BILITY;
H= MIL-PRF-38534 CLASS H (MODIFIED)

GENERAL PART NUMBER

THE ABOVE EXAMPLE IS A MILITARY SCREENED MODULE.

M.S. Kennedy Corp.

4707 Dey Road Liverpool, New York 13088
Phone (315) 701-6751
FAX (315) 701-6752
www.mskennedy.com

