M.S.KENNEDY CORP

1200V/150A THREE PHASE BRIDGE 4852 PEM WITH BRAKE

4707 Dey Road Liverpool, N.Y. 13088

(315) 701-6751

FEATURES:

- Full Three Phase Bridge Configuration with SCR/IGBT Brake
- 1200V Rated Voltage
- · 150A Continuous Output Current
- Internal Zener Clamps on Gates
- Proprietary Encapsulation Provides Near Hermetic Performance
- MIL-PRF-38534 Screening Available (Modified)
- · Light Weight Domed ALSIC Baseplate
- · Robust Mechanical Design for Hi-Rel Applications
- · Ultra-Low Inductance Internal Layout
- Withstands 96 Hours HAST and Thermal Cycling (-55°C to + 125°C)
- Contact MSK for MIL-PRF-38534 Qualification Status

DESCRIPTION:

The MSK 4852 is one of a family of plastic encapsulated modules (PEM) developed specifically for use in military, aerospace and other severe environment applications. The Three Phase Bridge configuration along with the SCR/IGBT brake circuit and 1200 volt/150 amp rating make it ideal for use in high current motor drive and inverter applications. The Aluminum Silicon Carbide (AISiC) baseplate offers superior flatness and light weight; far better than the copper or copper alloys found in most high power plastic modules. The high thermal conductivity materials used to construct the MSK 4852 allow high power outputs at elevated baseplate temperatures. Our proprietary coating, SEES™ - Severe Environment Encapsulation System - protects the internal circuitry of MSK PEM's from moisture and contamination, allowing them to pass the rugged environmental screening requirements of military and aerospace applications. MSK PEM's are also available with industry standard silicone gel coatings for a lower cost option.

1

TYPICAL APPLICATIONS

- Motor Drives
- Inverters

ABSOLUTE MAXIMUM RATING

VCE	Collector to Emitter Voltage 1200V	VCASE	Case Isolation Voltage
Vge	Gate to Emitter Voltage · · · · · · ± 20V	Tst	Storage Temperature Range55° C to + 125° C
Iout	Current (Continuous) · · · · · · · · · 150A	TJ	Junction Temperature
IOUTP	Current Pulsed (1mS) 300A		Case Operating Temperature Range
ISCR/REG	Current (Continuous) · · · · · · · · · · 100A		MSK 4852H/E55°C to + 125°C
ISCR/REG	Current Pulsed (1ms) · · · · · · · · · 150A		MSK 485240°C to +85°C

ELECTRICAL SPECIFICATIONS

Parameter (6)	Test Conditions	Group A	M	SK 4852	H/E	M\$K 4852			Units
Talameter ©	1000 Gonardona	Subgroup	Min.	Тур.	Max.	Min.	Тур.	Max.	Oilles
Collector-Emitter Saturation Voltage (8) IC = 150A, VGE = 15V		1	-	1.9	2.5	-	1.9	2.6	V
		2	-	2.3	2.9	-	2.3	3.0	V
		3	-	1.9	2.5	-	1.9	2.5	V
Collector-Emitter Saturation Voltage 7 IC = 150A, VGE = 15V		1,3	-	1.7	-	-	1.7	-	V
		2	-	1.9	-	1	1.9	-	V
		1	-	0.05	6	-	0.05	8	mA
Collector-Emitter Leakage Current	VCE = 1000V, $VGE = 0V$	2	-	0.1	10	-	0.1	12	mA
		① 3	-	0.05	6	1	0.05	8	mA
	IC=6mA, VCE=VGE	1	4.0	5.8	6.5	4.0	5.8	6.6	V
Gate Threshold Voltage		2	3.5	5.0	6.0	3.5	5.0	6.1	V
		ß	4.0	5.9	6.6	4.0	5.9	6.7	V
Cata Laakaga Curraat	VCE=0V, VGE= ±15V	1,3	-10	0.10	10	-12	0.10	12	uΑ
Gate Leakage Current		2	-10	0.15	10	-12	0.15	12	uА
		1	-	1.8	2.4	-	1.8	2.5	V
Diode Forward Voltage 8	IC = 150A	2	-	1.8	2.4	1	1.8	2.5	V
		3	-	1.7	2.4	-	1.7	2.5	V
Diode Forward Voltage (7)	IC = 150A	1,2	-	1.7	-	1	1.7	-	V
Diode Forward Voltage (7)	IC = 150A	თ	-	1.6	-	1	1.6	-	V
SCR Reverse Leakage	VRRM = 1000V	1,2,3	-	0.01	10	-	0.01	12	mA
	IF = 100A	1	1	1.1	1.35	ı	1.1	1.4	V
SCR On Voltage ®		2	-	1.0	1.35	-	1.0	1.4	V
		თ	ı	1.2	1.5	ī	1.2	1.6	V
		1	-	100	300	-	100	325	mA
SCR Holding Current		2	1	90	300	1	90	325	mA
		თ	-	110	300	1	110	325	mA
	IF = 50A	1	-	1.5	2.2	1	1.3	2.3	V
Regen Diode Forward Voltage		2	-	1.5	2.2	1	1.5	2.3	V
		3	-	1.4	2.2	1	1.4	2.3	V
Total Gate Charge ①	V = 600V, $IC = 150A$	4	-	1000	1500	-	1000	1600	nC
Turn-On Delay ①	$V = 600V$, $IC = 150A$, $RG = 20\Omega$	4	-	300	450	-	300	475	nS
Rise Time ①	$V = 600V$, $IC = 150A$, $RG = 20\Omega$	4	-	70	110	-	70	120	nS
E(on) 1 V = 600V, IC =	150A RG - 200 VGE - 7/+ 15V	4	-	23	-	-	23	-	mJ
E(on) ① $V = 600V$, IC = 150A, RG = 20Ω , VGE = $-7/+$		5	-	31	-	-	31	-	mJ
E(off) ① $V = 600V$, IC = 150A, RG = 10Ω , VGE = $-7/ + 15V$		4	-	12	-	-	12	-	mJ
		5	-	17	-	-	17	-	mJ
Turn-Off Delay ①	$V = 600V$, $IC = 150A$, $RG = 10\Omega$	4	-	650	975	-	650	995	uS
Fall Time ①	$V = 600V$, $IC = 150A$, $RG = 10\Omega$	4	-	75	125	-	75	135	n\$
Diode Reverse Recovery Time ①	IE = 150A, di/dt = 1250A/uS	4	-	460	650	-	460	675	nS
Diode Reverse Recovery Charge ①		4	-	13.4	20	-	13.4	25	uC
	IGBT @ TJ=125°C	4	-	0.16	0.2	-	0.16	0.21	°C/W
Thermal Resistance (1)	BRIDGE DIODE @ TJ = 125°C	4	-	0.26	0.32	-	0.26	0.33	°C/W
member nesistance (1)	REGEN SCR	4	-	0.16	0.2	-	0.16	0.21	°C/W
	REGEN DIODE	4	-	0.35	0.43	-	0.35	0.44	°C/W

NOTES:

- ① Guaranteed by design but not tested. Typical parameters are representative of actual device performance but are for reference only.
- 2 Industrial grade and "E" suffix devices shall be tested to subgroup 1 unless otherwise specified.
 3 Military grade devices ("H" suffix) shall be 100% tested to subgroups 1, 2 and sample tested to subgroup 3.
 4 Subgroups 4, 5 and 6 testing available upon request.
- \bigcirc Subgroup 1, 4 TA = $+25^{\circ}$ C
 - 2, 5 $TA = +125^{\circ}C$
 - $3, 6 \text{ TA} = -55^{\circ}\text{C}$
- 6) All specifications apply to both the upper and lower sections of the half bridge.7) Measurements are made by forcing current through the power lugs and measuring the actual die drop at the small signal terminals. Measurements are provided for determining thermal dissipation on the IGBT/diode.
- (8) Measurements includes die, substrate, wire bond and power lug.
- 9 VGE = 15V unless otherwise specified.
- (1) Continuous operation at or above absolute maximum ratings may adversly effect the device performance and/or life cycle.

APPLICATION NOTES

THERMAL CALCULATIONS

Power dissipation and maximum allowable temperature rise involve many variables working together. Collector current, PWM duty cycle and switching frequency all factor into power dissipation. DC losses or "ON-TIME" losses are simply VcE(SAT) x Collector Current x PWM duty cycle. For the MSK 4852, VcE(SAT) = 1.9V typically, and at 150 amps and a PWM duty cycle of 30%, DC losses equal 85.5 watts. Switching losses, in milli-joules, vary proportionally with switching frequency. The MSK 4852 typical switching losses at VcE = 600V and IcE = 150A are about 48mJ, which is simply the sum of the turn-on switching loss and the turn-off switching loss. Multiplying the switching frequency times the switching losses will result in a power dissipation number for switching. The MSK 4852, at 10KHz, will exhibit switching power dissipation of 480 watts. The total losses are the sum of DC losses plus switching losses, or in this case, 565.5 watts total.

565.5 watts x 0.20° C/W thermal resistance equals 113 degrees of temperature rise between the case and the junction. Subtracting 113° C from the maximum junction temperature of 150° C equals 37° C maximum case temperature for this example.

VCE(SAT) x IC x PWM duty cycle = 1.9V x 150 amps x 30% = 85.5 watts DC losses

Turn-on switching loss + Turn-off switching loss = Total switching losses = 31 + 17 = 48mJ

Total switching loss x PWM frequency = Total switching power dissipation = 48mJ x 10KHz = 480watts

Total power dissipation = DC losses + switching losses = 85.5 + 480 = 565.5 watts

Junction temperature rise above case = Total power dissipation x thermal resistance

 $565.5 \text{ watts x } 0.2^{\circ} \text{ C/W} = 113^{\circ} \text{ C temperature rise above case}$

Maximum junction temperature - junction temperature rise = maximum baseplate temperature

 $150^{\circ} \text{C} - 113^{\circ} \text{C} = 37^{\circ} \text{C}$

TYPICAL PERFORMANCE CURVES

TBD

SCREENING CHART

OPERATION IN ACCORDANCE WITH MIL-PRF-38534	INDUSTRIAL	CLASS E	CLASS H	
QUALIFICATION (MODIFIED)	NO	NO	YES	
ELEMENT EVALUATION	NO	YES	YES	
CLEAN ROOM PROCESSING	YES	YES	YES	
NON DESTRUCT BOND PULL SAMPLE	YES	YES	YES	
CERTIFIED OPERATORS	NO	YES	YES	
MIL LINE PROCESSING	YES	YES	YES	
MAX REWORK SPECIFIED	NO	YES	YES	
ENCAPSULANT	GEL COAT	SEES ™	SEES TM	
PRE-CAP VISUAL	YES - INDUSTRIAL	YES - CLASS H	YES - CLASS H	
TEMP CYCLE (-55°C TO +125°C)	NO	YES	YES	
BURN-IN	NO	YES - 96 HOURS	YES - 160 HOURS	
ELECTRICAL TESTING	YES - 25°C	YES - 25°C	YES - FULL TEMP	
EXTERNAL VISUAL	YES - SAMPLE	YES - SAMPLE	YES	
XRAY	NO	NO	NO	
PIN FINISH	NI	NI	NI	

NOTE: ADDITIONAL SCREENING IS AVAILABLE SUCH AS XRAY, CSAM, MECHANICAL SHOCK, ETC. CONTACT FACTORY FOR QUAL STATUS.

MECHANICAL SPECIFICATIONS

ORDERING INFORMATION

THE ABOVE EXAMPLE IS A MILITARY SCREENED MODULE.

M.S. Kennedy Corp.

4707 Dey Road Liverpool, New York 13088 Phone (315) 701-6751 FAX (315) 701-6752

www.mskennedy.com

The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however, and assumes no liability for the use of its products.

Please visit our website for the most recent revision of this datasheet.

Contact MSK for MIL-PRF-38534 qualification status.