

1M x 16 Static RAM

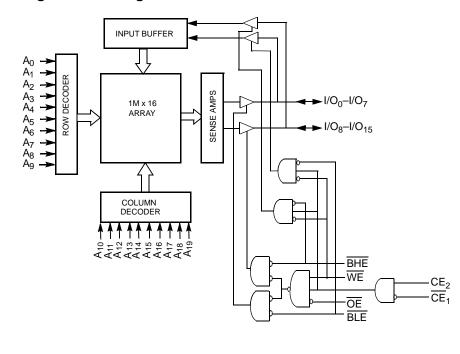
Features

- · High speed
 - $t_{AA} = 10 \text{ ns}$
- · Low active power
 - 990 mW (max.)
- Operating voltages of 3.3 ± 0.3V
- · 2.0V data retention
- · Automatic power-down when deselected
- . TTL-compatible inputs and outputs
- Easy memory expansion with CE₁ and CE₂ features
- Available in Pb-free and non Pb-free 54-pin TSOP II package and non Pb-free 60-ball fine-pitch ball grid array (FBGA) package

Functional Description

The CY7C1061AV33 is a high-performance CMOS Static RAM organized as 1,048,576 words by 16 bits.

Writing to the device is accomplished by enabling the chip (CE₁ LOW and CE₂ HIGH) while forcing the Write Enable


 $(\overline{\text{WE}})$ input LOW. If Byte Low Enable $(\overline{\text{BLE}})$ is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₁₉). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₉).

Reading from the device is accomplished by enabling the chip by taking CE_1 LOW and CE_2 HIGH while forcing the Output Enable (OE) LOW and the Write Enable (OE) HIGH. If Byte Low Enable (OE) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (OE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of Read and Write modes.

The input/output pins (I/O $_0$ through I/O $_{15}$) are placed <u>in a</u> high-impedance state when the device is d<u>ese</u>lected (CE $_1$ <u>HIGH/CE $_2$ LO</u>W), the outputs <u>are disabled (OE HIGH)</u>, the BHE and BLE <u>are disabled (BHE, BLE HIGH)</u>, or during a Write operation (CE $_1$ LOW, CE $_2$ HIGH, and WE LOW).

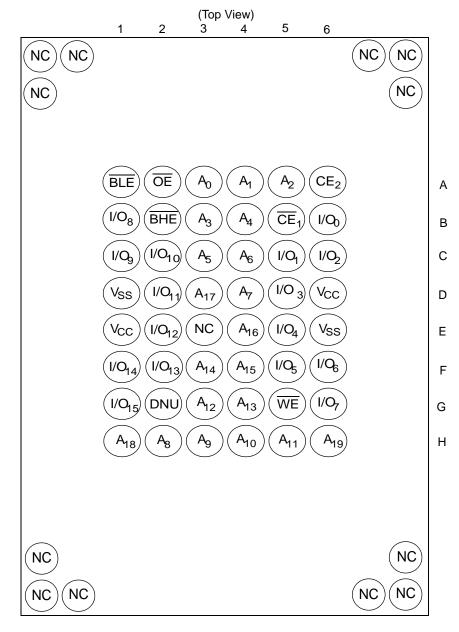
The CY7C1061AV33 is available in a 54-pin TSOP II package with center power and ground (revolutionary) pinout, and a 60-ball fine-pitch ball grid array (FBGA) package.

Logic Block Diagram

Pin Configurations^[1, 2]

TSOP II (Top View)
I/O₁₂ 1 54 1/O₁₁

V_{CC}□ 2 53 VSS I/O₁₃ ☐ 3 52 I/O₁₀ I/O₁₄ 4 V_{SS} 5 I/O₁₅ 6 A₄ 7 A₃ 8 51 1/O₉ 50 VCC 49 I/O₈ 48 A₅ 47 □ A₆ A₂ □ 9 46 A₇ A₁ ☐ 10 45 □ A₈ 44 A₉ A₉ A₃ NC _A₀□ 11 BHE□ 12 42 □ ŌE CE₁□ 13 V<u>cc</u>□ ₁₄ 41 VSS WE L 15 40 DNU (Do Not Use) 39 BLE 38 A₁₀ 37 □A₁₁ A₁₇□ 19 36 🗆 A₁₂ A₁₆ 20 A₁₅ 21 35 A₁₃ 34 A₁₄ I/O0 = 22 33 I/O₇ 32 V_{SS} V_{CC} 23 I/O₁ 24 I/O₂ 25 V_{SS} 26 31 | I/O₆ 30 | I/O₅ 29 | V_{CC} I/O₃ 27 28 I/O₄



Selection Guide

		-10	-12	Unit
Maximum Access Time		10	12	ns
Maximum Operating Current	Commercial	275	260	mA
	Industrial	275	260	
Maximum CMOS Standby Current	Commercial/Industrial	50	50	mA

Pin Configurations^[1, 2]

60-ball FBGA

- Notes:
 1. NC pins are not connected on the die.
 2. DNU pins have to be left floating or tied to VSS to ensure proper application.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......-55°C to +125°C

Supply Voltage on V_{CC} to Relative GND^[3] –0.5V to +4.6V

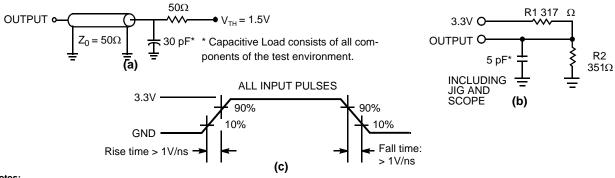
DC Voltage Applied to Outputs

in High-Z State^[3].....-0.5V to V_{CC} + 0.5V

DC Input Voltage ^[3]	-0.5V to V _{CC} + 0.5V
Current into Outputs (LOW)	20 mA

Operating Range

Range	Ambient Temperature	V _{cc}
Commercial	0°C to +70°C	$3.3\text{V} \pm 0.3\text{V}$
Industrial	–40°C to +85°C	


DC Electrical Characteristics Over the Operating Range

				-10		-		
Parameter	Description	Test Conditions		Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -$	4.0 mA	2.4		2.4		V
V_{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8$.0 mA		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.0	$V_{CC} + 0.3$	2.0	$V_{CC} + 0.3$	V
V_{IL}	Input LOW Voltage ^[3]			-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$		-1	+1	-1	+1	μΑ
l _{oz}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC}$	Output Disabled	-1	+1	-1	+1	μΑ
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Commercial		275		260	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$	Industrial		275		260	mΑ
I _{SB1}	Automatic CE Power-down Current —TTL Inputs	$CE_2 \leftarrow V_{IL}$, Max. V $V_{IN} \geq V_{IH}$ or $V_{IN} \leq V_{IL}$, $f = f_{MAX}$	CC, CE ≥ V _{IH}		70		70	mA
I _{SB2}	Automatic CE Power-down Current —CMOS Inputs	$\begin{array}{l} CE_2 <= 0.3V \\ \underline{Ma}x. \ V_{CC}, \\ CE \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V, \\ \text{or } V_{IN} \leq 0.3V, \ f = 0 \end{array}$	Commercial/ Industrial		50		50	mA

Capacitance^[4]

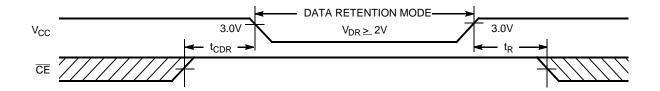
Parameter	Description	Test Conditions	TSOP II	FBGA	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = 3.3$ V	6	8	pF
C _{OUT}	I/O Capacitance		8	10	pF

AC Test Loads and Waveforms^[5]

Notes:

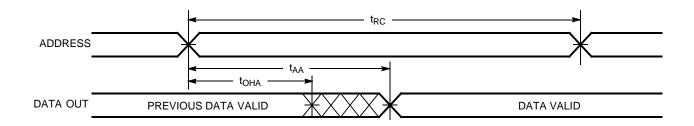
- V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
 Tested initially and after any design or process changes that may affect these parameters.
- Valid SRAM operation does not occur until the power supplies have reached the minimum operating V_{DD} (3.0V). As soon as 1ms (T_{power}) after reaching the minimum operating V_{DD}, normal SRAM operation can begin including reduction in V_{DD} to the data retention (V_{CCDR}, 2.0V) voltage.

AC Switching Characteristics Over the Operating Range [7]

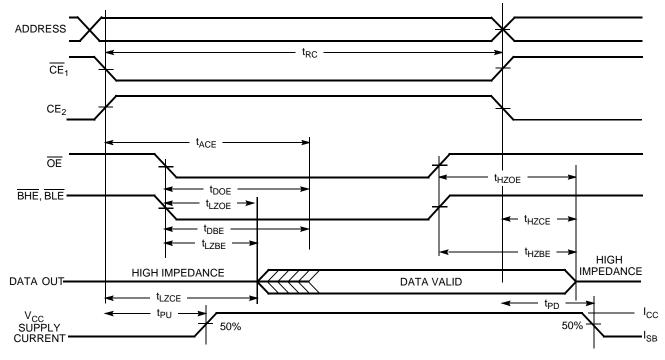

		_	10	-12		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle		•				
t _{power}	V _{CC} (typical) to the first access ^[8]	1		1		ms
t _{RC}	Read Cycle Time	10		12		ns
t _{AA}	Address to Data Valid		10		12	ns
t _{OHA}	Data Hold from Address Change	3		3		ns
t _{ACE}	CE ₁ LOW/CE ₂ HIGH to Data Valid		10		12	ns
t _{DOE}	OE LOW to Data Valid		5		6	ns
t _{LZOE}	OE LOW to Low-Z	1		1		ns
t _{HZOE}	OE HIGH to High-Z ^[9]		5		6	ns
t _{LZCE}	CE ₁ LOW/CE ₂ HIGH to Low-Z ^[9]	3		3		ns
t _{HZCE}	CE ₁ HIGH/CE ₂ LOW to High-Z ^[9]		5		6	ns
t _{PU}	CE ₁ LOW/CE ₂ HIGH to Power-Up ^[10]	0		0		ns
t _{PD}	CE ₁ HIGH/CE ₂ LOW to Power-Down ^[10]		10		12	ns
t _{DBE}	Byte Enable to Data Valid		5		6	ns
t _{LZBE}	Byte Enable to Low-Z	1		1		ns
t _{HZBE}	Byte Disable to High-Z		5		6	ns
Write Cycle ^[11, 12]		•				
t _{WC}	Write Cycle Time	10		12		ns
t _{SCE}	CE ₁ LOW/CE ₂ HIGH to Write End	7		8		ns
t _{AW}	Address Set-up to Write End	7		8		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	7		8		ns
t _{SD}	Data Set-up to Write End	5.5		6		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low-Z ^[9]	3		3		ns
t _{HZWE}	WE LOW to High-Z ^[9]		5		6	ns
t _{BW}	Byte Enable to End of Write	7		8		ns

Notes:

- Notes:
 6. Valid SRAM operation does not occur until the power supplies have reached the minimum operating V_{DD} (3.0V). As soon as 1ms (T_{power}) after reaching the minimum operating V_{DD}, normal SRAM operation can begin including reduction in V_{DD} to the data retention (V_{CCDR}, 2.0V) voltage.
 7. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified lo_L/l_{OH} and specified transmission line loads. Test conditions for the Read cycle use output loading shown in part a) of the AC test loads, unless specified otherwise.
- This part has a voltage regulator which steps down the voltage from 3V to 2V internally. t_{power} time has to be provided initially before a Read/Write operation is started.
- t_{HZOE} , t_{HZWE} , t_{HZWE} , t_{HZBE} and t_{LZOE} , t_{LZOE} , t_{LZOE} , t_{LZDE} are specified with a load capacitance of 5 pF as in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.
- 10. These parameters are guaranteed by design and are not tested.
- 11. The internal Write time of the memory is defined by the overlap of CE₁ LOW (CE₂ HIGH) and WE LOW. Chip enables must be active and WE and byte enables must be LOW to initiate a Write, and the transition of any of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write.
- 12. The minimum Write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.



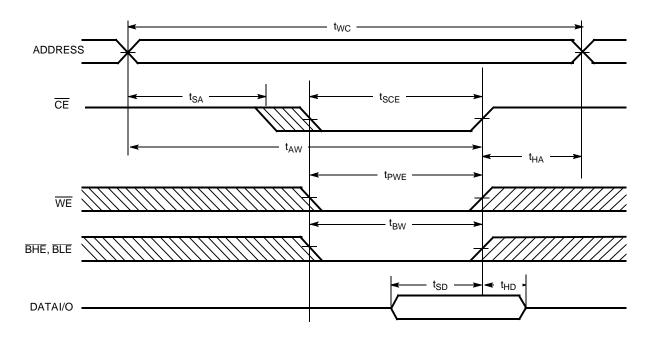
Data Retention Waveform



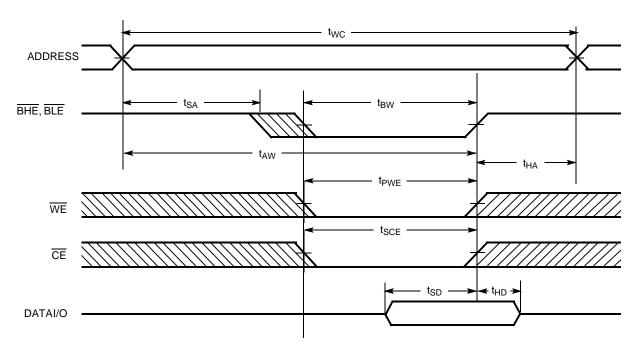
Switching Waveforms

Read Cycle No. 1^[13,14]

Read Cycle No. 2(OE Controlled)[14, 15]


Notes:

- 13. Device is continuously selected. \overline{OE} , \overline{CE} , \overline{BHE} and/or \overline{BHE} = V_{IL} . $\overline{CE2}$ = V_{IH} . 14. \overline{WE} is HIGH for Read cycle.
- 15. Address valid prior to or coincident with $\overline{\text{CE}}_1$ transition LOW and CE_2 transition HIGH.



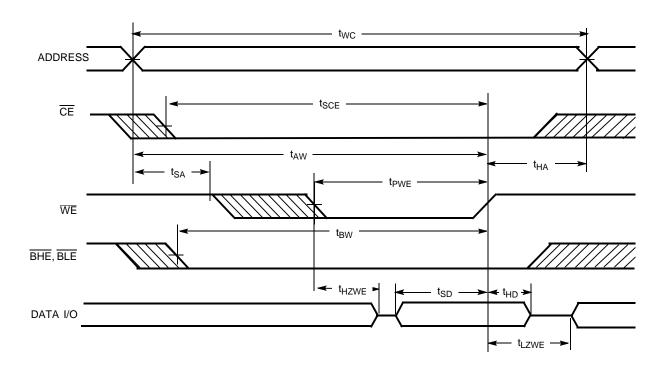
Switching Waveforms (continued)

Write Cycle No. 1(CE Controlled)[16,17,18]

Write Cycle No. 2(BLE or BHE Controlled)

- Notes:

 16. Data I/O is high-impedance if \overline{OE} or \overline{BHE} and/or \overline{BLE} = V_{IH} .


 17. If \overline{CE}_1 goes HIGH simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state.

 18. \overline{CE} is a shorthand combination of both \overline{CE}_1 and \overline{CE}_2 combined. It is active LOW.

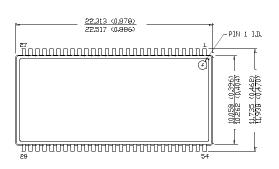
Switching Waveforms (continued)

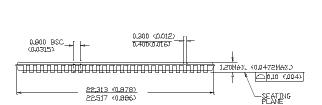
Write Cycle No. 3($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)[16,17,18]

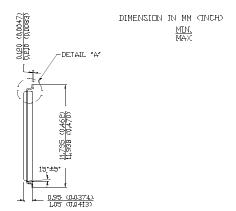
Truth Table

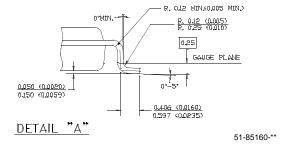
CE ₁	CE ₂	OE	WE	BLE	BHE	I/O ₀ -I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	Χ	Χ	Χ	Χ	Χ	High-Z	High-Z	Power-down	Standby (I _{SB})
Х	L	Χ	Χ	Χ	Χ	High-Z	High-Z	Power-down	Standby (I _{SB})
L	Η	Ш	Н	L	Ш	Data Out	Data Out	Read All Bits	Active (I _{CC})
L	Н	L	Н	Г	Н	Data Out	High-Z	Read Lower Bits Only	Active (I _{CC})
L	Н	L	Н	I	L	High-Z	Data Out	Read Upper Bits Only	Active (I _{CC})
L	Н	Χ	L	Г	L	Data In	Data In	Write All Bits	Active (I _{CC})
L	Н	Χ	L	L	Н	Data In	High-Z	Write Lower Bits Only	Active (I _{CC})
L	Н	Χ	L	Н	L	High-Z	Data In	Write Upper Bits Only	Active (I _{CC})
L	Н	Н	Н	Χ	Χ	High-Z	High-Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

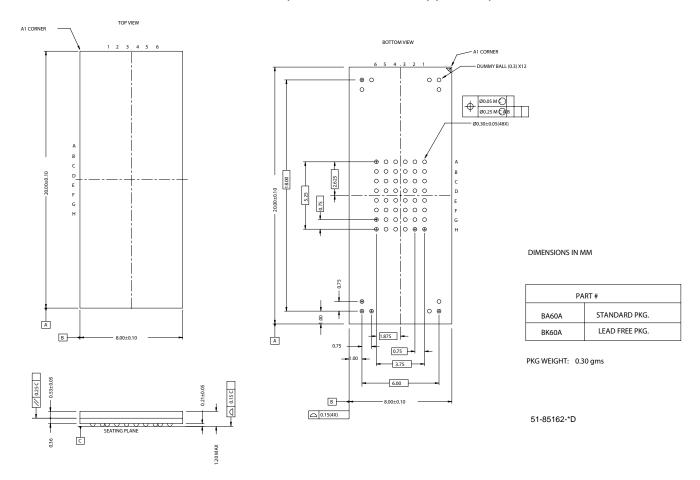

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range	
10	CY7C1061AV33-10ZXC	51-85160	54-pin TSOP II (Pb-free)	Commercial	
	CY7C1061AV33-10BAC	51-85162	60-ball (8 mm x 20 mm x 1.2 mm) FBGA		
	CY7C1061AV33-10ZI	51-85160	54-pin TSOP II	Industrial	
	CY7C1061AV33-10ZXI		54-pin TSOP II (Pb-free)		
	CY7C1061AV33-10BAI	51-85162	60-ball (8 mm x 20 mm x 1.2 mm) FBGA		
12	CY7C1061AV33-12ZC	51-85160	54-pin TSOP II	Commercial	
	CY7C1061AV33-12ZXC		54-pin TSOP II (Pb-free)		
	CY7C1061AV33-12BAC	51-85162	60-ball (8 mm x 20 mm x 1.2 mm) FBGA		
	CY7C1061AV33-12ZI	51-85160	54-pin TSOP II	Industrial	
	CY7C1061AV33-12ZXI		54-pin TSOP II (Pb-free)		
	CY7C1061AV33-12BAI	51-85162	60-ball (8 mm x 20 mm x 1.2 mm) FBGA		


Contact local Cypress representative for availability of the these parts.




Package Diagrams

54-pin TSOP II (51-85160)



Package Diagrams (continued)

60-ball FBGA (8 mm x 20 mm x 1.2 mm) (51-85162)

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY7C1061AV33 1M x 16 Static RAM Document Number: 38-05256 Issue Orig. of REV. ECN NO. Date Change **Description of Change** 113725 03/28/02 NSL New Data Sheet *A 117058 07/31/02 DFP Removed 15-ns bin *B DFP 117989 08/30/02 Added 8-ns bin Changed Icc for 8, 10, 12 bins t_{power} changed from 1 μs to 1 ms. Load Cap Comment changed (for Tx line load) t_{SD} changed to 5.5 ns for the 10-ns bin Changed some 8-ns bin numbers (t_{HZ}, t_{DOE}, t_{DBE}) Removed hz<lz comments from data sheet *C 11/06/02 DFP 120383 Final data sheet Added note 3 to "AC Test Loads and Waveforms" and note 7 to t_{pu} and t_{pd} Updated Input/Output Caps (for 48BGA only) to 8 pF/10 pF and for the 54-pin TSOP to 6/8 pF *D 124439 2/25/03 MEG Changed ISB1 from 100 mA to 70 mA Shaded fBGA production ordering information NXR*E 492137 See ECN Corrected Block Diagram on page #1 Removed 8 ns speed bin Changed 48-Ball FBGA to 60-Ball FBGA in Pin Configuration Included Note #1 and 2 on page #2 Changed the description of I_{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Updated the Ordering Information Table *F 508117 See ECN **NXR** Updated FBGA Pin Configuration

Updated Ordering Information table