LH28F128BFHED-PWTL90 Flash Memory 128 M ($8 \mathrm{M} \times 16$)
 (Model No.: LHF12F01)

Spec No.: EL142079
Issue Date: February 26, 2002

LHF12F01

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
(1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
- Office electronics
- Instrumentation and measuring equipment
- Machine tools
- Audiovisual equipment
- Home appliance
- Communication equipment other than for trunk lines
(2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
- Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
- Mainframe computers
- Traffic control systems
- Gas leak detectors and automatic cutoff devices
- Rescue and security equipment
- Other safety devices and safety equipment, etc.
(3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
- Aerospace equipment
- Communications equipment for trunk lines
- Control equipment for the nuclear power industry
- Medical equipment related to life support, etc.
(4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

CONTENTS

PAGE
48-Lead TSOP Pinout... 3
Pin Descriptions 4
Simultaneous Operation Modes
Allowed with Four Planes5
Memory Map 6
Identifier Codes and OTP Addressfor Read Operation8
Identifier Codes and OTP Address for Read Operation on Partition Configuration 8
OTP Block Address Map for OTP Program 9
Bus Operation 10
Command Definitions 11
Functions of Block Lock and Block Lock-Down. 13
Block Locking State Transitions upon Command Write 13
Block Locking State Transitions upon WP\# Transition 14
Status Register Definition. 15

PAGE
Extended Status Register Definition......................... 16
Partition Configuration Register Definition.............. 17

Partition Configuration ... 17
1 Electrical Specifications... 18
1.1 Absolute Maximum Ratings 18
1.2 Operating Conditions 18
1.2.1 Capacitance .. 19
1.2.2 AC Input/Output Test Conditions 19
1.2.3 DC Characteristics 20
1.2.4 AC Characteristics

- Read-Only Operations 22
1.2.5 AC Characteristics
- Write Operations 25
1.2.6 Reset Operations 27
1.2.7 Block Erase, Bank Erase, (Page Buffer) Program and OTP Program Performance 28
2 Related Document Information. 29
3 Package and packing specification 30

LH28F128BFHED-PWTL90 128Mbit ($8 \mathrm{Mbit} \times 16$) Page Mode Dual Work Flash MEMORY

128M density with 16Bit I/O Interface

- 2 Bank Enable ($\mathrm{BE}_{0} \#, \mathrm{BE}_{1} \#$) Control

High Performance Reads

- 90/35ns 8-Word Page Mode
- Configurative 8-Plane Dual Work
- Flexible Partitioning
- Read operations during Block Erase or (Page Buffer) Program
- Status Register for Each Partition
- Low Power Operation
- 2.7V Read and Write Operations
- Automatic Power Savings Mode Reduces $\mathrm{I}_{\mathrm{CCR}}$ in Static Mode
- Enhanced Code + Data Storage
- $5 \mu \mathrm{~s}$ Typical Erase/Program Suspends

OTP (One Time Program) Block

- 4-Word Factory-Programmed Area
- 4-Word User-Programmable Area

High Performance Program with Page Buffer

- 16-Word Page Buffer
- $5 \mu \mathrm{~s} /$ Word (Typ.) at $12 \mathrm{~V} \mathrm{~V}_{\mathrm{PP}}$

Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CMOS Process (P-type silicon substrate)

- Flexible Blocking Architecture
- Sixteen 4K-word Parameter Blocks
- Two-hundred and fifty-four 32K-word Main Blocks
- Top and Bottom Parameter Location
- Enhanced Data Protection Features
- Individual Block Lock and Block Lock-Down with Zero-Latency
- All blocks are locked at power-up or device reset.
- Absolute Protection with $\mathrm{V}_{\mathrm{PP}} \leq \mathrm{V}_{\text {PPLK }}$
- Block Erase, Bank Erase, (Page Buffer) Word Program Lockout during Power Transitions
- Automated Erase/Program Algorithms
- 3.0V Low-Power $11 \mu \mathrm{~s} /$ Word (Typ.) Programming
- 12V No Glue Logic $9 \mu \mathrm{~s} /$ Word (Typ.) Production Programming and 0.5s Erase (Typ.)
- Cross-Compatible Command Support
- Basic Command Set
- Common Flash Interface (CFI)
- Extended Cycling Capability
- Minimum 100,000 Block Erase Cycles

■ 48-Lead TSOP
ETOX ${ }^{\text {TM }}$ Flash Technology
Not designed or rated as radiation hardened

The product, which is 8-Plane Page Mode Dual Work (Simultaneous Read while Erase/Program) Flash memory, is a low power, high density, low cost, nonvolatile read/write storage solution for a wide range of applications. The product can operate at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.6 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{PP}}=1.65 \mathrm{~V}-3.6 \mathrm{~V}$ or $11.7 \mathrm{~V}-12.3 \mathrm{~V}$. Its low voltage operation capability greatly extends battery life for portable applications.

The product provides high performance asynchronous page mode. It allows code execution directly from Flash, thus eliminating time consuming wait states. Furthermore, its newly configurative partitioning architecture allows flexible dual work operation.

The memory array block architecture utilizes Enhanced Data Protection features, and provides separate Parameter and Main Blocks that provide maximum flexibility for safe nonvolatile code and data storage.

Fast program capability is provided through the use of high speed Page Buffer Program.
Special OTP (One Time Program) block provides an area to store permanent code such as a unique number.

* ETOX is a trademark of Intel Corporation.

Figure 1. 48-Lead TSOP (Normal Bend) Pinout

Table 1. Pin Descriptions

Symbol	Type	Name and Function
$\mathrm{A}_{0}-\mathrm{A}_{21}$	INPUT	ADDRESS INPUTS: Inputs for addresses. A_{0} - A_{21}
$\mathrm{DQ}_{0}-\mathrm{DQ}_{15}$	INPUT/ OUTPUT	DATA INPUTS/OUTPUTS: Inputs data and commands during CUI (Command User Interface) write cycles, outputs data during memory array, status register, query code, identifier code and partition configuration register code reads. Data pins float to highimpedance (High Z) when the chip or outputs are deselected. Data is internally latched during an erase or program cycle.
$\mathrm{BE}_{0} \#, \mathrm{BE}_{1} \#$	INPUT	BANK ENABLE: Activates the device's control logic, input buffers, decoders and sense amplifiers. $\mathrm{BE}_{0} \#$-high $\left(\mathrm{V}_{\mathrm{IH}}\right)$ and $\mathrm{BE}_{1} \#$-high $\left(\mathrm{V}_{\mathrm{IH}}\right)$ deselects the device and reduces power consumption to standby levels.
RST\#	INPUT	RESET: When low (V_{IL}), RST\# resets internal automation and inhibits write operations which provides data protection. RST\#-high (V_{IH}) enables normal operation. After power-up or reset mode, the device is automatically set to read array mode. RST\# must be low during power-up/down.
OE\#	INPUT	OUTPUT ENABLE: Gates the device's outputs during a read cycle.
WE\#	INPUT	WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of $\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$ or $\mathrm{WE} \#$ (whichever goes high first).
WP\#	INPUT	WRITE PROTECT: When WP\# is $\mathrm{V}_{\text {IL }}$, locked-down blocks cannot be unlocked. Erase or program operation can be executed to the blocks which are not locked and lockeddown. When WP\# is V_{IH}, lock-down is disabled.
$\mathrm{V}_{\text {PP }}$	INPUT	MONITORING POWER SUPPLY VOLTAGE: V_{PP} is not used for power supply pin. With $\mathrm{V}_{\mathrm{PP}} \leq \mathrm{V}_{\text {PPLK }}$, block erase, bank erase, (page buffer) program or OTP program cannot be executed and should not be attempted. Applying $12 \mathrm{~V} \pm 0.3 \mathrm{~V}$ to $\mathrm{V}_{\text {PP }}$ provides fast erasing or fast programming mode. In this mode, V_{PP} is power supply pin. Applying $12 \mathrm{~V} \pm 0.3 \mathrm{~V}$ to V_{PP} during erase/program can only be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to $12 \mathrm{~V} \pm 0.3 \mathrm{~V}$ for a total of 80 hours maximum. Use of this pin at 12 V beyond these limits may reduce block cycling capability or cause permanent damage.
$\mathrm{V}_{\text {CC }}$	SUPPLY	DEVICE POWER SUPPLY ($2.7 \mathrm{~V}-3.6 \mathrm{~V}$): With $\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{LKO}}$, all write attempts to the flash memory are inhibited. Device operations at invalid V_{CC} voltage (see DC Characteristics) produce spurious results and should not be attempted.
GND	SUPPLY	GROUND: Do not float any ground pins.

Table 2. Simultaneous Operation Modes Allowed with Eight Planes ${ }^{(1,2)}$

IF ONE PARTITION IS	THEN THE MODES ALLOWED IN THE OTHER PARTITION IS:										
	Read Array	$\begin{gathered} \text { Read } \\ \text { ID/OTP } \end{gathered}$	Read Status	Read Query	Word Program	Page Buffer Program	$\begin{gathered} \text { OTP } \\ \text { Program } \end{gathered}$	Block Erase	Bank Erase	Program Suspend	Block Erase Suspend
Read Array	X	X	X	X	X	X		X		X	X
Read ID/OTP	X	X	X	X	X	X		X		X	X
Read Status	X	X	X	X	X	X	X	X	X	X	X
Read Query	X	X	X	X	X	X		X		X	X
Word Program	X	X	X	X							X
Page Buffer Program	X	X	X	X							X
OTP Program			X								
Block Erase	X	X	X	X							
Bank Erase			X								
Program Suspend	X	X	X	X							X
Block Erase Suspend	X	X	X	X	X	X				X	

NOTES:

1. "X" denotes the operation available.
2. Configurative Partition Dual Work Restrictions:

Status register reflects partition state, not WSM (Write State Machine) state - this allows a status register for each partition. Only one partition can be erased or programmed at a time - no command queuing. Commands must be written to an address within the block targeted by that command.

	BLOCK NUMBER	ADDRESS RANGE	Selected by $\mathrm{BE}_{0} \#=\mathrm{V}_{\mathrm{IL}}($ Bank 0$)$		
	134 4K－WORD	$3 \mathrm{FF000H}-3 \mathrm{FFFFFH}$	BLOCK NUMBER		ADDRESS RANGE
	133 4K－WORD	3FE000H－3FEFFFH			
	132 4K－WORD	3FD000H－3FDFFFH			
	131 4K－WORD	$3 \mathrm{FC000H}-3 \mathrm{FCFFFH}$			
	130 4K－WORD	$3 \mathrm{FB} 000 \mathrm{H}-3 \mathrm{FBFFFH}$			
	129 4K－WORD	$3 \mathrm{FAO000H}-3 \mathrm{FAFFFH}$			
	128 4K－WORD	$3 \mathrm{~F} 9000 \mathrm{H}-3 \mathrm{~F} 9 \mathrm{FFFH}$			1F8000H－1FFFFFH
	127 4K－WORD	$3 \mathrm{~F} 8000 \mathrm{H}-3 \mathrm{~F} 8 \mathrm{FFFH}$		63 32K－WORD	
	126 32K－WORD	$3 \mathrm{~F} 0000 \mathrm{H}-3 \mathrm{~F} 7 \mathrm{FFFH}$		62 32K－WORD	1F0000H－1F7FFFH
	125 32K－WORD	3E8000H－3EFFFFH		61 32K－WORD	1E8000H－1EFFFFH
	124 32K－WORD	$3 \mathrm{E} 0000 \mathrm{H}-3 \mathrm{E} 7 \mathrm{FFFH}$		$60 \quad 32 \mathrm{~K}-\mathrm{WORD}$	1E0000H－1E7FFFH
	123 32K－WORD	3D8000H－3DFFFFH		59 32K－WORD	1D8000H－1DFFFFH
	122 32K－WORD	3D0000H－3D7FFFH		58 32K－WORD	1D0000H－1D7FFFH
	121 32K－WORD	3C8000H－3CFFFFH		57 32K－WORD	1C8000H－1CFFFFFH
	120 32K－WORD	$3 \mathrm{C} 0000 \mathrm{H}-3 \mathrm{C} 7 \mathrm{FFFH}$		56 32K－WORD	$1 \mathrm{C} 0000 \mathrm{H}-1 \mathrm{C} 7 \mathrm{FFFH}$
	119 32K－WORD	3B8000H－3BFFFFH		55 32K－WORD	1B8000H－1BFFFFFH
	118 32K－WORD	$3 \mathrm{~B} 0000 \mathrm{H}-3 \mathrm{~B} 7 \mathrm{FFFH}$	$\underset{Z}{Z 1}$	54 32K－WORD	180000H－1B7FFFH
	117 32K－WORD	3A8000H－3AFFFFH		53 32K－WORD	1A8000H－1AFFFFH
	116 32K－WORD	$3 \mathrm{~A} 0000 \mathrm{H}-3 \mathrm{~A} 7 \mathrm{FFFH}$	完	52 32K－WORD	1A0000H－1A7FFFH
	115 32K－WORD	$398000 \mathrm{H}-39 \mathrm{FFFFH}$		51 32K－WORD	198000H－19FFFFH
	114 32K－WORD	$390000 \mathrm{H}-397 \mathrm{FFFH}$	$\stackrel{\square}{2}$	50 32K－WORD	190000H－197FFFH
	113 32K－WORD	$388000 \mathrm{H}-38 \mathrm{FFFFH}$	\sum	49 32K－WORD	188000H－18FFFFH
	112 32K－WORD	$380000 \mathrm{H}-387 \mathrm{FFFH}$		48 32K－WORD	180000H－187FFFH
	111 32K－WORD	378000H－37FFFFH	\bigcirc	47 32K－WORD	178000H－17FFFFH
	110 32K－WORD	$370000 \mathrm{H}-377 \mathrm{FFFH}$		46 32K－WORD	170000H－177FFFH
	109 32K－WORD	$368000 \mathrm{H}-36 \mathrm{FFFFH}$	之	45 32K－WORD	168000H－16FFFFH
	108 32K－WORD	$360000 \mathrm{H}-367 \mathrm{FFFH}$	伍	44 32K－WORD	160000H－167FFFH
	107 32K－WORD	$358000 \mathrm{H}-35 \mathrm{FFFFH}$		43 32K－WORD	158000H－15FFFFH
	106 32K－WORD	350000H－357FFFH	z	42 32K－WORD	150000H－157FFFH
	105 32K－WORD	$348000 \mathrm{H}-34 \mathrm{FFFFH}$		41 32K－WORD	148000H－14FFFFH
	104 32K－WORD	$340000 \mathrm{H}-347 \mathrm{FFFH}$	2	40 32K－WORD	140000H－147FFFH
	103 32K－WORD	$338000 \mathrm{H}-33 \mathrm{FFFFH}$		39 32K－WORD	
	102 32K－WORD	$330000 \mathrm{H}-337 \mathrm{FFFH}$		38 32K－WORD	130000H－137FFFH
	101 32K－WORD	$328000 \mathrm{H}-32 \mathrm{FFFFH}$		37 32K－WORD	$128000 \mathrm{H}-12 \mathrm{FFFFH}$
	100 32K－WORD	$320000 \mathrm{H}-327 \mathrm{FFFH}$		36 32K－WORD	120000H－127FFFH
	99 32K－WORD	$318000 \mathrm{H}-31 \mathrm{FFFFH}$		35 32K－WORD	118000H－11FFFFH
	98 32K－WORD	$310000 \mathrm{H}-317 \mathrm{FFFH}$		34 32K－WORD	$110000 \mathrm{H}-117 \mathrm{FFFH}$
	97 32K－WORD	$308000 \mathrm{H}-30 \mathrm{FFFFH}$		33 32K－WORD	$108000 \mathrm{H}-10 \mathrm{FFFFH}$$100000 \mathrm{H}-107 \mathrm{FFFH}$
	96 32K－WORD	$300000 \mathrm{H}-307 \mathrm{FFFH}$		32 32K－WORD	
	95 32K－WORD	2F8000H－2FFFFFH		31 32K－WORD	0F8000H－OFFFFFF
	94 32K－WORD	2F0000H－2F7FFFH		30 32K－WORD	0F0000H－0F7FFFH
	93 32K－WORD	2E8000H－2EFFFFH		29 32K－WORD	0E8000H－0EFFFFFH
	92 32K－WORD	2E0000H－2E7FFFH		28 32K－WORD	0E0000H－0E7FFFH
	91 32K－WORD	2D8000H－2DFFFFH		27 32K－WORD	0D8000H－0DFFFFH
	90 32K－WORD	2D0000H－2D7FFFH		26 32K－WORD	0D0000H－0D7FFFH
	89 32K－WORD	$2 \mathrm{C} 8000 \mathrm{H}-2 \mathrm{CFFFFH}$		25 32K－WORD	0C8000H－0CFFFFH
	88 32K－WORD	$2 \mathrm{C} 0000 \mathrm{H}-2 \mathrm{C} 7 \mathrm{FFFH}$		24 32K－WORD	0C0000H－0C7FFFH
	87 32K－WORD	2B8000H－2BFFFFF		23 32K－WORD	0B8000H－0BFFFFH
（1）	86 32K－WORD	2B0000H－2B7FFFH	（1）	22 32K－WORD	0B0000H－0B7FFFH
Z	85 32K－WORD	2A8000H－2AFFFFH	Z	21 32K－WORD	0A8000H－0AFFFFF
＜	84 32K－WORD	2A0000H－2A7FFFH	＜	20 32K－WORD	0A0000H－0A7FFFH
Q	83 32K－WORD	298000H－29FFFFH	完	19 32K－WORD	098000H－09FFFFH
$\stackrel{1}{2}$	82 32K－WORD	290000H－297FFFH	$\stackrel{1}{2}$	18 32K－WORD	090000H－097FFFH
2	81 32K－WORD	288000H－28FFFFH	λ	17 32K－WORD	088000H－08FFFFH
\bigcirc	80 32K－WORD	280000H－287FFFH	\bigcirc	16 32K－WORD	080000H－087FFFH
T	79 32K－WORD	278000H－27FFFFH	I	15 32K－WORD	078000H－07FFFFH
\％	78 32K－WORD	270000H－277FFFH	它	14 32K－WORD	070000H－077FFFH
5	77 32K－WORD	268000H－26FFFFH	$\stackrel{5}{5}$	13 32K－WORD	068000H－06FFFFH
N	76 32K－WORD	260000H－267FFFH	\bigcirc	12 32K－WORD	060000H－067FFFH
N	75 32K－WORD	258000H－25FFFFH	이	11 32K－WORD	058000H－05FFFFH
Z	74 32K－WORD	$250000 \mathrm{H}-257 \mathrm{FFFH}$	z	10 32K－WORD	050000H－057FFFH
＜	73 32K－WORD	$248000 \mathrm{H}-24 \mathrm{FFFFH}$	＜	9 32K－WORD	048000H－04FFFFH
\cdots	72 32K－WORD	$240000 \mathrm{H}-247 \mathrm{FFFH}$	\sim	8 32K－WORD	040000H－047FFFH
	71 32K－WORD	238000H－23FFFFH		7 32K－WORD	038000H－03FFFFH
	70 32K－WORD	230000H－237FFFH		6 32K－WORD	030000H－037FFFH
	69 32K－WORD	228000H－22FFFFH		5 32K－WORD	028000H－02FFFFH
	68 32K－WORD	220000H－227FFFH		4 32K－WORD	020000H－027FFFH
	67 32K－WORD	218000H－21FFFFH		3 32K－WORD	018000H－01FFFFH
	66 32K－WORD	$210000 \mathrm{H}-217 \mathrm{FFFH}$		2 32K－WORD	010000H－017FFFH
	65 32K－WORD	208000H－20FFFFH		1 32K－WORD	008000H－00FFFFH
	64 32K－WORD	200000H－207FFFH		0 32K－WORD	000000H－007FFFH

Figure 2．1．Memory Map（Top Parameter）

Selected by $\mathrm{BE}_{1} \#=\mathrm{V}_{\text {IL }}$ (Bank 1)

BLOCK NUMBER ADDRESS RANGE

A.	134 32K-WORD	
	133	32K-WORD
	132	32K-WORD
	131	32K-WORD
	130	32K-WORD
	129	32K-WORD
	128	32K-WORD
	127	32K-WORD
	126	32K-WORD
	125	32K-WORD
	124	$32 \mathrm{~K}-\mathrm{WORD}$
	123	32K-WORD
	122	32K-WORD
	121	32K-WORD
	120	$32 \mathrm{~K}-\mathrm{WORD}$
	119	32K-WORD
	118	32K-WORD
	117	32K-WORD
	116	32K-WORD
	115	32K-WORD
	114	32K-WORD
	113	32K-WORD
	112	32K-WORD
	111	32K-WORD
	110	32K-WORD
	109	32K-WORD
	108	32K-WORD
	107	32K-WORD
	106	32K-WORD
	105	32K-WORD
	104	32K-WORD
	103	32K-WORD

3F8000H - 3FFFFFH 3F0000H-3F7FFFH 3E8000H - 3EFFFFH 3E0000H - 3E7FFFH 3D8000H - 3DFFFFH D0000H-3D7FFFH C8000H - 3CFFFFH $3 \mathrm{C} 0000 \mathrm{H}-3 \mathrm{C} 7 \mathrm{FFFH}$
$3 \mathrm{~B} 8000 \mathrm{H}-3 \mathrm{BFFFFH}$ 3B0000H - 3B7FFFH 3A8000H - 3AFFFFH 3A0000H - 3A7FFFH 390000H - 397FFFH 388000H - 38FFFFH $380000 \mathrm{H}-387 \mathrm{FFFH}$ $378000 \mathrm{H}-37 \mathrm{FFFFH}$
$370000 \mathrm{H}-377 \mathrm{FFFH}$ 368000H - 36FFFFH $360000 \mathrm{H}-367 \mathrm{FFFH}$ $358000 \mathrm{H}-35 \mathrm{FFFFH}$
$350000 \mathrm{H}-357 \mathrm{FFFH}$ 348000H - 34FFFFH $340000 \mathrm{H}-347 \mathrm{FFFH}$ $338000 \mathrm{H}-33 \mathrm{FFFFH}$
$330000 \mathrm{H}-337 \mathrm{FFFH}$ $328000 \mathrm{H}-32 \mathrm{FFFFH}$ $320000 \mathrm{H}-327 \mathrm{FFFH}$ $318000 \mathrm{H}-31 \mathrm{FFFFH}$
$310000 \mathrm{H}-317 \mathrm{FFFH}$ 308000H - 30FFFFH

200000H - 207FFFH

Figure 2.2. Memory Map (Bottom Parameter)

Table 3. Identifier Codes and OTP Address for Read Operation

	Code	Address $\left[\mathrm{A}_{15}-\mathrm{A}_{0}\right]^{(1)}$	$\begin{gathered} \text { Data } \\ {\left[\mathrm{DQ}_{15}-\mathrm{DQ}_{0}\right]} \end{gathered}$	Notes
Manufacturer Code	Manufacturer Code	0000H	00B0H	
Device Code	Device Code	0001H	$\begin{gathered} 00 \mathrm{~B} 0 \mathrm{H} \\ \left(\mathrm{BE}_{0} \#=\mathrm{V}_{\mathrm{IL}}\right) \end{gathered}$	2
			$\begin{gathered} 00 \mathrm{~B} 1 \mathrm{H} \\ \left(\mathrm{BE}_{1} \#=\mathrm{V}_{\mathrm{IL}}\right) \end{gathered}$	
Block Lock Configuration Code	Block is Unlocked	Block Address $+2$	$\mathrm{DQ}_{0}=0$	3
	Block is Locked		$\mathrm{DQ}_{0}=1$	3
	Block is not Locked-Down		$\mathrm{DQ}_{1}=0$	3
	Block is Locked-Down		$\mathrm{DQ}_{1}=1$	3
Device Configuration Code	Partition Configuration Register	0006H	PCRC	4
OTP	OTP Lock	0080H	OTP-LK	5,7
	OTP	0081-0088H	OTP	6,7

NOTES:

1. The address $\mathrm{A}_{21}-\mathrm{A}_{16}$ are shown in below table for reading the manufacturer, device, lock configuration, device configuration code and OTP data.
2. Bank 0 (selected by $B E_{0} \#=V_{\text {IL }}$) has its parameter blocks in the plane3 (The highest address within the bank). Bank 1 (selected by $\mathrm{BE}_{1} \#=\mathrm{V}_{\mathrm{IL}}$) has its parameter blocks in the plane0 (The lowest address within the bank).
3. $\mathrm{DQ}_{15}-\mathrm{DQ}_{2}$ are reserved for future implementation.
4. PCRC=Partition Configuration Register Code.
5. OTP-LK=OTP Block Lock configuration.
6. OTP=OTP Block data.
7. When the data within OTP block is read, $\mathrm{BE}_{0} \#$ must be V_{IL}. OTP block in Bank 1 (selected by $\mathrm{BE}_{1} \#=\mathrm{V}_{\mathrm{IL}}$) should not be used.

Table 4. Identifier Codes and OTP Address for Read Operation on Partition Configuration ${ }^{(1)}$

Partition Configuration Register ${ }^{(2)}$		Address $^{(3)}$ $\left[\mathrm{A}_{21}{ }^{\left.-\mathrm{A}_{16}\right]}\right.$	
PCR.10	PCR.9		
0	0	0	00 H
0	0	1	00 H or 10 H
0	1	0	00 H or 20 H
1	0	0	00 H or 30 H
0	1	1	00 H or 10 H or 20 H
1	1	0	00 H or 20 H or 30 H
1	0	1	00 H or 10 H or 30 H
1	1	1	00 H or 10 H or 20 H or 30 H

NOTES:

1. The address to read the identifier codes or OTP data is dependent on the partition which is selected when writing the Read Identifier Codes/OTP command (90 H).
2. Refer to Table 12 for the partition configuration register.
3. When the data within OTP block is read, $\mathrm{BE}_{0} \#$ must be V_{IL}.

OTP block in Bank 1 (selected by $\mathrm{BE}_{1} \#=\mathrm{V}_{\mathrm{IL}}$) should not be used.

Figure 3. OTP Block Address Map for OTP Program ${ }^{(1)}$ (The area outside $80 \mathrm{H} \sim 88 \mathrm{H}$ cannot be used.)

NOTE:

1. When the OTP program operation is executed, write the OTP Program command with $\mathrm{BE}_{0} \#$ at V_{IL}. OTP block in Bank 1 (selected by $\mathrm{BE}_{1} \#=\mathrm{V}_{\mathrm{IL}}$) should not be used.

Table 5. Bus Operation ${ }^{(1,2)}$

Mode		Notes	RST\#	$\mathrm{BE}_{0} \#$	$\mathrm{BE}_{1} \#$	OE\#	WE\#	Address	$\mathrm{V}_{\text {PP }}$	DQ_{0-15}
Read Array	Bank 0	6	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IL }}$	V_{IH}	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	X	X	$\mathrm{D}_{\text {OUT }}$
	Bank 1			V_{IH}	V_{IL}					
	Inhibited			$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$					N/A
Output Disable			V_{IH}	V_{IL}	$\mathrm{V}_{\text {IL }}$	V_{IH}	V_{IH}	X	X	High Z
Standby	Bank 0		V_{IH}	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IL }}$	X	X	X	X	High Z
	Bank 1			$\mathrm{V}_{\text {IL }}$	V_{IH}					
	Bank 0, 1			V_{IH}	V_{IH}					
Reset		3	$\mathrm{V}_{\text {IL }}$	X	X	X	X	X	X	High Z
Read Identifier Codes/OTP	Bank 0	6,9	V_{IH}	V_{IL}	V_{IH}	V_{IL}	V_{IH}	See Table 3 and Table 4	X	See Table 3 and
	Bank 1			$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IL }}$					Table 4
	Inhibited			$\mathrm{V}_{\text {IL }}$	V_{IL}					N/A
Read Query	Bank 0	6,7	V_{IH}	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	V_{IL}	V_{IH}	See Appendix	X	
	Bank 1			V_{IH}	$\mathrm{V}_{\text {IL }}$					Appendix
	Inhibited			$\mathrm{V}_{\text {IL }}$	V_{IL}					N/A
Write	Bank 0	$\begin{gathered} 4,5, \\ 6,8 \end{gathered}$	V_{IH}	$\mathrm{V}_{\text {IL }}$	V_{IH}	V_{IH}	$\mathrm{V}_{\text {IL }}$	X	X	$\mathrm{D}_{\text {IN }}$
	Bank 1			V_{IH}	$\mathrm{V}_{\text {IL }}$					
	Inhibited			$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$					N/A

NOTES:

1. Refer to DC Characteristics. When $\mathrm{V}_{\mathrm{PP}} \leq \mathrm{V}_{\text {PPLK }}$, memory contents can be read, but cannot be altered.
2. X can be V_{IL} or V_{IH} for control pins and addresses, and $\mathrm{V}_{\text {PPLK }}$ or $\mathrm{V}_{\mathrm{PPH} 1 / 2}$ for V_{PP} See DC Characteristics for $\mathrm{V}_{\text {PPLK }}$ and $\mathrm{V}_{\mathrm{PPH} 1 / 2}$ voltages.
3. RST\# at GND $\pm 0.2 \mathrm{~V}$ ensures the lowest power consumption.
4. Command writes involving block erase, (page buffer) program or OTP program are reliably executed when $\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{PPH} 1 / 2}$ and $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.6 \mathrm{~V}$.
Command writes involving bank erase are reliably executed when $\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{PPH} 1}$ and $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.6 \mathrm{~V}$.
5. Refer to Table 6 for valid D_{IN} during a write operation.
6. Never hold OE\# low and WE\# low at the same timing.
7. Refer to Appendix of LH28F128BF series for more information about query code.
8. While the erase or program operation is executed in one bank, it is inhibited to execute the erase or program operation in another bank.
9. When the data within OTP block is read, $\mathrm{BE}_{0} \#$ must be V_{IL}.

OTP block in Bank 1 (selected by $\mathrm{BE}_{1} \#=\mathrm{V}_{\mathrm{IL}}$) should not be used.

Table 6. Command Definitions ${ }^{(12)}$

Command	Bus Cycles Req'd	Notes	First Bus Cycle			Second Bus Cycle		
			Oper ${ }^{(1)}$	Addr ${ }^{(2)}$	Data ${ }^{(3)}$	Oper ${ }^{(1)}$	Addr ${ }^{(2)}$	Data ${ }^{(3)}$
Read Array	1	2	Write	PA	FFH			
Read Identifier Codes/OTP	≥ 2	2,3,4,11	Write	PA	90H	Read	IA or OA	ID or OD
Read Query	≥ 2	2,3,4	Write	PA	98H	Read	QA	QD
Read Status Register	2	2,3	Write	PA	70H	Read	PA	SRD
Clear Status Register	1	2	Write	PA	50H			
Block Erase	2	2,3,5	Write	BA	20H	Write	BA	D0H
Bank Erase	2	2,5,9	Write	X	30 H	Write	X	D0H
Program	2	2,3,5,6	Write	WA	$\begin{gathered} 40 \mathrm{H} \text { or } \\ 10 \mathrm{H} \end{gathered}$	Write	WA	WD
Page Buffer Program	≥ 4	2,3,5,7	Write	WA	E8H	Write	WA	N-1
Block Erase and (Page Buffer) Program Suspend	1	2,8,9	Write	PA	B0H			
Block Erase and (Page Buffer) Program Resume	1	2,8,9	Write	PA	D0H			
Set Block Lock Bit	2	2	Write	BA	60H	Write	BA	01H
Clear Block Lock Bit	2	2,10	Write	BA	60H	Write	BA	D0H
Set Block Lock-down Bit	2	2	Write	BA	60H	Write	BA	2 FH
OTP Program	2	2,3,9,11	Write	OA	C0H	Write	OA	OD
Set Partition Configuration Register	2	2,3	Write	PCRC	60 H	Write	PCRC	04H

NOTES:

1. Bus operations are defined in Table 5.
2. The address which is written at the first bus cycle should be the same as the address which is written at the second bus cycle.
$\mathrm{X}=\mathrm{Any}$ valid address. Bank erase is executed to the bank selected by $\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$.
$\mathrm{PA}=$ Address within the selected partition.
IA=Identifier codes address (See Table 3 and Table 4).
QA=Query codes address. Refer to Appendix of LH28F128BF series for details.
$\mathrm{BA}=$ Address within the block being erased, set/cleared block lock bit or set block lock-down bit.
WA=Address of memory location for the Program command or the first address for the Page Buffer Program command.
OA=Address of OTP block to be read or programmed (See Figure 3).
PCRC=Partition configuration register code presented on the address $\mathrm{A}_{0}-\mathrm{A}_{15}$.
3. ID=Data read from identifier codes. (See Table 3 and Table 4).

QD=Data read from query database. Refer to Appendix of LH28F128BF series for details.
SRD=Data read from status register. See Table 10 and Table 11 for a description of the status register bits.
$\mathrm{WD}=\mathrm{Data}$ to be programmed at location WA. Data is latched on the rising edge of WE\# or $\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$ (whichever goes high first).
$\mathrm{OD}=\mathrm{Data}$ to be programmed at location OA . Data is latched on the rising edge of WE\# or $\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$ (whichever goes high first).
$\mathrm{N}-1=\mathrm{N}$ is the number of the words to be loaded into a page buffer.
4. Following the Read Identifier Codes/OTP command, read operations access manufacturer code, device code, block lock configuration code, partition configuration register code and the data within OTP block (See Table 3 and Table 4).
The Read Query command is available for reading CFI (Common Flash Interface) information.
5. Block erase, bank erase or (page buffer) program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when RST\# is V_{IH} -
6. Either 40 H or 10 H are recognized by the CUI (Command User Interface) as the program setup.
7. Following the third bus cycle, inputs the program sequential address and write data of "N" times. Finally, input the any valid address within the target partition to be programmed and the confirm command (D0H). Refer to Appendix of

LH28F128BF series for details.
8. If the program operation in one partition is suspended and the erase operation in other partition is also suspended, the suspended program operation should be resumed first, and then the suspended erase operation should be resumed next.
9. Bank erase and OTP program operations can not be suspended. The OTP Program command can not be accepted while the block erase operation is being suspended.
10. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when WP\# is V_{IL}. When WP\# is V_{IH}, lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration.
11. When the data within OTP block is read, $\mathrm{BE}_{0} \#$ must be V_{IL}. When the OTP program operation is executed, write the OTP Program command with $\mathrm{BE}_{0} \#$ at V_{IL}. OTP block in Bank 1 (selected by $\mathrm{BE}_{1} \#=\mathrm{V}_{\mathrm{IL}}$) should not be used.
12. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used.

Table 7. Functions of Block Lock ${ }^{(5)}$ and Block Lock-Down

Current State					Erase/Program Allowed ${ }^{(2)}$
State	WP\#	$\mathrm{DQ}_{1}{ }^{(1)}$	$\mathrm{DQ}_{0}{ }^{(1)}$	State Name	
$[000]$	0	0	0	Unlocked	No
$[001]^{(3)}$	0	0	1	Locked	No
$[011]$	0	1	1	Locked-down	Yes
$[100]$	1	0	0	Unlocked	No
$[101]^{(3)}$	1	0	1	Locked	Yes
$[110]^{(4)}$	1	1	0	Lock-down Disable	No
$[111]$	1	1	1	Lock-down Disable	

NOTES:

1. $\mathrm{DQ}_{0}=1$: a block is locked; $\mathrm{DQ}_{0}=0$: a block is unlocked.
$\mathrm{DQ}_{1}=1$: a block is locked-down; $\mathrm{DQ}_{1}=0$: a block is not locked-down.
2. Erase and program are general terms, respectively, to express: block erase, bank erase and (page buffer) program operations.
3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] (WP\#=0) or [101] (WP\#=1), regardless of the states before power-off or reset operation.
4. When WP\# is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.
5. OTP (One Time Program) block has the lock function which is different from those described above.

Table 8. Block Locking State Transitions upon Command Write ${ }^{(4)}$

Current State				Result after Lock Command Written (Next State) $^{\text {State }}$		
WP\#	DQ $_{1}$	DQ $_{0}$	Set Lock $^{(1)}$	Clear Lock $^{(1)}$	Set Lock-down $^{(1)}$	
$[000]$	0	0	0	$[001]$	No Change	$[011]^{(2)}$
$[001]$	0	0	1	No Change $^{(3)}$	$[000]$	$[011]$
$[011]$	0	1	1	No Change	No Change	No Change
$[100]$	1	0	0	$[101]$	No Change	$[111]^{(2)}$
$[101]$	1	0	1	No Change	$[100]$	$[111]$
$[110]$	1	1	0	$[111]$	No Change	$[111]^{(2)}$
$[111]$	1	1	1	No Change	$[110]$	No Change

NOTES:

1. "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lock-down" means Set Block Lock-Down Bit command.
2. When the Set Block Lock-Down Bit command is written to the unlocked block $\left(\mathrm{DQ}_{0}=0\right)$, the corresponding block is locked-down and automatically locked at the same time.
3. "No Change" means that the state remains unchanged after the command written.
4. In this state transitions table, assumes that WP\# is not changed and fixed V_{IL} or V_{IH}.

Table 9. Block Locking State Transitions upon WP\# Transition ${ }^{(4)}$

Previous State	Current State					Result after WP\# Transition (Next State)	
	State	WP\#	DQ_{1}	DQ_{0}	${\text { WP\#=0 } \rightarrow 1^{(1)}}^{2}$	WP\#=1 $\rightarrow 0^{(1)}$	
-	$[000]$	0	0	0	$[100]$	-	
-	$[001]$	0	0	1	$[101]$	-	
$[110]^{(2)}$	$[011]$	0	1	1	$[110]$	-	
				$[111]$	-		
Other than $[110]^{(2)}$		$[100]$	1	0	0	-	
-	$[101]$	1	0	1	-	$[000]$	
-	$[110]$	1	1	0	-	$[001]$	
-	$[111]$	1	1	1	-	$[011]$	
-							

NOTES:

1. "WP\# $=0 \rightarrow 1$ " means that WP \# is driven to V_{IH} and "WP\#=1 $\rightarrow 0$ " means that WP\# is driven to V_{IL}.
2. State transition from the current state [011] to the next state depends on the previous state.
3. When WP\# is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.
4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state.

Table 10. Status Register Definition

R	R	R	R	R	R	R	R
15	14	13	12	11	10	9	8
WSMS	BESS	BEFCES	PBPOPS	VPPS	PBPSS	DPS	R
7	6	5	4	3	2	1	0

SR. 15 - SR. 8 = RESERVED FOR FUTURE

ENHANCEMENTS (R)

SR. 7 = WRITE STATE MACHINE STATUS (WSMS)
 1 = Ready
 $0=$ Busy

SR. 6 = BLOCK ERASE SUSPEND STATUS (BESS)
1 = Block Erase Suspended
$0=$ Block Erase in Progress/Completed

SR. $5=$ BLOCK ERASE AND BANK ERASE STATUS (BEFCES)
1 = Error in Block Erase or Bank Erase
$0=$ Successful Block Erase or Bank Erase

SR. $4=($ PAGE BUFFER) PROGRAM AND
OTP PROGRAM STATUS (PBPOPS)
$1=$ Error in (Page Buffer) Program or OTP Program
$0=$ Successful (Page Buffer) Program or OTP Program

$$
\begin{aligned}
\text { SR. } 3 & =\mathrm{V}_{\mathrm{PP}} \text { STATUS (VPPS) } \\
1 & =\mathrm{V}_{\mathrm{PP}} \text { LOW Detect, Operation Abort } \\
0 & =\mathrm{V}_{\mathrm{PP}} \text { OK }
\end{aligned}
$$

$\begin{aligned} \text { SR. } 2= & (\text { PAGE BUFFER) PROGRAM SUSPEND } \\ & \text { STATUS (PBPSS) }\end{aligned}$
$1=$ (Page Buffer) Program Suspended
$0=($ Page Buffer $)$ Program in Progress/Completed

SR. 1 = DEVICE PROTECT STATUS (DPS)
$1=$ Erase or Program Attempted on a
Locked Block, Operation Abort
$0=$ Unlocked

SR. $0=$ RESERVED FOR FUTURE ENHANCEMENTS (R)

Status Register indicates the status of the partition, not WSM (Write State Machine). Even if the SR. 7 is "1", the WSM may be occupied by the other partition when the device is set to 2, 3 or 4 partitions configuration.

Check SR. 7 to determine block erase, bank erase, (page buffer) program or OTP program completion. SR. 6 -SR. 1 are invalid while SR.7="0".

If both SR. 5 and SR. 4 are " 1 "s after a block erase, bank erase, page buffer program, set/clear block lock bit, set block lockdown bit, set partition configuration register attempt, an improper command sequence was entered.

SR. 3 does not provide a continuous indication of V_{PP} level. The WSM interrogates and indicates the V_{PP} level only after Block Erase, Bank Erase, (Page Buffer) Program or OTP Program command sequences. SR. 3 is not guaranteed to report accurate feedback when $\mathrm{V}_{\mathrm{PP}} \neq \mathrm{V}_{\mathrm{PPH} 1}, \mathrm{~V}_{\mathrm{PPH} 2}$ or $\mathrm{V}_{\text {PPLK }}$.

SR. 1 does not provide a continuous indication of block lock bit. The WSM interrogates the block lock bit only after Block Erase, Bank Erase, (Page Buffer) Program or OTP Program command sequences. It informs the system, depending on the attempted operation, if the block lock bit is set. Reading the block lock configuration codes after writing the Read Identifier Codes/OTP command indicates block lock bit status.

SR. 15 - SR. 8 and SR. 0 are reserved for future use and should be masked out when polling the status register.

Table 11. Extended Status Register Definition

R	R	R	R	R	R	R	R
15	14	13	12	11	10	9	8
SMS	R	R	R	R	R	R	R
7	6	5	4	3	2	1	0

XSR.15-8 = RESERVED FOR FUTURE

ENHANCEMENTS (R)

XSR. 7 = STATE MACHINE STATUS (SMS)
1 = Page Buffer Program available
$0=$ Page Buffer Program not available

XSR. $6-0=$ RESERVED FOR FUTURE ENHANCEMENTS (R)

NOTES:

After issue a Page Buffer Program command (E8H), XSR. $7=11$ " indicates that the entered command is accepted. If XSR. 7 is " 0 ", the command is not accepted and a next Page Buffer Program command (E8H) should be issued again to check if page buffer is available or not.

XSR.15-8 and XSR.6-0 are reserved for future use and should be masked out when polling the extended status register.

Table 12. Partition Configuration Register Definition

R	R	R	R	R	PC 2	PC 1	PC 0
15	14	13	12	11	10	9	8
R	R	R	R	R	R	R	R
7	6	5	4	3	2	1	0

PCR.15-11 = RESERVED FOR FUTURE ENHANCEMENTS (R)
PCR.10-8 = PARTITION CONFIGURATION (PC2-0)
$000=$ No partitioning. Dual Work is not allowed.
$001=$ Plane 1-3 are merged into one partition. (default in Bank 1 selected by $\mathrm{BE}_{1} \#=\mathrm{V}_{\mathrm{IL}}$)
$010=$ Plane 0-1 and Plane2-3 are merged into one partition respectively.
$100=$ Plane 0-2 are merged into one partition. (default in Bank 0 selected by $\mathrm{BE}_{0} \#=\mathrm{V}_{\mathrm{IL}}$)
$011=$ Plane 2-3 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions.
$110=$ Plane 0-1 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions.
$111=$ There are four partitions in this configuration. Each plane corresponds to each partition respectively. Dual work operation is available between any two partitions.
PCR.7-0 = RESERVED FOR FUTURE ENHANCEMENTS (R)

NOTES:

After power-up or device reset, PCR10-8 (PC2-0) is set to " 001 " in Bank 1 and " 100 " in Bank 0.

See Figure 4 for the detail on partition configuration.

PCR.15-11 and PCR.7-0 are reserved for future use and $101=$ Plane 1-2 are merged into one partition. There are should be masked out when polling the partition three partitions in this configuration. Dual work configuration register. operation is available between any two partitions.

PC2 PC1 PC0	PARTITIONING FOR DUAL WORK	PC2 PC1 PC0	PARTITIONING FOR DUAL WORK
0 0 0 0		$0{ }_{0} 11$	
0 0 0 1		110	PARTITION2 PARTITION1 PARTITION0 n 2 2 2 式 犮
0 1 0		101	
100		$1 \begin{array}{lll}1 & 1\end{array}$	PARTITION3 PARTITION2 PARTITION1 PARTITION0

Figure 4. Partition Configuration

1 Electrical Specifications

1.1 Absolute Maximum Ratings*

Operating Temperature

During Read, Erase and Program $\ldots-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}{ }^{(1)}$

Storage Temperature

During under Bias \qquad
During non Bias. $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Voltage On Any Pin
(except V_{CC} and V_{PP}). \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}^{(2)}$
V_{CC} Supply Voltage \qquad -0.2 V to $+3.9 \mathrm{~V}^{(2)}$
V_{PP} Supply Voltage \qquad -0.2 V to $12.6 \mathrm{~V}^{(2,3,4)}$

Output Short Circuit Current........................... $100 \mathrm{~mA}{ }^{(5)}$
*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

NOTES:

1. Operating temperature is for extended temperature product defined by this specification.
2. All specified voltages are with respect to GND. Minimum DC voltage is -0.5 V on input/output pins and -0.2 V on V_{CC} and V_{PP} pins. During transitions, this level may undershoot to -2.0 V for periods $<20 \mathrm{~ns}$. Maximum DC voltage on input/output pins and V_{CC} is $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ which, during transitions, may overshoot to $\mathrm{V}_{\mathrm{CC}}+2.0 \mathrm{~V}$ for periods $<20 \mathrm{~ns}$.
3. Maximum DC voltage on V_{PP} may overshoot to +13.0 V for periods $<20 \mathrm{~ns}$.
4. V_{PP} erase/program voltage is normally $2.7 \mathrm{~V}-3.6 \mathrm{~V}$. Applying $11.7 \mathrm{~V}-12.3 \mathrm{~V}$ to V_{PP} during erase/program can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. V_{PP} may be connected to $11.7 \mathrm{~V}-12.3 \mathrm{~V}$ for a total of 80 hours maximum.
5. Output shorted for no more than one second. No more than one output shorted at a time.

1.2 Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Operating Temperature	T_{A}	-40	+25	+85	${ }^{\circ} \mathrm{C}$	
V_{CC} Supply Voltage	V_{CC}	2.7	3.0	3.6	V	1
$\mathrm{~V}_{\mathrm{PP}}$ Voltage when Used as a Logic Control	$\mathrm{V}_{\mathrm{PPH} 1}$	1.65	3.0	3.6	V	1
$\mathrm{~V}_{\mathrm{PP}}$ Supply Voltage	$\mathrm{V}_{\mathrm{PPH} 2}$	11.7	12	12.3	V	1,2
Main Block Erase Cycling: $\mathrm{V}_{\mathrm{PP}}=3.0 \mathrm{~V}$		100,000			Cycles	
Parameter Block Erase Cycling: $\mathrm{V}_{\mathrm{PP}}=3.0 \mathrm{~V}$		100,000			Cycles	
Main Block Erase Cycling: $\mathrm{V}_{\mathrm{PP}}=12 \mathrm{~V}, 80$ hrs.				1,000	Cycles	
Parameter Block Erase Cycling: $\mathrm{V}_{\mathrm{PP}}=12 \mathrm{~V}, 80$ hrs.				1,000	Cycles	
Maximum V_{PP} hours at 12 V				80	Hours	

NOTES:

1. See DC Characteristics tables for voltage range-specific specification.
2. Applying $\mathrm{V}_{\mathrm{PP}}=11.7 \mathrm{~V}-12.3 \mathrm{~V}$ during a erase or program can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. A permanent connection to $\mathrm{V}_{\mathrm{PP}}=11.7 \mathrm{~V}-12.3 \mathrm{~V}$ is not allowed and can cause damage to the device.

1.2.1 Capacitance $^{(1)}\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=0.0 \mathrm{~V}$		12	16	pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$		20	24	pF

NOTE:

1. Sampled, not 100% tested.

1.2.2 AC Input/Output Test Conditions

$A C$ test inputs are driven at $V_{C C}(\min)$ for a Logic " 1 " and 0.0 V for a Logic " 0 ".
Input timing begins, and output timing ends at $V_{C C} / 2$. Input rise and fall times $(10 \%$ to $90 \%)<5 \mathrm{~ns}$. Worst case speed conditions are when $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}(\mathrm{min})$.

Figure 5. Transient Input/Output Reference Waveform for $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.6 \mathrm{~V}$

Table 13. Configuration Capacitance Loading Value

Test Configuration	$\mathrm{C}_{\mathrm{L}}(\mathrm{pF})$
$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.6 \mathrm{~V}$	50

Figure 6. Transient Equivalent Testing Load Circuit

1.2.3 DC Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.6 \mathrm{~V}$							
Symbol	Parameter	Notes	Min.	Typ.	Max.	Unit	Test Conditions
I_{LI}	Input Load Current	1	-2.0		+2.0	$\mu \mathrm{A}$	$\begin{array}{r} \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{Max.}, \\ \mathrm{~V}_{\mathrm{IN}} / \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ \text { GND } \end{array}$
I_{LO}	Output Leakage Current	1	-2.0		+2.0	$\mu \mathrm{A}$	
$\mathrm{I}_{\mathrm{CCS}}$	V_{CC} Standby Current	1		8	40	$\mu \mathrm{A}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{Max} ., \\ \mathrm{BE}_{0} \#=\mathrm{BE}_{1} \#=\mathrm{RST} \#= \\ \mathrm{V}_{\mathrm{CC}} \pm 0.2 \mathrm{~V}, \\ \mathrm{WP} \#=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{gathered}$
$\mathrm{I}_{\text {CCAS }}$	$\mathrm{V}_{\text {CC }}$ Automatic Power Savings Current	1,4		8	40	$\mu \mathrm{A}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{Max} ., \\ \mathrm{BE}_{0} \# \text { or } \mathrm{BE}_{1} \#= \\ \mathrm{GND} \pm 0.2 \mathrm{~V}, \\ \mathrm{WP} \#=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{gathered}$
$\mathrm{I}_{\text {CCD }}$	V_{CC} Reset Power-Down Current	1		8	40	$\mu \mathrm{A}$	RST\#=GND $\pm 0.2 \mathrm{~V}$
$\mathrm{I}_{\text {CCR }}$	Average V_{CC} Read Current Normal Mode	1,7		15	25	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{Max} ., \\ & \mathrm{BE}_{0} \# \text { or } \mathrm{BE}_{1} \#=\mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{OE} \#=\mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{f}=5 \mathrm{MHz} \end{aligned}$
	Average V_{CC} Read Current Page Mode 8 Word Read	1,7		5	10	mA	
$\mathrm{I}_{\text {CCW }}$	V_{CC} (Page Buffer) Program Current	1,5,7		20	60	mA	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {PPH1 }}$
		1,5,7		10	20	mA	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {PPH2 }}$
$\mathrm{I}_{\text {CCE }}$	V_{CC} Block Erase, Bank Erase Current	1,5,7		10	30	mA	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {PPH1 }}$
		1,5,7		10	30	mA	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {PPH2 }}$
$\mathrm{I}_{\mathrm{CCWS}}$ $\mathrm{I}_{\text {CCES }}$	V_{CC} (Page Buffer) Program or Block Erase Suspend Current	1,2,7		10	200	$\mu \mathrm{A}$	$\mathrm{BE}_{0} \#=\mathrm{BE}_{1} \#=\mathrm{V}_{\mathrm{IH}}$
$\begin{aligned} & \hline \mathrm{I}_{\mathrm{PPS}} \\ & \mathrm{I}_{\mathrm{PPR}} \end{aligned}$	$\mathrm{V}_{\text {PP }}$ Standby or Read Current	1,6,7		4	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{PP}} \leq \mathrm{V}_{\mathrm{CC}}$
$\mathrm{I}_{\text {PPW }}$	$\mathrm{V}_{\text {PP }}$ (Page Buffer) Program Current	1,5,6,7		2	5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {PPH1 }}$
		1,5,6,7		10	30	mA	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {PPH2 }}$
$\mathrm{I}_{\text {PPE }}$	$V_{\text {PP }}$ Block Erase, Bank Erase Current	1,5,6,7		2	5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {PPH1 }}$
		1,5,6,7		5	15	mA	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {PPH2 }}$
$\mathrm{I}_{\text {PPWS }}$	$V_{\text {PP }}$ (Page Buffer) Program Suspend Current	1,6,7		2	5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {PP }}=\mathrm{V}_{\text {PPH1 }}$
		1,6,7		10	200	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {PPH2 }}$
$\mathrm{I}_{\text {PPES }}$	$\mathrm{V}_{\text {PP }}$ Block Erase Suspend Current	1,6,7		2	5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {PPH1 }}$
		1,6,7		10	200	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {PPH2 }}$

DC Characteristics (Continued)
$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.6 \mathrm{~V}$

Symbol	Parameter	Notes	Min.	Typ.	Max.	Unit	Test Conditions
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	5	-0.4		0.4	V	
V_{IH}	Input High Voltage	5	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ -0.4 \end{gathered}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ +0.4 \end{gathered}$	V	
V_{OL}	Output Low Voltage	5			0.2	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A} \end{aligned}$
V_{OH}	Output High Voltage	5	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & -0.2 \end{aligned}$			V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \end{aligned}$
$\mathrm{V}_{\text {PPLK }}$	V_{PP} Lockout during Normal Operations	3,5,6			0.4	V	
$\mathrm{V}_{\text {PPH1 }}$	$\mathrm{V}_{\text {PP }}$ during Block Erase, Bank Erase, (Page Buffer) Program or OTP Program Operations	6	1.65	3.0	3.6	V	
$\mathrm{V}_{\text {PPH2 }}$	$\mathrm{V}_{\text {PP }}$ during Block Erase, (Page Buffer) Program or OTP Program Operations	6	11.7	12	12.3	V	
$\mathrm{V}_{\text {LKO }}$	$\mathrm{V}_{\text {CC }}$ Lockout Voltage		1.5			V	

NOTES:

1. All currents are in RMS unless otherwise noted. Typical values are the reference values at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless V_{CC} is specified.
2. $\mathrm{I}_{\text {CCWS }}$ and $\mathrm{I}_{\text {CCES }}$ are specified with the device de-selected. If read or (page buffer) program while in block erase suspend mode, the device's current draw is the sum of $\mathrm{I}_{\mathrm{CCWS}}$ or $\mathrm{I}_{\mathrm{CCES}}$ and $\mathrm{I}_{\mathrm{CCR}}$ or $\mathrm{I}_{\mathrm{CCW}}$, respectively.
3. Block erase, bank erase, (page buffer) program and OTP program are inhibited when $V_{\mathrm{PP}} \leq \mathrm{V}_{\mathrm{PPLK}}$, and not guaranteed in the range between $\mathrm{V}_{\mathrm{PPLK}}$ (max.) and $\mathrm{V}_{\mathrm{PPH} 1}(\mathrm{~min}$.$) , between \mathrm{V}_{\mathrm{PPH} 1}(\max$.$) and \mathrm{V}_{\mathrm{PPH} 2}\left(\mathrm{~min}\right.$.) and above $\mathrm{V}_{\mathrm{PPH} 2}(\mathrm{max}$.$) .$
4. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings ($\mathrm{t}_{\mathrm{AVQV}}$) provide new data when addresses are changed.
5. Sampled, not 100% tested.
6. V_{PP} is not used for power supply pin. With $\mathrm{V}_{\mathrm{PP}} \leq \mathrm{V}_{\mathrm{PPLK}}$, block erase, bank erase, (page buffer) program and OTP program cannot be executed and should not be attempted.
Applying $12 \mathrm{~V} \pm 0.3 \mathrm{~V}$ to V_{PP} provides fast erasing or fast programming mode. In this mode, V_{PP} is power supply pin and supplies the memory cell current for block erasing and (page buffer) programming. Use similar power supply trace widths and layout considerations given to the V_{CC} power bus.
Applying $12 \mathrm{~V} \pm 0.3 \mathrm{~V}$ to V_{PP} during erase/program can only be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to $12 \mathrm{~V} \pm 0.3 \mathrm{~V}$ for a total of 80 hours maximum.
7. The operating current in dual work is the sum of the operating current (read, erase, program) in each plane.

1.2.4 AC Characteristics - Read-Only Operations ${ }^{(1)}$

$$
\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

Symbol	Parameter	Notes	Min.	Max.	Unit
$t_{\text {AVAV }}$	Read Cycle Time		90		ns
$\mathrm{t}_{\text {AVQV }}$	Address to Output Delay			90	ns
$\mathrm{t}_{\text {ELQV }}$	$\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$ to Output Delay	3		90	ns
$\mathrm{t}_{\text {APA }}$	Page Address Access Time			35	ns
$\mathrm{t}_{\text {GLQV }}$	OE\# to Output Delay	3		20	ns
$\mathrm{t}_{\text {PHQV }}$	RST\# High to Output Delay			150	ns
$\mathrm{t}_{\mathrm{EHQZ}}, \mathrm{t}_{\text {GHQZ }}$	$\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$ or $\mathrm{OE} \#$ to Output in High Z, Whichever Occurs First	2		20	ns
$\mathrm{t}_{\text {ELQX }}$	$\mathrm{BE}_{0} \#$ or BE_{1} \# to Output in Low Z	2	0		ns
$\mathrm{t}_{\text {GLQX }}$	OE\# to Output in Low Z	2	0		ns
${ }^{\text {toH }}$	Output Hold from First Occurring Address, $\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$ or $\mathrm{OE} \#$ change	2	0		ns

NOTES:

1. See AC input/output reference waveform for timing measurements and maximum allowable input slew rate.
2. Sampled, not 100% tested.
3. OE\# may be delayed up to $\mathrm{t}_{\mathrm{ELQV}}-\mathrm{t}_{\mathrm{GLQV}}$ after the falling edge of $\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$ without impact to $\mathrm{t}_{\mathrm{ELQV}}$.

Figure 7. AC Waveform for Single Asynchronous Read Operations from Status Register, Identifier Codes, OTP Block or Query Code

Figure 8. AC Waveform for Asynchronous Page Mode Read Operations from Main Blocks or Parameter Blocks

1.2.5 AC Characteristics - Write Operations ${ }^{(1), ~(2)}$

$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Notes	Min.	Max.	Unit
$\mathrm{t}_{\text {AVAV }}$	Write Cycle Time		90		ns
$\mathrm{t}_{\text {PHWL }}\left(\mathrm{t}_{\text {PHEL }}\right)$	RST\# High Recovery to WE\# ($\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$) Going Low	3	150		ns
$\mathrm{t}_{\text {ELWL }}\left(\mathrm{t}_{\mathrm{WLEL}}\right)$	$\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$ (WE\#) Setup to WE\# ($\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$) Going Low	4	0		ns
$\mathrm{t}_{\text {WLWH }}\left(\mathrm{t}_{\text {ELEH }}\right)$	WE\# ($\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$) Pulse Width	4	60		ns
$\mathrm{t}_{\text {DVWH }}\left(\mathrm{t}_{\text {DVEH }}\right)$	Data Setup to WE\# ($\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$) Going High	8	40		ns
$\mathrm{t}_{\text {AVWH }}\left(\mathrm{t}_{\text {AVEH }}\right)$	Address Setup to WE\# ($\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$) Going High	8	50		ns
$\mathrm{t}_{\text {WHEH }}\left(\mathrm{t}_{\text {EHWH }}\right)$	$\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$ (WE\#) Hold from WE\# ($\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$) High		0		ns
$\mathrm{t}_{\text {WHDX }}\left(\mathrm{t}_{\text {EHDX }}\right)$	Data Hold from WE\# ($\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$) High		0		ns
$\mathrm{t}_{\text {WHAX }}\left(\mathrm{t}_{\text {EHAX }}\right)$	Address Hold from WE\# ($\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$) High		0		ns
$\mathrm{t}_{\text {WHWL }}\left(\mathrm{t}_{\text {EHEL }}\right)$	WE\# ($\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$) Pulse Width High	5	30		ns
$\mathrm{t}_{\text {SHWH }}\left(\mathrm{t}_{\text {SHEH }}\right)$	WP\# High Setup to WE\# ($\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$) Going High	3	0		ns
$\mathrm{t}_{\text {VVWH }}\left(\mathrm{t}_{\text {VVEH }}\right)$	V_{PP} Setup to WE\# ($\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$) Going High	3	200		ns
$\mathrm{t}_{\text {WHGL }}\left(\mathrm{t}_{\text {EHGL }}\right)$	Write Recovery before Read		30		ns
$\mathrm{t}_{\text {QVSL }}$	WP\# High Hold from Valid SRD	3, 6	0		ns
$\mathrm{t}_{\mathrm{QVVL}}$	V_{PP} Hold from Valid SRD	3, 6	0		ns
$\mathrm{t}_{\text {WHR } 0}\left(\mathrm{t}_{\text {EHR } 0}\right)$	WE\# ($\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$) High to SR. 7 Going "0"	3, 7		$\begin{gathered} \mathrm{t}_{\mathrm{AVQV}^{+}} \\ 50 \end{gathered}$	ns

NOTES:

1. The timing characteristics for reading the status register during block erase, bank erase, (page buffer) program and OTP program operations are the same as during read-only operations. Refer to AC Characteristics for read-only operations.
2. A write operation can be initiated and terminated with either $\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$ or WE\#.
3. Sampled, not 100% tested.
4. Write pulse width $\left(\mathrm{t}_{\mathrm{WP}}\right)$ is defined from the falling edge of $\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$ or $\mathrm{WE} \#$ (whichever goes low last) to the rising edge of $\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$ or $\mathrm{WE} \#$ (whichever goes high first). Hence, $\mathrm{t}_{\mathrm{WP}}=\mathrm{t}_{\mathrm{WLWH}}=\mathrm{t}_{\mathrm{ELEH}}=\mathrm{t}_{\mathrm{WLEH}}=\mathrm{t}_{\mathrm{ELWH}}$.
5. Write pulse width high ($\mathrm{t}_{\mathrm{WPH}}$) is defined from the rising edge of $\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$ or WE\# (whichever goes high first) to the falling edge of $\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$ or WE\# (whichever goes low last). Hence, $\mathrm{t}_{\mathrm{WPH}}=\mathrm{t}_{\mathrm{WHWL}}=\mathrm{t}_{\mathrm{EHEL}}=\mathrm{t}_{\mathrm{WHEL}}=\mathrm{t}_{\mathrm{EHWL}}$.
6. V_{PP} should be held at $\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{PPH} 1 / 2}$ until determination of block erase, (page buffer) program or OTP program success (SR. $1 / 3 / 4 / 5=0$) and held at $\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{PPH} 1}$ until determination of bank erase success (SR.1/3/5=0).
7. $\mathrm{t}_{\mathrm{WHR} 0}\left(\mathrm{t}_{\mathrm{EHR} 0}\right)$ after the Read Query or Read Identifier Codes/OTP command $=\mathrm{t}_{\mathrm{AVQV}}+100 \mathrm{~ns}$.
8. Refer to Table 6 for valid address and data for block erase, bank erase, (page buffer) program, OTP program or lock bit configuration.

Figure 9. AC Waveform for Write Operations

1.2.6 Reset Operations

Figure 10. AC Waveform for Reset Operations
Reset AC Specifications ($\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	Notes	Min.	Max.	Unit
$\mathrm{t}_{\text {PLPH }}$	RST\# Low to Reset during Read (RST\# should be low during power-up.)	$1,2,3$	100		ns
$\mathrm{t}_{\text {PLRH }}$	RST\# Low to Reset during Erase or Program	$1,3,4$		22	$\mu \mathrm{~s}$
$\mathrm{t}_{2 \mathrm{VPH}}$	$\mathrm{V}_{\mathrm{CC}} 2.7 \mathrm{~V}$ to RST\# High	$1,3,5$	100		ns
$\mathrm{t}_{\mathrm{VHQV}}$	$\mathrm{V}_{\mathrm{CC}} 2.7 \mathrm{~V}$ to Output Delay	3		1	ms

NOTES:

1. A reset time, $\mathrm{t}_{\mathrm{PHQV}}$, is required from the later of SR. 7 going " 1 " or RST\# going high until outputs are valid. Refer to AC Characteristics - Read-Only Operations for $\mathrm{t}_{\mathrm{PHOV}}$.
2. $\mathrm{t}_{\text {PLPH }}$ is <100 ns the device may still reset but this is not guaranteed.
3. Sampled, not 100% tested.
4. If RST\# asserted while a block erase, bank erase, (page buffer) program or OTP program operation is not executing, the reset will complete within 100 ns .
5. When the device power-up, holding RST\# low minimum 100 ns is required after V_{CC} has been in predefined range and also has been in stable there.

1.2.7 Block Erase, Bank Erase, (Page Buffer) Program and OTP Program Performance ${ }^{(3)}$

$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$										
Symbol	Parameter	Notes	Page Buffer Command is Used or not Used	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{PPH}}$ (In System)			$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{PPH} 2}$ (In Manufacturing)			Unit
				Min.	Typ. ${ }^{(1)}$	Max. ${ }^{(2)}$	Min.	Typ. ${ }^{(1)}$	Max. ${ }^{(2)}$	
${ }^{\text {twPB }}$	4K-Word Parameter Block Program Time	2	Not Used		0.05	0.3		0.04	0.12	s
		2	Used		0.03	0.12		0.02	0.06	S
$\mathrm{t}_{\text {WMB }}$	32K-Word Main Block Program Time	2	Not Used		0.38	2.4		0.31	1.0	s
		2	Used		0.24	1.0		0.17	0.5	s
$\mathrm{t}_{\mathrm{WHQV} 1}$ $\mathrm{t}_{\mathrm{EHQV}} 1$	Word Program Time	2	Not Used		11	200		9	185	$\mu \mathrm{s}$
		2	Used		7	100		5	90	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{WHOV} 1}{ }^{\prime}$ $\mathrm{t}_{\mathrm{EHOV}} 1$	OTP Program Time	2, 6	Not Used		36	400		27	185	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{WHOV} 2}{ }^{\prime}$ teHQV2	4K-Word Parameter Block Erase Time	2	-		0.3	4		0.2	4	S
$\mathrm{t}_{\mathrm{WHOV} 3} /$ $\mathrm{t}_{\mathrm{EHQV}}$	32K-Word Main Block Erase Time	2	-		0.6	5		0.5	5	S
	Bank Erase Time	2			80	700				s
$\mathrm{t}_{\mathrm{WHRHI}} /$ $\mathrm{t}_{\text {EHRH1 }}$	(Page Buffer) Program Suspend Latency Time to Read	4	-		5	10		5	10	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{WHRH}}{ }^{\prime}$ tehrh2	Block Erase Suspend Latency Time to Read	4	-		5	20		5	20	$\mu \mathrm{s}$
teres	Latency Time from Block Erase Resume Command to Block Erase Suspend Command	5	-	500			500			$\mu \mathrm{s}$

NOTES:

1. Typical values measured at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=3.0 \mathrm{~V}$ or 12 V , and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Assumes corresponding lock bits are not set. Subject to change based on device characterization.
2. Excludes external system-level overhead.
3. Sampled, but not 100% tested.
4. A latency time is required from writing suspend command (WE\# or $\mathrm{BE}_{0} \#$ or $\mathrm{BE}_{1} \#$ going high) until SR. 7 going "1".
5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than $\mathrm{t}_{\text {ERES }}$ and its sequence is repeated, the block erase operation may not be finished.
6. When the OTP program operation is executed, write the OTP Program command with $\mathrm{BE}_{0} \#$ at V_{IL}. OTP block in Bank 1 (selected by $\mathrm{BE}_{1} \#=\mathrm{V}_{\mathrm{IL}}$) should not be used.

2 Related Document Information ${ }^{(1)}$

Document No.	Document Name
FUM00701	LH28F128BF series Appendix

NOTE:

1. International customers should contact their local SHARP or distribution sales offices.

3 Package and packing specification

1.Storage Conditions.

$1-1$.Storage conditions required before opening the dry packing.

- Normal temperature : $5 \sim 40^{\circ} \mathrm{C}$
- Normal humidity : 80\% R.H. max.

1-2.Storage conditions required after opening the dry packing.
In order to prevent moisture absorption after opening, ensure the following storage conditions apply:
(1) Storage conditions for one-time soldering. (Convection reflow*1, IR/Convection reflow.*1, or Manual soldering.)

- Temperature : 5~25 ${ }^{\circ} \mathrm{C}$
- Humidity : 60\% R.H. max.
- Period : 96 hours max. after opening.
(2) Storage conditions for two time soldering. (Convection reflow ${ }^{*}$, IR/Convection reflow. ${ }^{*}$)
a. Storage conditions following opening and prior to performing the 1st reflow.
- Temperature : 5~25 ${ }^{\circ} \mathrm{C}$ 。
- Humidity : 60\% R.H. max.
- Period : 96 hours max. after opening.
b. Storage conditions following completion of the 1st reflow and prior to performing the 2nd reflow.
- Temperature : $\mathbf{5 \sim} \sim 5^{\circ}{ }^{\circ} \mathrm{C}$ 。
- Humidity : 60\% R.H. max.
- Period : 96 hours max. after completion of the 1st reflow.
${ }^{*}$: Air or nitrogen environment.

1-3.Temporary storage after opening.
To re-store the devices before soldering, do so only once and use a dry box or place desiccant (with a blue humidity indicator) with the devices and perform dry packing again using heat-sealing.
The storage period, temperature and humidity must be as follows:
(1) Storage temperature and humidity.
$※ 1:$ External atmosphere temperature and humidity of the dry packing.

(2) Storage period.

- X1 + X2 : Refer to Section 1-2(1) and (2)a, depending on the mounting method.
- Y : Two weeks max.

2. Baking Condition.
(1) Situations requiring baking before mounting.

- Storage conditions exceed the limits specified in Section 1-2 or 1-3.
- Humidity indicator in the desiccant was already red (pink) when opened. (Also for re-opening.)
(2) Recommended baking conditions.
- Baking temperature and period :
$120^{\circ} \mathrm{C}$ for $16 \sim 24$ hours.
- The above baking conditions apply since the trays are heat-resistant.
(3) Storage after baking.
- After baking, store the devices in the environment specified in Section 1-2 and mount immediately.

3.Surface mount conditions.

The following soldering condition are recommended to ensure device quality.
3-1.Soldering.
(1) Convection reflow or IR/Convection. (one-time soldering or two-time soldering in air or nitrogen environment)

- Temperature and period:

Peak temperature of $230^{\circ} \mathrm{C}$ max.
Above $200^{\circ} \mathrm{C}$ for 50 sec . max.
Preheat temperature of $140 \sim 160^{\circ} \mathrm{C}$ for $90 \pm 30 \mathrm{sec}$.
Temperature increase rate of $1 \sim 3^{\circ} \mathrm{C} / \mathrm{sec}$.

- Measuring point : IC package surface.
- Temperature profile :

(2) Manual soldering (soldering iron) (one-time soldering only)

Soldering iron should only touch the IC's outer leads.

- Temperature and period :
$350^{\circ} \mathrm{C}$ max. for 3 sec . / pin max., or $260^{\circ} \mathrm{C}$ max. for 10 sec . / pin max.
(Soldering iron should only touch the IC's outer leads.)
- Measuring point : Soldering iron tip.

4. Condition for removal of residual flax.
(1) Ultrasonic washing power : 25 watts / liter max.
(2) Washing time : Total 1 minute max.
(3) Solvent temperature : $15 \sim 40^{\circ} \mathrm{C}$
5. Package outline specification.

Refer to the attached drawing.
6. Markings.

6-1.Marking details. (The information on the package should be given as follows.)
(1) Product name : LH28F128BFHED-PWTL90
(2) Company name : SHARP
(3) Date code
$\xrightarrow{\text { (Example) } \xrightarrow{\mathrm{YY}} \xrightarrow{\mathrm{WW}} \stackrel{\text { Denotes the production ref. code (} 1 \sim 3 \text { digits). }}{ } \text { Denotes the production week. (} 1 \cdot 02 \cdot \sim \cdot 52 \cdot 53 \text {) }}$ Denotes the production year. (Last two digits of the year.)
(4) "JAPAN" indicates the country of origin.

6-2.Marking layout.
The layout is shown in the attached drawing.
(However, this layout does not specify the size of the marking character and marking position.)

マークレイアウト図
Marking layout

7.Packing Specifications (Dry packing for surface mount packages.)

7-1.Packing materials.

Material name	Material specifications	Purpose
Inner carton	Cardboard (500 devices / inner carton max.)	Packing the devices. (10 trays / inner carton)
Tray	Conductive plastic (50 devices / tray)	Securing the devices.
Upper cover tray	Conductive plastic (1 tray / inner carton)	Securing the devices.
Laminated aluminum bag	Aluminum polyethylene	Keeping the devices dry.
Desiccant	Silica gel	Keeping the devices dry.
Label	Paper	Indicates part number, quantity, and packed date.
PP band	Polypropylene (3 pcs. / inner carton)	Securing the devices.
Outer carton	Cardboard (2000 devices / outer carton max.)	Outer packing.

(Devices must be placed on the tray in the same direction.)
$7-2$. Outline dimension of tray.
Refer to the attached drawing.
7-3.Outline dimension of carton.
Refer to the attached drawing.
8. Precautions for use.
(1) Opening must be done on an anti-ESD treated workbench.

All workers must also have undergone anti-ESD treatment.
(2) The trays have undergone either conductive or anti-ESD treatment.

If another tray is used, make sure it has also undergone conductive or anti-ESD treatment.
(3) The devices should be mounted the devices within one year of the date of delivery.

A-1 RECOMMENDED OPERATING CONDITIONS

A-1.1 At Device Power-Up

AC timing illustrated in Figure A-1 is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly.

*1 To prevent the unwanted writes, system designers should consider the design, which applies $\mathrm{V}_{\mathrm{CCW}}\left(\mathrm{V}_{\mathrm{PP}}\right)$ to 0 V during read operations and $\mathrm{V}_{\mathrm{CCWH} / 2}\left(\mathrm{~V}_{\mathrm{PPH} / 2}\right)$ during write or erase operations.
See the application note AP-007-SW-E for details.

Figure A-1. AC Timing at Device Power-Up
For the AC specifications $\mathrm{t}_{\mathrm{VR}}, \mathrm{t}_{\mathrm{R}}$, t_{F} in the figure, refer to the next page. See the "ELECTRICAL SPECIFICATIONS" described in specifications for the supply voltage range, the operating temperature and the AC specifications not shown in the next page.

A-1.1.1 Rise and Fall Time

Symbol	Parameter	Notes	Min.	Max.	Unit
t_{VR}	V_{CC} Rise Time	1	0.5	30000	$\mu \mathrm{~s} / \mathrm{V}$
t_{R}	Input Signal Rise Time	1,2		1	$\mu \mathrm{~s} / \mathrm{V}$
t_{F}	Input Signal Fall Time	1,2		1	$\mu \mathrm{~s} / \mathrm{V}$

NOTES:

1. Sampled, not 100% tested.
2. This specification is applied for not only the device power-up but also the normal operations.

A-1.2 Glitch Noises

Do not input the glitch noises which are below V_{IH} (Min.) or above V_{IL} (Max.) on address, data, reset, and control signals, as shown in Figure A-2 (b). The acceptable glitch noises are illustrated in Figure A-2 (a).

Figure A-2. Waveform for Glitch Noises

See the "DC CHARACTERISTICS" described in specifications for V_{IH} (Min.) and V_{IL} (Max.).

A-2 RELATED DOCUMENT INFORMATION ${ }^{(1)}$

Document No.	Document Name
AP-001-SD-E	Flash Memory Family Software Drivers
AP-006-PT-E	Data Protection Method of SHARP Flash Memory
AP-007-SW-E	RP\#, V $V_{P P}$ Electric Potential Switching Circuit

NOTE:

1. International customers should contact their local SHARP or distribution sales office.

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

SHARP.

NORTH AMERICA

SHARP Microelectronics of the Americas
5700 NW Pacific Rim Blvd.
Camas, WA 98607, U.S.A.
Phone: (1) 360-834-2500
Fax: (1) 360-834-8903
Fast Info: (1) 800-833-9437
www.sharpsma.com

TAIWAN

SHARP Electronic Components
(Taiwan) Corporation
8F-A, No. 16, Sec. 4, Nanking E. Rd.
Taipei, Taiwan, Republic of China
Phone: (886) 2-2577-7341
Fax: (886) 2-2577-7326/2-2577-7328

CHINA

SHARP Microelectronics of China
(Shanghai) Co., Ltd.
28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056
Fax: (86) 21-5854-4340/21-5834-6057
Head Office:
No. 360, Bashen Road,
Xin Development Bldg. 22
Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China
Email: smc@china.global.sharp.co.jp

EUROPE
SHARP Microelectronics Europe
Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3
20097 Hamburg, Germany
Phone: (49) 40-2376-2286
Fax: (49) 40-2376-2232
www.sharpsme.com

SINGAPORE

SHARP Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, \#05-01/02
Alexandra Technopark,
Singapore 119967
Phone: (65) 271-3566
Fax: (65) 271-3855

HONG KONG

SHARP-ROXY (Hong Kong) Ltd.
3rd Business Division,
17/F, Admiralty Centre, Tower 1
18 Harcourt Road, Hong Kong
Phone: (852) 28229311
Fax: (852) 28660779
www.sharp.com.hk
Shenzhen Representative Office:
Room 13B1, Tower C, Electronics Science \& Technology Building Shen Nan Zhong Road
Shenzhen, P.R. China
Phone: (86) 755-3273731
Fax: (86) 755-3273735

JAPAN

SHARP Corporation
Electronic Components \& Devices
22-22 Nagaike-cho, Abeno-Ku
Osaka 545-8522, Japan
Phone: (81) 6-6621-1221
Fax: (81) 6117-725300/6117-725301
www.sharp-world.com

KOREA

SHARP Electronic Components
(Korea) Corporation
RM 501 Geosung B/D, 541
Dohwa-dong, Mapo-ku
Seoul 121-701, Korea
Phone: (82) 2-711-5813 ~ 8
Fax: (82) 2-711-5819

