PRECISION 1.235VOLT MICROPOWER VOLTAGE REFERENCE

DRAFT ISSUE A - MARCH 1998

ZR1004

DEVICE DESCRIPTION

The ZR1004 is a bandgap reference circuit design to operate from very low currents, typically 5μ A. The device is available in a SOT23 surface mount package, offering the ultimate in space and power saving. These features make the ZR1004 particularly suitable for portable and battery powered applications.

The ZR1004 is also available in surface mount SO8 packaging as well as E-Line (TO92 equivalent) packaging for through hole applications. This device offers a pin for pin compatible alternative to the LT1004 and LM185/385 series of voltage references.

Excellent performance is maintained over the 8µA to 20mA operating range with a typical temperature coefficient of only 20ppm/°C. The device has been designed to be highly tolerant of capacitive loads so maintaining excellent stability.

FEATURES

- 5µA typical knee current
- Small outline SOT23, SO8 and TO92 style packages
- No stabilising capacitor required
- 20ppm/°C typical temperature coefficient
- 3%, 2% and 1% tolerance

APPLICATIONS

- Battery powered and portable equipment.
- Precision power supplies.
- · Portable Instrumentation.
- Test equipment.
- Data acquisition systems

SCHEMATIC DIAGRAM

ZR1004

330mW

500mW

ABSOLUTE MAXIMUM RATING

Reverse Current 30mA

Power Dissipation (Tamb=25°C) 10mA

Forward Current SOT23 Operating Temperature -40 to 85°C E-Line, 3 pin (TO92)

Storage Temperature -55 to 125°C E-Line, 2 pin (TO92) 500mW

SO8 625mW

ELECTRICAL CHARACTERISTICS TEST CONDITIONS (Unless otherwise stated) Tamb=25°C

SYMBOL	SYMBOL PARAMETER CONDITIONS		LIMITS			TOL.	UNITS
			MIN	TYP	MAX	1	energy of the second
V _R	Reverse Breakdown Voltage	I _R =100μΑ	1.223 1.21 1.198	1.235 1.235 1.235	1.247 1.26 1.272	1 2 3	V
MIN	Minimum Operating Current			5	8		μΑ
I _R	Recommended Operating Current		0.008		20		mA
T _C †	Average Reverse Breakdown Voltage Temp. Co.	l _{R(min)} to		20	76	and the second second	ppm/°C
R _S §	Slope Resistance	IR(max)			0.5		Ω
Z _R	Reverse Dynamic Impedance	IR = 100µA f = 100Hz IAC= 0.1 IR		0.2	0.6		Ω
E _N	Wideband Noise Voltage	l _R = 150μA f = 100Hz to 10kHz	and the state of t	60			μV(rms)
<u>ΔV_R</u> ΔTime	Long term stability	i _R = 100μΑ Τ _A =25°C±0.1°C		20			ppm/kHr

†
$$T_C = \frac{(V_{R(max)} - V_{R(min)}) \times 1000000}{V_R \times (T_{(max)} - T_{(min)})}$$

Note: V_{R(max)} - V_{R(min)} is the maximum deviation in reference voltage measured over the full operating temperature range.

$$\S \quad R_S = \frac{V_R \; Change \left(I_R \; (min) \; to \; I_R \; (max)\right)}{I_R \; (max) - I_R \; (min)}$$

ZR1004

This page intentionally left blank (Typical Characteristics available Q2 1998)

ZR1004

CONNECTION DIAGRAMS

ORDERING INFORMATION

Part No	Tol %	Package	Partmark	
ZR1004F01	1	SOT23	10C	
ZR1004N801	1	SO8	ZR100401	
ZR1004R01	1	E-Line *	ZR100401	
ZR1004Y01	1	E-Line †	ZR100401	
ZR1004F02	2	SOT23	10B	
ZR1004N802	2	SO8	ZR100402	
ZR1004R02	2	E-Line *	ZR100402	
ZR1004Y02	2	E-Line †	ZR100402	

Part No	Tol %	Package	Partmark
ZR1004F03	3	SOT23	10A
ZR1004N803	3	SO8	ZR100403
ZR1004R03	3	E-Line *	ZR100403
ZR1004Y03	3	E-Line †	ZR100403

^{*} E-Line 3 pin Reversed

[†] E-Line 2 pin