

HDSP-078x, HDSP-079x
HDSP-088x, HDSP-098x

Description

These standard solid state displays have a $7.4 \mathrm{~mm}(0.29$ inch) dot matrix character and an on-board IC with data memory latch/decoder and LED drivers in a glass/ceramic package.

The hermetic HDSP-078x,-079x/ -088x displays utilize a solder glass frit seal. The HDSP-098X displays utilize an epoxy glass-toceramic seal.

The numeric devices decode positive BCD logic into characters "0-9," a "-" sign, decimal point, and a test pattern. The hexadecimal devices decode positive BCD logic into 16 characters, "0-9, A-F." An input is provided on the hexadecimal
devices to blank the display (all LEDS off) without losing the contents of the memory.

The over range device displays " ± 1 " and right hand decimal point and is typically driven via external switching transistors.

Features

- Three character options

Numeric, hexadecimal, over range

- Three colors

High Efficiency Red, Yellow, High Performance Green

- 4×7 dot matrix character
- High Efficiency Red, Yellow and High Performance Green
- Two high efficiency red options Low power, high brightness
- Performance guaranteed over temperature
- High temperature stabilized
- Memory latch/decoder/driver TTL compatible
- Categorized for luminous intensity

Devices			Front
Part Number			View
HDSP-	Color	High-Efficiency Red	Numeric, Right Hand DP
0781	Low Power	A	
0782		Over Range Left Hand DP	B
0783		Hexadecimal	C
0784		Numeric, Right Hand DP	A
0791	High-Efficiency Red	Numeric, Left Hand DP	B
0792	High Brightness	Over Range ± 1	C
0793		Hexadecimal	D
0794		Numeric, Right Hand DP	A
0881	Yellow	Numeric, Left Hand DP	B
0882		Over Range ± 1	C
0883		Hexadecimal	D
0884		Nigh-Performance Green	Numeric, Right Hand DP
0981		Numeric, Left Hand DP	B
0982		Over Range ± 1	C
0983		Hexadecimal	D
0984			

Package Dimensions

PIN	FUNCTION	
	NUMERIC	HEXADECIMAL
1	Input 2	Input 2
2	Input 4	Input 4
3	Input 8	Input 8
4	Decimal Point	Blanking Control
5	Latch Enable	Latch Enable
6	Ground	Ground
7	VCC	VCC
8	Input 1	Input 1

NOTES:

1. DIMENSIONS IN MILLIMETERS AND (INCHES).
2. UNLESS OTHERWISE SPECIFIED, THE TOLERANCE ON ALL DIMENSIONS IS $\pm 0.38 \mathrm{~mm}(\pm 0.015 \mathrm{INCH})$.
3. DIGIT CENTER LINE IS $\pm 0.25 \mathrm{~mm}$ (± 0.01 INCH) FROM PACKAGE CENTER LINE.
4. COLOR CODE FOR HDSP-088X/-098X SERIES.

Figure 1. Timing diagram.

Figure 2. Block diagram.

Absolute Maximum Ratings

Description	Symbol	Min.	Max.	Unit
Storage Temperature, Ambient				
HDSP-078x/ -079x/ -088x	Ts	-65	+125	${ }^{\circ} \mathrm{C}$
HDSP-098x		-55	+100	
Operating Temperature, Ambient ${ }^{[1]}$	$\mathrm{T}_{\text {A }}$	-55	+100	${ }^{\circ} \mathrm{C}$
Supply Voltage ${ }^{[2]}$	$\mathrm{V}_{\text {cc }}$	-0.5	+7.0	V
Voltage Applied to Input Logic, dp and Enable Pins	$\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{DP}}, \mathrm{V}_{\mathrm{E}}$	-0.5	$\mathrm{V}_{\text {cc }}$	V
Voltage Applied to Blanking Input[2]	V_{R}	-0.5	$\mathrm{V}_{\text {cc }}$	V
Soldering Temperature [1.59 mm (0.063 inch) Below Body]				
Solder Dipping, max 5 seconds			260	${ }^{\circ} \mathrm{C}$
W ave Soldering, max. 3 seconds			250	

Recommended Operating Conditions

Description	Symbol	Min.	Nom.	Max.	Unit
Supply Voltage ${ }^{[2]}$	$\mathrm{V}_{\text {CC }}$	4.5	5.0	5.5	V
Operating Temperature, Ambient ${ }^{[1]}$	T_{A}	-55		+100	${ }^{\circ} \mathrm{C}$
Enable Pulse W idth	tw	100			nsec
Time Data M ust Be Held B efore Positive Transition of Enable Line	tSETUP	50			nsec
Time Data M ust Be Held After Positive Transition of Enable Line	thold	50			nsec
Enable Pulse Rise Time	$\mathrm{t}_{\text {TLH }}$			1.0	msec

Optical Characterstics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$

Device	Description	Symbol	Min.	Typ.	Max.	Unit
HDSP-078x Series	Luminous Intensity per LED (Digit A verage) ${ }^{[3,4]}$	IV	65	140		$\mu \mathrm{cd}$
	Peak W avelength	$\lambda_{\text {PEAK }}$		635		nm
	Dominant W avelength ${ }^{[5]}$	λ_{d}		626		nm
HDSP-079x Series	Luminous Intensity per LED (Digit A verage) ${ }^{[3,4]}$	Iv	260	620		$\mu \mathrm{cd}$
	Peak W avelength	Ipeak		635		nm
	Dominant W avelength[5]	$\lambda_{\text {d }}$		626		nm
HDSP-088x Series	Luminous Intensity per LED (Digit A verage) ${ }^{[3,4]}$	λ_{V}	215	490		$\mu \mathrm{cd}$
	Peak W avelength	$\lambda_{\text {PEAK }}$		583		nm
	Dominant W avelength ${ }^{[5,6]}$	λ_{d}		585		nm
HDSP-098x Series	Luminous Intensity per LED (Digit A verage) ${ }^{[3,4]}$	Iv	298	1100		$\mu \mathrm{cd}$
	Peak W avelength	$\lambda_{\text {PEAK }}$		568		nm
	Dominant W avelength	λ_{d}		574		nm

Notes:

1. The nominal thermal resistance of a display mounted in a socket that is soldered onto a printed circuit board is $R \theta_{j} A=50^{\circ} \mathrm{C} / \mathrm{W} /$ device. The device package thermal resistance is $\mathrm{R} \theta_{\mathrm{J}}-$ PIN $=15^{\circ} \mathrm{C} / \mathrm{W} /$ device. The thermal resistance device pin-to-ambient through the PC board should not exceed $35^{\circ} \mathrm{C} / \mathrm{W} /$ device for operation up to $\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$.
2. Voltage values are with respect to device ground, pin 6 .
3. These displays are categorized for luminous intensity with the intensity category designated by a letter code located on the back of the display package. Case temperature of the device immediately prior to the light measurement is equal to $25^{\circ} \mathrm{C}$.

Electrical/Optical Characteristics
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Description	Symbol	Test Conditions	Min.	Typ. ${ }^{[7]}$	Max.	Unit
Supply HDSP-078x Series	ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \text { Characters "5." or } \\ & \text { "B" displayed } \end{aligned}$		78	105	mA
Current \quad HDSP-079x/ -088x/ -098x Series				120	175	
Power HDSP-078x Series	P_{T}	$V_{C C}=5.5 \mathrm{~V}$ Characters " 5. " or " B " displayed		390	573	mW
Dissipation HDSP-079x/ -088x/ -098x Series				690	963	
Logic, Enable and Blanking Low-Level Input Voltage	VIL	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$			0.8	V
Logic, Enable High-Level Input Voltage	$\mathrm{V}_{\text {IH }}$		2.0			V
Blanking High-Voltage; Display Blanked	$\mathrm{V}_{\text {BH }}$		2.3			V
Logic and Enable Low-Level Input Current	IIL	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$			-1.6	mA
Blanking Low-Level Input Current	$I_{\text {BL }}$	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$			-10	$\mu \mathrm{A}$
Logic, Enable and Blanking High-Level Input Current	I_{H}	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{1 H}=2.4 \mathrm{~V} \end{aligned}$			+40	$\mu \mathrm{A}$
Weight				1.0		gm
Leak Rate					5×10^{-8}	$\mathrm{cc} / \mathrm{sec}$

Notes:

4. The luminous intensity at a specific operating ambient temperature, $I_{V}\left(T_{A}\right)$, may be approximated from the following exponential equation: $I_{V}\left(T_{A}\right)=I_{V}\left(25^{\circ} \mathrm{C}\right) e^{\left[k\left(T_{A}-25^{\circ} \mathrm{C}\right)\right]}$.

Device	\mathbf{K}
HDSP-078 Series	$-0.0131 /{ }^{\circ} \mathrm{C}$
HDSP-079x Series	
HDSP-088x Series	$-0.0112 /{ }^{\circ} \mathrm{C}$
HDSP-098x Series	$-0.0104 /{ }^{\circ} \mathrm{C}$

5. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
6. The HDSP-088X and HDSP-098X series devices are categorized as to dominant wavelength with the category designated by a number on the back of the display package.
7. All typical values at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Operational Considerations Electrical

These devices use a modified 4×7 dot matrix of light emitting diodes to display decimal/hexadecimal numeric information. The high efficiency red and yellow displays use GaAsP/GaP LEDs and the high performance green displays use GaP/GaP LEDs. The LEDs are driven by constant current drivers, BCD information is accepted by the display memory when the enable line is at logic low and the data is latched when
the enable is at logic high. Using the enable pulse width and data setup and hold times listed in the Recommended Operating Conditions allows data to be clocked into an array of displays at a 6.7 MHz rate.

The decimal point input is active low true and this data is latched into the display memory in the same fashion as the BCD data. The decimal point LED is driven by the on-board IC.

The blanking control input on the hexadecimal displays blanks (turns off) the displayed information without disturbing the contents of display memory. The display is blanked at a minimum threshold level of 2.0 volts. When blanked, the display standby power is nominally 250 mW at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

The ESD susceptibility of the IC devices is Class A of MIL-STD-883 or Class 2 of DOD-STD-1686 and DOD-HDBK-263.

Mechanical

These displays are hermetically sealed for use in environments that require a high reliability device. These displays are designed and tested to meet a helium leak rate of $5 \times 10^{-8} \mathrm{cc} / \mathrm{sec}$.

These displays may be mounted by soldering directly to a printed circuit board or insertion into a socket. The lead-to-lead pin spacing is 2.54 mm (0.100 inch) and the lead row spacing is 15.24 mm (0.600 inch). These displays may be end stacked with 2.54 mm (0.100 inch) spacing between outside pins of adjacent displays. Sockets such as Augat 324-AG2D (3 digits) or Augat 508-AG8D (one digit, right angle mounting) may be used.

The primary thermal path for power dissipation is through the device leads. Therefore, to insure reliable operation up to an ambient temperature of $+100^{\circ} \mathrm{C}$, it is important to maintain a base-to-ambient thermal resistance of less than $35^{\circ} \mathrm{C}$ watt/device as measured on top of display pin 3 .

For further information on soldering and post solder cleaning, see Application Note 1027, Soldering LED Components.

Preconditioning

These displays are 100% preconditioned by 24 hour storage at $125^{\circ} \mathrm{C}$, at $100^{\circ} \mathrm{C}$ for the HDSP-098x Series.

Contrast Enhancement

These display devices are designed to provide an optimum ON/OFF contrast when placed behind an appropriate contrast enhancement filter. For further information on contrast enhancement, see Application Note 1015, Contrast Enhancement for LED Displays.

Over Range Display

The over range devices display " ± 1 " and decimal point. The character height and package configuration are the same as the numeric and hexadecimal devices. Character selection is obtained via external switching transistors and current limiting resistors.

Absolute Maximum Ratings

Description	Symbol	Min	Max	Unit
Storage Temperature, Ambient	T_{S}	-65	+125	${ }^{\circ} \mathrm{C}$
Operating Temperature, Ambient	T_{A}	-55	+100	${ }^{\circ} \mathrm{C}$
Forward Current, Each LED	I_{F}		10	mA
Reverse Voltage, Each LED	V_{R}		5	V

Package Dimensions

FRONT VIEW C

NOTE: DIMENSIONS IN MILLIMETERS AND (INCHES).

PIN	FUNCTION
1	Plus
2	Numeral One
3	Numeral One
4	DP
5	Open
6	Open
7	VcC
8	Minus/Plus

Character	Pin			
	$\mathbf{1}$	$\mathbf{2 , 3}$	$\mathbf{4}$	$\mathbf{8}$
	1	X	X	1
-	0	X	X	1
1	X	1	X	X
Decimal Point	X	X	1	X
Blank	0	0	0	0

Notes:

0: Line switching transistor in Figure 7 cutoff.
1: Line switching transistor in Figure 7 saturated.
X: 'don't care.'

Figure 3. Typical driving circuit.

Luminous Intensity per LED
(Digit A verage) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Device	Test Conditions	Min.	Typ.	Units
HDSP-0783	$\mathrm{I}_{\mathrm{F}}=2.8 \mathrm{~mA}$	65	140	$\mu \mathrm{Cd}$
	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		620	$\mu \mathrm{Cd}$
HDSP-0883	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$	215	490	$\mu \mathrm{Cd}$
HDSP-0983	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$	298	1100	$\mu \mathrm{Cd}$

Recommended Operating Conditions

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Device		Forward Current Per LED, $\mathbf{m A}$	Resistor Value		
		$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	
HDSP-0783	Low Power	2.8	1300	200	300
	High B rightness	8	360	47	68
HDSP-0883	8	360	36	56	
HDSP-0983	8	360	30	43	

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Device	Description	Symbol	Test Conditions	Min.	Typ.	Max.	Unit
HDSP-0783	Power Dissipation (All LEDs Illuminated)	P_{T}	$\mathrm{I}_{\mathrm{F}}=2.8 \mathrm{~mA}$		72		mW
			$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		224	282	
	Forw ard Voltage per LED	V_{F}	$\mathrm{I}_{\mathrm{F}}=2.8 \mathrm{~mA}$		1.6		V
			$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		1.75	2.2	
HDSP-0883	Power Dissipation (All LEDs Illuminated)	P_{T}	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		237	282	mW
	Forw ard Voltage per LED	V_{F}			1.90	2.2	V
HDSP-0883	Power Dissipation (All LEDs Illuminated)	P_{T}	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		243	282	mW
	Forw ard Voltage per LED	V_{F}			1.85	2.2	V

Intensity Bin Limits for HDSP-078x Series

Bin Category	Min. (mcd)	Max. (mcd)	Condition
A	0.065	0.102	Luminous Intensity per LED. VDD @ 5.0 V
B	0.085	0.138	
\bar{C}	0.114	0.200	
D	0.165	0.300	
E	0.260	0.488	
F	0.403	0.756	
G	0.625	1.172	

Intensity Bin Limits for HDSP-079x Series

Bin Category	Min. (mcd)	Max. (mcd)	Condition
E	0.260	0.488	
F	0.403	0.756	Luminous Intensity per
LED. VDD @ 5.0 V			
H	0.625	1.172	

Intensity Bin Limits for HDSP-088x Series

Bin Category	Min. (mcd)	Max. (mcd)	Condition
A	0.22	0.34	Luminous Intensity per LED. VDD @ 5.0 V
B	0.28	0.46	
C	0.38	0.66	
D	0.55	0.99	
E	0.82	1.54	
F	1.27	2.39	

Intensity Bin Limits for HDSP-098x Series

Bin Category	Min. (mcd)	Max. (mcd)	Condition
\bar{C}	0.30	0.52	Luminous Intensity per LED. VDD @ 5.0 V
D	0.43	0.79	
E	0.65	1.18	
F	0.97	1.76	
G	1.45	2.63	

Color Bin Limits
(Dominant Wavelength)

		Intensity Range (nm)	
Color	Bin	Min.	Max.
Yellow	1	581.50	585.00
	2	584.00	587.50
	3	586.50	590.00
Green	1	570.00	574.00
	2	573.00	577.00
	3	576.00	580.00

Note:

Bin categories are established for classification of products. Products may not be available in all bin categories. Please consult your local Agilent Technologies representative.
www.agilent.com/semiconductors
For product information and a complete list of distributors, please go to our web site.
For technical assistance call:
Americas/ Canada: +1 (800) 235-0312 or
(916) 788-6763

Europe: +49 (0) 644192460
China: 108006500017
Hong Kong: (+65) 67562394
India, Australia, New Zealand: (+65) 67551939
J apan: (+81 3) 3335-8152(Domestic/ Interna-
tional), or 0120-61-1280(Domestic Only)
Korea: (+65) 67551989
Singapore, M alaysia, Vietnam, Thailand,
Philippines, Indonesia: (+65) 67552044
Taiwan: (+65) 67551843
Data subject to change.
Copyright © 2004-2005 Agilent Technologies, Inc. Obsoletes 5988-2261EN
J une 1, 2005
5989-3188EN

