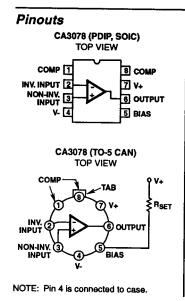


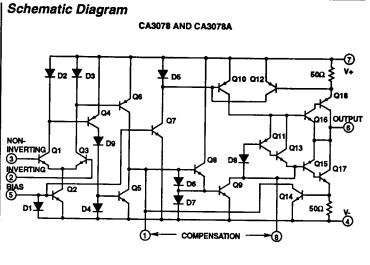
CA3078

Micropower Operational Amplifier

Features

- High Peak Output Current..... 6.5mA min.
- Adjustable Quiescent Current
- Output Short Circuit Protection


Applications


- Portable Electronics
- Telemetry
- Medical Electronics
- Intrusion Alarms
- Instrumentation

Description

The CA3078 and CA3078A are high gain monolithic operational amplifiers which can deliver milliamperes of current yet only consume microwatts of standby power. Their operating points are externally adjustable and frequency compensation may be accomplished with one external capacitor. The CA3078 and CA3078A provide the designer with the opportunity to tailor the frequency response and improve the slew rate without sacrificing power. Operation with a single 1.5V battery is a practical reality with these devices.

The CA3078A is a premium device having a supply voltage range of $V\pm = 0.75V$ to $V\pm = 15V$. The CA3078 has the same lower supply voltage limit but the upper limit is V+ = +6V and V- = -6V.

For complete Rochester ordering guide, please refer to page 2. Please contact factory for specific package and specification availability.

Rochester Electronics guarantees performance of its semiconductor products to the original OEM specifications. "Typical" values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing. Rochester Electronics reserves the right to make changes without further notice to any specification herein.

CA3078

Rochester Ordering Guide

*Most products can also be offered as RoHS compliant, designated by a –G suffix. Please contact factory for more information.

Rochester Part Number	Harris Part Number	Package	Temperature
CA3078E	CA3078E	PDIP-8	0° to +70°C
CA3078M	CA3078M	SOP-8, Plastic	0° to +70°C
CA3078S	CA3078S	TO5-8, Metal	0° to +70°C
CA3078T	CA3078T	CAN-8, Metal	0° to +70°C
CA3078AE	CA3078AE	PDIP-8	-55° to +125°C
CA3078AM	CA3078AM	SOP-8, Plastic	-55° to +125°C
CA3078AS	CA3078AS	TO5-8, Metal	-55° to +125°C
CA3078AT/B	CA3078AT	CAN-8, Metal	-55° to +125°C

Absolute Maximum Ratings TA = +25°C Supply Voltage (Between V+ and V- Terminal)

CA3078A......36V Differential Input Voltage. 6V Input Voltage V+ to V-Input Current 0.1mA Output Short Circuit Duration (Note 1) No Limitation

Operating Conditions

Operating remperature mange	
CA3078	0°C to +70°C
CA3078A	55°C to +125°C
Storage Temperature Range	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications For Equipment Design

Junction Temperature (Plastic Package) +150°C Lead Temperature (Soldering 10 Sec.).....+300°C

					CAS	78A LI	MITS		CA3078 LIMITS					
	TEST	CONDIT	ONS		R _{SI}	_{ET} = 5.11	ďΩ							
	V+ Re Ru		Rį	T _A = +25°C		T _A = -55°C to +125°C		T _A = +25°C		C	T _A = 0°C to +70°C			
SYMBOL	and V-	R _S (kΩ)	(kΩ)	MIN	TYP	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	UNITS
V _{IO}	±6V	≤10		-	0.70	3.5	•	4.5	•	1.3	4.5		5	mV
lю		-	•	•	0.50	2.5	•	5.0	•	6	32	-	40	n A
I _{IB}		•	-	•	7	12	•	50		60	170	•	200	nA
AoL			≥10	92	100	•	90	•	88	92	•	86	-	dB
l _a]	•	•	•	20	25	-	45	•	100	130	-	150	μА
P _D]	-	•	,	240	300	-	540	•	1200	1560	•	1800	μW
V _{OM}]	•	≥10	±5.1	±5.3	•	±5	•	±5.1	±5.3	•	±5	-	٧
V _{ICR}		≤10		•	-5.5 to +5.8	•	-5 to +5	•	•	-5.5 to +5.8	-	-5 to +5	-	٧
CMRR	1	≤10	-	80	115		-	•	80	110	•	•		ďΒ
lom+ or lom-]		-	-	12	-	6.5	30		12	•	6.5	30	mA
ΔV _{IO} /ΔV+	1	≤10	•	76	105	-	-	-	76	93	•	-		μV/V
ΔV _{IO} /ΔV-	1	≤10		76	105		-		76	93	-	-	•	μ٧/٧
					R	_{SET} = 131	MΩ							
V _ю	±15V	≤10	-	٠	1.4	3.5	-	4.5	-	-	•	<u> </u>	-	mV
A _{OL}		-	≥10	92	100	·	88	-	•	-	•	-		dΒ
la	1	•		-	20	30		50	-	-	-		-	μА
P _D	1	-	-		600	750	-	1350	-	-	-	-	· _	μW
V _{OM}	7	-	≥10	±13.7	±14.1	•	±13.5	-		-	•			٧
CMRR] '	≤10	-	80	106		-	-		Ŀ		-	-	dB
I _{IB}		-	•	-	7	14		55	-		-	<u> </u>		nA
I _{IO}			-	-	0.50	2.7		5.5	-	-	-	-	<u> </u>	nΑ

NOTE:

^{1.} Short circuit may be applied to ground or to either supply.

 $\textbf{Electrical Specifications} \hspace{0.5cm} \textbf{T}_{\textbf{A}} = +25^{\circ} \textbf{C}, \hspace{0.1cm} \textbf{Typical Values Intended Only for Design Guidance}$

		TYPICAL VALUES								
	CAS	3078A	CA	1						
SYMBOL	V+ = +1.3V, V- = -1.3V R _{SET} = 2MΩ	V+ = +0.75V, V- = -0.75V R _{SET} = 10MΩ	V+ = +1.3V, V- = -1.3V R _{SET} = 2MΩ	V+ = +0.75V, V- = -0.75V R _{SET} = 10MΩ	UNITS					
V _{IO}	0.7	0.9	1.3	1.5	mV					
Iio	0.3	0.054	1.7	0.5	nA					
I _{iB}	3.7	0.45	9	1.3	nA					
Aol	84	65	80	60	dB					
la	10	1	10	1	μА					
PD	26	1.5	26	1.5	μW					
V _{OPP}	1.4	0.3	1.4	0.3	V					
V _{ICR}	-0.8 to +1.1	-0.2 to +0.5	-0.8 to +1.1	-0.2 to +0.5	V					
CMRR	100	90	100	90	₫B					
l _{OM} ±	12	0.5	12	0.5	mA					
ΔV _{IO} /ΔV±	20	50	20	50	μ٧/٧					

Electrical Specifications $T_A = +25$ °C and V+ = +6V, V- = -6V, Typical Values Intended Only for Design Guidance

SYMBOL		CA30)78A	CA3078	
	TEST CONDITIONS	R _{SET} = 5.1MΩ	R _{SET} = 1MΩ	R _{SET} = 1MΩ	UNITS
$\Delta V_{10}/\Delta T_A$	R _S ≤10kΩ	5	6	6	μ∨/°С
ΔΙ _Ю /ΔΤ _Α	R ₈ ≤10kΩ	6.3	70	70	pA/°C
BW _{OL}	3dB pt.	0.3	2	2	kHz
SR See Figures 18, 19	See Figures 18, 19	0.027	0.04	0.04	V/µs
		0.5	1.5	1.5	V/µs
t _A	10% to 90% Rise Time	3	2.5	2.5	μs
R _I	-	7.4	1.7	0.87	MΩ
Ro	- 1	1	0.8	0.8	kΩ
e _N (10Hz)	R ₈ ≈ 0	40		25	nV√H
i _N (10Hz)	$R_S = 1M\Omega$	0.25	-	1	pA√Hz

TABLE 1. UNITY GAIN SLEW RATE VS COMPENSATION - CA3078 AND CA3078A

Supply Volts: V+ = +6, V- = -6, Output Voltage (V_O) = ±5V, Load Resistance (R_L) = 10k Ω , Transient Response: 10% overshoot for an output voltage of 100mV, Ambient Temperature (T_A) = +25°C

	UNITY GAIN (INVERTING) FIGURE 22					UNITY GAIN (NON-INVERTING) FIGURE 23				
COMPENSATION	R ₁	C ₁	R ₂	C ₂	SLEW RATE	R ₁	Cı	R ₂	C ₂	SLEW RATE
TECHNIQUE	kΩ	рF	kΩ	μF	V/µs	kΩ	pF	kΩ	μF	V/μ s
CA3078 - I _Q = 100μA										
Single Capacitor	0	750	••	0	0.0085	0	1500		0	0.0095
Resistor & Capacitor	3.5	350		0	0.04	5.3	500	••	0	0.024
Input		0	0.25	0.306	0.67	00	0	0.311	0.45	0.67
CA3078A - I _Q = 20μA	•									
Single Capacitor	0	300		0	0.0095	0	800	••	0	0.003
Resistor & Capacitor	14	100	•	0	0.027	34	125	•	0	0.02
Input		0	0.644	0.156	0.29	00	0	0.77	0.4	0.4

Operating Conditions

Compensation Techniques

The CA3078A and CA3078 can be phase compensated with one or two external components depending upon the closed loop gain, power consumption, and speed desired. The recommended compensation is a resistor in series with a capacitor connected from Terminal 1 to Terminal 8. Values of the resistor and capacitor required for compensation as a function of closed loop gain are shown in Figures 20 and 21. These curves represent the compensation necessary at quiescent currents of 100μA and 20μA, respectively, for a transient response with 10% overshoot. Figures 18 and 19 show the slew rates that can be obtained with the two different compensation techniques. Higher speeds can be achieved with input compensation, but this increases noise

output. Compensation can also be accomplished with a single capacitor connected from Terminal 1 to Terminal 8, with speed being sacfificed for simplicity. Table 1 gives an indication of slew rates that can be obtained with various compensation techniques at quiescent currents of 100µA and 20µA.

Single Supply Operation

The CA3078A andCA3078 can operate from a single supply with a minimum total supply voltage of 1.5V. Figures 25 and 26 show the CA3078A or CA3078 in inverting and non-inverting 20dB amplifier configurations utilizing a 1.5V type "AA" cell for a supply. The total consumption for either circuit is approximately 675nW. The output voltage swing in this configuration is 300mVp-p with a $20k\Omega$ load.

Test Circuits

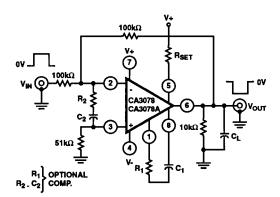


FIGURE 22. TRANSIENT RESPONSE AND SLEW RATE, UNITY GAIN (INVERTING) TEST CIRCUIT

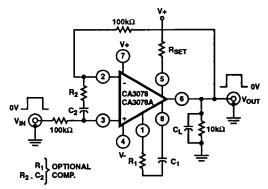


FIGURE 23. SLEW RATE, UNITY GAIN (NON-INVERTING) TEST CIRCUIT

Test Circuits (Continued)

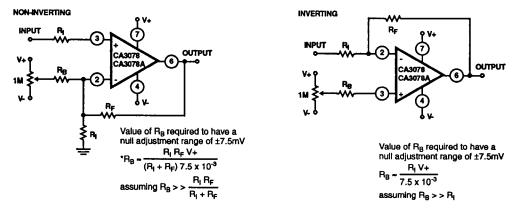


FIGURE 24. OFFSET VOLTAGE NULL CIRCUITS

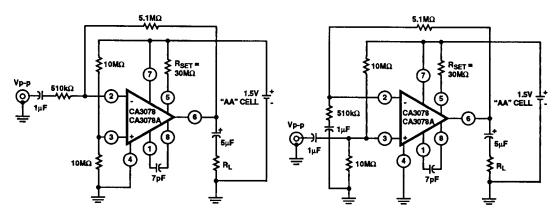


FIGURE 25. INVERTING 20dB AMPLIFIER CIRCUIT

FIGURE 26. NON-INVERTING 20dB AMPLIFIER CIRCUIT

Rochester Electronics guarantees performance of its semiconductor products to the original OEM specifications. "Typical" values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing. Rochester Electronics reserves the right to make changes without further notice to any specification herein.