

APT55M50JFLL

550V 77A 0.050Ω

POWER MOS 7[™]

Power MOS 7^{TM} is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS. Both conduction and switching losses are addressed with Power MOS 7^{TM} by significantly lowering $R_{\text{DS(ON)}}$ and Q_g . Power MOS 7^{TM} combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with APT's patented metal gate structure.

• Lower Miller Capacitance

Lower Gate Charge, Qg

- Increased Power Dissipation
- Easier To Drive
- Popular SOT-227 Package
- FAST RECOVERY BODY DIODE

MAXIMUM RATINGS

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	APT55M50JFLL	UNIT	
V _{DSS}	Drain-Source Voltage	550	Volts	
I _D	Continuous Drain Current @ T _C = 25°C	77	Amps	
I _{DM}	Pulsed Drain Current ①	308		
V _{GS}	Gate-Source Voltage Continuous	±30	\/-!!-	
V _{GSM}	Gate-Source Voltage Transient	±40	Volts	
P _D	Total Power Dissipation @ T _C = 25°C	694	Watts	
' D	Linear Derating Factor	5.56	W/°C	
T_J, T_{STG}	Operating and Storage Junction Temperature Range	-55 to 150	- °C	
T _L	Lead Temperature: 0.063" from Case for 10 Sec.	300		
I _{AR}	Avalanche Current (Repetitive and Non-Repetitive)	77	Amps	
E _{AR}	Repetitive Avalanche Energy ①	50	ml	
E _{AS}	Single Pulse Avalanche Energy ^④	3600	mJ	

STATIC ELECTRICAL CHARACTERISTICS

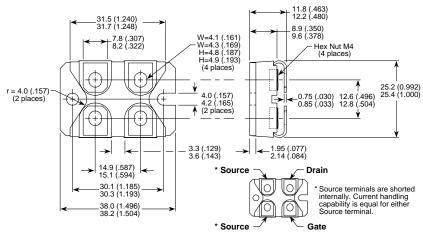
Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage (V _{GS} = 0V, I _D = 250μA)	550			Volts
I _{D(on)}	On State Drain Current ② $(V_{DS} > I_{D(on)} \times R_{DS(on)} Max, V_{GS} = 10V)$	77			Amps
R _{DS(on)}	Drain-Source On-State Resistance ② (V _{GS} = 10V, 0.5 I _{D[Cont.]})			0.050	Ohms
I _{DSS}	Zero Gate Voltage Drain Current $(V_{DS} = V_{DSS}, V_{GS} = 0V)$			250	μA
	Zero Gate Voltage Drain Current $(V_{DS} = 0.8 V_{DSS}, V_{GS} = 0V, T_{C} = 125^{\circ}C)$			1000	
I _{GSS}	Gate-Source Leakage Current (V _{GS} = ±30V, V _{DS} = 0V)			±100	nA
V _{GS(th)}	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 5mA)$	3		5	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		12455		
C _{oss}	Output Capacitance	$V_{DS} = 25V$		2405		рF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		167		
Q_g	Total Gate Charge ^③	V _{GS} = 10V		299		
Q_{gs}	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		74		nC
Q_{gd}	Gate-Drain ("Miller") Charge	I _D = I _D [Cont.] @ 25°C		135		
t _d (on)	Turn-on Delay Time	V _{GS} = 15V		26		
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		17		ns
t _d (off)	Turn-off Delay Time	I _D = I _D [Cont.] @ 25°C		55		115
t _f	Fall Time	$R_G = 0.6\Omega$		12		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Symbol	Characteristic / Test Conditions		MIN	TYP	MAX	UNIT
I _S	Continuous Source Current (Body Diode)				77	Amna
I _{SM}	Pulsed Source Current (Body Diode)				308	Amps
V_{SD}	Diode Forward Voltage (V _{GS} = 0V, I _S = -I _D [Cont.])				1.3	Volts
dv/ _{dt}	Peak Diode Recovery dv/dt (5)				15	V/ns
		T _j = 25°C			300	ns
t _{rr}		T _j = 125°C			600	
	Reverse Recovery Charge	T _j = 25°C		2.2		
Q _{rr}	$(I_S = -I_D [Cont.], di/_{dt} = 100A/\mu s)$	T _j = 125°C		9.0		μC
I _{RRM}	1 (1 1 10 11 div 100 1)	T _j = 25°C		16		A
		T _j = 125°C		33		Amps


THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{ heta JC}$	Junction to Case			0.18	
$R_{\theta JA}$	Junction to Ambient			40	°C/W

¹ Repetitive Rating: Pulse width limited by maximum junction temperature.

APT Reserves the right to change, without notice, the specifications and information contained herein.

SOT-227 (ISOTOP®) Package Outline

² Pulse Test: Pulse width < 380 µs, Duty Cycle < 2%

³ See MIL-STD-750 Method 3471

 $[\]textcircled{4}$ Starting T $_{j}$ = +25°C, L = 1.21mH, R $_{G}$ = 25 $\Omega,$ Peak I $_{L}$ = 77A 5 dv/ $_{dt}$ numbers reflect the limitations of the test circuit rather than the device itself. $I_S \le -I_{D[Cont.]}$ $di/_{dt} \le 700 \text{A/µs}$ $V_R \le V_{DSS}$ $T_J \le 150^{\circ}\text{C}$