2M x 32Bit x 4 Banks Mobile SDRAM in 90FBGA

FEATURES

- VDD = 2.5V.
- · LVCMOS compatible with multiplexed address.
- · Four banks operation.
- MRS cycle with address key programs.
 - -. CAS latency (1, 2 & 3).
 - -. Burst length (1, 2, 4, 8 & Full page).
 - -. Burst type (Sequential & Interleave).
- EMRS cycle with address key programs.
- All inputs are sampled at the positive going edge of the system clock.
- · Burst read single-bit write operation.
- Special Function Support.
 - -. PASR (Partial Array Self Refresh).
 - -. Internal TCSR (Temperature Compensated Self Refresh)
 - -. DS (Driver Strength)
- · DQM for masking.
- · Auto refresh.
- 64ms refresh period (4K cycle).
- Commercial Temperature Operation (-25°C ~ 70°C).
- Extended Temperature Operation (-25°C ~ 85°C).
- 2Chips DDP 90Balls FBGA (-MXXX -Pb, -EXXX -Pb Free).

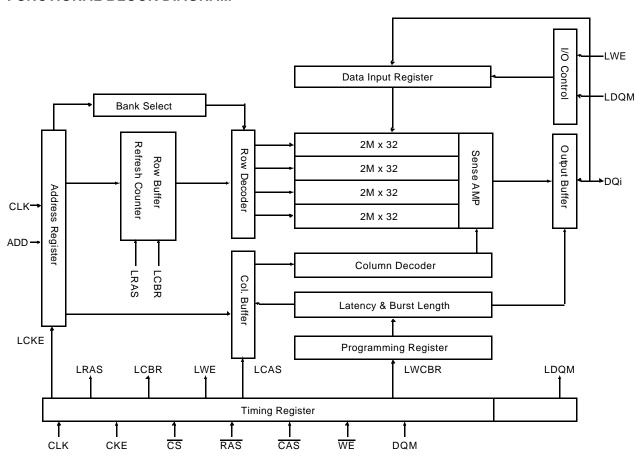
GENERAL DESCRIPTION

The K4M56323LE is 268,435,456 bits synchronous high data rate Dynamic RAM organized as 4 x 2,097,152 words by 32 bits, fabricated with SAMSUNG's high performance CMOS technology. Synchronous design allows precise cycle control with the use of system clock and I/O transactions are possible on every clock cycle. Range of operating frequencies, programmable burst lengths and programmable latencies allow the same device to be useful for a variety of high bandwidth and high performance memory system applications.

ORDERING INFORMATION

Part No.	Max Freq.	Interface	Package
K4M56323LE-M(E)E/N/S/C/L/R80	125MHz(CL=3)		
K4M56323LE-M(E)E/N/S/C/L/R1H	105MHz(CL=2)	LVCMOS	90 CSP Pb (Pb Free)
K4M56323LE-M(E)E/N/S/C/L/R1L	105MHz(CL=3)*1		

- M(E)E/N/S : Normal / Low / Super Low Power, Extended Temperature(-25 $^{\circ}$ C \sim 85 $^{\circ}$ C)
- M(E)C/L/R : Normal / Low / Super Low Power, Commercial Temperature(-25°C ~ 70°C)

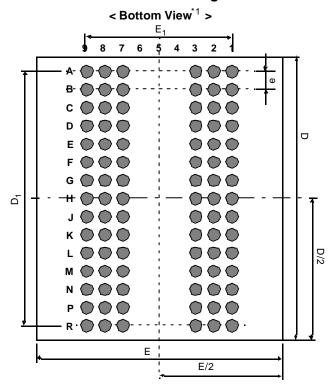

NOTES

- 1. In case of 40MHz Frequency, CL1 can be supported.
- 2. Samsung shall not offer for sale or sell either directly or through and third-party proxy, and DRAM memory products that include "Multi-Die Plastic DRAM" for use as components in general and scientific computers such as, by way of example, mainframes, servers, work stations or desk top computers for the first three years of five year term of this license. Nothing herein limits the rights of Samsung to use Multi-Die Plastic DRAM in other products or other applications under paragrangh such as mobile, telecom or non-computer application(which include by way of example laptop or notebook computers, cell phones, televisions or visual monitors)
 Violation may subject the customer to legal claims and also excludes any warranty against infringement from Samsung.".
- 3. Samsung are not designed or manufactured for use in a device or system that is used under circumstance in which human life is potentially at stake. Please contact to the memory marketing team in samsung electronics when considering the use of a product contained herein for any specific pur pose, such as medical, aerospace, nuclear, military, vehicular or undersea repeater use.

1 July 2003

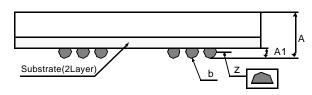
FUNCTIONAL BLOCK DIAGRAM

DQ0

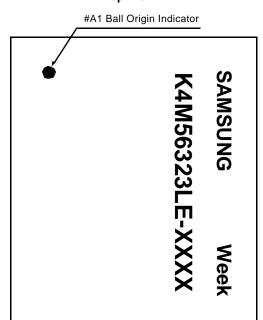

DQ2

Package Dimension and Pin Configuration

R


DQ13

DQ15



		901	Ball(6x15) CSP		
	1	2	3	7	8	9
Α	DQ26	DQ24	Vss	VDD	DQ23	DQ21
В	DQ28	VDDQ	Vssq	VDDQ	Vssq	DQ19
С	Vssq	DQ27	DQ25	DQ22	DQ20	VDDQ
D	Vssq	DQ29	DQ30	DQ17	DQ18	VDDQ
Е	VDDQ	DQ31	NC	NC	DQ16	Vssq
F	Vss	DQM3	А3	A2	DQM2	VDD
G	A4	A5	A6	A10	A0	A1
Н	A7	A8	NC	NC	BA1	A11
J	CLK	CKE	A9	BA0	CS	RAS
K	DQM1	NC	NC	CAS	WE	DQM0
L	VDDQ	DQ8	Vss	VDD	DQ7	Vssq
М	Vssq	DQ10	DQ9	DQ6	DQ5	VDDQ
Ν	Vssq	DQ12	DQ14	DQ1	DQ3	VDDQ
Р	DQ11	VDDQ	Vssq	VDDQ	Vssq	DQ4

< Top View*2 >

< Top View² >

Pin Name	Pin Function
CLK	System Clock
CS	Chip Select
CKE	Clock Enable
A0 ~ A11	Address
BA0 ~ BA1	Bank Select Address
RAS	Row Address Strobe
CAS	Column Address Strobe
WE	Write Enable
DQM0 ~ DQM3	Data Input/Output Mask
DQ0 ~ 31	Data Input/Output
V DD/Vss	Power Supply/Ground
VDDQ/Vssq	Data Output Power/Ground

Vss

VDD

[Unit:mm]

Symbol	Min	Тур	Max
А	-	1.30	1.40
A ₁	0.30	0.35	0.40
E	-	11.00	•
E ₁	-	6.40	•
D	-	13.00	•
D ₁	-	11.20	•
е	-	0.80	•
b	0.40	0.45	0.50
Z	-	-	0.10

3 July 2003

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on any pin relative to Vss	VIN, VOUT	-1.0 ~ 3.6	V
Voltage on VDD supply relative to Vss	Vdd, Vddq	-1.0 ~ 3.6	V
Storage temperature	Тѕтс	-55 ~ +150	°C
Power dissipation	PD	1.0	W
Short circuit current	los	50	mA

NOTES:

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

Functional operation should be restricted to recommended operating condition.

Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS

Recommended operating conditions (Voltage referenced to Vss = 0V, Ta = -25 to 85°C for Extended, -25 to 70°C for Commercial)

Parameter	Symbol Min		Тур	Max	Unit	Note	
	VDD	2.3	2.5	2.7	V		
Supply voltage	VDDQ	2.3	2.5 2.7		V		
	V 22 G	1.65	-	2.7	V	1	
Input logic high voltage	Vін	0.8 x VDDQ	-	VDDQ + 0.3	V	2	
Input logic low voltage	VIL	-0.3	0	0.3	V	3	
Output logic high voltage	Voн	VDDQ -0.2	-	-	V	IOH = -0.1mA	
Output logic low voltage	VoL	-	-	0.2	V	IOL = 0.1mA	
Input leakage current	lli	-10	-	10	uA	4	

NOTES:

- 1. Samsung can support VDDQ 2.5V(in general case) and 1.8V(in specific case) for VDD 2.5V products. Please contact to the memory marketing team in Samsung Electronics when considering the use of VDDQ 1.8V(Min 1.65V).

 2. VIH (max) = 3.0V AC. The overshoot voltage duration is ≤ 3ns.

 3. VIL (min) = -1.0V AC. The undershoot voltage duration is ≤ 3ns.

 4. Any input 0V≤ VIN ≤ VDDQ. Input leakage currents include Hi-Z output leakage for all bi-directional buffers with tri-state outputs.

- 5. Dout is disabled, 0V≤ VOUT ≤ VDDQ.

CAPACITANCE (V DD = 2.5V, TA = 23°C, f = 1MHz, VREF = 0.9V ± 50 mV)

Pin	Symbol	Min	Max	Unit	Note
Clock	CCLK	3.0	8.0	pF	
RAS, CAS, WE, CS, CKE	Cin	3.0	8.0	pF	
DQM	Cin	1.5	4.0	pF	
Address	CADD	3.0	8.0	pF	
DQ0 ~ DQ31	Соит	3.0	6.5	pF	

DC CHARACTERISTICS

Recommended operating conditions (Voltage referenced to Vss = 0V, TA = -25 to 85 $^{\circ}$ C for Extended, -25 to 70 $^{\circ}$ C for Commercial)

B	0	Tool	S 1141			Versio	n	11	Nete
Parameter	Symbol	rest	Conditio	n	-80	-1H	-1L	Unit	Note
Operating Current (One Bank Active)	ICC1	Burst length = 1 tRC ≥ tRC(min) IO = 0 mA			140	140	130	mA	1
Precharge Standby Current in	ICC2P	CKE ≤ VIL(max), tcc =	10ns			1.2	mA		
power-down mode	ICC2PS	CKE & CLK≤VIL(max), tcc = ∘	0		1.2		mA	
Precharge Standby Current	ICC2N	CKE ≥ VIH(min), CS ≥ Input signals are chan				20		mA	
in non power-down mode	ICC2NS	CKE ≥ VIH(min), CLK: Input signals are stabl		(), tcc = ∞		10		IIIA	
Active Standby Current	ІссзР	CKE ≤ VIL(max), tcc =	CKE ≤ VIL(max), tcc = 10ns					mA	
in power-down mode	Icc3PS	CKE & CLK ≤ VIL(max), tcc = ∘	>	8			T IIIA	
Active Standby Current in non power-down mode	ICC3N	CKE ≥ VIH(min), CS ≥ Input signals are chan			mA				
(One Bank Active)	ICC3NS	CKE ≥ VIH(min), CLK: Input signals are stabl		40		mA			
Operating Current (Burst Mode)	Icc4	Io = 0 mA Page burst 4Banks Activated tccd = 2CLKs			180	150	150	mA	1
Refresh Current	Icc5	tRC ≥ tRC(min)			300	290	270	mA	2
				-E/C		1500		uA	4
				-N/L		1000		uA	5
Self Refresh Current	Icc6	CKE < 0.2V		Internal TCSR	Max 40		lax 85/70	°C	3
Con Rondon Gundin	1000	01.2 ± 0.2 v	-S/R 4Banks		600		1000		
			-0/10	2Banks	500 800		uA	6	
				1Bank	450		700		

NOTES:

- 1. Measured with outputs open.
- 2. Refresh period is 64ms.
- 3. Internal TCSR can be supported.
 In commercial Temp : Max 40°C/Max 70°C, In extended Temp : Max 40°C/Max 85°C
- 4. K4M56323LE-M(E)E/C**
- 5. K4M56323LE-M(E)N/L**
- 6. K4M56323LE-M(E)S/R**
- 7. Unless otherwise noted, input swing level is CMOS(VIH /VIL=VDDQ/VSSQ).

$\textbf{AC OPERATING TEST CONDITIONS} (VDD = 2.5 \text{V} \pm 0.2 \text{V}, \text{ TA = -25 to 85}^{\circ}\text{C for Extended}, \text{ -25 to 70}^{\circ}\text{C for Commercial})$

Parameter	Value	Unit
AC input levels (Vih/Vil)	0.9 x V DDQ / 0.2	V
Input timing measurement reference level	0.5 x V ddq	V
Input rise and fall time	tr/tf = 1/1	ns
Output timing measurement reference level	0.5 x V DDQ	V
Output load condition	See Figure 2	

Figure 2. AC Output Load Circuit

OPERATING AC PARAMETER

(AC operating conditions unless otherwise noted)

Parameter		Symbol		Version		Unit	Note	
Parameter		Symbol	-80	-80 -1H		Onit	Note	
Row active to row active delay		trrd(min)	16	19	19	ns	1	
RAS to CAS delay		tRCD(min)	19	19	24	ns	1	
Row precharge time		tRP(min)	19	19	24	ns	1	
Row active time		tras(min)	48	50	60	ns	1	
		tRAS(max)	100			us		
Row cycle time		tRC(min)	67	69	84	ns	1	
Last data in to row precharge		tRDL(min)		2	CLK	2		
Last data in to Active delay		tDAL(min)		tRDL + tRP	-	3		
Last data in to new col. address	delay	tCDL(min)		1	CLK	2		
Last data in to burst stop		tBDL(min)		1		CLK	2	
Col. address to col. address dela	ay	tCCD(min)		1		CLK	4	
Number of valid output data	C	CAS latency=3	2					
Number of valid output data	CAS latency=2		1			ea	5	
Number of valid output data	(CAS latency=1		0				

NOTES:

- The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then rounding off to the next higher integer.
- 2. Minimum delay is required to complete write.
- 3. Minimum tRDL=2CLK and tDAL(= tRDL + tRP) is required to complete both of last data write command(tRDL) and precharge command(tRP).

7

- 4. All parts allow every cycle column address change.
- 5. In case of row precharge interrupt, auto precharge and read burst stop.

AC CHARACTERISTICS(AC operating conditions unless otherwise noted)

Parameter		Symbol	-8	30	-1H		-1L		Unit	Note
Farameter		Symbol	Min	Max	Min	Max	Min	Max	Unit	Note
CLK cycle time	CAS latency=3	tcc	8		9.5		9.5			
CLK cycle time	CAS latency=2	tcc	9.5	1000	9.5	1000	12	1000	ns	1
CLK cycle time	CAS latency=1	tcc	-	•	-		25			
CLK to valid output delay	CAS latency=3	tsac		6		7		7		
CLK to valid output delay	CAS latency=2	tsac		7		7		8	ns	1,2
CLK to valid output delay	CAS latency=1	tsac		-		-		20		
Output data hold time	CAS latency=3	tон	2.5		2.5		2.5			
Output data hold time	CAS latency=2	tон	2.5		2.5		2.5		ns	2
Output data hold time	CAS latency=1	tOH	-		-		2.5			
CLK high pulse width		tch	2.5		3.0		3.0		ns	3
CLK low pulse width		tCL	2.5		3.0		3.0		ns	3
Input setup time		tss	2.0		2.5		2.5		ns	3
Input hold time		tsh	1.0		1.5		1.5		ns	3
CLK to output in Low-Z		tslz	1		1		1		ns	2
	CAS latency=3			6		7		7		
CLK to output in Hi-Z	CAS latency=2	tsHZ		7		7		8	ns	
	CAS latency=1			-		-		20		

NOTES:

If tr & tf is longer than 1ns, transient time compensation should be considered,

^{1.} Parameters depend on programmed CAS latency.

^{2.} If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.

^{3.} Assumed input rise and fall time (tr & tf) = 1ns.

i.e., [(tr + tf)/2-1]ns should be added to the parameter.

SIMPLIFIED TRUTH TABLE

C	OMMAND		CKEn-1	CKEn	cs	RAS	CAS	WE	DQM	BA 0,1	A10/AP	A11, A9 ~ A0	Note
Register	Mode Regis	ter Set	Н	Х	L	L	L	L	Х	OP CODE		DE	1, 2
	Auto Refres	h	Н	Н	L	L	L	Н	Х			3	
	0 - 14	Entry		L			_	''	Λ.		3		
	Self Refresh		L	н	L	Н	Н	Н	Х		Х		3
		EXIT	_		Н	Х	Χ	Х					3
Bank Active & Ro	w Addr.		Н	Х	L	L	Н	Н	Χ	V	Row A	Address	
Read &		arge Disable	П	Х	L	Н	L	Н	Х	V	L	Column	4
Column Address	Auto Precha	arge Enable	Н	^	_	П	_		^	v	Н	Address (A0~A8)	4, 5
Write &	Auto Precha	arge Disable	Н	V			L		X	.,	L	Column	4
Column Address	Auto Precha	Auto Precharge Enable		Х	L	Н	_	L	X	V	Н	Address (A0~A8)	4, 5
Burst Stop	•		Н	Х	L	Н	Н	L	Х		Х		6
Precharge	Bank Select	ion	I	Х	L	L	Н	L	Х	V	L	Х	
Frecharge	All Banks] ''	^	-	_	''			Х Н			
		Entry	Н	L.	Η	Х	Х	Х	Х				
Clock Suspend o Active Power Dov		Lintry		L '	Ь	V	V	٧	^	×			
		Exit	L	Н	Х	Х	Х	Х	Х				
		Entry	Н	L.	Ι	Х	Х	Х	Х				
Precharge Power	r Down	Linay			L	Н	Η	Ι	,	X			
Mode		Exit	L	н.	Τ	Х	Х	Х	X		^		
	_			П	L	V	٧	V	,				
DQM			Н			Х			V		Χ		7
No Operation Co	mmand		Н	Х	Н	Х	Χ	Х	Х		Х		
					L	Н	Н	Н		^			

(V=Valid, X=Don't Care, H=Logic High, L=Logic Low)

NOTES

1. OP Code: Operand Code

A0 ~ A11 & BA0 ~ BA1 : Program keys. (@MRS)

2. MRS can be issued only at all banks precharge state.

A new command can be issued after 2 CLK cycles of MRS.

3. Auto refresh functions are the same as CBR refresh of DRAM.

The automatical precharge without row precharge command is meant by "Auto". Auto/self refresh can be issued only at all banks precharge state.

Partial self refresh can be issued only after setting partial self refresh mode of EMRS.

- 4. BA0 ~ BA1 : Bank select addresses.
- 5. During burst read or write with auto precharge, new read/write command can not be issued.

Another bank read/write command can be issued after the end of burst.

New row active of the associated bank can be issued at tRP after the end of burst.

- 6. Burst stop command is valid at every burst length.
- 7. DQM sampled at the positive going edge of CLK masks the data-in at that same CLK in write operation (Write DQM latency is 0), but in read operation, it makes the data-out Hi-Z state after 2 CLK cycles. (Read DQM latency is 2).

A. MODE REGISTER FIELD TABLE TO PROGRAM MODES

Register Programmed with Normal MRS

Address	BA0 ~ BA1	A11 ~ A10/AP	A9 *2	A8 A7		A6	A5 A4		А3	A2	A1	Α0
Function	"0" Setting for Normal MRS	RFU ^{†1}	W.B.L	Test I	Mode	CA	S Laten	су	ВТ	Bu	rst Lenç	jth

Normal MRS Mode

	1	Test Mode	CAS Latency					Burst	Туре	Burst Length						
A8	A7	Туре	A6	A5	A4	Latency	А3		Туре		A 1	A0	BT=0	BT=1		
0	0	Mode Register Set	0	0	0	Reserved	0	Sequential		0	0	0	1	1		
0	1	Reserved	0	0	1	1	1	Inte	erleave	0	0	1	2	2		
1	0	Reserved	0	1	0	2	ı	Mode Select			1	0	4	4		
1	1	Reserved	0	1	1	3	BA1	BA0	Mode	0	1	1	8	8		
	Write	Burst Length	1 0		0	Reserved				1	0	0	Reserved	Reserved		
А9		Length	1	0	1	Reserved	0	0	Setting for Nor-	1	0	1	Reserved	Reserved		
0				1	0	Reserved] "	"	mal MRS	1	1	0	Reserved	Reserved		
1				1	1	1	Full Page	Reserved								

Full Page Length x32: 256Mb(512)

Register Programmed with Extended MRS

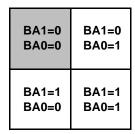
Address	BA1	BA0	A11 ~ A10/AP	A9	A8	A7	A6	A5	A4	А3	A2	A 1	Α0
Function	Mode	Select		RFU*1			D	S	RF	U ^{*1}		PASR	

EMRS for PASR(Partial Array Self Ref.) & DS(Driver Strength)

		Mode Select				Driv	er Stre	ngth	PASR						
BA1	BA0		Mode		A6	A5	Driv	er Strength	A2	A1	A0	# of Banks			
0	0	No	rmal MRS		0	0		Full	0	0	0	4 Banks			
0	1	R	eserved		0	1		1/2	0	0	1	2 Banks			
1	0	EMRS for	Mobile SDR	λM	1	0	F	Reserved	0	1	0	1 Bank			
1	1	R	eserved		1	1	F	Reserved	0	1	1	Reserved			
			Reserved A	Addres	s				1	0	0	Reserved			
A11~A	10/AP	А9	A8	А	7	Α	4	А3	1	0	1	Reserved			
)	0 0 0)	0		0		0		1	0	Reserved		
							·	1	1	1	Reserved				

NOTES:

^{2.} If A9 is high during MRS cycle, "Burst Read Single Bit Write" function will be enabled.


^{1.} RFU(Reserved for future use) should stay "0" during MRS cycle.

Partial Array Self Refresh

- 1. In order to save power consumption, Mobile SDRAM has PASR option.
- 2. Mobile SDRAM supports 3 kinds of PASR in self refresh mode: 4 Banks(256Mb), 2 Banks(128Mb) and 1 Bank(64Mb).

BA1=0	BA1=0
BA0=0	BA0=1
BA1=1	BA1=1
BA0=0	BA0=1

BA1=0	BA1=0
BA0=0	BA0=1
BA1=1	BA1=1
BA0=0	BA0=1

- 4 Banks

- 2 Banks

- 1 Bank

Partial Self Refresh Area

Temperature Compensated Self Refresh

- In order to save power consumption, Mobile-DRAM includes the internal temperature sensor and control units to control the self refresh cycle automatically according to the two temperature range: Max 40 °C and Max 85 °C(for Extended), Max 70 °C(for Commercial).
- 2. If the EMRS for external TCSR is issued by the controller, this EMRS code for TCSR is ignored.

Temperature Range		Self Refresh Current (Icc6)										
	- E/C	- N/L		- S/R								
	- 6/0	- I4/L	4 Banks	2 Banks	1 Bank							
Max 85/70 °C	1500	1000	1000	800	700	uA						
Max 40 °C	1500	1000	600	500	450	uA						

B. POWER UP SEQUENCE

- 1. Apply power and attempt to maintain CKE at a high state and all other inputs may be undefined.
- Apply VDD before or at the same time as VDDQ.
- 2. Maintain stable power, stable clock and NOP input condition for a minimum of 200us.
- 3. Issue precharge commands for all banks of the devices.
- 4. Issue 2 or more auto-refresh commands.
- $5.\ \mbox{lssue}$ a mode register set command to initialize the mode register.
- 6. Issue a extended mode register set command to define DS or PASR operating type of the device after normal MRS.

EMRS cycle is not mandatory and the EMRS command needs to be issued only when DS or PASR is used.

The default state without EMRS command issued is the full driver strength and all 4 banks refreshed.

The device is now ready for the operation selected by EMRS.

For operating with DS or PASR, set DS or PASR mode in EMRS setting stage.

In order to adjust another mode in the state of DS or PASR mode, additional EMRS set is required but power up sequence is not needed again at this time. In that case, all banks have to be in idle state prior to adjusting EMRS set.

C. BURST SEQUENCE

1. BURST LENGTH = 4

Initial A	Initial Address		Segui	ential		Interleave						
A1	A0		oequ	cittai		srieuve						
0	0	0	1	2	3	0	1	2	3			
0	1	1	2	3	0	1	0	3	2			
1	0	2	3	0	1	2	3	0	1			
1	1	3	0	1	2	3	2	1	0			

2. BURST LENGTH = 8

Init	ial Addr	ess				Sequ	ontial							Inter	loavo			
A2	A1	A0				Sequi	entiai			interleave								
0	0	0	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
0	0	1	1	2	3	4	5	6	7	0	1	0	3	2	5	4	7	6
0	1	0	2	3	4	5	6	7	0	1	2	3	0	1	6	7	4	5
0	1	1	3	4	5	6	7	0	1	2	3	2	1	0	7	6	5	4
1	0	0	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3
1	0	1	5	6	7	0	1	2	3	4	5	4	7	6	1	0	3	2
1	1	0	6	7	0	1	2	3	4	5	6	7	4	5	2	3	0	1
1	1	1	7	0	1	2	3	4	5	6	7	6	5	4	3	2	1	0

