

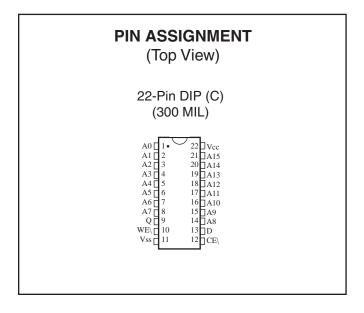
64K x 1 SRAM SRAM MEMORY ARRAY

AVAILABLE AS MILITARY SPECIFICATIONS

- SMD 5962-86015
- MIL-STD-883

FEATURES

- Speeds: 12, 15, 20, 25, 35, 45, 55, and 70ns
- Battery Backup: 2V data retention
- High-performance, low-power CMOS double-metal process
- Single +5V ($\pm 10\%$) Power Supply
- Easy memory expansion with CE\
- All inputs and outputs are TTL compatible


OPTIONS	MARKING
• Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
35ns access	-35
45ns access	-45*
55ns access	-55*
70ns access	-70*
• Package(s)	
Ceramic DIP (300 mil) C	No. 105

• Operating Temperature Ranges

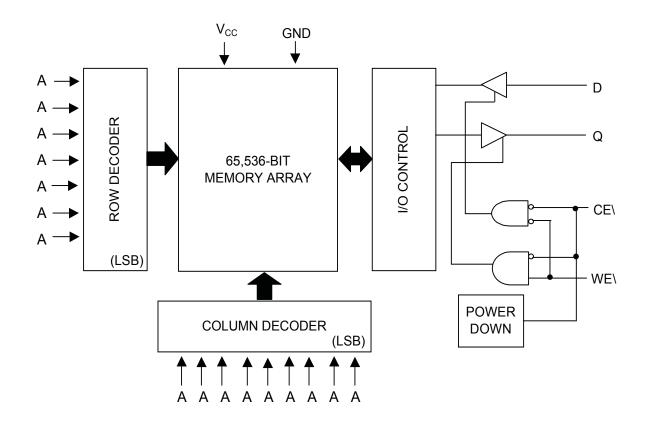
Industrial (-40°C to +85°C)	IT
Military (-55°C to +125°C)	XT

• 2V data retention/low power L

*Electrical characteristics identical to those provided for the 35ns access devices.

GENERAL DESCRIPTION

The Micross Components SRAM family employs high-speed, low-power CMOS designs using a four-transistor memory cell. Micross Components SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.


For flexibility in high-speed memory applications, Austin Semiconductor offers chip enable (CE\) on all organizations. This enhancement can place the outputs in High-Z for additional flexibility in system design. The X1 configuration features separate data input and output.

Writing to these devices is accomplished when write enable (WE\) and CE\ inputs are both LOW. Reading is accomplished when WE\ remains HIGH and CE\ goes LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.

For more products and information please visit our web site at www.micross.com

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE\	WE\	DQ	POWER
STANDBY	Н	Χ	HIGH-Z	STANDBY
READ	L	Η	Q	ACTIVE
WRITE	L	L	HIGH-Z	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on any Input Relative to Vss	2 0V to ±7 0V
• •	
Voltage on Vcc Supply Relative to Vss	1.0V to $+7.0V$
Voltage Applied to Q	1.0V to +7.0V
Storage Temperature	-65°C to +150°C
Power Dissipation	1W
Max Junction Temperature	
Lead Temperature (soldering 10 seconds)	+260°C
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (-55°C \leq T_C \leq 125°C; V_{CC} = 5V \pm 10%)

DESCRIPTION	CONDITIONS	SYM	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		V_{IH}	2.2	Vcc+1.0V	V	1
Input Low (Logic 0) Voltage		V_{IL}	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILI	-10	10	μA	
Output Leakage Current	Outputs Disabled $0V \le V_{OUT} \le V_{CC}$	ILO	-10	10	μA	
Output High Voltage	I _{OH} = -4.0mA	V _{OH}	2.4		V	1
Output Low Voltage	$I_{OL} = 8.0 \text{mA}$	V _{OL}		0.4	V	1

_					MAX				
PARAMETER	CONDITIONS	SYM	-12	-15	-20	-25	-35	UNITS	NOTES
Power Supply Current: Operating	CE\ ≤ V _{IL} ; V _{CC} = MAX Output Open	I _{cc}	140	125	110	100	90	mA	3
Power Supply Current: Standby	$CE \ge V_{IH}$; $V_{CC} = MAX$ $f = 1/t_{RC}$ (MIN) Hz	I _{SBT1}	45	41	36	33	30	mA	
	CE\ \geq V _{IH} ; All Other Inputs \leq V _{IL} or \geq V _{IH} , V _{CC} = MAX f = 0 Hz	I _{SBT2}	25	25	25	25	25	mA	
	CE\ \geq (V _{CC} -0.2); V _{CC} = MAX All Other Inputs \leq 0.2V or \geq (V _{CC} - 0.2V), f = 0 Hz	I _{SBC2}	5	5	5	5	5	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYM	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C, f = 1MHz	C _I	6	pF	4
Output Capacitance	Vcc = 5V	Co	7	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (-55°C \leq T_C \leq 125°C; V_{CC} = 5V \pm 10%)

DESCRIPTION			12		15		20	_	25		35		
DESCRIPTION	SYMBOL	MIN	MAX	UNITS	NOTES								
READ CYCLE													
READ cycle time	t _{RC}	12		15		20		25		35		ns	
Address access time	t _{AA}		12		15		20		25		35	ns	
Chip Enable access time	t _{ACE}		10		13		15		20		25	ns	
Output hold from address change	t _{OH}	2		2		2		2		2		ns	
Chip Enable to output in Low-Z	t _{LZCE}	2		2		2		2		2		ns	7
Chip disable to output in High-Z	t _{HZCE}		7		8		10		12		15	ns	6, 7
Chip Enable to power-up time	t _{PU}	0		0		0		0		0		ns	
Chip disable to power-down time	t _{PD}		12		15		20		25		35	ns	
WRITE CYCLE													
WRITE cycle time	t _{WC}	12		15		20		25		35		ns	
Chip Enable to end of write	t _{CW}	10		12		15		20		25		ns	
Address valid to end of write	t _{AW}	10		12		15		20		25		ns	
Address setup time	t _{AS}	0		0		0		0		0		ns	
Address hold from end of write	t _{AH}	0		0		0		0		0		ns	
WRITE pulse width	t _{WP}	10		12		15		20		25		ns	
Data setup time	t _{DS}	7		8		10		12		15		ns	
Data hold time	t _{DH}	0		0		0		0		0		ns	
Write disable to output in Low-Z	t _{LZWE}	2		2		2		2		2		ns	7
Write Enable to output in High-Z	t _{HZWE}	0	6	0	7	0	8	0	10	0	15	ns	6, 7

ACTEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
I Input timing reference levels	
Output reference levels	1.5V
Output reference levels Output load	See Figures 1 and 2

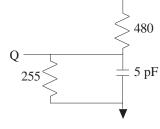
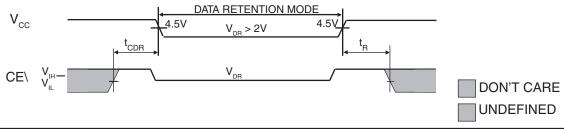


Fig. 1 Output Load Equivalent

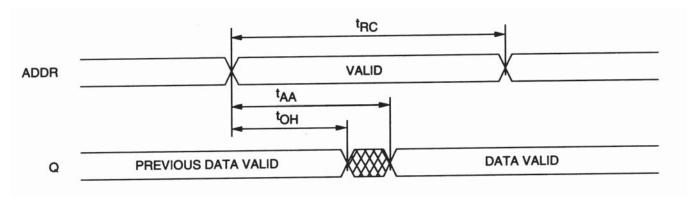
Fig. 2 Output Load Equivalent

NOTES

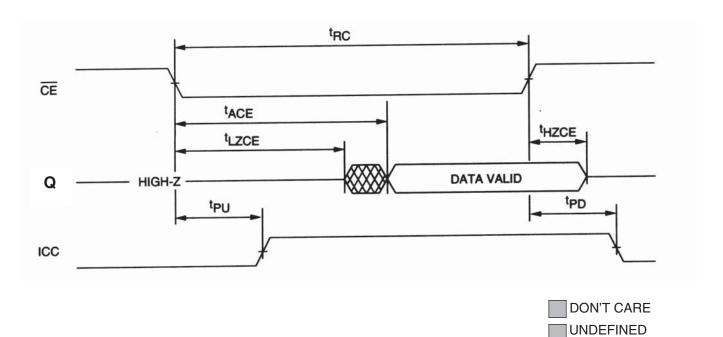

- 1. All voltages referenced to V_{ss} (GND).
- 2. -3V for pulse width < 20ns
- 3. I_{cc} is dependent on output loading and cycle rates. The specified value applies with the outputs unloaded, and f = 1 Hz. tRC (MIN)_
- This parameter is sampled.
- Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. t_{HZCE} and t_{HZWE} are specified with CL = 5pF as in Fig. 2. Transition is measured $\pm 500 mV$ typical from steady state voltage, allowing for actual tester RC time constant.

- At any given temperature and voltage condition,
 - t_{HZCE} is less than t_{LZCE} , and t_{HZWE} is less than t_{LZWE} . WE\ is HIGH for READ cycle.
- Device is continuously selected. Chip enable is held in its active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. tRC = READ Cycle Time.
- 12. Chip enable (CE\) and write enable (WE\) can initiate and terminate a WRITE cycle.

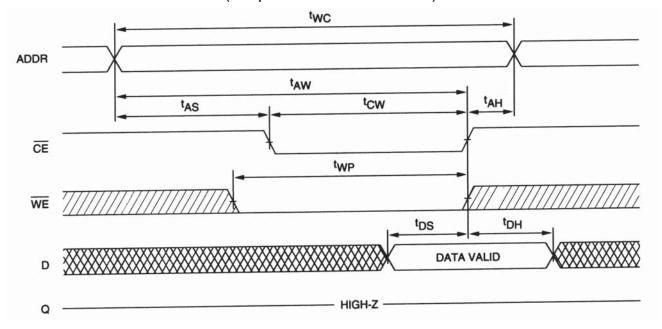
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)


DESCRIPTION	CONDITIONS		SYM	MIN	MAX	UNITS	NOTES
V _{CC} for Retention Data			V_{DR}	2		٧	
Data Retention Current	$CE \ge (V_{CC} - 0.2V)$	V _{CC} = 2V	I _{CCDR}		300	μA	
Data Retention Current	$V_{IN} \ge (V_{CC} - 0.2V)$ or $\le 0.2V$	V _{CC} = 3V	I _{CCDR}		500	μA	
Chip Deselect to Data Retention Time			t _{CDR}	0		ns	4
Operation Recovery Time		·	t _R	t _{RC}		ns	4, 11

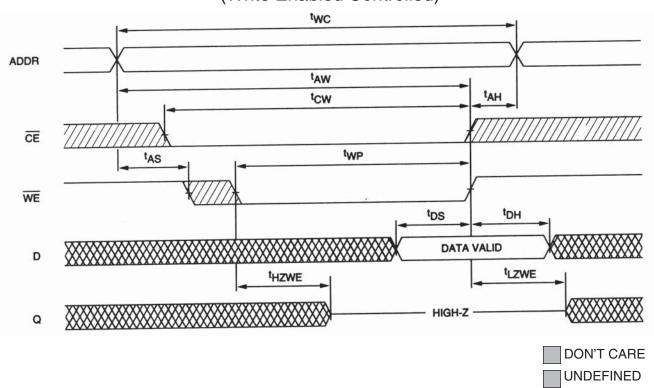
LOW Vcc DATA RETENTION WAVEFORM



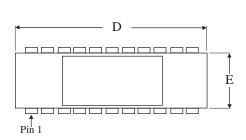
READ CYCLE NO. 18,9

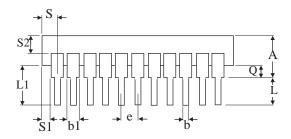


READ CYCLE NO. 2 7, 8, 10


WRITE CYCLE NO. 1 12

(Chip Enabled Controlled)


WRITE CYCLE NO. 2 7, 12, 13


(Write Enabled Controlled)



MECHANICAL DEFINITIONS*

Micross Case #105 (Package Designator C) SMD 5962-86015, Case Outline X

	SMD SPECIFICATIONS						
SYMBOL	MIN	MAX					
Α		0.200					
b	0.014	0.023					
b1	0.030	0.065					
С	0.008	0.015					
D		1.260					
Е	0.220	0.310					
E1	0.290	0.320					
е	0.100) BSC					
L	0.125	0.200					
L1	0.150						
Q	0.015	0.060					
S		0.080					
S1	0.005						
S2	0.005						

NOTE: These dimensions are per the SMD. Micross' package dimensional limits may differ, but they will be within the SMD limits.

ORDERING INFORMATION

EXAMPLE: MT5C6401C-45L/883C

Device Number	Package Type	Speed ns	Options**	Process
MT5C6401	С	-12	L	/*
MT5C6401	С	-15	L	/*
MT5C6401	С	-20	L	/*
MT5C6401	С	-25	L	/*
MT5C6401	С	-35	L	/*
MT5C6401	С	-45	L	/*
MT5C6401	С	-55	L	/*
MT5C6401	С	-70	L	/*

*AVAILABLE PROCESSES

 $IT = Industrial Temperature Range \\ XT = Extended Temperature Range \\ 883C = Full Military Processing \\ -40^{\circ}C to +85^{\circ}C \\ -55^{\circ}C to +125^{\circ}C \\ -55^{\circ}C to +125^{\circ}C$

** OPTIONS

L = 2V Data Retention/Low Power

MICROSSTO DSCC PART NUMBER CROSS REFERENCE*

Micross Package Designator C

SMD 5962-86015

Micross Part #	SMD Part #
MT5C6801C-35/883C	5962-8601501XA
MT5C6801C-35L/883C	5962-8601502XA
MT5C6801C-45/883C	5962-8601503XA
MT5C6801C-45L/883C	5962-8601504XA
MT5C6801C-55/883C	5962-8601505XA
MT5C6801C-55L/883C	5962-8601506XA