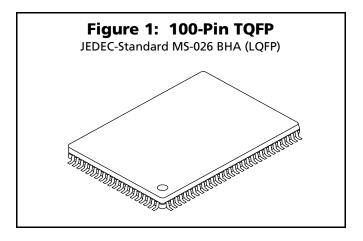
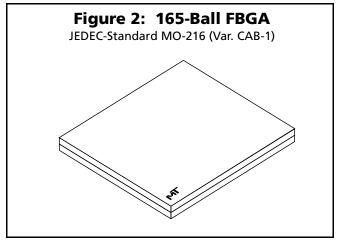


# 36Mb ZBT® SRAM

# MT55L2MY18F, MT55V2MV18F, MT55L1MY32F, MT55V1MV32F, MT55L1MY36F, MT55V1MV36F

3.3V VDD, 3.3V or 2.5V I/O; 2.5V VDD, 2.5V I/O


#### **Features**


- High frequency and 100 percent bus utilization
- Single 3.3V ±5 percent or 2.5V ±5 percent power supply Separate 3.3V ±5 percent or 2.5V ±5 percent isolated output buffer supply (VDDQ)
- Advanced control logic for minimum control signal
- Individual BYTE WRITE controls may be tied LOW
- Single R/W# (read/write) control pin/ball
- CKE# pin/ball to enable clock and suspend operations
- Three chip enables for simple depth expansion
- Clock-controlled and registered addresses, data I/Os, and control signals
- Internally self-timed, fully coherent WRITE
  Internally self-timed, registered outputs to eliminate the need to control OE#
- SNOOZE MODE for reduced-power standby
- Common data inputs and data outputs
- Linear or Interleaved Burst Modes
- Burst feature (optional)
- Pin and ball/function compatibility with 2Mb, 4Mb, 8Mb, and 18Mb ZBT SRAM
- Automatic power down

| Options                                               | TQFP<br>Marking |
|-------------------------------------------------------|-----------------|
| <ul> <li>Timing (Access/Cycle/MHz)</li> </ul>         |                 |
| 6.5ns/8.8ns/113 MHz                                   | -8.8            |
| 7.5ns/10ns/100 MHz                                    | -10             |
| 8.5ns/11ns/90 MHz                                     | -11             |
| <ul> <li>Configurations</li> </ul>                    |                 |
| 3.3V VDD, 3.3V or 2.5V I/O                            |                 |
| 2 Meg x 18                                            | MT55L2MY18F     |
| 1 Meg x 32                                            | MT55L1MY32F     |
| 1 Meg x 36                                            | MT55L1MY36F     |
| 2.5V Vdd, 2.5V I/O                                    |                 |
| 2 Meg x 18                                            | MT55V2MV18F     |
| 1 Meg x 32                                            | MT55V1MV32F     |
| 1 Meg x 36                                            | MT55V1MV36F     |
| <ul> <li>Packages</li> </ul>                          |                 |
| 100-pin, 16mm x 22.1mm TQFP                           | T               |
| 165-ball, 13mm x 15mm FBGA                            | $F^1$           |
| Operating Temperature Range                           |                 |
| Commercial (0°C $\leq$ T <sub>A</sub> $\leq$ +70°C)   | None            |
| Industrial (-40°C $\leq$ T <sub>A</sub> $\leq$ +85°C) | $\mathrm{IT}^2$ |

#### NOTE:

- A Part Marking Guide for the FBGA devices can be found on Micron's Web site—http://www.micron.com/numberguide.
- 2. Contact factory for availability of Industrial Temperature devices.





Part Number Example:

#### MT55L1MY36FT-11

## **General Description**

The Micron<sup>®</sup> Zero Bus Turnaround<sup>™</sup> (ZBT<sup>®</sup>) SRAM family employs high-speed, low-power CMOS designs using an advanced CMOS process.

Micron's 36Mb ZBT SRAMs integrate a 2 Meg x 18, 1 Meg x 32, or 1 Meg x 36 SRAM core with advanced synchronous peripheral circuitry and a 2-bit burst counter. These SRAMs are optimized for 100 percent bus utilization, eliminating any turnaround cycles for READ to WRITE, or WRITE to READ, transitions. All synchronous inputs pass through registers controlled



by a positive-edge-triggered single clock input (CLK). The synchronous inputs include all addresses, all data inputs, chip enable (CE#), two additional chip enables for easy depth expansion (CE2, CE2#), cycle start input (ADV/LD#), synchronous clock enable (CKE#), byte write enables (BWa#, BWb#, BWc#, and BWd#), and read/write (R/W#).

Asynchronous inputs include the output enable (OE#, which may be tied LOW for control signal minimization), clock (CLK) and snooze enable (ZZ, which may be tied LOW if unused). There is also a burst mode pin/ball (MODE) that selects between interleaved and linear burst modes. MODE may be tied HIGH, LOW or left unconnected if burst is unused. The flow-through data-out (Q) is enabled by OE#. WRITE cycles can be from one to four bytes wide as controlled by the write control inputs.

All READ, WRITE, and DESELECT cycles are initiated by the ADV/LD# input. Subsequent burst addresses can be internally generated as controlled by the burst advance pin (ADV/LD#). Use of burst mode is optional. It is allowable to give an address for each individual READ and WRITE cycle. BURST cycles wrap around after the fourth access from a base address.

To allow for continuous, 100 percent use of the data bus, the flow-through ZBT SRAM uses a LATE WRITE cycle. For example, if a WRITE cycle begins in clock cycle one, the address is present on rising edge one. BYTE WRITEs need to be asserted on the same cycle as the address. The write data associated with the address is required one cycle later, or on the rising edge of clock cycle two.

Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written. During a BYTE WRITE cycle, BWa# controls DQa pins/balls; BWb# controls DQb pins/balls; BWc# controls DQc pins/balls; and BWd# controls DQd pins/balls. Cycle types can only be defined when an address is loaded, i.e., when ADV/LD# is LOW. Parity/ECC bits are only available on the x18 and x36 versions.

Micron's 36Mb ZBT SRAMs operate from 3.3V or 2.5V VDD power supply, and all inputs and outputs are LVTTL-compatible. Users can use either a 3.3V or 2.5V I/O, depending on the VDD voltage. The device is ideally suited for systems requiring high bandwidth and zero bus turnaround delays.

Please refer to Micron's Web site (www.micron.com/sramds) for the latest data sheet.

## **Dual Voltage I/O**

The 3.3V VDD device is tested for 3.3V and 2.5V I/O function. The 2.5V VDD device is tested for only 2.5V I/O function.



Figure 3: Functional Block Diagram 2 Meg x 18

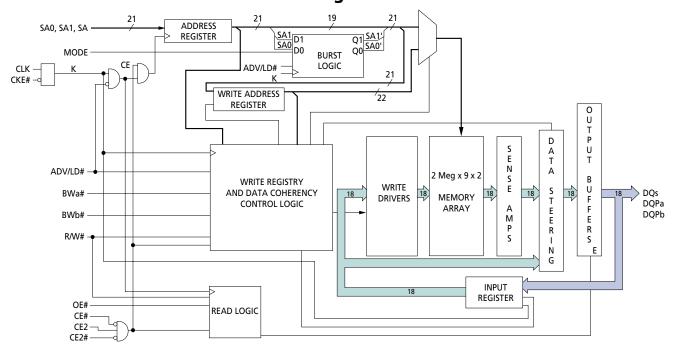
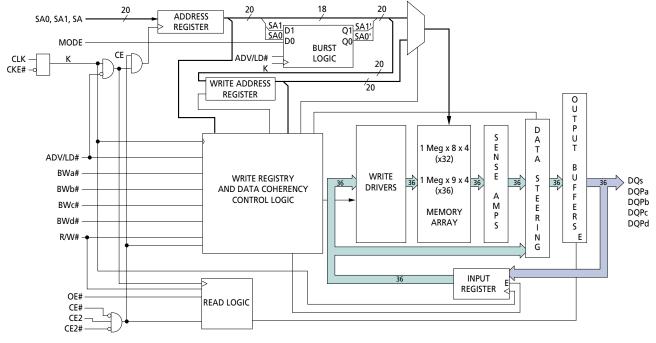
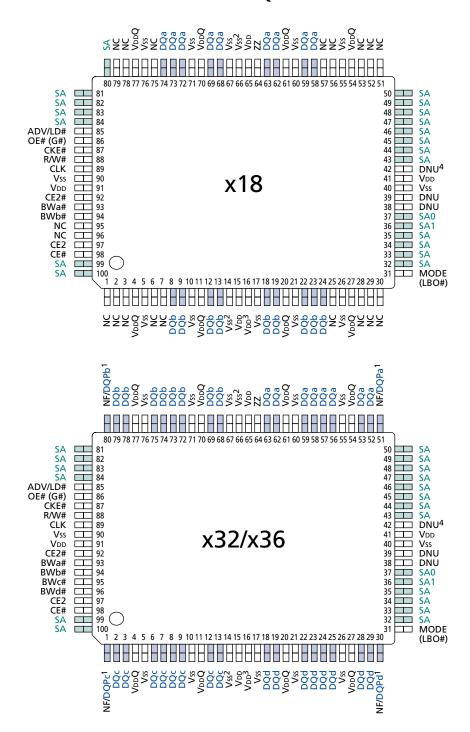




Figure 4: Functional Block Diagram
1 Meg x 32/36




#### NOTE:

Functional block diagrams illustrate simplified device operation. See truth tables, pin/ball descriptions, and timing diagrams for detailed information.



Figure 5: Pin Layout (Top View)
100-Pin TQFP



- 1. NF for x32 version, DQPx for x36 version.
- 2. Pins 14 and 66 do not have to be connected directly to Vss if another logic level can be applied that is  $\leq$  VIL.
- 3. Pin 16 does not have to be connected directly to VDD if another logic level can be applied that is ≥ VIH.
- 4. Pin 42 isreserved for 72Mb address expansion.



# **Table 1: TQFP Pin Descriptions**

| SYMBOL                                  | TYPE             | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADV/LD#                                 | Input            | Synchronous Address Advance/Load: When HIGH, this input is used to advance the internal burst counter, controlling burst access after the external address is loaded. When ADV/LD# is HIGH, R/W# is ignored. A LOW on ADV/LD# clocks a new address at the CLK rising edge.                                                                                                                                                                       |
| BWa#<br>BWb#<br>BWc#<br>BWd#            | Input            | Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written when a WRITE cycle is active and must meet the setup and hold times around the rising edge of CLK. BYTE WRITEs need to be asserted on the same cycle as the address. BWa# controls DQa pins; BWb# controls DQb pins; BWc# controls DQc pins; BWd# controls DQd pins. Parity is only available on the x18 and x36 versions.                          |
| CE#                                     | Input            | Synchronous Chip Enable: This active LOW input is used to enable the device and is sampled only when a new external address is loaded (ADV/LD# LOW).                                                                                                                                                                                                                                                                                             |
| CE2#                                    | Input            | Synchronous Chip Enable: This active LOW input is used to enable the device and is sampled only when a new external address is loaded (ADV/LD# LOW). This input can be used for memory depth expansion.                                                                                                                                                                                                                                          |
| CE2                                     | Input            | Synchronous Chip Enable: This active HIGH input is used to enable the device and is sampled only when a new external address is loaded (ADV/LD# LOW). This input can be used for memory depth expansion.                                                                                                                                                                                                                                         |
| CKE#                                    | Input            | Synchronous Clock Enable: This active LOW input permits CLK to propagate throughout the device. When CKE is HIGH, the device ignores the CLK input and effectively internally extends the previous CLK cycle. This input must meet setup and hold times around the rising edge of CLK.                                                                                                                                                           |
| CLK                                     | Input            | Clock: This signal registers the address, data, chip enables, byte write enables, and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge.                                                                                                                                                                                                                             |
| DQa<br>DQb<br>DQc<br>DQd                | Input/<br>Output | SRAM Data I/Os: byte "a" is associated with DQa pins; byte "b" is associated with DQb pins; byte "c" is associated with DQc pins; byte "d" is associated with DQd pins. Input data must meet setup and hold times around the rising edge CLK.                                                                                                                                                                                                    |
| MODE (LBO#)                             | Input            | Mode: This input selects the burst sequence. A LOW on this pin selects linear burst. NC or HIGH on this pin selects interleaved burst. Do not alter input state while device is operating. LBO# is the JEDEC-standard term for MODE.                                                                                                                                                                                                             |
| OE# (G#)                                | Input            | Output Enable: This active LOW, asynchronous input enables the data I/O output drivers. G# is the JEDEC-standard term for OE#.                                                                                                                                                                                                                                                                                                                   |
| R/W#                                    | Input            | Read/Write: This input determines the cycle type when ADV/LD# is LOW and is the only means for determining READs and WRITEs. READ cycles may not be converted into WRITEs (and vice versa) other than by loading a new address. A LOW on this pin permits BYTE WRITE operations and must meet the setup and hold times around the rising edge of CLK. Full buswidth WRITEs occur if all byte write enables are LOW.                              |
| SA0<br>SA1<br>SA                        | Input            | Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK. SAO and SA1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.                                                                                                                                                                                  |
| ZZ                                      | Input            | Snooze Enable: This active HIGH, asynchronous input causes the device to enter a low-power standby mode in which all data in the memory array is retained. When ZZ is active, all other inputs are ignored. This pin has an internal pull-down and can be left unconnected.                                                                                                                                                                      |
| NF/DQPa<br>NF/DQP<br>NF/DQPc<br>NF/DQPd | NF<br>I/O        | No Function/Parity Data I/Os: On the x32 version, these are No Function (NF). On the x18 version, byte "a" parity is DQPa; byte "b" parity is DQPb. On the x36 version, byte "a" parity is DQPa; byte "b" parity is DQPb; byte "c" parity is DQPc; byte "d" parity is DQPd. No Function pins are internally connected to the die and have the capacitance of an input pin. It is allowable to leave these pins unconnected or driven by signals. |
| VDD                                     | Supply           | Power Supply: See DC Electrical Characteristics and Operating Conditions for range.                                                                                                                                                                                                                                                                                                                                                              |
| VddQ                                    | Supply           | Isolated Output Buffer Supply: See DC Electrical Characteristics and Operating Conditions for range.                                                                                                                                                                                                                                                                                                                                             |




# **Table 1: TQFP Pin Descriptions (Continued)**

| SYMBOL | TYPE   | DESCRIPTION                                                                                                                |
|--------|--------|----------------------------------------------------------------------------------------------------------------------------|
| Vss    | Supply | Ground: GND.                                                                                                               |
| NC     | -      | No Connect: These signals are not internally connected and may be connected to ground to improve package heat dissipation. |
| DNU    | -      | Do Not Use: These signals may either be unconnected or wired to GND to minimize thermal impedance.                         |



## Figure 6: Ball Layout (Top View) 165-Ball FBGA



- 1. No Function (NF) is used on the x32 version. Parity (DQPx) is used on the x36 version.
- 2. Ball 2P is reserved for 72Mb address expansion.



# **Table 2: FBGA Ball Descriptions**

| SYMBOL                       | TYPE             | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADV/LD#                      | Input            | Synchronous Address Advance/Load: When HIGH, this input is used to advance the internal burst counter, controlling burst access after the external address is loaded. When ADV/LD# is HIGH, R/W# is ingored. A LOW on ADV/LD# clocks a new address at the CLK rising edge.                                                                                                                                                                                                                                                                                      |
| BWa#<br>BWb#<br>BWc#<br>BWd# | Input            | Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written and must meet the setup and hold times around the rising edge of CLK. A byte write enable is LOW for a WRITE cycle and HIGH for a READ cycle. For the x18 version, BWa# controls DQa balls and DQPa; BWb# controls DQb balls and DQPb. For the x32 and x36 versions, BWa# controls DQa balls and DQPa; BWb# controls DQb balls and DQPb; BWc# controls DQc balls and DQPc; BWd# controls DQd balls and DQPd. Parity is only available on the x18 and x36 versions. |
| CE#                          | Input            | Synchronous Chip Enable: This active LOW input is used to enable the device. CE# is sampled only when a new external address is loaded (ADV/LD# LOW).                                                                                                                                                                                                                                                                                                                                                                                                           |
| CE2#                         | Input            | Synchronous Chip Enable: This active LOW input is used to enable the device and is sampled only when a new external address is loaded (ADV/LD# LOW). This input can be used for memory depth expansion.                                                                                                                                                                                                                                                                                                                                                         |
| CE2                          | Input            | Synchronous Chip Enable: This active HIGH input is used to enable the device and is sampled only when a new external address is loaded (ADV/LD# LOW). This input can be used for memory depth expansion.                                                                                                                                                                                                                                                                                                                                                        |
| CKE#                         | Input            | Synchronous Clock Enable: This active LOW input permits CLK to propogate throughout the device. When CKE# is HIGH, the device ignores the CLK input and effectively internally extends the previous CLK cycle. This input must meet the setup and hold times around the rising edge of CLK.                                                                                                                                                                                                                                                                     |
| CLK                          | Input            | Clock: This signal registers the address, data, chip enable, byte write enables, and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge.                                                                                                                                                                                                                                                                                                                                             |
| MODE (LB0#)                  | Input            | Mode: This input selects the burst sequence. A LOW on this input selects "linear burst." NC or HIGH on this input selects "interleaved burst." Do not alter input state while device is operating. LBO# is the JEDEC-standard term for MODE.                                                                                                                                                                                                                                                                                                                    |
| OE#(G#)                      | Input            | Output Enable: This active LOW, asynchronous input enables the data I/O output drivers. G# is the JEDEC-standard term for OE#.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| R/W#                         | Input            | Read/Write: This input determines the cycle type when ADV/LD# is LOW and is the only means for determining READs and WRITEs. READ cycles may not be converted into WRITEs (and vice versa) other than by loading a new address. A LOW on this ball permits BYTE WRITE operations to meet the setup and hold times around the rising edge of CLK. Full bus-width WRITEs occur if all byte write enables are LOW.                                                                                                                                                 |
| SA0<br>SA1<br>SA             | Input            | Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK. SAO and SA1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.                                                                                                                                                                                                                                                                                                 |
| TMS<br>TDI<br>TCK            | Input            | IEEE 1149.1 Test Inputs: JEDEC-standard 2.5V I/O levels. These balls may be left not connected if the JTAG function is not used in the circuit.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ZZ                           | Input            | Snooze Enable: This active HIGH, asynchronous input causes the device to enter a low-power standby mode in which all data in the memory array is retained. When ZZ is active, all other inputs are ignored. This ball has an internal pull-down and can be left unconnected.                                                                                                                                                                                                                                                                                    |
| DQa<br>DQb<br>DQc<br>DQd     | Input/<br>Output | SRAM Data I/Os: For the x18 version, byte "a" is associated with DQa balls; byte "b" is associated with DQb balls. For the x32 and x36 versions, byte "a" is associated with DQa balls; byte "b" is associated with DQb balls; byte "c" is associated with DQc balls; byte "d" is associated with DQd balls. Input data must meet setup and hold times around the rising edge of CLK.                                                                                                                                                                           |



# **Table 2: FBGA Ball Descriptions (Continued)**

| SYMBOL  | TYPE   | DESCRIPTION                                                                                                                                                         |
|---------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NF/DQPa | NF     | No Function/Parity Data I/Os: On the x32 version, these are No Function (NF). On the x18                                                                            |
| NF/DQPb | 1/0    | version, byte "a" parity is DQPa; byte "b" parity is DQPb. On the x36 version, byte "a" parity                                                                      |
| NF/DQPc |        | is DQPa; byte "b" parity is DQPb; byte "c" parity is DQPc; byte "d" parity is DQPd. No                                                                              |
| NF/DQPd |        | Function balls are internally connected to the die and have the capacitance of an input pin. It is allowable to leave these balls unconnected or driven by signals. |
| TDO     | Output | IEEE 1149.1 Test Output: JEDEC-standard 2.5V I/O level.                                                                                                             |
| VDD     | Supply | Power Supply: See DC Electrical Characteristics and Operating Conditions for range.                                                                                 |
| VddQ    | Supply | Isolated Output Buffer Supply: See DC Electrical Characteristics and Operating Conditions for                                                                       |
|         |        | range.                                                                                                                                                              |
| Vss     | Supply | Ground: GND.                                                                                                                                                        |
| NC      | _      | No Connect: These signals are not internally connected and may be connected to ground to improve package heat dissipation.                                          |



Table 3: Interleaved Burst Address Table (Mode = NC or HIGH)

| FIRST ADDRESS<br>(EXTERNAL) | SECOND ADDRESS<br>(INTERNAL) | THIRD ADDRESS<br>(INTERNAL) | FOURTH ADDRESS<br>(INTERNAL) |
|-----------------------------|------------------------------|-----------------------------|------------------------------|
| XX00                        | XX01                         | XX10                        | XX11                         |
| XX01                        | XX00                         | XX11                        | XX10                         |
| XX10                        | XX11                         | XX00                        | XX01                         |
| XX11                        | XX10                         | XX01                        | XX00                         |

**Table 4: Linear Burst Address Table (Mode = LOW)** 

| FIRST ADDRESS<br>(EXTERNAL) | SECOND ADDRESS<br>(INTERNAL) | THIRD ADDRESS<br>(INTERNAL) | FOURTH ADDRESS<br>(INTERNAL) |
|-----------------------------|------------------------------|-----------------------------|------------------------------|
| XX00                        | XX01                         | XX10                        | XX11                         |
| XX01                        | XX10                         | XX11                        | XX00                         |
| XX10                        | XX11                         | XX00                        | XX01                         |
| XX11                        | XX00                         | XX01                        | XX10                         |

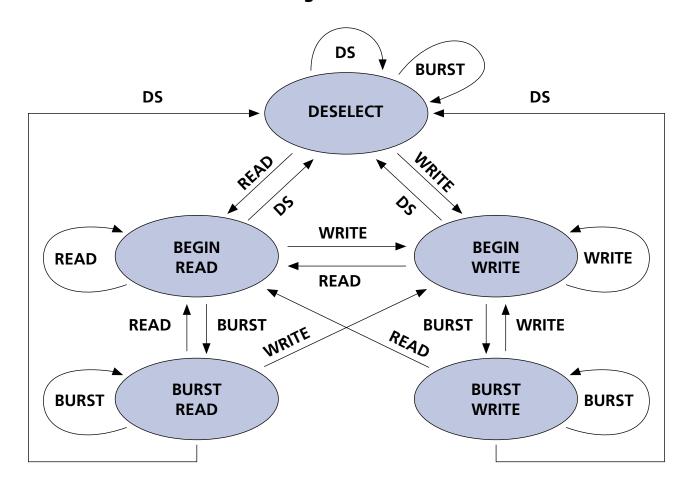
**Table 5: Partial Truth Table for READ/WRITE Commands (x18)** 

| FUNCTION        | R/W# | BWa# | BWb# |
|-----------------|------|------|------|
| READ            | Н    | Х    | X    |
| WRITE Byte "a"  | L    | L    | Н    |
| WRITE Byte "b"  | L    | Н    | L    |
| WRITE All Byte  | L    | L    | L    |
| WRITE ABORT/NOP | L    | Н    | Н    |

NOTE:

Using R/W# and byte write(s), any one or more bytes may be written.

**Table 6: Partial Truth Table for READ/WRITE Commands (x32/x36)** 


| FUNCTION        | R/W# | BWa# | BWb# | BWc# | BWd# |
|-----------------|------|------|------|------|------|
| READ            | Н    | Х    | Х    | Х    | Х    |
| WRITE Byte "a"  | L    | L    | Н    | Н    | Н    |
| WRITE Byte "b"  | L    | Н    | L    | Н    | Н    |
| WRITE Byte "c"  | L    | Н    | Н    | L    | Н    |
| WRITE Byte "d"  | L    | Н    | Н    | Н    | L    |
| WRITE All Byte  | L    | L    | L    | L    | L    |
| WRITE ABORT/NOP | L    | Н    | Н    | Н    | Н    |

NOTE:

Using R/W# and byte write(s), any one or more bytes may be written.



Figure 7: State Diagram For ZBT SRAM



#### KEY:

| COMMAND | OPERATION         |
|---------|-------------------|
| DS      | DESELECT          |
| READ    | New READ          |
| WRITE   | New WRITE         |
| BURST   | BURST READ,       |
|         | BURST WRITE, or   |
|         | CONTINUE DESELECT |

- 1. A STALL or IGNORE CLOCK EDGE cycle is not shown in the above diagram. This is because CKE# HIGH only blocks the clock (CLK) input and does not change the state of the device.
- 2. States change on the rising edge of the clock (CLK).



### **Table 7: Truth Table**

Notes: 5-10

| OPERATION                        | ADDRESS<br>USED | CE# | CE2# | CE2 | ZZ | ADV/<br>LD# | R/W# | BWx | OE# | CKE# | CLK | DQ     | NOTES          |
|----------------------------------|-----------------|-----|------|-----|----|-------------|------|-----|-----|------|-----|--------|----------------|
| DESELECT CYCLE                   | None            | Н   | Х    | Х   | L  | L           | Х    | Х   | Х   | L    | L→H | High-Z |                |
| DESELECT Cycle                   | None            | Х   | Н    | Х   | L  | L           | Х    | Х   | Х   | L    | L→H | High-Z |                |
| DESELECT Cycle                   | None            | Х   | Х    | L   | L  | L           | Х    | Х   | Х   | L    | L→H | High-Z |                |
| CONTINUE DESELECT<br>Cycle       | None            | Х   | Х    | Х   | L  | Н           | Х    | Х   | Х   | L    | L→H | High-Z | 1              |
| READ Cycle (Begin<br>Burst)      | External        | L   | L    | Н   | L  | L           | Н    | Х   | L   | L    | L→H | Q      |                |
| READ Cycle<br>(Continue Burst)   | Next            | Х   | Х    | Х   | L  | Н           | Х    | Х   | L   | L    | L→H | Q      | 1, 11          |
| NOP/DUMMY READ<br>(Begin Burst)  | External        | L   | L    | Н   | L  | L           | Н    | Х   | Н   | L    | L→H | High-Z | 2              |
| DUMMY READ<br>(Continue Burst)   | Next            | Х   | Х    | Х   | L  | Н           | Х    | Х   | Н   | L    | L→H | High-Z | 1, 2, 11       |
| WRITE Cycle (Begin<br>Burst)     | External        | L   | L    | Н   | L  | L           | L    | L   | Х   | L    | L→H | D      | 3              |
| WRITE Cycle<br>(Continue Burst)  | Next            | Х   | Х    | Х   | L  | Н           | Х    | L   | Х   | L    | L→H | D      | 1, 3, 11       |
| NOP/WRITE ABORT<br>(Begin Burst) | None            | L   | L    | Н   | L  | L           | L    | Н   | Х   | L    | L→H | High-Z | 2, 3           |
| WRITE ABORT<br>(Continue Burst)  | Next            | Х   | Х    | Х   | L  | Н           | Х    | Н   | Х   | L    | L→H | High-Z | 1, 2, 3,<br>11 |
| IGNORE CLOCK EDGE<br>(Stall)     | Current         | Х   | Х    | Х   | L  | Х           | Х    | Х   | Х   | Н    | L→H | _      | 4              |
| SNOOZE MODE                      | None            | Х   | Х    | Χ   | Н  | Χ           | Х    | Х   | Х   | Х    | Χ   | High-Z |                |

- CONTINUE BURST cycles, whether READ or WRITE, use the same control inputs. The type of cycle performed (READ
  or WRITE) is chosen in the initial BEGIN BURST cycle. A Continue DESELECT cycle can only be entered if a DESELECT
  cycle is executed first.
- 2. DUMMY READ and WRITE ABORT cycles can be considered NOPs because the device performs no external operation. A WRITE ABORT means a WRITE command is given, but no operation is performed.
- 3. OE# may be wired LOW to minimize the number of control signals to the SRAM. The device will automatically turn off the output drivers during a WRITE cycle. OE# may be used when the bus turn-on and turn-off times do not meet an application's requirements.
- 4. If an IGNORE CLOCK EDGE command occurs during a READ operation, the DQ bus will remain active (Low-Z). If it occurs during a WRITE cycle, the bus will remain in High-Z. No WRITE operations will be performed during the IGNORE CLOCK EDGE cycle.
- 5. X means "Don't Care." H means logic HIGH. L means logic LOW. BWx = H means all byte write signals (BWa#, BWb#, BWc#, and BWd#) are HIGH. BWx = L means one or more byte write signals are LOW.
- 6. BWa# enables WRITEs to byte "a" (DQa pins/balls); BWb# enables WRITEs to byte "b" (DQb pins/balls); BWc# enables WRITEs to byte "c" (DQc pins/balls); BWd# enables WRITEs to byte "d" (DQd pins/balls).
- 7. All inputs except OE# and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
- 8. Wait states are inserted by setting CKE# HIGH.
- 9. This device contains circuitry that will ensure that the outputs will be in High-Z during power-up.
- 10. The device incorporates a 2-bit burst counter. Address wraps to the initial address every fourth BURST CYCLE.
- 11. The address counter is incremented for all CONTINUE BURST CYCLES.



# Absolute Maximum Ratings 3.3V VDD

| Voltage on VDD Supply                    |
|------------------------------------------|
| Relative to Vss0.5V to +4.6V             |
| Voltage on VDDQ Supply                   |
| Relative to Vss0.5V to VDD               |
| Vin (DQs)0.5V to VDDQ + $0.5$ V          |
| VIN (Inputs)0.5V to VDD + $0.5$ V        |
| Storage Temperature (TQFP)55°C to +150°C |
| Storage Temperature (FBGA)55°C to +125°C |
| Junction Temperature +150°C              |
| Short Circuit Output Current 100mA       |

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Junction temperature depends upon package type, cycle time, loading, ambient temperature, and airflow. See Micron Technical Note TN-05-14 for more information.

#### **2.5V VDD**

| Voltage on VDD Supply                    |
|------------------------------------------|
| Relative to Vss0.3V to +3.6V             |
| Voltage on VDDQ Supply Relative          |
| to Vss0.3V to +3.6V                      |
| $VIN (DQs) \dots -0.3V to VDDQ + 0.3V$   |
| VIN (Inputs)0.3V to VDD + $0.3$ V        |
| Storage Temperature (TQFP)55°C to +150°C |
| Storage Temperature (FBGA)55°C to +125°C |
| Junction Temperature +150°C              |
| Short Circuit Output Current 100mA       |
|                                          |

# Table 8: 3.3V VDD, 3.3V I/O DC Electrical Characteristics and Operating Conditions

Notes appear following parameter tables on page 18;  $0^{\circ}C \le T_{A} \le +70^{\circ}C$ ; VDD and VDDQ = 3.3V  $\pm 0.165$ V unless otherwise noted

| DESCRIPTION                   | CONDITIONS                               | SYMBOL | MIN   | MAX       | UNITS | NOTES |
|-------------------------------|------------------------------------------|--------|-------|-----------|-------|-------|
| Input High (Logic 1) Voltage  |                                          | Vih    | 2.0   | VDD + 0.3 | V     | 1, 2  |
| Input Low (Logic 0) Voltage   |                                          | VIL    | -0.3  | 0.8       | V     | 1, 2  |
| Input Leakage Current         | $0V \le V$ IN $\le V$ DD                 | ILı    | -1.0  | 1.0       | μΑ    | 4     |
| Output Leakage Current        | Output(s) disabled, $0V \le VIN \le VDD$ | ILo    | -1.0  | 1.0       | μΑ    |       |
| Output High Voltage           | Iон = -4.0mA                             | Voн    | 2.4   |           | V     | 1, 5  |
| Output Low Voltage            | IOL = 8.0mA                              | Vol    |       | 0.4       | V     | 1, 5  |
| Supply Voltage                |                                          | Vdd    | 3.135 | 3.465     | V     | 1     |
| Isolated Output Buffer Supply |                                          | VddQ   | 3.135 | VDD       | V     | 1, 6  |



## Table 9: 3.3V VDD, 2.5V I/O DC Electrical Characteristics and Operating Conditions

Notes appear following parameter tables on page 18;  $0^{\circ}C \le T_{A} \le +70^{\circ}C$ ; VDD = 3.3V ±0.165V and VDDQ = 2.5V ±0.125V unless otherwise noted

| DESCRIPTION                   | CONDITIONS                                      | SYMBOL | MIN   | MAX        | UNITS | NOTES |
|-------------------------------|-------------------------------------------------|--------|-------|------------|-------|-------|
| Input High (Logic 1) Voltage  | Data bus (DQx)                                  | VIHQ   | 1.7   | VDDQ + 0.3 | V     | 1, 2  |
|                               | Inputs                                          | Vih    | 1.7   | VDD + 0.3  | V     | 1, 2  |
| Input Low (Logic 0) Voltage   |                                                 | VIL    | -0.3  | 0.7        | V     | 1, 2  |
| Input Leakage Current         | $0V \leq V \text{IN} \leq V \text{DD}$          | ILı    | -1.0  | 1.0        | μΑ    | 4     |
| Output Leakage Current        | Output(s) disabled, $0V \le VIN \le VDDQ$ (DQx) | lLo    | -1.0  | 1.0        | μΑ    |       |
| Output High Voltage           | Iон = -2.0mA                                    | Voн    | 1.7   | -          | V     | 1, 5  |
|                               | Iон = -1.0mA                                    | Voн    | 2.0   | -          | V     | 1, 5  |
| Output Low Voltage            | IOL = 2.0mA                                     | Vol    | -     | 0.7        | V     | 1, 5  |
|                               | IOL = 1.0mA                                     | Vol    | -     | 0.4        | V     | 1, 5  |
| Supply Voltage                |                                                 | VDD    | 3.135 | 3.465      | V     | 1     |
| Isolated Output Buffer Supply |                                                 | VddQ   | 2.375 | 2.625      | V     | 1, 6  |

## Table 10: 2.5V VDD, 2.5V I/O DC Electrical Characteristics and Operating Conditions

Notes appear following parameter tables on page 18;  $0^{\circ}C \leq T_{A} \leq +70^{\circ}C$ ; VDD and VDDQ = 2.5V  $\pm 0.125$ V unless otherwise noted

| DESCRIPTION                   | CONDITIONS                                         | SYMBOL | MIN   | MAX        | UNITS | NOTES |
|-------------------------------|----------------------------------------------------|--------|-------|------------|-------|-------|
| Input High (Logic 1) Voltage  | Data bus (DQx)                                     | VihQ   | 1.7   | VDDQ + 0.3 | V     | 1, 3  |
|                               | Inputs                                             | VIH    | 1.7   | VDD + 0.3  | V     | 1, 3  |
| Input Low (Logic 0) Voltage   |                                                    | VIL    | -0.3  | 0.7        | V     | 1, 3  |
| Input Leakage Current         | $0V \le VIN \le VDD$                               | ILı    | -1.0  | 1.0        | μΑ    | 4     |
| Output Leakage Current        | Output(s) disabled,<br>$0V \le VIN \le VDDQ$ (DQx) | ILo    | -1.0  | 1.0        | μΑ    |       |
| Output High Voltage           | Iон = -2.0mA                                       | Voн    | 1.7   | -          | V     | 1, 5  |
|                               | Iон = -1.0mA                                       | Voн    | 2.0   | -          | V     | 1, 5  |
| Output Low Voltage            | IOL = 2.0mA                                        | Vol    | _     | 0.7        | V     | 1, 5  |
|                               | IOL = 1.0mA                                        | Vol    | _     | 0.4        | V     | 1, 5  |
| Supply Voltage                |                                                    | VDD    | 2.375 | 2.625      | V     | 1     |
| Isolated Output Buffer Supply |                                                    | VDDQ   | 2.375 | 2.625      | V     | 1, 6  |



# **Table 11: TQFP Capacitance**

Note 11; notes appear following parameter tables on page 18

| DESCRIPTION                   | CONDITIONS                       | SYMBOL | TYP | MAX | UNITS |
|-------------------------------|----------------------------------|--------|-----|-----|-------|
| Control Input Capacitance     |                                  | Cı     | 4.2 | 5   | pF    |
| Input/Output Capacitance (DQ) | T <sub>A</sub> = 25°C; f = 1 MHz | Co     | 3.5 | 4   | pF    |
| Address Capacitance           | VDD = 3.3V                       | CA     | 4   | 5   | pF    |
| Clock Capacitance             |                                  | Сск    | 4.2 | 5   | pF    |

## **Table 12: FBGA Capacitance**

Note 11; notes appear following parameter tables on page 18

| DESCRIPTION                       | CONDITIONS                     | SYMBOL | TYP | MAX | UNITS |
|-----------------------------------|--------------------------------|--------|-----|-----|-------|
| Address/Control Input Capacitance |                                | Cı     | 4   | 5   | pF    |
| Output Capacitance (Q)            | $T_A = 25^{\circ}C; f = 1 MHz$ | Co     | 4   | 4.5 | pF    |
| Clock Capacitance                 |                                | Сск    | 5   | 5.5 | pF    |

# **Table 13: TQFP Thermal Resistance**

Note 11; notes appear following parameter tables on page 18

| DESCRIPTION                                     | CONDITIONS                                                                                   | SYMBOL          | TYP | UNITS |
|-------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------|-----|-------|
| Thermal Resistance<br>(Junction to Ambient)     | Test conditions follow standard test methods and procedures for measuring thermal impedance, | $\theta_{JA}$   | TBD | °C/W  |
| Thermal Resistance<br>(Junction to Top of Case) | per EIA/JESD51.                                                                              | θ <sub>JC</sub> | TBD | °C/W  |

### **Table 14: FBGA Thermal Resistance**

Note 11; notes appear following parameter tables on page 18

| DESCRIPTION                           | CONDITIONS                                                      | SYMBOL          | TYP | UNITS |
|---------------------------------------|-----------------------------------------------------------------|-----------------|-----|-------|
| Junction to Ambient (Airflow of 1m/s) | Test conditions follow standard test methods                    | $\theta_{JA}$   | TBD | °C/W  |
| Junction to Case (Top)                | and procedures for measuring thermal impedance, per EIA/JESD51. | θ <sub>JC</sub> | TBD | °C/W  |
| Junction to Balls (Bottom)            | per EI/025051.                                                  | $\theta_{JB}$   | TBD | °C/W  |



# Table 15: 3.3V VDD, IDD Operating Conditions and Maximum Limits (2 Meg x 18 and 1 Meg x 32/36)

Notes appear following parameter tables on page 18;  $0^{\circ}C \le T_{A} \le +70^{\circ}C$ ; VDD = 3.3V ±0.165V and VDDQ = 3.3V ±0.165V or 2.5V ±0.125V unless otherwise noted

|                                    |                                                                                                                                                  |       |     |      | MAX |     |       |         |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|-----|-----|-------|---------|
| DESCRIPTION                        | CONDITIONS                                                                                                                                       | SYM   | TYP | -8.8 | -10 | -11 | UNITS | NOTES   |
| Power Supply<br>Current: Operating | Device selected; All inputs ≤ VIL<br>or ≥ VIH; Cycle time ≥ <sup>t</sup> KC (MIN);<br>VDD = MAX; Outputs open                                    | ldd   | TBD | 300  | 280 | 260 | mA    | 7, 8, 9 |
| Power Supply<br>Current: Idle      | Device selected; VDD = MAX;<br>CKE# $\geq$ VIH; All inputs $\leq$ VSS + 0.2<br>or $\geq$ VDD - 0.2; Cycle time $\geq$ <sup>t</sup> KC (MIN)      | IDD1  | TBD | 115  | 110 | 100 | mA    | 7, 8, 9 |
| CMOS Standby                       | Device deselected; $VDD = MAX$ ;<br>All inputs $\leq Vss + 0.2$ or $\geq VDD - 0.2$ ;<br>All inputs static; CLK frequency = 0                    | ISB2  | TBD | 30   | 30  | 30  | mA    | 8, 9    |
| Clock Running                      | Device deselected; VDD = MAX;<br>ADV/LD# $\geq$ VIH; All inputs $\leq$ Vss + 0.2<br>or $\geq$ VDD - 0.2; Cycle time $\geq$ <sup>t</sup> KC (MIN) | lsB4  | TBD | 115  | 110 | 100 | mA    | 8, 9    |
| Snooze Mode                        | ZZ ≥ VIH                                                                                                                                         | Isb2z | TBD | 30   | 30  | 30  | mA    | 9       |

# Table 16: 2.5V VDD, IDD Operating Conditions and Maximum Limits (2 Meg x 18 and 1 Meg x 32/36)

Notes appear following parameter tables on page 18;  $0^{\circ}C \le T_{A} \le +70^{\circ}C$ ; VDD = 3.3V  $\pm 0.165$ V and VDDQ = 3.3V  $\pm 0.165$ V or 2.5V  $\pm 0.125$ V unless otherwise noted

|                                    |                                                                                                                                                  |       |     |      | MAX |     |       |          |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|-----|-----|-------|----------|
| DESCRIPTION                        | CONDITIONS                                                                                                                                       | SYM   | TYP | -8.8 | -10 | -11 | UNITS | NOTES    |
| Power Supply<br>Current: Operating | Device selected; All inputs $\leq$ VIL<br>or $\geq$ VIH; Cycle time $\geq$ <sup>t</sup> KC (MIN);<br>VDD = MAX; Outputs open                     | ldd   | TBD | 265  | 255 | 230 | mA    | 7, 8, 10 |
| Power Supply<br>Current: Idle      | Device selected; VDD = MAX;<br>CKE# $\geq$ VIH; All inputs $\leq$ Vss + 0.2<br>or $\geq$ VDD - 0.2; Cycle time $\geq$ <sup>t</sup> KC (MIN)      | IDD1  | TBD | 75   | 70  | 55  | mA    | 7, 8, 10 |
| CMOS Standby                       | Device deselected; VDD = MAX;<br>All inputs $\leq$ Vss + 0.2 or $\geq$ VDD - 0.2;<br>All inputs static; CLK frequency = 0                        | ISB2  | TBD | 30   | 30  | 30  | mA    | 7, 8, 10 |
| Clock Running                      | Device deselected; VDD = MAX;<br>ADV/LD# $\geq$ VIH; All inputs $\leq$ VSS + 0.2<br>or $\geq$ VDD - 0.2; Cycle time $\geq$ <sup>t</sup> KC (MIN) | ISB4  | TBD | 75   | 70  | 55  | mA    | 7, 8, 10 |
| Snooze Mode                        | ZZ ≥ VIH                                                                                                                                         | Isb2Z | TBD | 30   | 30  | 30  | mA    | 10       |



## **Table 17: AC Electrical Characteristics and Recommended Operating Conditions**

Notes 12-14; notes appear following parameter tables on page 18;  $0^{\circ}C \le T_{A} \le +70^{\circ}C$ ; VDD = 3.3V ±0.165V unless otherwise noted

|                           |                   |     | 8.8 | -    | 10  | -    | 11  |       |            |
|---------------------------|-------------------|-----|-----|------|-----|------|-----|-------|------------|
| DESCRIPTION               | SYMBOL            | MIN | MAX | MIN  | MAX | MIN  | MAX | UNITS | NOTES      |
| Clock                     |                   |     |     |      |     |      |     |       |            |
| Clock cycle time          | <sup>t</sup> KHKH | 8.8 |     | 10.0 |     | 11.0 |     | ns    |            |
| Clock frequency           | <sup>f</sup> KF   |     | 113 |      | 100 |      | 90  | MHz   |            |
| Clock HIGH time           | <sup>t</sup> KHKL | 2.5 |     | 2.5  |     | 3.0  |     | ns    | 15         |
| Clock LOW time            | <sup>t</sup> KLKH | 2.5 |     | 2.5  |     | 3.0  |     | ns    | 15         |
| <b>Output Times</b>       |                   |     |     | ı    |     |      |     |       |            |
| Clock to output valid     | <sup>t</sup> KHQV |     | 6.5 |      | 7.5 |      | 8.5 | ns    |            |
| Clock to output invalid   | <sup>t</sup> KHQX | 2.5 |     | 3.0  |     | 3.0  |     | ns    | 16         |
| Clock to output in Low-Z  | <sup>t</sup> KHQX | 2.5 |     | 3.0  |     | 3.0  |     | ns    | 11, 16, 17 |
| Clock to output in High-Z | <sup>t</sup> KHQZ |     | 4.0 |      | 5.0 |      | 5.0 | ns    | 11, 16, 17 |
| OE# to output valid       | <sup>t</sup> GLQV |     | 3.5 |      | 4.0 |      | 5.0 | ns    | 12         |
| OE# to output in Low-Z    | <sup>t</sup> GLQX | 0   |     | 0    |     | 0    |     | ns    | 11, 16, 17 |
| OE# to output in High-Z   | <sup>t</sup> GHQZ |     | 3.5 |      | 4.0 |      | 5.0 | ns    | 11, 16, 17 |
| Setup Times               |                   |     |     | •    | I.  | l .  |     |       |            |
| Address                   | <sup>t</sup> AVKH | 2.0 |     | 2.0  |     | 2.0  |     | ns    | 18         |
| Clock enable (CKE#)       | <sup>t</sup> EVKH | 2.0 |     | 2.0  |     | 2.0  |     | ns    | 18         |
| Control signals           | <sup>t</sup> CVKH | 2.0 |     | 2.0  |     | 2.0  |     | ns    | 18         |
| Data-in                   | <sup>t</sup> DVKH | 2.0 |     | 2.0  |     | 2.0  |     | ns    | 18         |
| Hold Times                |                   | l   | l   |      | l . |      | ı   |       |            |
| Address                   | <sup>t</sup> KHAX | 0.5 |     | 0.5  |     | 0.5  |     | ns    | 18         |
| Clock enable (CKE#)       | <sup>t</sup> KHEX | 0.5 |     | 0.5  |     | 0.5  |     | ns    | 18         |
| Control signals           | <sup>t</sup> KHCX | 0.5 |     | 0.5  |     | 0.5  |     | ns    | 18         |
| Data-in                   | <sup>t</sup> KHDX | 0.5 |     | 0.5  |     | 0.5  |     | ns    | 18         |



#### **Notes**

- 1. All voltages referenced to Vss (GND).
- 2. For 3.3V VDD:

Overshoot:  $VIH \le +4.6V$  for  $t \le {}^tKHKH/2$  for  $I \le 20mA$ 

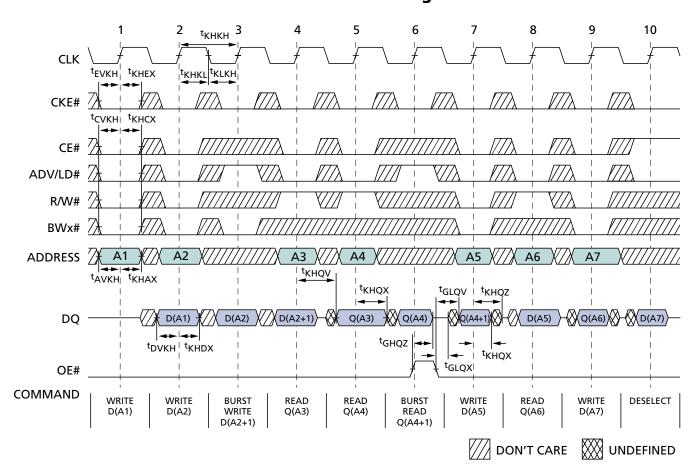
Undershoot:VIL  $\geq$  -0.7V for  $t \leq$  <sup>t</sup>KHKH/2 for  $I \leq$  20mA

Power-up: VIH  $\leq$  +3.6V and VDD  $\leq$  3.135V for  $t \leq$  200ms

3. For 2.5V VDD:

Overshoot:  $VIH \le +3.6V$  for  $t \le {}^tKHKH/2$  for  $I \le 20mA$ 

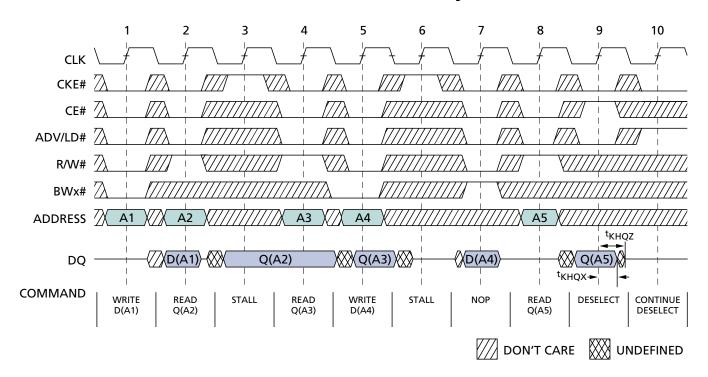
Undershoot:VIL  $\geq$  -0.5V for  $t \leq$  <sup>t</sup>KHKH/2 for  $I \leq$  20mA


Power-up: VIH  $\leq$  +2.65V and VDD  $\leq$  2.375V for  $t \leq$  200ms

- 4. The MODE pin/ball has an internal pull-up, and input leakage =  $\pm 10\mu$ A.
- 5. The load used for VOH, VOL testing is shown in Figures 11 and 12 for 3.3V I/O and Figures 13 and 14 for 2.5V I/O. AC load current is higher than the shown DC values. AC I/O curves are available upon request.
- 6. VDDQ should never exceed VDD. VDD and VDDQ can be externally wired together to the same power supply.
- 7. IDD is specified with no output current and increases with faster cycle times. IDDQ increases with faster cycle times and greater output loading.
- 8. "Device deselected" means device is in power-down mode as defined in the truth table. "Device selected" means device is active (not in power-down mode).

- 9. Typical values are measured at 3.3V, 25°C, and 12ns cycle time.
- 10. Typical values are measured at 2.5V, 25°C, and 12ns cycle time.
- 11. This parameter is sampled.
- 12. OE# can be considered a "Don't Care" during WRITEs; however, controlling OE# can help finetune a system for turnaround timing.
- 13. Test conditions as specified with the output loading shown in Figures 11 and 12 for 3.3V I/O and Figures 13 and 14 for 2.5V I/O unless otherwise noted.
- 14. A WRITE cycle is defined by R/W# LOW, having been registered into the device at ADV/LD# LOW. A READ cycle is defined by R/W# HIGH with ADV/ LD# LOW. Both cases must meet setup and hold times.
- 15. Measured as HIGH above VIH and LOW below VIL.
- 16. Refer to Technical Note TN-55-01, "Designing with ZBT SRAMs," for a more thorough discussion of these parameters.
- 17. This parameter is measured with the output loading shown in Figure 12 for 3.3V I/O and Figure 14 for 2.5V I/O.
- 18. This is a synchronous device. All addresses must meet the specified setup and hold times with stable logic levels for all rising edges of CLK when the chip is enabled. To remain enabled, chip enable must be valid at each rising edge of CLK when ADV/LD# is LOW.




# Figure 8: READ/WRITE Timing



- 1. For these waveforms, ZZ is tied LOW.
- 2. Burst sequence order is determined by MODE (0 = linear, 1 = interleaved). BURST operations are optional.
- 3. CE# represents three signals. When CE# = 0, it represents CE# = 0, CE2# = 0, CE2 = 1.
- 4. Data coherency is provided for all possible operations. If a READ is initiated, the most current data is used. The most recent data may be from the input data register.



# Figure 9: NOP, STALL, AND DESELECT Cycles



- 1. The IGNORE CLOCK EDGE or STALL cycle (clock 3) illustrates CKE# being used to create a "pause." A WRITE is not performed during this cycle.
- 2. For these waveforms, ZZ and OE# are tied LOW.
- 3. CE# represents three signals. When CE# = 0, it represents CE# = 0, CE2# = 0, CE2 = 1.
- 4. Data coherency is provided for all possible operations. If a READ is initiated, the most current data is used. The most recent data may be from the input data register.



#### **SNOOZE MODE**

SNOOZE MODE is a low-current, power-down mode in which the device is deselected and current is reduced to ISB2Z. The duration of SNOOZE MODE is dictated by the length of time the ZZ is in a HIGH state. After the device enters SNOOZE MODE, all inputs except ZZ become disabled and all outputs go to High-Z.

The ZZ is an asynchronous, active HIGH input that causes the device to enter SNOOZE MODE. When the ZZ becomes a logic HIGH, ISB2Z is guaranteed after the time <sup>t</sup>ZZI is met. Any READ or WRITE operation pending when the device enters SNOOZE MODE is not guaranteed to complete successfully. Therefore, SNOOZE MODE must not be initiated until valid pending operations are completed. Similarly, when exiting SNOOZE MODE during <sup>t</sup>RZZ, only a DESELECT or READ cycle should be given.

**Table 18: SNOOZE MODE Electrical Characteristics** 

| DESCRIPTION                        | CONDITIONS | SYMBOL            | MIN               | MAX               | UNITS | NOTES |
|------------------------------------|------------|-------------------|-------------------|-------------------|-------|-------|
| Current during SNOOZE MODE         | ZZ ≥ VIH   | ISB2Z             |                   | 30                | mA    |       |
| ZZ active to input ignored         |            | <sup>t</sup> ZZ   |                   | <sup>t</sup> KHKH | ns    | 1     |
| ZZ inactive to input sampled       |            | <sup>t</sup> RZZ  | <sup>t</sup> KHKH |                   | ns    | 1     |
| ZZ active to snooze current        |            | <sup>t</sup> ZZI  |                   | <sup>t</sup> KHKH | ns    | 1     |
| ZZ inactive to exit snooze current |            | <sup>t</sup> RZZI | 0                 |                   | ns    | 1     |

Figure 10: SNOOZE MODE Waveform CLK <sup>t</sup>zz  $^{\mathsf{t}}$ RZZ ZZ <sup>t</sup>zzı I SUPPLY I ISB2Z — <sup>t</sup>RZZI **ALL INPUTS DESELECT or READ Only** (except ZZ) Outputs (Q) High-Z /// DON'T CARE

<sup>1.</sup> This parameter is sampled.



# 3.3V VDD, 3.3V I/O AC Test Conditions

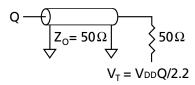
| Input pulse levels            | VIH = (VDD/2.2) + 1.5V |
|-------------------------------|------------------------|
|                               | VIL = (VDD/2.2) - 1.5V |
| Input rise and fall times     | 1ns                    |
| Input timing reference levels | VDD/2.2                |
| Output reference levels       | VDDQ/2.2               |
| Output load                   | See Figures 11 and 12  |

### 3.3V VDD, 2.5V I/O AC Test Conditions

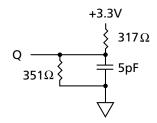
| Input pulse levels            | VIH = (VDD/2.64) + 1.25V |
|-------------------------------|--------------------------|
|                               | VIL = (VDD/2.64) - 1.25V |
| Input rise and fall times     | 1ns                      |
| Input timing reference levels | VDD/2.64                 |
| Output reference levels       | VDDQ/2                   |
| Output load                   | See Figures 13 and 14    |

## 2.5V VDD, 2.5V I/O AC Test Conditions

| Input pulse levels            | VIH = (VDD/2) + 1.25V   |
|-------------------------------|-------------------------|
|                               | $VIL = (VDD/2) - 1.25V$ |
| Input rise and fall times     | 1ns                     |
| Input timing reference levels | VDD/2                   |
| Output reference levels       | VDDQ/2                  |
| Output load                   | See Figures 13 and 14   |

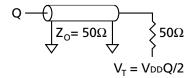

### **Load Derating Curves**

Micron 2 Meg x 18, 1 Meg x 32, and 1 Meg x 36 ZBT SRAM timing is dependent upon the capacitive loading on the outputs.

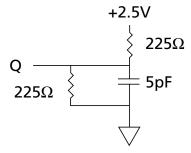

Consult the factory for copies of I/O current versus voltage curves.

### 3.3V I/O Output Load Equivalents

### Figure 11:




## Figure 12:




## 2.5V I/O Output Load Equivalents

## Figure 13:

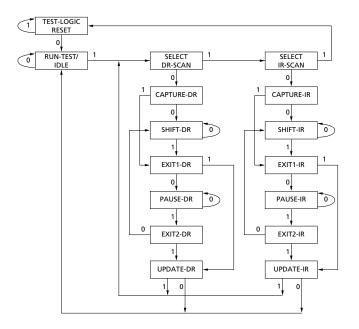


# Figure 14:





## **IEEE 1149.1 Serial Boundary Scan (JTAG)**


The SRAM incorporates a serial boundary scan test access port (TAP). This port operates in accordance with IEEE Standard 1149.1-1990 but does not have the set of functions required for full 1149.1 compliance. These functions from the IEEE specification are excluded because their inclusion places an added delay in the critical speed path of the SRAM. Note that the TAP controller functions in a manner that does not conflict with the operation of other devices using 1149.1 fully compliant TAPs. The TAP operates using JEDEC-standard 2.5V I/O logic levels.

The SRAM contains a TAP controller, instruction register, boundary scan register, bypass register, and ID register.

## **Disabling the JTAG Feature**

These balls can be left floating (unconnected), if the JTAG function is not to be implemented. Upon powerup, the device will come up in a reset state which will not interfere with the operation of the device.

# Figure 15: TAP Controller State Diagram

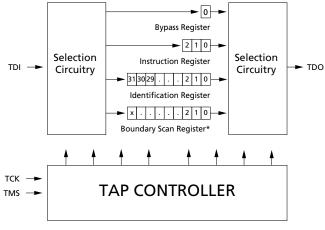


#### NOTE:

The 0/1 next to each state represents the value of TMS at the rising edge of TCK.

# Test Access Port (Tap) Test Clock (TCK)

The test clock is used only with the TAP controller. All inputs are captured on the rising edge of TCK. All outputs are driven from the falling edge of TCK.


### **Test MODE SELECT (TMS)**

The TMS input is used to give commands to the TAP controller and is sampled on the rising edge of TCK. It is allowable to leave this ball unconnected if the TAP is not used. The ball is pulled up internally, resulting in a logic HIGH level.

### Test Data-In (TDI)

The TDI ball is used to serially input information into the registers and can be connected to the input of any of the registers. The register between TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. For information on loading the instruction register, see Figure 15. TDI is internally pulled up and can be unconnected if the TAP is unused in an application. TDI is connected to the most significant bit (MSB) of any register. (See Figure 16.)

# Figure 16: TAP Controller Block Diagram



NOTE:

X = 75 for all configurations.



## Test Data-Out (TDO)

The TDO outputball is used to serially clock dataout from the registers. The output is active depending upon the current state of the TAP state machine. (See Figure 15.) The output changes on the falling edge of TCK. TDO is connected to the least significant bit (LSB) of any register. (See Figure 16.)

### Performing a TAP Reset

A RESET is performed by forcing TMS HIGH (VDD) for five rising edges of TCK. This RESET does not affect the operation of the SRAM and may be performed while the SRAM is operating.

At power-up, the TAP is reset internally to ensure that TDO comes up in a High-Z state.

## **TAP Registers**

Registers are connected between the TDI and TDO balls and allow data to be scanned into and out of the SRAM test circuitry. Only one register can be selected at a time through the instruction register. Data is serially loaded into the TDI ball on the rising edge of TCK. Data is output on the TDO ball on the falling edge of TCK.

## **Instruction Register**

Three-bit instructions can be serially loaded into the instruction register. This register is loaded when it is placed between the TDI and TDO balls as shown in Figure 16. Upon power-up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE instruction if the controller is placed in a reset state as described in the previous section.

When the TAP controller is in the Capture-IR state, the two LSBs are loaded with a binary "01" pattern to allow for fault isolation of the board-level serial test data path.

## **Bypass Register**

To save time when serially shifting data through registers, it is sometimes advantageous to skip certain chips. The bypass register is a single-bit register that can be placed between the TDI and TDO balls. This allows data to be shifted through the SRAM with minimal delay. The bypass register is set LOW (Vss) when the BYPASS instruction is executed.

### **Boundary Scan Register**

The boundary scan register is connected to all the input and bidirectional balls on the SRAM. The SRAM has a 76-bit-long register.

The boundary scan register is loaded with the contents of the RAM I/O ring when the TAP controller is in the Capture-DR state and is then placed between the TDI and TDO balls when the controller is moved to the Shift-DR state. The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instructions can be used to capture the contents of the I/O ring.

The Boundary Scan Order tables show the order in which the bits are connected. Each bit corresponds to one of the pins on the SRAM package. The MSB of the register is connected to TDI, and the LSB is connected to TDO.

### Identification (ID) Register

The ID register is loaded with a vendor-specific, 32-bit code during the Capture-DR state when the IDCODE command is loaded in the instruction register. The IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the Shift-DR state. The ID register has a vendor code and other information described in the Identification Register Definitions table.

# **TAP Instruction Set** *Overview*

Eight different instructions are possible with the three-bit instruction register. All combinations are listed in the Instruction Codes table. Three of these instructions are listed as RESERVED and should not be used. The other five instructions are described in detail below.

The TAP controller used in this SRAM is not fully compliant to the 1149.1 convention because some of the mandatory 1149.1 instructions are not fully implemented. The TAP controller cannot be used to load address, data or control signals into the SRAM and cannot preload the I/O buffers. The SRAM does not implement the 1149.1 commands EXTEST or INTEST or the PRELOAD portion of SAMPLE/PRELOAD; rather, it performs a capture of the I/O ring when these instructions are executed.



Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO balls. To execute the instruction once it is shifted in, the TAP controller needs to be moved into the Update-IR state.

#### **EXTEST**

EXTEST is a mandatory 1149.1 instruction which is to be executed whenever the instruction register is loaded with all 0s. EXTEST is not implemented in this SRAM TAP controller, and therefore this device is not compliant to 1149.1.

The TAP controller does recognize an all-0 instruction. When an EXTEST instruction is loaded into the instruction register, the SRAM responds as if a SAM-PLE/PRELOAD instruction has been loaded. There is one difference between the two instructions. Unlike the SAMPLE/PRELOAD instruction, EXTEST places the SRAM outputs in a High-Z state.

#### **IDCODE**

The IDCODE instruction causes a vendor-specific, 32-bit code to be loaded into the instruction register. It also places the instruction register between the TDI and TDO balls and allows the IDCODE to be shifted out of the device when the TAP controller enters the Shift-DR state. The IDCODE instruction is loaded into the instruction register upon power-up or whenever the TAP controller is given a test logic reset state.

#### SAMPLE Z

The SAMPLE Z instruction causes the boundary scan register to be connected between the TDI and TDO balls when the TAP controller is in a Shift-DR state. It also places all SRAM outputs into a High-Z state.

#### SAMPLE/PRELOAD

SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The PRELOAD portion of this instruction is not implemented, so the device TAP controller is not fully 1149.1-compliant.

When the SAMPLE/PRELOAD instruction is loaded into the instruction register and the TAP controller is in

the Capture-DR state, a snapshot of data on the inputs and bidirectional pins/balls is captured in the boundary scan register.

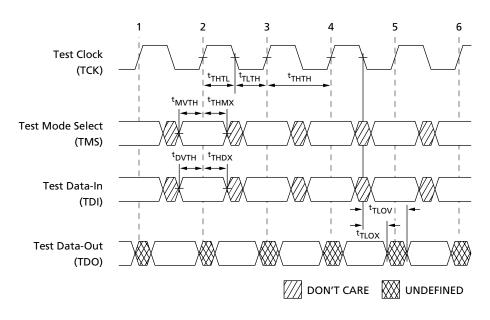
The user must be aware that the TAP controller clock can only operate at a frequency up to 10 MHz, while the SRAM clock operates more than an order of magnitude faster. Because there is a large difference in the clock frequencies, it is possible that during the Capture-DR state, an input or output will undergo a transition. The TAP may then try to capture a signal while in transition (metastable state). This will not harm the device, but there is no guarantee as to the value that will be captured. Repeatable results may not be possible.

To guarantee that the boundary scan register will capture the correct value of a signal, the SRAM signal must be stabilized long enough to meet the TAP controller's capture setup plus hold time (<sup>t</sup>CS plus <sup>t</sup>CH). The SRAM clock input might not be captured correctly if there is no way in a design to stop (or slow) the clock during a SAMPLE/PRELOAD instruction. If this is an issue, it is still possible to capture all other signals and simply ignore the value of the CLK captured in the boundary scan register.

Once the data is captured, it is possible to shift out the data by putting the TAP into the Shift-DR state. This places the boundary scan register between the TDI and TDO balls.

Note that since the PRELOAD part of the command is not implemented, putting the TAP to the Update-DR state while performing a SAMPLE/PRELOAD instruction will have the same effect as the Pause-DR command.

#### **BYPASS**


When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR state, the bypass register is placed between the TDI and TDO balls. The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected together on a board.

#### Reserved

These instructions are not implemented but are reserved for future use. Do not use these instructions.



# Figure 17: TAP Timing



**Table 19: TAP AC Electrical Characteristics** 

Notes 1, 2;  $0^{\circ}C \le T_A \le +70^{\circ}C$ ; VDD = 3.3V  $\pm 0.165V$  or 2.5V  $\pm 0.125V$ 

| DESCRIPTION             | SYMBOL            | MIN | MAX | UNITS |
|-------------------------|-------------------|-----|-----|-------|
| Clock                   |                   |     |     |       |
| Clock cycle time        | <sup>t</sup> THTH | 100 |     | ns    |
| Clock frequency         | f <sub>TF</sub>   |     | 10  | MHz   |
| Clock HIGH time         | tTHTL             | 40  |     | ns    |
| Clock LOW time          | <sup>t</sup> TLTH | 40  |     | ns    |
| Output Times            |                   |     |     |       |
| TCK LOW to TDO unknown  | <sup>t</sup> TLOX | 0   |     | ns    |
| TCK LOW to TDO valid    | <sup>t</sup> TLOV |     | 20  | ns    |
| TDI valid to TCK HIGH   | <sup>t</sup> DVTH | 10  |     | ns    |
| TCK HIGH to TDI invalid | tTHDX             | 10  |     | ns    |
| Setup Times             |                   |     |     |       |
| TMS setup               | <sup>t</sup> MVTH | 10  |     | ns    |
| Capture setup           | <sup>t</sup> CS   | 10  |     | ns    |
| Hold Times              | - '               |     | •   |       |
| TMS hold                | <sup>t</sup> THMX | 10  |     | ns    |
| Capture hold            | <sup>t</sup> CH   | 10  |     | ns    |

- 1. <sup>t</sup>CS and <sup>t</sup>CH refer to the setup and hold time requirements of latching data from the boundary scan register.
- 2. Test conditions are specified using the load in Figure 18.



#### **TAP AC Test Conditions**

| Input Pulse Levels                   | Vss to 2.5V |
|--------------------------------------|-------------|
| Input rise and fall times            | 1ns         |
| Input timing reference levels        |             |
| Output reference levels              |             |
| Test load termination supply voltage | 1.25V       |

# Figure 18: TAP AC Output Load Equivalent

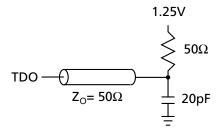



Table 20: 3.3V VDD, TAP DC Electrical Characteristics and Operating Conditions

 $0^{\circ}\text{C} \le T_{A} \le +70^{\circ}\text{C}$ ; VDD = 3.3V  $\pm 0.165\text{V}$  unless otherwise noted

| DESCRIPTION                  | CONDITIONS                                         | SYMBOL | MIN  | MAX       | UNITS | NOTES |
|------------------------------|----------------------------------------------------|--------|------|-----------|-------|-------|
| Input High (Logic 1) Voltage |                                                    | ViH    | 2.0  | VDD + 0.3 | V     | 1, 2  |
| Input Low (Logic 0) Voltage  |                                                    | VIL    | -0.3 | 0.8       | V     | 1, 2  |
| Input Leakage Current        | $0V \le VIN \le VDD$                               | ILı    | -5.0 | 5.0       | μΑ    |       |
| Output Leakage Current       | Output(s) disabled,<br>$0V \le VIN \le VDDQ (DQx)$ | ILo    | -5.0 | 5.0       | μΑ    |       |
| Output Low Voltage           | Ιοις = 100μΑ                                       | Vol1   |      | 0.7       | V     | 1     |
|                              | IOLT = 2mA                                         | Vol2   |      | 0.8       | V     | 1     |
| Output High Voltage          | Іонс = -100μΑ                                      | Voн1   | 2.9  |           | V     | 1     |
|                              | Іонт = -2mA                                        | Voн2   | 2.0  |           | V     | 1     |

## **Table 21: 2.5V VDD, TAP DC Electrical Characteristics and Operating Conditions**

 $0^{\circ}\text{C} \le T_{A} \le +70^{\circ}\text{C}$ ; VDD = 2.5V  $\pm 0.125\text{V}$  unless otherwise noted

| DESCRIPTION                  | CONDITIONS                                         | SYMBOL | MIN  | MAX       | UNITS | NOTES |
|------------------------------|----------------------------------------------------|--------|------|-----------|-------|-------|
| Input High (Logic 1) Voltage |                                                    | ViH    | 1.7  | VDD + 0.3 | V     | 1, 2  |
| Input Low (Logic 0) Voltage  |                                                    | VIL    | -0.3 | 0.7       | V     | 1, 2  |
| Input Leakage Current        | $0V \le VIN \le VDD$                               | ILı    | -5.0 | 5.0       | μΑ    |       |
| Output Leakage Current       | Output(s) disabled,<br>$0V \le VIN \le VDDQ (DQx)$ | ILo    | -5.0 | 5.0       | μΑ    |       |
| Output Low Voltage           | Ιοις = 100μΑ                                       | Vol1   |      | 0.2       | V     | 1     |
|                              | IOLT = 2mA                                         | Vol2   |      | 0.7       | V     | 1     |
| Output High Voltage          | Iонс = -100µА                                      | Voн1   | 2.1  |           | V     | 1     |
|                              | Iонт = -2mA                                        | Voh2   | 1.7  |           | V     | 1     |

#### NOTE:

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: VIH (AC)  $\leq$  VDD + 1.5V for t  $\leq$  <sup>t</sup>KHKH/2 Undershoot:VIL (AC)  $\geq$  -0.5V for t  $\leq$  <sup>t</sup>KHKH/2

Power-up: VIH  $\leq$  +2.6V and VDD  $\leq$  2.4V and VDDQ  $\leq$  1.4V for t  $\leq$  200ms

During normal operation, VDDQ must not exceed VDD. Control input signals (LD#, R/W#, etc.) may not have pulse widths less than <sup>†</sup>KHKL (MIN) or operate at frequencies exceeding <sup>f</sup>KF (MAX).



# **Table 22: Identification Register Definitions**

| INSTRUCTION FIELD                     | BIT<br>CONFIGURATION | DESCRIPTION                                                  |
|---------------------------------------|----------------------|--------------------------------------------------------------|
| Revision Number<br>(31:28)            | 0000                 | Reserved for version number.                                 |
| Device Depth<br>(27:23)               | 01000<br>00111       | Defines depth of 2Mb. Defines depth of 1Mb.                  |
| Device Width<br>(22:18)               | 00011<br>00100       | Defines width of x18 bits. Defines width of x32 or x36 bits. |
| Micron Device ID<br>(17:12)           | xxxxxx               | Reserved for future use.                                     |
| Micron JEDEC ID Code<br>(11:1)        | 00000101100          | Allows unique identification of SRAM vendor.                 |
| ID Register Presence<br>Indicator (0) | 1                    | Indicates the presence of an ID register.                    |

# **Table 23: Scan Register Sizes**

| REGISTER NAME                | BIT SIZE |
|------------------------------|----------|
| Instruction                  | 3        |
| Bypass                       | 1        |
| ID                           | 32       |
| Boundary Scan: x18, x32, x36 | 76       |

### **Table 24: Instruction Codes**

| INSTRUCTION    | CODE | DESCRIPTION                                                                                                                                                                                                           |  |
|----------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| EXTEST         | 000  | Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all SRAM outputs to High-Z state. This instruction is not 1149.1-compliant.                                                 |  |
| IDCODE         | 001  | Loads the ID register with the vendor ID code and places the register between TDI and ITDO. This operation does not affect SRAM operations.                                                                           |  |
| SAMPLE Z       | 010  | Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all SRAM output drivers to a High-Z state.                                                                                  |  |
| RESERVED       | 011  | Do Not Use: This instruction is reserved for future use.                                                                                                                                                              |  |
| SAMPLE/PRELOAD | 100  | Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does not affect SRAM operation. This instruction does not implement 1149.1 preload function and is therefore not 1149.1-compliant. |  |
| RESERVED       | 101  | Do Not Use: This instruction is reserved for future use.                                                                                                                                                              |  |
| RESERVED       | 110  | Do Not Use: This instruction is reserved for future use.                                                                                                                                                              |  |
| BYPASS         | 111  | Places the bypass register between TDI and TDO. This operation does not affect SRAM operations.                                                                                                                       |  |



# **Table 25: 165-Ball FBGA Boundary Scan Order (x18)**

| BIT# | SIGNAL NAME | BALL ID |
|------|-------------|---------|
| 1    | NF          | 11P     |
| 2    | SA          | 2R      |
| 3    | SA          | 8R      |
| 4    | SA          | 8P      |
| 5    | SA          | 9R      |
| 6    | SA          | 9P      |
| 7    | SA          | 10R     |
| 8    | SA          | 10P     |
| 9    | NF          | 6N      |
| 10   | ZZ          | 11H     |
| 11   | NC          | 11N     |
| 12   | NC          | 11M     |
| 13   | NC          | 11L     |
| 14   | NC          | 11K     |
| 15   | NC          | 11J     |
| 16   | DQa         | 10M     |
| 17   | DQa         | 10L     |
| 18   | DQa         | 10K     |
| 19   | DQa         | 10J     |
| 20   | DQa         | 11G     |
| 21   | DQa         | 11F     |
| 22   | DQa         | 11E     |
| 23   | DQa         | 11D     |
| 24   | DQPa        | 11C     |
| 25   | NC          | 10G     |
| 26   | NC          | 10F     |
| 27   | NC          | 10E     |
| 28   | NC          | 10D     |
| 29   | SA          | 11A     |
| 30   | NC          | 11B     |
| 31   | SA          | 10B     |
| 32   | SA          | 10A     |
| 33   | SA          | 9A      |
| 34   | SA          | 9B      |
| 35   | ADV/LD#     | 8A      |
| 36   | OE#         | 8B      |
| 37   | CKE#        | 7A      |
| 38   | R/W#        | 7B      |

| BIT# | SIGNAL NAME | BALL ID |
|------|-------------|---------|
| 39   | CLK         | 6B      |
| 40   | CE2#        | 6A      |
| 41   | BW1#        | 5B      |
| 42   | NC          | 5A      |
| 43   | BW2#        | 4A      |
| 44   | NC          | 4B      |
| 45   | CE2         | 3B      |
| 46   | CE#         | 3A      |
| 47   | SA          | 2A      |
| 48   | SA          | 2B      |
| 49   | NC          | 1B      |
| 50   | NC          | 1A      |
| 51   | NC          | 1C      |
| 52   | NC          | 1D      |
| 53   | NC          | 1E      |
| 54   | NC          | 1F      |
| 55   | NC          | 1G      |
| 56   | DQb         | 2D      |
| 57   | DQb         | 2E      |
| 58   | DQb         | 2F      |
| 59   | DQb         | 2G      |
| 60   | DQb         | 1J      |
| 61   | DQb         | 1K      |
| 62   | DQb         | 1L      |
| 63   | DQb         | 1M      |
| 64   | DQPb        | 1N      |
| 65   | NC          | 2H      |
| 66   | NC          | 2K      |
| 67   | NC          | 2L      |
| 68   | NC          | 2M      |
| 69   | SA          | 11R     |
| 70   | MODE (LBO#) | 1R      |
| 71   | SA          | 3P      |
| 72   | SA          | 3R      |
| 73   | SA          | 4P      |
| 74   | SA          | 4R      |
| 75   | SA1         | 6P      |
| 76   | SA0         | 6R      |

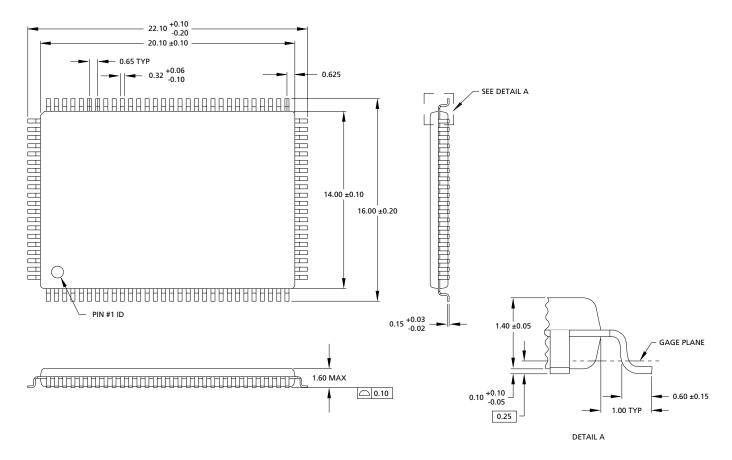


# **Table 26: 165-Ball FBGA Boundary Scan Order (x32)**

| BIT# | SIGNAL NAME | BALL ID |
|------|-------------|---------|
| 1    | NF          | 11P     |
| 2    | SA          | 2R      |
| 3    | SA          | 8R      |
| 4    | SA          | 8P      |
| 5    | SA          | 9R      |
| 6    | SA          | 9P      |
| 7    | SA          | 10R     |
| 8    | SA          | 10P     |
| 9    | NF          | 6N      |
| 10   | ZZ          | 11H     |
| 11   | NF          | 11N     |
| 12   | DQa         | 11M     |
| 13   | DQa         | 11L     |
| 14   | DQa         | 11K     |
| 15   | DQa         | 11J     |
| 16   | DQa         | 10M     |
| 17   | DQa         | 10L     |
| 18   | DQa         | 10K     |
| 19   | DQa         | 10J     |
| 20   | DQb         | 11G     |
| 21   | DQb         | 11F     |
| 22   | DQb         | 11E     |
| 23   | DQb         | 11D     |
| 24   | DQb         | 10G     |
| 25   | DQb         | 10F     |
| 26   | DQb         | 10E     |
| 27   | DQb         | 10D     |
| 28   | NF          | 11C     |
| 29   | NC          | 11A     |
| 30   | NC          | 11B     |
| 31   | SA          | 10B     |
| 32   | SA          | 10A     |
| 33   | SA          | 9A      |
| 34   | SA          | 9B      |
| 35   | ADV/LD#     | 8A      |
| 36   | OE#         | 8B      |
| 37   | CKE#        | 7A      |
| 38   | R/W#        | 7B      |

| BIT# | SIGNAL NAME | BALL ID |
|------|-------------|---------|
| 39   | CLK         | 6B      |
| 40   | CE2#        | 6A      |
| 41   | BW1#        | 5B      |
| 42   | BW2#        | 5A      |
| 43   | BW3#        | 4A      |
| 44   | BW4#        | 4B      |
| 45   | CE2         | 3B      |
| 46   | CE#         | 3A      |
| 47   | SA          | 2A      |
| 48   | SA          | 2B      |
| 49   | NC          | 1B      |
| 50   | NC          | 1A      |
| 51   | NF          | 1C      |
| 52   | DQc         | 1D      |
| 53   | DQc         | 1E      |
| 54   | DQc         | 1F      |
| 55   | DQc         | 1G      |
| 56   | DQc         | 2D      |
| 57   | DQc         | 2E      |
| 58   | DQc         | 2F      |
| 59   | DQc         | 2G      |
| 60   | DQc         | 1J      |
| 61   | DQd         | 1K      |
| 62   | DQd         | 1L      |
| 63   | DQd         | 1M      |
| 64   | DQd         | 2J      |
| 65   | DQd         | 2K      |
| 66   | DQd         | 2L      |
| 67   | DQd         | 2M      |
| 68   | NF          | 1N      |
| 69   | SA          | 11R     |
| 70   | MODE (LBO#) | 1R      |
| 71   | SA          | 3P      |
| 72   | SA          | 3R      |
| 73   | SA          | 4P      |
| 74   | SA          | 4R      |
| 75   | SA1         | 6P      |
| 76   | SA0         | 6R      |

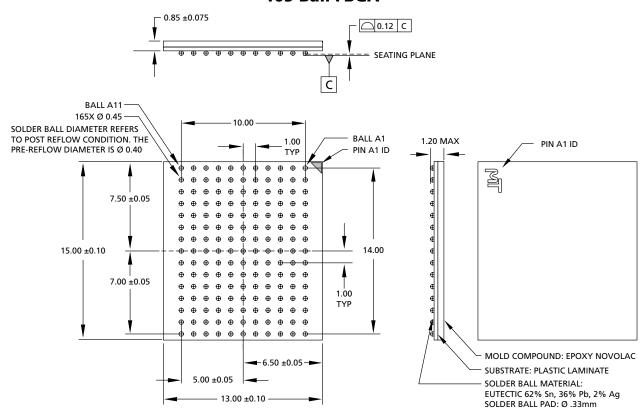



# **Table 27: 165-Ball FBGA Boundary Scan Order (x36)**

| BIT# | SIGNAL NAME | BALL ID     |
|------|-------------|-------------|
| 1    | NF          | 11P         |
| 2    | SA          | 2R          |
| 3    | SA          | 8R          |
| 4    | SA          | 8P          |
| 5    | SA          | 9R          |
| 6    | SA          | 9P          |
| 7    | SA          | 10R         |
| 8    | SA          | 10P         |
| 9    | NF          | 6N          |
| 10   | ZZ          | 11H         |
| 11   | DQPa        | 11N         |
| 12   | DQa         | 11M         |
| 13   | DQa         | 11L         |
| 14   | DQa         | 11K         |
| 15   | DQa         | <b>11</b> J |
| 16   | DQa         | 10M         |
| 17   | DQa         | 10L         |
| 18   | DQa         | 10K         |
| 19   | DQa         | <b>10</b> J |
| 20   | DQb         | 11G         |
| 21   | DQb         | 11F         |
| 22   | DQb         | 11E         |
| 23   | DQb         | 11D         |
| 24   | DQb         | 10G         |
| 25   | DQb         | 10F         |
| 26   | DQb         | 10E         |
| 27   | DQb         | 10D         |
| 28   | DQPb        | 11C         |
| 29   | NC          | 11A         |
| 30   | NC          | 11B         |
| 31   | SA          | 10B         |
| 32   | SA          | 10A         |
| 33   | SA          | 9A          |
| 34   | SA          | 9B          |
| 35   | ADV/LD#     | 8A          |
| 36   | OE#         | 8B          |
| 37   | CKE#        | 7A          |
| 38   | R/W#        | 7B          |

| 39         CLK         6B           40         CE2#         6A           41         BW1#         5B           42         BW2#         5A           43         BW3#         4A           44         BW4#         4B           44         BW4#         4B           45         CE2         3B           46         CE#         3A           47         SA         2A           48         SA         2B           49         NC         1B           50         NC         1A           51         DQPc         1C           52         DQc         1D           53         DQc         1E           54         DQc         1F           55         DQc         1G           56         DQc         2D           57         DQc         2E           59         DQc         2G           60         DQd         1K           61         DQd         1K           62         DQd         1K           63         DQd         2K           66 | BIT# | SIGNAL NAME | BALL ID |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|---------|
| 41       BW1#       5B         42       BW2#       5A         43       BW3#       4A         44       BW4#       4B         45       CE2       3B         46       CE#       3A         47       SA       2A         48       SA       2B         49       NC       1B         50       NC       1A         51       DQPc       1C         52       DQc       1D         53       DQc       1E         54       DQc       1F         55       DQc       1G         56       DQc       2D         57       DQc       2E         59       DQc       2F         59       DQc       2G         60       DQd       1L         61       DQd       1K         62       DQd       1L         63       DQd       2K         66       DQd       2L         67       DQd       2M         68       DQPd       1N         69       SA       11R         71       <                                                                                    | 39   | CLK         | 6B      |
| 42       BW2#       5A         43       BW3#       4A         44       BW4#       4B         45       CE2       3B         46       CE#       3A         47       SA       2A         48       SA       2B         49       NC       1B         50       NC       1A         51       DQPc       1C         52       DQc       1D         53       DQc       1E         54       DQc       1F         55       DQc       1G         56       DQc       2D         57       DQc       2E         58       DQc       2F         59       DQc       2G         60       DQd       1J         61       DQd       1K         62       DQd       1K         63       DQd       1M         64       DQd       2J         65       DQd       2K         66       DQd       2L         67       DQd       2M         68       DQPd       1N         69 <t< td=""><td>40</td><td>CE2#</td><td>6A</td></t<>                                          | 40   | CE2#        | 6A      |
| 43       BW3#       4A         44       BW4#       4B         45       CE2       3B         46       CE#       3A         47       SA       2A         48       SA       2B         49       NC       1B         50       NC       1A         51       DQPc       1C         52       DQc       1D         53       DQc       1E         54       DQc       1F         55       DQc       1G         56       DQc       2D         57       DQc       2E         58       DQc       2F         59       DQc       2G         60       DQd       1J         61       DQd       1K         62       DQd       1K         63       DQd       1M         64       DQd       2J         65       DQd       2K         66       DQd       2L         67       DQd       2M         68       DQPd       1N         69       SA       11R         70 <td< td=""><td>41</td><td>BW1#</td><td>5B</td></td<>                                         | 41   | BW1#        | 5B      |
| 44       BW4#       4B         45       CE2       3B         46       CE#       3A         47       SA       2A         48       SA       2B         49       NC       1B         50       NC       1A         51       DQPc       1C         52       DQc       1D         53       DQc       1E         54       DQc       1F         55       DQc       1G         56       DQc       2D         57       DQc       2E         58       DQc       2F         59       DQc       2G         60       DQd       1J         61       DQd       1K         62       DQd       1K         63       DQd       1M         64       DQd       2J         65       DQd       2K         66       DQd       2L         67       DQd       2M         68       DQPd       1N         69       SA       11R         70       MODE (LBO#)       1R         69                                                                                       | 42   | BW2#        | 5A      |
| 45       CE2       3B         46       CE#       3A         47       SA       2A         48       SA       2B         49       NC       1B         50       NC       1A         51       DQPc       1C         52       DQc       1D         53       DQc       1E         54       DQc       1F         55       DQc       1G         56       DQc       2D         57       DQc       2E         58       DQc       2F         59       DQc       2G         60       DQd       1J         61       DQd       1K         62       DQd       1K         62       DQd       1L         63       DQd       2K         66       DQd       2K         66       DQd       2L         67       DQd       2M         68       DQPd       1N         69       SA       11R         70       MODE (LBO#)       1R         71       SA       3P         72                                                                                         | 43   | BW3#        | 4A      |
| 46       CE#       3A         47       SA       2A         48       SA       2B         49       NC       1B         50       NC       1A         51       DQPc       1C         52       DQc       1D         53       DQc       1E         54       DQc       1F         55       DQc       1G         56       DQc       2D         57       DQc       2E         58       DQc       2F         59       DQc       2G         60       DQd       1J         61       DQd       1K         62       DQd       1K         62       DQd       1L         63       DQd       2K         65       DQd       2K         66       DQd       2L         67       DQd       2M         68       DQPd       1N         69       SA       11R         70       MODE (LBO#)       1R         71       SA       3P         72       SA       3R                                                                                                     | 44   | BW4#        | 4B      |
| 47       SA       2A         48       SA       2B         49       NC       1B         50       NC       1A         51       DQPc       1C         52       DQc       1D         53       DQc       1E         54       DQc       1F         55       DQc       1G         56       DQc       2D         57       DQc       2E         58       DQc       2F         59       DQc       2G         60       DQd       1J         61       DQd       1K         62       DQd       1K         62       DQd       1L         63       DQd       2K         66       DQd       2L         67       DQd       2M         68       DQPd       1N         69       SA       11R         70       MODE (LBO#)       1R         71       SA       3P         72       SA       3R                                                                                                                                                                 | 45   | CE2         | 3B      |
| 48       SA       2B         49       NC       1B         50       NC       1A         51       DQPc       1C         52       DQc       1D         53       DQc       1E         54       DQc       1F         55       DQc       1G         56       DQc       2D         57       DQc       2E         58       DQc       2F         59       DQc       2G         60       DQd       1J         61       DQd       1K         62       DQd       1K         62       DQd       1L         63       DQd       2K         64       DQd       2J         65       DQd       2K         66       DQd       2L         67       DQd       2M         68       DQPd       1N         69       SA       11R         70       MODE (LBO#)       1R         71       SA       3P         72       SA       3R                                                                                                                                  | 46   | CE#         | 3A      |
| 49       NC       1B         50       NC       1A         51       DQPc       1C         52       DQc       1D         53       DQc       1E         54       DQc       1F         55       DQc       1G         56       DQc       2D         57       DQc       2E         58       DQc       2F         59       DQc       2G         60       DQd       1J         61       DQd       1K         62       DQd       1L         63       DQd       1M         64       DQd       2J         65       DQd       2K         66       DQd       2L         67       DQd       2M         68       DQPd       1N         69       SA       11R         70       MODE (LBO#)       1R         71       SA       3P         72       SA       3R                                                                                                                                                                                             | 47   | SA          | 2A      |
| 50         NC         1A           51         DQPc         1C           52         DQc         1D           53         DQc         1E           54         DQc         1F           55         DQc         1G           56         DQc         2D           57         DQc         2E           58         DQc         2F           59         DQc         2G           60         DQd         1J           61         DQd         1K           62         DQd         1L           63         DQd         1M           64         DQd         2J           65         DQd         2K           66         DQd         2L           67         DQd         2M           68         DQPd         1N           69         SA         11R           70         MODE (LBO#)         1R           71         SA         3P           72         SA         3R                                                                                  | 48   | SA          | 2B      |
| 51         DQPc         1C           52         DQc         1D           53         DQc         1E           54         DQc         1F           55         DQc         1G           56         DQc         2D           57         DQc         2E           58         DQc         2F           59         DQc         2G           60         DQd         1J           61         DQd         1K           62         DQd         1L           63         DQd         1M           64         DQd         2J           65         DQd         2K           66         DQd         2L           67         DQd         2M           68         DQPd         1N           69         SA         11R           70         MODE (LBO#)         1R           71         SA         3P           72         SA         3R                                                                                                                     | 49   | NC          | 1B      |
| 52       DQc       1D         53       DQc       1E         54       DQc       1F         55       DQc       1G         56       DQc       2D         57       DQc       2E         58       DQc       2F         59       DQc       2G         60       DQd       1J         61       DQd       1K         62       DQd       1L         63       DQd       1M         64       DQd       2J         65       DQd       2K         66       DQd       2L         67       DQd       2M         68       DQPd       1N         69       SA       11R         70       MODE (LBO#)       1R         71       SA       3P         72       SA       3R                                                                                                                                                                                                                                                                                      | 50   | NC          | 1A      |
| 53         DQc         1E           54         DQc         1F           55         DQc         1G           56         DQc         2D           57         DQc         2E           58         DQc         2F           59         DQc         2G           60         DQd         1J           61         DQd         1K           62         DQd         1L           63         DQd         1M           64         DQd         2J           65         DQd         2K           66         DQd         2L           67         DQd         2M           68         DQPd         1N           69         SA         11R           70         MODE (LBO#)         1R           71         SA         3P           72         SA         3R                                                                                                                                                                                              | 51   | DQPc        | 1C      |
| 54       DQc       1F         55       DQc       1G         56       DQc       2D         57       DQc       2E         58       DQc       2F         59       DQc       2G         60       DQd       1J         61       DQd       1K         62       DQd       1L         63       DQd       1M         64       DQd       2J         65       DQd       2K         66       DQd       2L         67       DQd       2M         68       DQPd       1N         69       SA       11R         70       MODE (LBO#)       1R         71       SA       3P         72       SA       3R                                                                                                                                                                                                                                                                                                                                                  | 52   | DQc         | 1D      |
| 55         DQc         1G           56         DQc         2D           57         DQc         2E           58         DQc         2F           59         DQc         2G           60         DQd         1J           61         DQd         1K           62         DQd         1L           63         DQd         1M           64         DQd         2J           65         DQd         2K           66         DQd         2L           67         DQd         2M           68         DQPd         1N           69         SA         11R           70         MODE (LBO#)         1R           71         SA         3P           72         SA         3R                                                                                                                                                                                                                                                                      | 53   | DQc         | 1E      |
| 56         DQc         2D           57         DQc         2E           58         DQc         2F           59         DQc         2G           60         DQd         1J           61         DQd         1K           62         DQd         1L           63         DQd         1M           64         DQd         2J           65         DQd         2K           66         DQd         2L           67         DQd         2M           68         DQPd         1N           69         SA         11R           70         MODE (LBO#)         1R           71         SA         3P           72         SA         3R                                                                                                                                                                                                                                                                                                          | 54   | DQc         | 1F      |
| 57         DQc         2E           58         DQc         2F           59         DQc         2G           60         DQd         1J           61         DQd         1K           62         DQd         1L           63         DQd         1M           64         DQd         2J           65         DQd         2K           66         DQd         2L           67         DQd         2M           68         DQPd         1N           69         SA         11R           70         MODE (LBO#)         1R           71         SA         3P           72         SA         3R                                                                                                                                                                                                                                                                                                                                              | 55   | DQc         | 1G      |
| 58         DQc         2F           59         DQc         2G           60         DQd         1J           61         DQd         1K           62         DQd         1L           63         DQd         1M           64         DQd         2J           65         DQd         2K           66         DQd         2L           67         DQd         2M           68         DQPd         1N           69         SA         11R           70         MODE (LBO#)         1R           71         SA         3P           72         SA         3R                                                                                                                                                                                                                                                                                                                                                                                  | 56   | DQc         | 2D      |
| 59         DQc         2G           60         DQd         1J           61         DQd         1K           62         DQd         1L           63         DQd         1M           64         DQd         2J           65         DQd         2K           66         DQd         2L           67         DQd         2M           68         DQPd         1N           69         SA         11R           70         MODE (LBO#)         1R           71         SA         3P           72         SA         3R                                                                                                                                                                                                                                                                                                                                                                                                                      | 57   | DQc         | 2E      |
| 60 DQd 1J 61 DQd 1K 62 DQd 1L 63 DQd 1M 64 DQd 2J 65 DQd 2K 66 DQd 2L 67 DQd 2L 68 DQPd 1N 69 SA 11R 70 MODE (LBO#) 1R 71 SA 3P 72 SA 3R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58   | DQc         | 2F      |
| 61 DQd 1K 62 DQd 1L 63 DQd 1M 64 DQd 2J 65 DQd 2K 66 DQd 2L 67 DQd 2M 68 DQPd 1N 69 SA 11R 70 MODE (LBO#) 1R 71 SA 3P 72 SA 3R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59   | DQc         | 2G      |
| 62       DQd       1L         63       DQd       1M         64       DQd       2J         65       DQd       2K         66       DQd       2L         67       DQd       2M         68       DQPd       1N         69       SA       11R         70       MODE (LBO#)       1R         71       SA       3P         72       SA       3R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60   | DQd         | 1J      |
| 63       DQd       1M         64       DQd       2J         65       DQd       2K         66       DQd       2L         67       DQd       2M         68       DQPd       1N         69       SA       11R         70       MODE (LBO#)       1R         71       SA       3P         72       SA       3R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61   | DQd         | 1K      |
| 64       DQd       2J         65       DQd       2K         66       DQd       2L         67       DQd       2M         68       DQPd       1N         69       SA       11R         70       MODE (LBO#)       1R         71       SA       3P         72       SA       3R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62   | DQd         | 1L      |
| 65 DQd 2K 66 DQd 2L 67 DQd 2M 68 DQPd 1N 69 SA 11R 70 MODE (LBO#) 1R 71 SA 3P 72 SA 3R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63   | DQd         | 1M      |
| 66     DQd     2L       67     DQd     2M       68     DQPd     1N       69     SA     11R       70     MODE (LBO#)     1R       71     SA     3P       72     SA     3R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64   | DQd         | 2J      |
| 67 DQd 2M 68 DQPd 1N 69 SA 11R 70 MODE (LBO#) 1R 71 SA 3P 72 SA 3R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65   | DQd         | 2K      |
| 68         DQPd         1N           69         SA         11R           70         MODE (LBO#)         1R           71         SA         3P           72         SA         3R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66   | DQd         | 2L      |
| 69     SA     11R       70     MODE (LBO#)     1R       71     SA     3P       72     SA     3R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67   | DQd         | 2M      |
| 70 MODE (LBO#) 1R 71 SA 3P 72 SA 3R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68   | DQPd        | 1N      |
| 71 SA 3P<br>72 SA 3R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69   | SA          | 11R     |
| 72 SA 3R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70   | MODE (LBO#) | 1R      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71   | SA          | 3P      |
| 72 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72   | SA          | 3R      |
| /3 SA 4P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 73   | SA          | 4P      |
| 74 SA 4R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74   | SA          | 4R      |
| 75 SA1 6P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75   | SA1         | 6P      |
| 76 SA0 6R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76   | SA0         | 6R      |




# Figure 19: 100-Pin Plastic TQFP (JEDEC LQFP)



- 1. All dimensions in inches (millimeters)  $\frac{MAX}{MIN}$  or typical where noted.
- 2. Package width and length do not include mold protrusion; allowable mold protrusion is 0.25mm per side.



## Figure 20: 165-Ball FBGA



#### NOTE:

1. All dimensions in inches (millimeters)  $\frac{MAX}{MIN}$  or typical where noted.

### **Data Sheet Designation**

Advance: This data sheet contains initial descriptions of products still under development.



8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900

E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992

Micron, the M logo, and the Micron logo are trademarks and/or service marks of Micron Technology, Inc. ZBT and Zero Bus Turnaround are trademarks of Integrated Device Technology, Inc., and the architecture is supported by Micron Technology, Inc., and Motorola, Inc.

# 0.13µm Process

### **ADVANCE**



# 36Mb: 2 MEG x 18, 1 MEG x 32/36 FLOW-THROUGH ZBT SRAM

| _   | -   |                                         |      |     |
|-----|-----|-----------------------------------------|------|-----|
| Rev | /15 | ะเดท                                    | Hist | orv |
|     |     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1115 |     |

| • | Revised FBGA dimensions for 165-ball FBGA                    | 1/03   |
|---|--------------------------------------------------------------|--------|
| • | New ADVANCE data sheet for 0.13µm process; Rev A; Pub. 11/02 | .11/02 |