

MH88612B Subscriber Line Interface Circuit (SLIC)

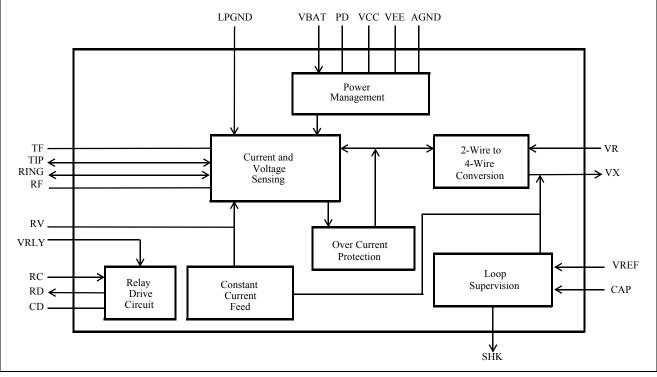
Data Sheet

Features

- 600 Ω line impedance
- Transformerless 2-wire to 4-wire conversion
- · Battery and ringing feed to line
- Off-hook and dial pulse detection.
- Ring ground over-current protection
- Adjustable constant current feed.
- Relay driver
- Power Denial
- Wide Operating Range

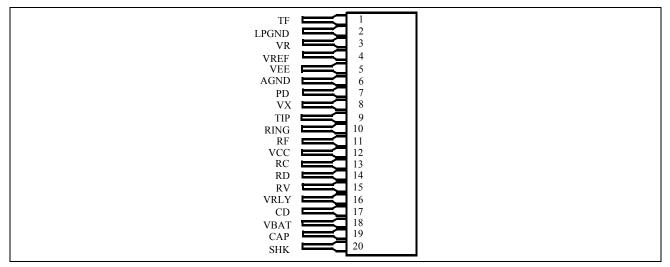
Applications

Line interface for:


- PABX
- Intercoms
- Key Telephone Systems
- Control Systems

Ordering Information

MH88612BV-21 20 Pin SIL* Boxed *Pb Free Matte Tin 0°C to 70°C


Description

The SLIC provides a complete interface between a switching system and a subscriber loop. Functions provided include battery feed and ringing feed to the subscriber line, 2-Wire to 4-Wire hybrid interfacing, constant current feed and dial pulse detection. The device is fabricated using thick film hybrid technology in a 20-pin single in-line package.

Figure 1 - Functional Block Diagram

Zarlink Semiconductor Inc. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2002-2006, Zarlink Semiconductor Inc. All Rights Reserved. August 2006

Figure 2 - Pin Connections

Pin Description

Pin #	Name	Description						
1	TF	Tip Feed. Connects to external diode for protection						
2	LPGND	Loop Ground. Is the system ground reference with respect to V_{BAT} . Normally connected to AGND.						
3	VR	Voice Receive (input) is the 4 wire analog signal to the device.						
4	VREF	Voltage Reference (Input) Constant current feed can be adjusted by the input voltage on V_{REF} . This sin can also be grounded for normal 25 mA loop current.						
5	VEE	Negative Power Supply Voltage (-5 V).						
6	AGND	Analog Ground (0V).						
7	PD	Power Denial (Input). A logic high will isolate the battery voltage to Tip/Ring.						
8	VX	Voice Transmit (Output) is the 4-wire analog signal from the device.						
9	TIP	Connects to the "Tip" lead of the telephone line.						
10	RING	Connects to the "Ring" lead of the telephone line.						
11	RF	Ring Feed (Input) is normally connected to Ring relay for negative battery feed voltage and ringing voltage input.						
12	VCC	Positive Power Supply Voltage (+5 V).						
13	RC	Relay Control (Input). Active high.						
14	RD	Open collector sinks current when RC is at logic high.						
15	RV	Ring Feed Voltage connects to pin 11 (RF) through a normally closed relay.						
16	VRLY	Relay voltage Supply (+5 V).						
17	CD	Clamping Diode. Connects to AGND						
18	VBAT	Negative Battery Feed Supply Voltage (-48 V).						
19	CAP	Connects external capacitor to ground for ring trip.						
20	SHK	Switch Hook Detect (Output). Active high.						

Functional Description

The SLIC performs a transformerless 2-wire to 4-wire conversion of the analog signal. The 2-wire circuit is the balanced line going to the subscriber loop, while the 4-wire circuit is the audio signal going to and from devices such as the voice codec or switching circuit. The SLIC also provides a switch hook (SHK) status output which goes high when the telephone is set off-hook.

Constant Current Feed

The SLIC employs a complex feedback circuit to supply a constant feed current to the line. This is done by sensing the sum of the voltages across the internal feed resistors and comparing it to an input reference voltage (V_{REF}) that determines the constant feed current. If V_{REF} (pin 4) is externally grounded, the constant current is set at 25 mA. For a constant current setting between 18 mA and 30 mA, V_{REF} can be set between 8.75 Vdc and -6.35 Vdc. The relationship is defined by the equation:

ILOOP =
$$\left(\frac{V_{BAT}}{1.89} - \frac{V_{REF}}{1.25}\right)$$
 mA (±2 mA)

Switch Hook Detection

When the DC current exceeds an internal threshold level, the switch hook (SHK) will go high. If the loop resistance is so high that V_{BAT} can no longer supply the required amount of loop current as determined by constant current supply circuit, the output of the switch hook (SHK) will go low to indicate that the loop resistance is too high and the line is on hook.

Ringing And Ring Trip Detection

In Figure 3 a ringing signal (e.g., 90 Vrms and -48Vdc) is applied to the line by disconnecting pin 15 (RV) from pin 11(RF), and connecting the ringing voltage at pin 11 (RF) by use of the relay K1.

The SLIC can detect an off-hook condition during ringing but there is a large AC component which must be filtered out to give a true off-hook condition at SHK.

A 1.0 μ F capacitor connected from pin 19 (CAP) to ground will provide adequate attenuation when ringing is applied. Once an off-hook condition has been detected a logic low should be applied to pin 13 (RC) which will deactivate the relay (K1) to disconnect the ringing voltage from pin 11 and reconnect to pin 15. At that time the SLIC will revert to constant current feed operation.

For applications requiring Dial Pulse Detection the Capacitor connection to ground should be controlled such that the capacitor is only connected during ringing.

During off-hook conditions (closed loop), the capacitor should be switched out. This can be performed using a transistor, relay or system drive output of a codec. Applying AGND to the Ring Trip Filter Control pin as shown in Figure 4 will switch in the filter, whilst removing AGND, (with the switch in a tri-state condition), will switch out the filter.

For applications using DTMF signalling, the capacitor can be permanently connected to ground.

Current Limit

The Tip or Ring of the telephone line may accidentally be shorted to ground. In such a case, current will only flow through the feed resistor. This high current will be sensed and reduced by the current limit circuit to a lower value to protect the internal circuitry.

Power Denial

The power denial function is a feature of the MH88612B which allows for powering down of the subscriber loop. A logic high voltage applied to the power denial input effectively removes the battery voltage from the loop driver circuitry. The resulting I_{LOOP} is negligible and power consumption is minimized. The power denial function is useful for disabling a loop which may have a ground fault.

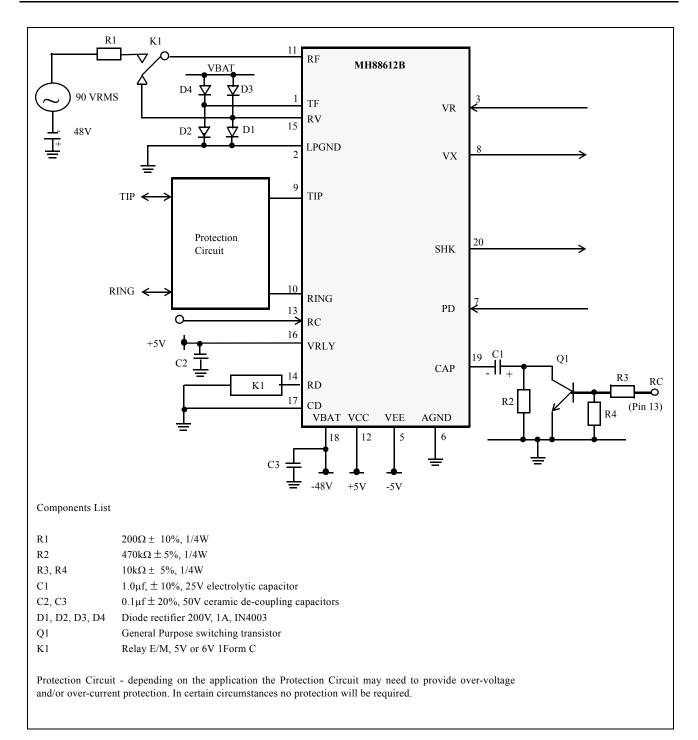


Figure 3 - Application Circuit

Absolute Maximum Ratings*

	Parameter	Symbol	Min.	Max.	Units
1	DC Supply Voltage	V _{CC}	-0.3	+15	V
	LPGND = AGND	V_{EE}	-15	+0.3	V
		V _{BAT}	-80	+0.3	V
		V _{RLY}	-0.3	+40	V
		V _{REF}	-60	+15	V
2	Storage Temperature	T _S	-40	100	°C
3	Package Power Dissipation	PD		2	W

*Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

Recommended Operating Conditions

	Characteristics	Sym.	Min.	Typ.‡	Max.	Units	Test Conditions
1	Operating Supply Voltage	V _{CC}	4.75	5.0	5.25	V	
			-5.25	-5.0	-4.75	V	
		$egin{array}{c} V_{\mathrm{EE}} \ V_{\mathrm{REF}} \end{array}$		0		V	Adjustable
		V _{BAT}	-60	-48	-27	V	
		V _{RLY}		5		V	
2	2 Storage Temperature		-40	100	°C	2	Storage Temperature
3		To	0		70	°C	

‡ Typical figures are at 25°C with nominal supply voltages and are for design aid only

	Characteristics	Sym.	Min.	Typ.‡	Max.	Units	Test Conditions
1	Supply Current V_{CC} V_{EE} V_{BAT}	I _{CC} I _{EE} I _{BAT}		6.6 -3.8 150 2	500	mA mA μA mA	PD = Logic High PD = Logic Low, Idle
2	Power Consumption	P _C		160 1600		mW mW	Standby V _{BAT} = -48V Active (Off Hook)
3	Constant Current Line Feed	I _{Loop}	23	25	27	mA	$V_{REF} = AGND, V_{BAT} = -48V$
4	Adjustable Loop Current Range	I_{Loop}	18		30	mA	Adjustable with Ext. V_{REF} input, $V_{BAT} = -48V$
5	Operating Loop Resistance	RLoop			1200	Ω	$V_{BAT} = -48V @ I_{LOOP} =$ 18mA, R _{LOOP} includes telephone set
6	Ring Ground Over-Current protection				40 50	mA mA	$I_{LOOP} = 25mA V_{BAT} = 48V$ $I_{LOOP} = 30mA V_{BAT} = 48V$
7	Off-Hook Detect Output Low Voltage (On-hook) Output High Voltage (Off-hook)	V _{OL} V _{OH}	2.7		0.4	V V	Active high logic
8	Off-Hook Detect Output Low Current (On-hook) Output High Current. (Off-hook)	I _{OL} I _{OH}			8 -200	mA μA	
9	RC, PD Control Input Input Low Volt (no activation) Input High Volt (activation)	V _{IL} V _{IH}	2.0		0.7	V V	Active high logic LSTTL compatible
10	RC, PD control Input Input Low Current (no activation) Input high current (activation)	I _{IL}			50 0.5	μA mA	
11	PD Control Input Input Low Current Input High Current	I _{IH} I _{IL} I _{IH}			0.5 0.3	mA mA	

DC Electrical Characteristics[†] - Voltages are with respect to GNDA unless otherwise stated.

DC Electrical Characteristics are over recommended operating supply voltages.
Typical figures are at 25°C with nominal ±5V supplies and are for design aid only.

AC Electrical Characteristics

	Characteristics	Sym.	Min.	Typ.‡	Max.	Units	Test Conditions
1	Ringing Voltage (rms)	V _{RING}	17		90 25	V _{rms} Hz	Superimposed on V _{BAT} = -48V
2	Ringer Equivalence Number	REN			3		
3	Ring Trip Detect time			200		ms	Cap = 1uF
4	Input AC Impedance 2-wire	Zin		600		Ω	
5	Input Impedance at V _R			100		kΩ	
6	Output Impedance at Vx			10		Ω	
7	Gain 2-wire to Vx		-1.3	-1.0	-0.7	dB	Input 3dBm, 1kHz across Tip and Ring
	Gain relative to Gain @ 1kHz		-0.15		+0.15		300-3400 Hz
8	Gain VR to 2-wire		-1.3	-1.0	-0.7	dB	Input 1.0 Vrms 1kHz at V_R $Z_{Load} = 600\Omega$
	Gain relative to Gain @ 1kHz		-0.15		+0.15	dB	300 - 3400 Hz
9	2-wire Return Loss over 300-3400Hz	RL	20	30		dB	Input 0.5 Vrms 1kHz across Tip and Ring, $Z_{Load} = 600\Omega$
10	Transhybrid Loss	THL	20	30		dB	Input 0.5 Vrms _, 1kHz at V_R $Z_{Load} = 600\Omega$
11	Longitudinal to Metallic Balance over 300-3400 Hz		50	55		dB	Input 0.5 Vrms
12	Total Harmonic Distortion at VX	THD		0.1	1.0	%	Input 3dBm, 1 kHz across Tip and Ring,
	at Tip and Ring			0.1	1.0	%	Input 1.0 Vrms 1kHz at V _R
13	Common Mode Rejection Ratio 2-wire to Vx	CMRR	40	50		dB	Input 0.5Vrms, 1kHz
14	Idle channel Noise	Nc			14	dBrnC	C @ & VX Message
15	Power supply rejection ratio VCC VEE VBAT	PSRR	26 26 26			dB dB dB	1 V_{PP} ripple, 1kHz on VCC/V _{EE} /V _{BAT} ,measure at VX and across Tip & Ring

 \ddagger Typical figures are at 25°C with nominal \pm 5V supplies and are for design aid only.

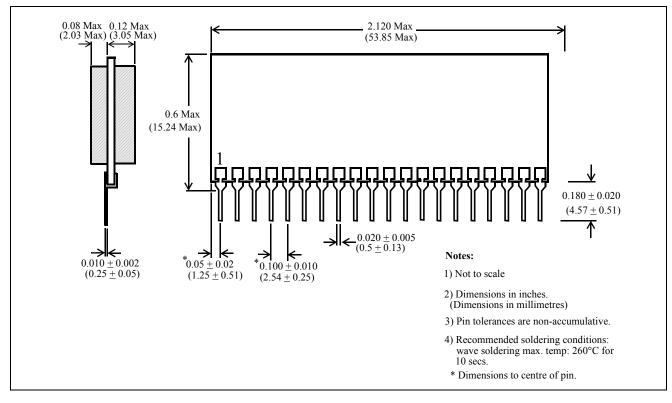


Figure 4 - Mechanical Data

For more information about all Zarlink products visit our Web Site at

www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's l₂C components conveys a licence under the Philips l₂C Patent rights to use these components in and l₂C System, provided that the system conforms to the l₂C Standard Specification as defined by Philips.

Zarlink, ZL, the Zarlink Semiconductor logo and the Legerity logo and combinations thereof, VoiceEdge, VoicePort, SLAC, ISLIC, ISLAC and VoicePath are trademarks of Zarlink Semiconductor Inc.

TECHNICAL DOCUMENTATION - NOT FOR RESALE