FEATURES

DESCRIPTION

The DRC-10520 is a 16 bit, 32 pin triple DIP Digital-to-Resolver converter with 2 VA drive capability. It features a power amplifier that may be driven by a standard ± 15 VDC power supply or by the reference source (when used with the optional power transformer DDC/PN 29306). The DRC-10520 provides compatibility with microprocessors through its 8-bit 2-byte transparent input latch. Data input is natural binary angles in TTL compatible parallel positive logic format.

The DRC-10520 is comprised of a high accuracy Digital-to-Resolver converter and a dual power amplifier stage that has high accuracy and low scale factor variation. In addition, a standard $\overline{\mathrm{BIT}}$ circuit provides a digital overcurrent signal output. A logic " 0 " BIT output indicates an overcurrent condition in the sine or cosine outputs. Reference inputs are scalable with external resistors. Loss of the reference signal will not damage the converter.

APPLICATION

The DRC-10520 can be used where digitized shaft angle data must be converted to an analog format for driving control transformers. With its built-in input latches, the DRC-10520 is especially compatible with a microproces-sor-based system including flight simulators, flight instrumentation, fire control systems, radar and navigation systems, and air data computers.

Data Device Corporation
105 Wilbur Place
Bohemia, New York 11716
631-567-5600 Fax: 631-567-7358
www.ddc-web.com

- 2 VA Drive Capacity
- 8-Bit/2-Byte Double Buffered Transparent Latch
- Resolution: 16 Bits Accuracy: to 1 Minute
- Power Amplifier Uses AC Reference or DC Supplies
- BIT Output

NOTES for Table 1:

1) 700 ma per P / S is in relationship to driving torque loads. Large step torque loads can cause converter to pull max current. For these conditions the converter seat sink protection is very important. A solution to combat large step torque loads is to convert the large steps in position change to occur over smaller steps which will decrease peak P/S currents.
2) Output voltage can be scaled by lowering reference voltage. Factory set for fixed factor of 2.3.4V Ref Input $=6.8 \mathrm{~V}$ Output.

TECHNICAL INFORMATION INTRODUCTION

The DRC-10520 is a digital-to-resolver (D/R) converter which has an inherently high accuracy and low scale factor variation. The circuit is based on an algorithm whose theoretical math error is only ± 3.5 arc seconds and whose theoretical scale factor variation with angle is less than $\pm 0.015 \%$. Therefore accuracy and scale factor are limited only by the physical components, not by the algorithm.

The digital inputs are CMOS double buffered transparent latches (FIGURE 1). Angular output is determined by adding bits in the logic 1 state.

POWER SUPPLY CYCLING

Power supply cycling of the DDC converter should follow the guidelines below to avoid any potential problems. Strictly maintain proper sequencing of supplies and signals per typical CMOS circuit guidelines:

- Apply power supplies first (+15, -15V and ground).
- Apply digital control signals next.
- Apply analog signals last.

The reverse sequence should be followed during power down of the circuit.

REFERENCE LEVEL ADJUSTMENT

The input is specified for operation at a reference level of 3.4 V rms; however, reference levels other than 3.4 V rms may be

eg., if $\mathrm{V}_{\text {REF }}=26 \mathrm{~V} \mathrm{rms}$, then $\mathrm{R}_{\text {REF }}=\begin{gathered}(26-3.4) \\ 3.4\end{gathered} \times 13 \mathrm{k}$

The output is 6.8 V rms line-to-line resolver format signal which may be converted into a synchro format of 11.8 V line-to-line with the companion Scott-T transformer module available as DDC P/N 29305.

DRIVING THE POWER AMPLIFIER WITH THE REFERENCE

The high power amplifier stage can be driven by a standard $\pm 15 \mathrm{~V}$ DC supply or with a high efficiency pulsating power supply derived from the reference voltage source. A companion power transformer DDC P/N 29306, designed to implement the pulsating power source for the DRC-10520, is also available (FIGURE 3). The DRC-10520 will not be damaged by sequencing order in the $\pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}$ supplies or the reference input.

FIGURE 2A. $\overline{L L}, \overline{L M}, \overline{L A}$ TIMING DIAGRAM (16 BIT)

Data Changing Data Stable
FIGURE 2B. $\overline{L L}, \overline{L M}, \overline{L A}$ TIMING DIAGRAM (8 BIT)

OUTPUT PROTECTION AND BIT

The output is protected from overcurrent, short circuits and voltage feedback transients. The BIT circuit detects overcurrent conditions in the sine or cosine resolver output. A logic " 0 " is used for overcurrent detection. Normal operation is logic "1." The BIT line is normally at logic "1." An overload or short circuit will cause the BIT line to drop after 1 sec when the output current exceeds a peak level of approximately 450 mA .

OUTPUT PHASING AND OUTPUT SCALE FACTOR

The analog output signals have the following phasing:

$$
\begin{aligned}
& \sin =\left(R_{H}-R_{L}\right) A_{\circ}[1+A(\theta)] \sin \theta \\
& \cos =\left(R_{H}-R_{L}\right) A_{\circ}[1+A(\theta)] \cos \theta
\end{aligned}
$$

The output amplifiers simultaneously track reference voltage fluctuations because they are proportional to ($R_{H}-R_{L}$). The amplitude factor A_{o} is 2 for 6.8 V rms L-L output. The maximum variation in A_{o} from all causes is 0.3%. The term $A(\theta)$ represents the variation of the amplitude with the digital input angle. A (θ), which is called the scale factor variation, is a smooth function of θ without discontinuities and is less than $\pm 0.1 \%$ for all values of θ. The total maximum variation in $\mathrm{A}_{\mathrm{o}}[1+\mathrm{A}(\theta)]$ is therefore $\pm 0.4 \%$.

Because the amplitude factor $\left(R_{H}-R_{L}\right) A_{o}[1+A(\theta)]$ varies simultaneously on all output lines, it will not be a source of error when the DRC-10520 is to drive a ratiometric system such as a resolver or synchro. However, if the outputs are used independently, as in x-y plotters, the amplitude variations must be taken into account.

THERMAL CONSIDERATIONS

The power stage consists of two power amplifiers: one for the sine output and one for the cosine output. Maximum power stage junction temperature rise occurs at 0° and 180° for the sine output and 90° and 270° for the cosine output.

Maximum power dissipation for the hybrid occurs at the interquadrant points: $45^{\circ}, 135^{\circ}, 225^{\circ}$, and 315°. At these points the total power dissipation of each amplifier is 0.707 max. Therefore, the total power dissipation is 1.41 times the max for any one amplifier.

The thermal resistance junction to the outside of the case is $10.6^{\circ} \mathrm{C} / \mathrm{W}$. For a 2 VA purely inductive load and ± 15 VDC power supplies, the junction temperature rise is $42^{\circ} \mathrm{C}$. For a real inductive load (one that has some power dissipation) and using pulsating supplies, the power dissipated is cut in half. The temperature rise is also halved to $21^{\circ} \mathrm{C}$.

TABLE 2. PIN CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION
1	N.C.	12	5	23	14
2	N.C.	13	6	24	RL
3	16 (LSB)	14	7	25	RH
4	COS	15	8	26	15
5	SIN	16	$\overline{L M}$	27	-15 V
6	$+V$	17	$\overline{\mathrm{LL}}$	28	GND
7	-V	18	9	29	$\overline{\mathrm{LA}}$
8	1 (MSB)	19	10	30	+ +15 V
9	2	20	11	31	BIT
10	3	21	12	32	N.C.
11	4	22	13		

FIGURE 3. TYPICAL CONNECTION DIAGRAM UTILIZING PULSATING POWER SOURCE FOR SYNCHRO OUTPUT

FIGURE 4. POWER TRANSFORMER (29306, 33920) MECHANICAL OUTLINE

FIGURE 5. OUTPUT SCOTT-T TRANSFORMERS (29305, 32976) MECHANICAL OUTLINE

	POWER TRANSFORMER		SCOTT-T TRANSFORMER		
	29306	33920	29305	29947	32976
Freq. Range	$400 \mathrm{~Hz} \pm 10 \%$ for all transformers				
Drive	2 VA for all transformers				
Input (1-2)	26V	115 V	6.8 V	6.8 V	6.8 V
Output	see note 1	see note 1	$\begin{gathered} \text { Synchro } \\ 11.8 \mathrm{~V} \text { L-L } \end{gathered}$	$\begin{gathered} \hline \text { Resolver } \\ 11.8 \mathrm{~V} \text { L-L } \end{gathered}$	$\begin{aligned} & \text { Synchro } \\ & 90 \text { V L-L } \end{aligned}$
Phase Shift	note 2	note 2	-	-	-
Rated Load (over -55 to $+125^{\circ} \mathrm{C}$)	-	-	1.1 VA $6 \mathrm{~min} ;$ 2.0 VA 12 min	$\begin{aligned} & \hline 2.0 \mathrm{VA} \\ & 2 \mathrm{~min} \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{VA} \\ & 4 \mathrm{~min} \end{aligned}$
Dielectric withstanding volt. (between windings)	$\begin{aligned} & 250 \text { Vrms } \\ & \text { @ } 60 \text { Hz } \end{aligned}$	$\begin{aligned} & 500 \text { Vrms } \\ & @ 60 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 500 \text { Vrms } \\ @ 60 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 500 \text { Vrms } \\ & @ 60 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 500 \text { Vrms } \\ @ 60 \mathrm{~Hz} \end{gathered}$
Weight	1 oz.	1 oz.	2.0 oz.	2.0 oz.	2.0 oz.
Notes: 1. (3-4-5) 20.68 volts Centertapped, 7.5% Regualtion over temperature range. (6-7) 3.4 volts, 5% Regulation over temperature range. 2. Max from winding $1-2$ to $6-7$ is 5° for ambient temperature -55 to $+125^{\circ} \mathrm{C}$.					

TABLE 4. ANGLES IN DEGREES CROSS REFERENCED TO A 16-BIT DIGITAL WORD																
$\begin{gathered} \text { DEGREES } \\ \text { (HEX) } \end{gathered}$	16 BIT DIGITAL WORD (Φ) (1 = MSB, 16 = LSB)															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0° (0000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15° (0AAB)	0	0	0	0	1	0	1	0	1	0	1	0	1	0	1	1
30° (1555)	0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1
45° (2000)	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
60° (2AAB)	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	1
75° (3666)	0	0	1	1	0	1	0	1	0	1	0	1	0	1	0	1
90° (4000)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
120° (5555)	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
135° (6000)	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
180° (8000)	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
240° (AAAB)	1	0	1	0	1	0	1	0	0	0	1	0	1	0	1	1
270° (C000)	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
285° (CAAB)	1	1	0	0	1	0	1	0	1	0	0	0	1	0	1	1
300° (D555)	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
315° (E000)	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
330° (EAAB)	1	1	1	0	1	0	1	0	1	0	1	0	1	0	1	1
345° (F555)	1	1	1	1	0	1	0	1	0	1	0	1	0	1	0	1
359° (FFFF)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

NOTES:

1. Dimensions shown are in inches (millimeters)
2. Lead identification numbers are for reference only.
3. Lead cluster shall be centered within ± 0.010 (± 2.54) of outline dimensions.

Lead spacing dimensions apply only at seating plane.
4. Pin material meets solderability requirements of MIL-PRF-38534, Method 2003.
5. Tol $\pm 0.005(\pm 0.13)$ unless otherwise noted.

FIGURE 8. DRC-10520 MECHANICAL OUTLINE (32 PIN TRIPLE DIP)

ORDERING INFORMATION

DRC-10520-XXXX

L Supplemental Process Requirements:

S = Pre-Cap Source Inspection
L = Pull Test
Q = Pull Test and Pre-Cap Inspection
Blank = None of the Above
Accuracy:
3 = 4 Minutes
$4=2$ Minutes
$5=1$ Minute

- Process Requirements:

0 = Standard DDC Processing, no Burn-In (See table below.)
1 = MIL-PRF-38534 Compliant
$2=B^{*}$
3 = MIL-PRF-38534 Compliant with PIND Testing
4 = MIL-PRF-38534 Compliant with Solder Dip
$5=$ MIL-PRF-38534 Compliant with PIND Testing and Solder Dip
$6=B^{*}$ with PIND Testing
$7=B^{*}$ with Solder Dip
$8=B^{*}$ with PIND Testing and Solder Dip
9 = Standard DDC Processing with Solder Dip, no Burn-In (See table below.)
Temperature Grade/Data Requirements:
$1=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Case)
$2=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Case)
$3=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Case)
$4=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Case) with Variables Test Data
$5=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Case) with Variables Test Data
$8=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Case) with Variables Test Data
*Standard DDC Processing with burn-in and full temperature test - see table below.

STANDARD DDC PROCESSING		
FOR HYBRID AND MONOLITHIC HERMETIC PRODUCTS		
TEST	MIL-STD-883	
	METHOD(S)	CONDITION(S)
INSPECTION	$2009,2010,2017$, and 2032	-
SEAL	1014	A and C
TEMPERATURE CYCLE	1010	C
CONSTANT ACCELERATION	2001	3000 g
BURN-IN	1015 (note 1), 1030 (note 2) 2	TABLE 1

Notes:

1. For Process Requirement " $\mathrm{B}^{* 1}$ (refer to ordering information), devices may be non-compliant with MIL-STD-883, Test Method 1015, Paragraph 3.2. Contact factory for details.
2. When applicable.

The information in this data sheet is believed to be accurate; however, no responsibility is assumed by Data Device Corporation for its use, and no license or rights are granted by implication or otherwise in connection therewith. Specifications are subject to change without notice.

Please visit our web site at www.ddc-web.com for the latest information.

For Technical Support - 1-800-DDC-5757 ext. 7771
Headquarters, N.Y., U.S.A. - Tel: (631) 567-5600, Fax: (631) 567-7358
Southeast, U.S.A. - Tel: (703) 450-7900, Fax: (703) 450-6610
West Coast, U.S.A. - Tel: (714) 895-9777, Fax: (714) 895-4988
United Kingdom - Tel: +44-(0)1635-811140, Fax: +44-(0)1635-32264
Ireland - Tel: +353-21-341065, Fax: +353-21-341568
France - Tel: +33-(0)1-41-16-3424, Fax: +33-(0)1-41-16-3425
Germany - Tel: +49-(0)89-150012-11, Fax: +49-(0)89-150012-12
Japan - Tel: +81-(0)3-3814-7688, Fax: +81-(0)3-3814-7689
World Wide Web - http://www.ddc-web.com

