

Features

- Reset to Bright mode if Power Off time more than 5S
- Adjustable Output Current: up to 750mA
- 8.5Hz Blinking Mode
- Low Start-Up Voltage: 0.9V(Typ.)
- Low SW on Resistance: 100mΩ
- Over Temperature Protection
- Over Voltage Protection
- SOT23-6 Package
- Pb-Free Package

Applications

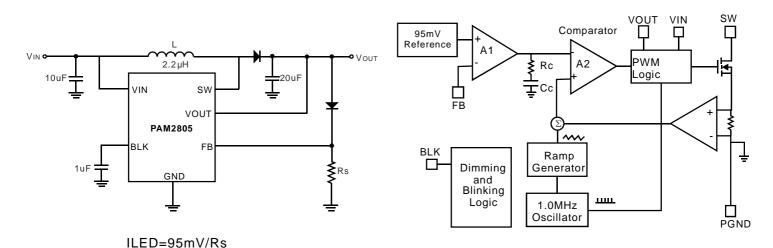
■ White LED Torch (Flashlight)

General Description

The PAM2805 is a step-up DC-DC WLED driver with 3 modes cycling function(100% brightness,25% brightness and 8.5Hz blinking).

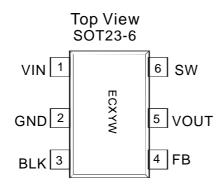
The unique 3 modes cycling function can eliminate the needs of extra functional MCU or IC.

The PAM2805 can deliver up to 750mA output current by setting an external resistor.


The PAM2805 switches at a 1.0MHz constant frequency, allowing for the use of small value external inductor and ceramic capacitors.

A low 95mV feedback voltage reduces the power loss in the Rs for better efficiency. With its internal 2A, $100m\Omega$ NMOS switch, the device can provide high efficiency even at heavy load.

The PAM2805 is available in SOT23-6 package.


Typical Application

Block Diagram

Pin Configuration& Marking Information

X: Internal Code Y: Year W: Weekly

Pin Number	Name Function	
1	VIN Input Voltage	
2	GND Power Ground	
3	BLK	Connect A1uF CAP for Blinking
4	FB Feedback	
5	VOUT	Output Voltage
6	SW	Connected to an internal NMOS switch

Absolute Maximum Ratings

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability. All voltages are with respect to ground.

Supply Voltage	6V
Output Voltage	6V

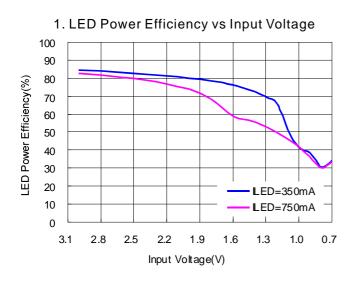
Recommended Operating Conditions

Junction Temperature......-40°C to 125°C Operating Temperature Range-40°C to 85°C

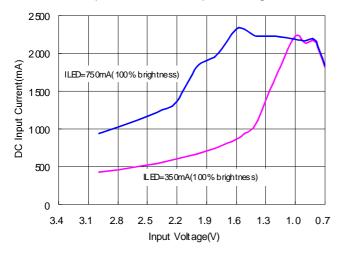
Thermal Information

Parameter	Package	Sym bol	Maximum	Unit
Thermal Resistance	SOT23-6	θ _{JC}	130	°C <i>I</i> W
(Junction to Case)	001200			
Thermal Resistance	SOT22 6	θ _{JA}	250	
(Junction to Ambient)	SOT23-6			
Internal Power Dissipation	SOT23-6	PD	400	mW
@TA=25℃	30123-0	ГD	400	11100

Electrical Characteristic

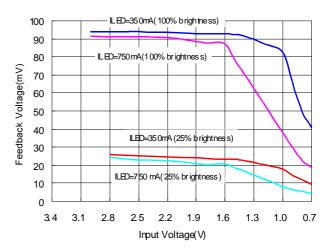

 $T_{\text{A}}{=}25^{\circ}\text{C},$ L=2.2uH, $C_{\text{IN}}{=}10\text{uF},$ $C_{\text{OUT}}{=}10\text{uF},$ $C_{\text{BLK}}{=}1\text{uF},$ VF=3.4V, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input Voltage Range	V _{IN}		0.9		VF-0.2 (note 1)	V
Feedback Voltage	V_{FB}		90	95	100	mV
Start-up Voltage	V _{START}	V _{IN} : 0V→3V I _{LED} =200mA		0.9		V
Hold Voltage	V _{hold}	V _{IN} : 3V→0V I _{LED} :750mA→100mA		0.7		V
Oscillator Frequency	Fosc		0.85	1.0	1.15	MHz
Over Temperature Shutdown	OTS			150		°C
Over Temperature Hysteresis	ОТН			30		°C
Maximum Output Current Range	I _{O(MAX)}	V _{IN} =2.4V	750			mA
Quiescent Current	Ι _Q	I _{LED} =0mA, V _O =3.4V, Deviœ Switching at 1MHz		1	3	mA
Switch on Resistance	R _{DSON}	V ₀ =3.4V		0.1		Ω
Current Limit	ILIM	V ₀ =3.4V	2			А
Over Voltage Protection(VOUT)	Vovp			4.5		V
Blinking Frequency	Fblk	C _{BLK} =1uF	7	8.5	10	Hz


Note1: V_{F} --- LED Forward Voltage

Typical Performance Characteristics

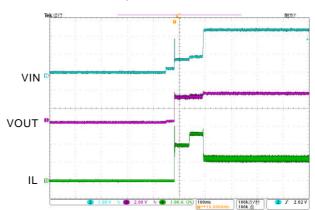
 $T_A = 25^{\circ}C$, L = 2.2uH, $C_N = 10uF$, $C_{OUT} = 10uF$, $C_{BLK} = 1uF$, unless otherwise noted.


3. DC Input Current vs Input Voltage

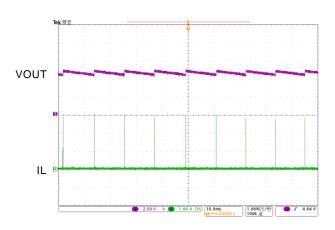
800 700 LED=750mA(100% brightness) 600 ED Current(mA) 500 400 ILED=350mA(100% brightness) 300 ILED=750mA (25% brightness) 200 100 ILED=350 mA (25% brightness) 0 3.1 2.8 2.5 1.6 1.3 1.0 0.7 2.2 1.9 Input Voltage(V)

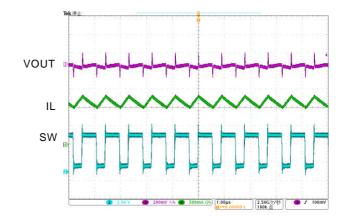
2. LED Current vs Input Voltage

4. Feedback Voltage vs Input Voltage



Typical Performance Characteristics


 $T_A = 25^{\circ}C$, L=2.2uH , $C_N = 10$ uF, $C_{OUT} = 10$ uF, $C_{BLK} = 1$ uF, unless otherwise noted.



6. Start-Up Waveform

7. Overvoltage Protection

8. Switching Waveform

Application Information

Inductor Selection

The PAM2805 can use small value inductors due to its switching frequency of 1 MHz. The value of inductor will focus in the range of 2.2uH to 4.7uH for most PAM2805 applications. In typical high current white LED applications, it is recommended to use a 4.7uH inductor. The inductor should have low DCR (DC resistance) to minimize the I²R power loss, and it requires a current rating of 2A to handle the peak inductor current without saturating.

Capacitor Selection

An input capacitor is required to reduce the input ripple and noise for proper operation of the PAM2805. For good input decoupling, Low ESR (equivalent series resistance) capacitors should be used at the input. At least 2.2uF input capacitor is recommended for most applications.

A minimum output capacitor value of 6.8uF is recommended under normal operating conditions, while a 10uF-22uF capacitor may be required for higher power LED current. A reasonable value of the output capacitor depends on the LED current. The ESR of the output capacitor is the important parameter to determine the output voltage ripple of the converter, so low ESR capacitors should be used at the output to reduce the output voltage ripple. The small size of ceramic capacitors is an excellent choice for PAM2805 applications. The

excellent choice for PAM2805 applications. The X5R and X7R types are preferred because they maintain capacitance over wide voltage and temperature ranges.

Diode Selection

It's indispensable to use a Schottky diode rated at 2A with the PAM2805. Using a Schottky diode with a lower forward voltage drop is better to improve the power LED efficiency, and its voltage rating should be greater than the output voltage. SS22 is recommended Schottky diode for rectifier.

LED Current Setting

The LED current is set by the single external Rs resistor connected to the FB pin as shown in the typical application circuit on page 1. The typical FB reference is internally regulated to 95mV. The LED current is 95mV/R1. It's recommended to use a 1% or better precision resistor for the better LED current accuracy. The formula for Rs

selection is shown as follows:

 $Rs(Ohm)=95mV/I_{LED}(mA)$ at VIN=3V.

Typically, for 1W(330mA) and 3W(750mA) LED light applications, the Rs are 0.2880hm and 0.1270hm respectively.

3 Modes Cycling

The PAM2805 has three modes: 100% brightness, 25% brightness and blinking(typical 8.5Hz).

The mode change is triggered by power on/off actions and cycles in the following sequence: bright, dimming, blinking and back to bright mode.

The PAM2805 will reset to the bright mode after being power off for more than 5 seconds.

Low Voltage Startup and Soft Start

The PAM2805 has a build-in low voltage startup circuit for the best battery life solution. It can start up at 0.9V VIN typically when the preset LED current is 200mA.

The soft-start function is made by clamping the output voltage of error amplifier with another voltage source which increases slowly from zero to near VIN during the soft-start period. Therefore, the duty cycle of the PWM will be increased from zero to maximum in this period. The charging time of the inductor will be limited by the smaller duty so that the inrush current can be reduced to an acceptable value.`

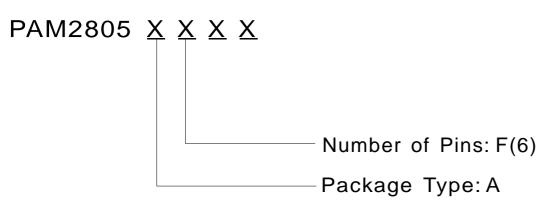
Over Voltage Protection

The output voltage of PAM2805 is monitored by Over Voltage Protection circuit. Once VOUT goes over V_{OVP} , typically 4.5V, the power NMOS is turned off and SW pin stops switching. Then, the VOUT is clamped to around V_{OVP} .

Application Information

Over Current Protection

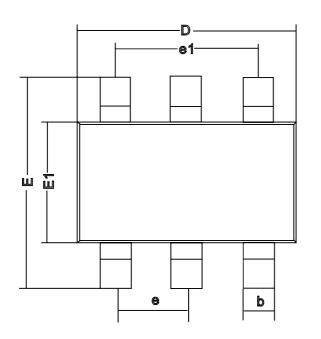
The inductor current during charging period is detected by a current sensing circuit. When the value is larger than current limiting I_{LIM} , the power NMOS is turned off so that the inductor will be forced to leave charging stage and enter discharging stage. Therefore, the inductor peak current will not exceed I_{LIM} , whose minimum value is 2A.

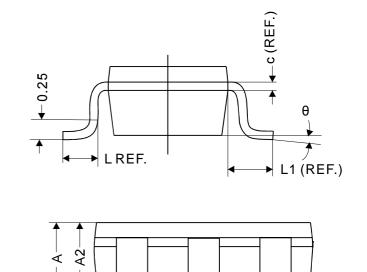

PCB Layout Guidelines

As for all switching power supplies, the layout and components placement of the PAM2805 is an important step in the design; especially at high peak currents and high switching frequencies.

The input capacitor and output capacitor should be placed respectively as close as possible to the input pin and output pin of the IC; the inductor and schottky diode should be placed as close as possible to the switch pin by using wide and short traces for the main current path; the current sense resistor should be placed as close as possible between the ground pin and feedback pin.

Ordering Information


Part Number	Marking	Package Type	Standar d Package
PAM2805AF	ECXYW	SOT23-6	3,000Units/Tape&Reel



A1

Outline Dimensions

SOT23-6

REF.	Millimeter		
KEF.	Min	Max	
А	-	1.35	
A1	0.04	0.15	
A2	0.70	1.2	
С	0.12REF.		
D	2.70	3.10	
E	2.60	3.00	
E1	1.40	1.80	
L	0.45REF.		
L1	0.60REF.		
θ	0°	10°	
b	0.30	0.50	
е	0.95REF.		
e1	1.90REF.		