Low-Cost, 3.3V Zero Delay Buffer

NRND – Not Recommend for New Designs

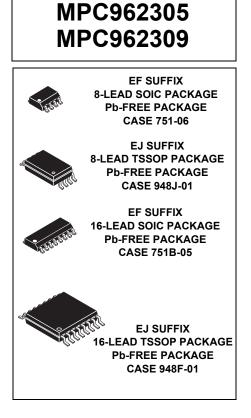
The MPC962309 is a zero delay buffer designed to distribute high-speed clocks. Available in a 16-pin SOIC or TSSOP package, the device accepts one reference input and drives nine low-skew clocks. The MPC962305 is the 8-pin version of the MPC962309 which drives five outputs with one reference input. The -1H versions of these devices have higher drive than the -1 devices and can operate up to 100/-133 MHz frequencies. These parts have on-chip PLLs which lock to an input clock presented on the REF pin. The PLL feedback is on-chip and is obtained from the CLOCKOUT pad.

Features

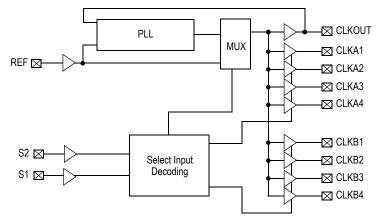
- 1:5 LVCMOS zero-delay buffer (MPC962305)
- 1:9 LVCMOS zero-delay buffer (MPC962309)
- · Zero input-output propagation delay
- · Multiple low-skew outputs
- 250 ps max output-output skew
- · 700 ps max device-device skew
- Supports a clock I/O frequency range of 10 MHz to 133 MHz, compatible with CPU and PCI bus frequencies
- Low jitter, 200 ps max cycle-cycle, and compatible with Pentium[®] based systems
- Test Mode to bypass PLL (MPC962309 only. See Table 3)
- 8-pin SOIC or 8-pin TSSOP package (MPC962305);16-pin SOIC or 16-pin TSSOP package (MPC962309), all Pb-free
- Single 3.3 V supply
- Ambient temperature range: -40°C to +85°C
- Compatible with the CY2305, CY23S05, CY2309, CY23S09
- Spread spectrum compatible
- Not Recommend for New Designs
 Use replacement part IDT2305

•

The MPC962309 has two banks of four outputs each, which can be controlled by the Select Inputs as shown in Table 3. Bank B can be tri-stated if all of the outputs are not required. Select inputs also allow the input clock to be directly applied to the outputs for chip and system testing purposes.


The MPC962305 and MPC962309 PLLs enters a power down state when there are no rising edges on the REF input. During this state, all of the outputs are in tristate, the PLL is turned off, and there is less than 25.0 μ A of current draw for the device. The PLL shuts down in one additional case as shown in Table 3.

Multiple MPC962305 and MPC962309 devices can accept the same input clock and distribute it throughout the system. In this situation, the difference between the output skews of two devices will be less than 700 ps.


All outputs have less than 200 ps of cycle-cycle jitter. The input-to-output propagation delay on both devices is guaranteed to be less than 350 ps and the output-to-output skew is guaranteed to be less than 250 ps.

The MPC962305 and MPC962309 are available in two/three different configurations, as shown on the ordering information page. The MPC962305-1/MPC962309-1 are the base parts. High drive versions of those devices, MPC962305-1H and MPC962309-1H, are available to provide faster rise and fall times of the base device.

Block Diagram

Pin Configuration SOIC/TSSOP Top View REF 1 16 CLKOUT CLKA1 2 15 CLKA4 CLKA2 3 14 CLKA3 V_{DD} 4 13 V_{DD} GND 5 12 GND CLKB1 6 11 CLKB4 CLKB2 7 10 CLKB3 S2 8 9 S1 SOIC/TSSOP Top View REF 1 8 CLKOUT CLK2 2 7 CLK4 CLK4 6 V_{DD} GND 4 5 CLK3

Table 1. Pin Description for MPC962309

Pin	Signal	Description
1	REF ⁽¹⁾	Input reference frequency, 5 V-tolerant input
2	CLKA1 ⁽²⁾	Buffered clock output, Bank A
3	CLKA2 ⁽²⁾	Buffered clock output, Bank A
4	V _{DD}	3.3 V supply
5	GND	Ground
6	CLKB1 ⁽²⁾	Buffered clock output, Bank B
7	CLKB2 ⁽²⁾	Buffered clock output, Bank B
8	S2 ⁽³⁾	Select input, bit 2
9	S1 ⁽³⁾	Select input, bit 1
10	CLKB3 ⁽²⁾	Buffered clock output, Bank B
11	CLKB4 ⁽²⁾	Buffered clock output, Bank B
12	GND	Ground
13	V _{DD}	3.3 V supply
14	CLKA3 ⁽²⁾	Buffered clock output, Bank A
15	CLKA4 ⁽²⁾	Buffered clock output, Bank A
16	CLKOUT ⁽²⁾	Buffered output, internal feedback on this pin

1. Weak pull-down.

2. Weak pull-down on all outputs.

3. Weak pull-ups on these inputs.

Table 2. Pin Description for MPC962305

Pin	Signal	Description
1	REF ⁽¹⁾	Input reference frequency, 5 V-tolerant input
2	CLK2 ⁽²⁾	Buffered clock output
3	CLK1 ⁽²⁾	Buffered clock output
4	GND	Ground
5	CLK3 ⁽²⁾	Buffered clock output
6	V _{DD}	3.3 V supply
7	CLK4 ⁽²⁾	Buffered clock output
8	CLKOUT ⁽²⁾	Buffered clock output, internal feedback on this pin

1. Weak pull-down.

2. Weak pull-down on all outputs.

S2	S1	CLOCK A1-A4	CLOCK B1–B4	CLKOUT ⁽¹⁾	Output Source	PLL Shutdown
0	0	Three-State	Three-State	Driven	PLL	Ν
0	1	Driven	Three-State	Driven	PLL	Ν
1	0	Driven	Driven	Driven	Reference	Y
1	1	Driven	Driven	Driven	PLL	Ν

Table 3. Select Input Decoding for MPC962309

1. This output is driven and has an internal feedback for the PLL. The load on this output can be adjusted to change the skew between the reference and output.

Table 4. Maximum Ratings

Characteristics	Value	Unit
Supply Voltage to Ground Potential	-0.5 to +3.9	V
DC Input Voltage (Except Ref)	-0.5 to V _{DD} +0.5	V
DC Input Voltage REF	-0.5 to 5.5	V
Storage Temperature	-65 to +150	°C
Junction Temperature	150	°C
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2000	V

Table 5. Operating Conditions for MPC962305-X and MPC962309-X Industrial Temperature Devices

Parameter	Description	Min	Max	Unit
V _{DD}	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature (Ambient Temperature)	-40	85	°C
CL	Load Capacitance, below 100 MHz		30	pF
CL	Load Capacitance, from 100 MHz to 133 MHz		10	pF
C _{IN}	Input Capacitance		7	pF

Table 6. Electrical Characteristics for MPC962305-X and MPC962309-X Industrial Temperature Devices⁽¹⁾

Parameter	Description	Test Conditions	Min	Max	Unit
V _{IL}	Input LOW Voltage ⁽²⁾			0.8	V
V _{IH}	Input HIGH Voltage ⁽²⁾		2.0		V
I _{IL}	Input LOW Current	V _{IN} = 0 V		50.0	μΑ
I _{IH}	Input HIGH Current	V _{IN} = V _{DD}		100.0	μΑ
V _{OL}	Output LOW Voltage ⁽³⁾	I _{OL} = 8 mA (-1) I _{OH} = 12 mA (-1H)		0.4	V
V _{OH}	Output HIGH Voltage ⁽³⁾	I _{OH} = -8 mA (-1) I _{OL} = -12 mA (-1H)	2.4		V
I _{DD} (PD mode)	Power Down Supply Current	REF = 0 MHz		25.0	μΑ
I _{DD}	Supply Current	Unloaded outputs at 66.67 MHz, SEL inputs at V _{DD}		35.0	mA

1. All parameters are specified with loaded outputs.

2. REF input has a threshold voltage of $V_{PP}/2$.

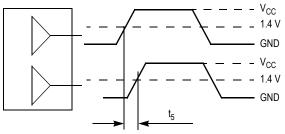
3. Parameter is guaranteed by design and characterization. Not 100% tested in production.

Parameter	Name	Test Conditions	Min	Тур	Max	Unit
t ₁	Output Frequency	30-pF load 10-pF load	10 10		100 133.33	MHz MHz
	Duty Cycle ⁽²⁾ = $t_2 \div t_1$	Measured at 1.4 V, F _{OUT} = 66.67 MHz	40.0	50.0	60.0	%
t ₃	Rise Time ⁽²⁾	Measured between 0.8 V and 2.0 V			2.50	ns
t ₄	Fall Time ⁽²⁾	Measured between 0.8 V and 2.0 V			2.50	ns
t ₅	Output to Output Skew ⁽²⁾	All outputs equally loaded			250	ps
t _{6A}	Delay, REF Rising Edge to CLKOUT Rising Edge ⁽²⁾	Measured at V _{DD} /2		0	±350	ps
t _{6B}	Delay, REF Rising Edge to CLKOUT Rising Edge ⁽²⁾	Measured at V _{DD} /2. Measured in PLL Bypass Mode, MPC962309 device only	1	5	8.7	ns
t ₇	Device to Device Skew ⁽²⁾	Measured at $V_{DD}/2$ on the CLKOUT pins of devices		0	700	ps
tj	Cycle to Cycle Jitter ⁽²⁾	Measured at 66.67 MHz, loaded outputs			200	ps
t _{LOCK}	PLL Lock Time ⁽²⁾	Stable power supply, valid clock presented on REF pin			1.0	ms

Table 7. Switching Characteristics for MPC962305-1 and MPC962309-1 Industrial Temperature Devices⁽¹⁾

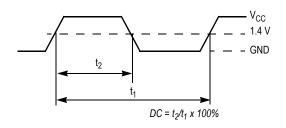
1. All parameters are specified with loaded outputs.

2. Parameter is guaranteed by design and characterization. Not 100% tested in production.


Table 8. Switching Characteristics for MPC962305-1H and MPC962309-1H Industrial Temperature Devices ⁽¹⁾
--

Parameter	Name	Test Conditions	Min	Тур	Мах	Unit
t ₁	Output Frequency	30-pF load 10-pF load	10 10		100 133.33	MHz MHz
	Duty Cycle ⁽²⁾ = t2 ÷ t1	Measured at 1.4 V, F _{OUT} = 66.67 MHz	40.0	50.0	60.0	%
	Duty Cycle ⁽²⁾ = t2 ÷ t1	Measured at 1.4 V, F _{OUT} < 50 MHz	45.0	55.0	55.0	%
t ₃	Rise Time ⁽²⁾	Measured between 0.8 V and 2.0 V			1.50	ns
t ₄	Fall Time ⁽²⁾	Measured between 0.8 V and 2.0 V			1.50	ns
t ₅	Output to Output Skew ⁽²⁾	All outputs equally loaded			250	ps
t _{6A}	Delay, REF Rising Edge to CLKOUT Rising Edge ⁽²⁾	Measured at V _{DD} /2		0	±350	ps
t _{6B}	Delay, REF Rising Edge to CLKOUT Rising Edge ⁽²⁾	Measured at V _{DD} /2. Measured in PLL Bypass Mode, MPC962309 device only	1	5	8.7	ns
t ₇	Device to Device Skew ⁽²⁾	Measured at V_{DD} /2 on the CLKOUT pins of devices		0	700	ps
t ₈	Output Slew Rate ⁽²⁾	Measured between 0.8 V and 2.0 V using Test Circuit #2	1			V/ns
tj	Cycle to Cycle Jitter ⁽²⁾	Measured at 66.67 MHz, loaded outputs			200	ps
t _{LOCK}	PLL Lock Time ⁽²⁾	Stable power supply, valid clock presented on REF pin			1.0	ms

1. All parameters are specified with loaded outputs.


2. Parameter is guaranteed by design and characterization. Not 100% tested in production.

APPLICATIONS INFORMATION

The pin-to-pin skew is defined as the worst case difference in propagation delay between any similar delay path within a single device

Figure 1. Output-to-Output Skew t_{SK(O)}

The time from the PLL controlled edge to the non-controlled edge, divided by the time between PLL controlled edges, expressed as a percentage

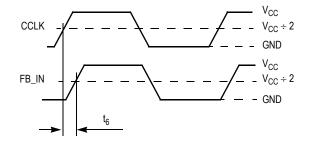


Figure 2. Static Phase Offset Test Reference

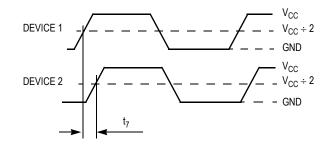
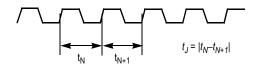



Figure 4. Device-to-Device Skew

The variation in cycle time of a signal between adjacent cycles, over a random sample of adjacent cycle pairs

Figure 5. Cycle-to-Cycle Jitter

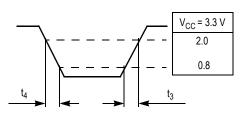
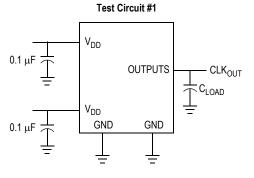
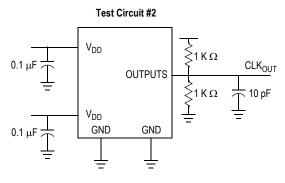
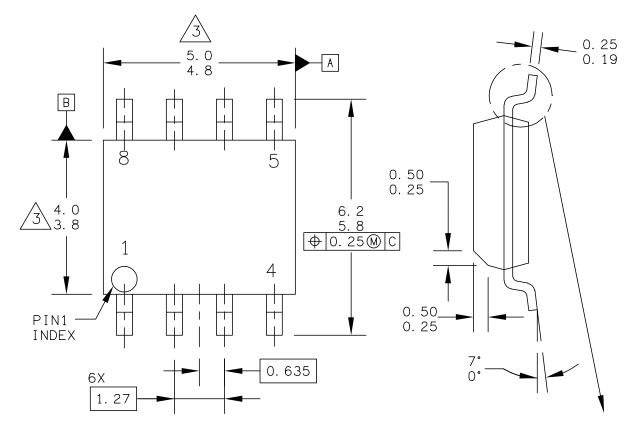
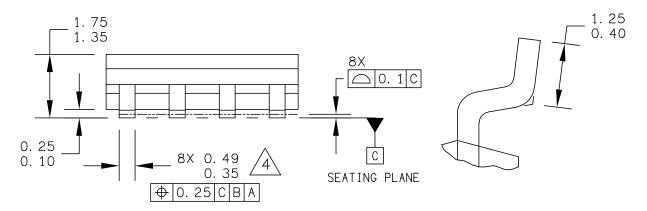




Figure 6. Output Transition Time Test Reference


Test Circuit for all parameters except t₈



Test Circuit for t_8 , Output slew rate on -1H, -5 device

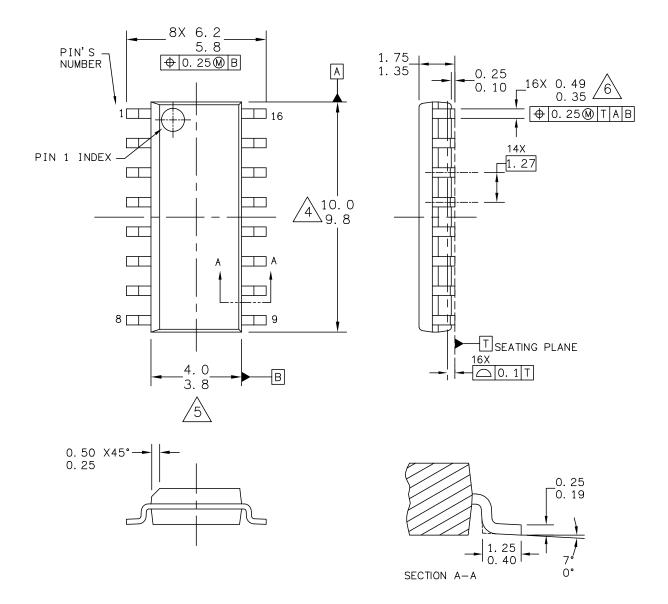
Table 9. Ordering Information

Ordering Code	Package Type
MPC962305D-1	8-pin 150-mil SOIC
MPC962305D-1R2	8-pin 150-mil SOIC - Tape and Reel
MPC962305EF-1	8-pin 150-mil SOIC (Pb-free)
MPC962305EF-1R2	8-pin 150-mil SOIC (Pb-free) - Tape and Reel
MPC962305D-1H	8-pin 150-mil SOIC
MPC962305D-1HR2	8-pin 150-mil SOIC - Tape and Reel
MPC962305EF-1H	8-pin 150-mil SOIC (Pb-free)
MPC962305EF-1HR2	8-pin 150-mil SOIC (Pb-free) - Tape and Reel
MPC962305DT-1H	8-pin 150-mil TSSOP
MPC962305DT-1HR2	8-pin 150-mil TSSOP - Tape and Reel
MPC962305EJ-1H	8-pin 150-mil TSSOP (Pb-free)
MPC962305EJ-1HR2	8-pin 150-mil TSSOP (Pb-free) - Tape and Reel
MPC962309D-1	16-pin 150-mil SOIC
MPC962309D-1R2	16-pin 150-mil SOIC - Tape and Reel
MPC962309EF-1	16-pin 150-mil SOIC (Pb-free)
MPC962309EF-1R2	16-pin 150-mil SOIC (Pb-free) - Tape and Reel
MPC962309D-1H	16-pin 150-mil SOIC
MPC962309D-1HR2	16-pin 150-mil SOIC - Tape and Reel
MPC962309EF-1H	16-pin 150-mil SOIC (Pb-free)
MPC962309EF-1HR2	16-pin 150-mil SOIC (Pb-free) - Tape and Reel
MPC962309DT-1H	16-pin 4.4-mm TSSOP
MPC962309DT-1HR2	16-pin 4.4-mm TSSOP - Tape and Reel
MPC962309EJ-1H	16-pin 4.4-mm TSSOP (Pb-free)
MPC962309EJ-1HR2	16-pin 4.4-mm TSSOP (Pb-free) - Tape and Reel

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.		LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:	DOCUMENT NO	: 98ASB42564B	REV: U	
8LD SOIC NARROW	BODY	CASE NUMBER	2: 751–07	07 APR 2005
		STANDARD: JE	DEC MS-012AA	

PAGE 1 OF 2

CASE 751-07 ISSUE U 8-LEAD SOIC PLASTIC PACKAGE


NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- A. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.		LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42564B	REV: U
8LD SOIC NARROW BODY		CASE NUMBER	8: 751–07	07 APR 2005
		STANDARD: JE	DEC MS-012AA	

PAGE 2 OF 2

CASE 751-07 ISSUE U 8-LEAD SOIC PLASTIC PACKAGE

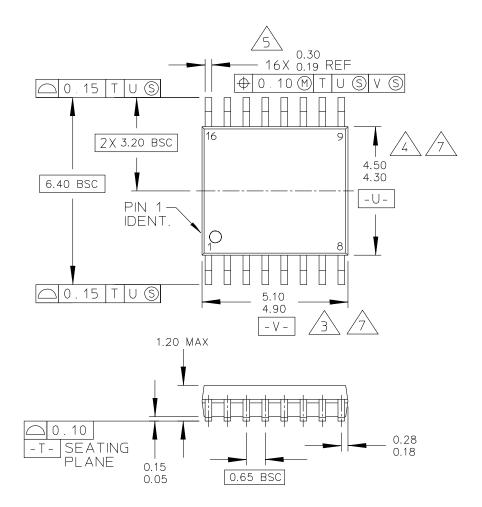
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42566B	REV: L
16LD SOIC N/B, 1.2 CASE-OUTLIN		CASE NUMBER	R: 751B-05	11 APR 2005
		STANDARD: JECDEC MS-012AC		

PAGE 1 OF 2

CASE 751B-05 ISSUE L 16-LEAD SOIC PLASTIC PACKAGE

NOTES:

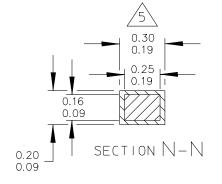
- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A AND B TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- /4. This dimension does not include mold flash, protrusion or gate burrs. Mold FLASH, PROTRUSION OR GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.

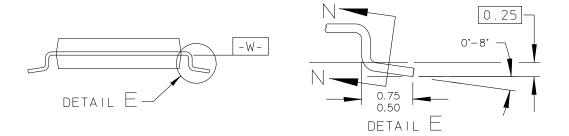

FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.

6. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.62 mm.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO: 98ASB42566B		REV: L
16LD SOIC N/B, 1.2 CASE OUTLIN	-	CASE NUMBER	: 751B-05	11 APR 2005
		STANDARD: JE	DEC MS-012AC	

PAGE 2 OF 2


CASE 751B-05 **ISSUE L 16-LEAD SOIC PLASTIC PACKAGE**



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			OUTLINE PRINT VERSION NOT TO SCA	
TITLE:	DOCUMENT NE]: 98ASH70247A	RE∨: B	
16 LD TSSOP, PITCH 0.65	CASE NUMBER: 948F-01 19 MAY 20		19 MAY 2005	
	STANDARD: JEDEC			

PAGE 1 OF 3

CASE 948F-01 ISSUE B 16-LEAD TSSOP PLASTIC PACKAGE

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NE	IT TO SCALE
TITLE:	DOCUMENT NE]: 98ASH70247A	REV: B	
16 LD TSSOP, PITCH 0.	CASE NUMBER	2: 948F-01	19 MAY 2005	
	STANDARD: JE	DEC		

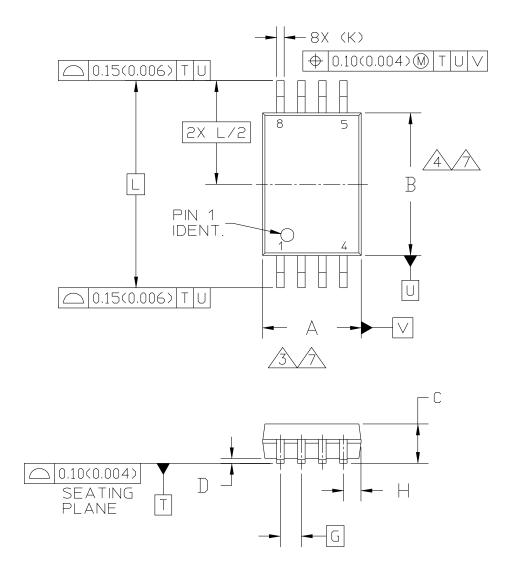
PAGE 2 OF 3

CASE 948F-01 ISSUE B 16-LEAD TSSOP PLASTIC PACKAGE

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER
- 2. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M-1982.
- 3 DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.
- _____ DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.

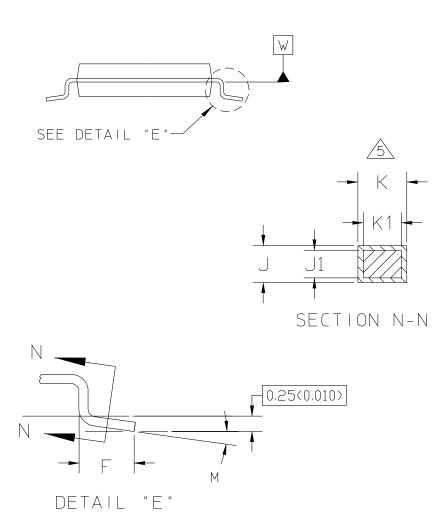
5 DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.


6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

/7 dimensions are to be determined at datum plane [-w-]

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			PRINT VERSION NO	IT TO SCALE
TITLE:	DOCUMENT NO]: 98ASH70247A	RE∨: B	
16 LD TSSOP, PITCH 0.6	CASE NUMBER: 948F-01 19 MAY 200			
		STANDARD: JEDEC		

PAGE 3 OF 3


CASE 948F-01 ISSUE B 16-LEAD TSSOP PLASTIC PACKAGE

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.	L OUTLINE	PRINT VERSION NO	IT TO SCALE
TITLE:	DOCUMENT NE]: 98ASH70382A	RE∨: B
8 LD TSSOP. PITCH 0.65MM	CASE NUMBER	R: 948J-01	19 MAY 2005
C LD 1330F, FITCH 0.03MM	STANDARD: JE	IDEC	

PAGE 1 OF 3

CASE 948J-01 ISSUE B 8-LEAD TSSOP PLASTIC PACKAGE

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICAL		L OUTLINE	PRINT VERSION NE	IT TO SCALE
TITLE:	DOCUMENT NE	1: 98ASH70382A	RE∨: B	
8 LD TSSOP. PITCH 0.65MM		CASE NUMBER	2: 948J-01	19 MAY 2005
OLD ISSUE, FIICH U		STANDARD: JE	DEC	

PAGE 2 OF 3

CASE 948J-01 ISSUE B 8-LEAD TSSOP PLASTIC PACKAGE

CASE 948J-01 **ISSUE B** 8-LEAD TSSOP PLASTIC PACKAGE

PAGE 3 OF 3

LOW-COST, 3.3V ZERO DELAY BUFFEr

	٩I	NCH	MIL	LIMETER			INCH	MIL	LIMETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
А	0.114	0.122	2.90	3.10					
В	0.169	0.177	4.30	4.50					
С	-	0.047	-	1.20					
D	0.002	0.006	0.05	0.15					
F	0.020	0.030	0.50	0.75					
G	0.026	5 BSC	0.	65 BSC					
н	0.020	0.024	0.50	0.60					
J	0.004	0.008	0.09	0.20					
J1	0.004	0.006	0.09	0.16					
К	0.007	0.012	0.19	0.30					
K1	0.007	0.010	0.19	0.25					
L	0.252	2 BSC	6.	40 BSC					
М	0°	8°	0°	8*					
© FI		ICONDUCTOR, TS RESERVED.	INC.	MECHANICA	L OUT	LINE	PRINT VER	SION NE	IT TO SCALE
TITLE	;						: 98ASH70382	2A	RE∨: B
	8 LD TSSOP, PITCH 0.65MM					NUMBER	2: 948J-01		19 MAY 2005
	6 ED ISSOF, FIIGH 0.03MM				STAN	DARD: JE	DEC		

7. DIMENSIONS ARE TO BE DETERMINED AT DATUM PLANE - W-

6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

A DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (.003) TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR

PROTRUSION SHALL NOT EXCEED 0.25 (.010) PER SIDE.

/3 dimension does not include mold flash, protrusions or gate burrs. Mold flash

PACKAGE DIMENSIONS

2. DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

OR GATE BURRS SHALL NOT EXCEED 0.15 (.006) PER SIDE.

1. CONTROLLING DIMENSION: MILLIMETER

NOTES:

Revision History Sheet

Rev	Table	Page	Description of Change	Date
8		1	NRND – Not Recommend for New Designs	1/8/13

We've Got Your Timing Solution

6024 Silver Creek Valley Road San Jose, California 95138 Sales 800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT **Technical Support**

netcom@idt.com +480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.