
Thin Film Directional Couplers Wide Band High Directivity

CP0402W2700FNTR

ITF TECHNOLOGY

The ITF High Directivity Wide Band LGA Coupler is based on thinfilm multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The Wide Band High Directivity Coupler displays a stable coupling factor over a wide frequency band.

APPLICATIONS

- Mobile communications
- Satellite TV receivers
- GPS
- Vehicle location systems
- Wireless LAN's

LAND GRID ARRAY

- Inherent Low Profile
- Self Alignment during Reflow
- Excellent Solderability
- Low Parasitics
- Better Heat Dissipation

DIMENSIONS (Bottom View)

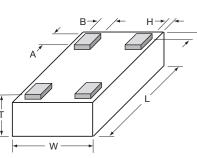
mm (inches)

HOW TO ORDER

СР	0402	w ⊤	XXXX	x T	N ⊤	TR ⊤
		Type Wide Band	Frequency (MHz)	Sub- Type	LGA Termination Sn100	Taped & Reeled

QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual characteristics. Each production lot is evaluated on a sample basis for:


- Static Humidity: 85°C, 85% RH, 160 hours
- Endurance: 125°C, $I_{\rm R}$, 4 hours

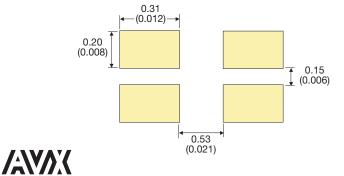
TERMINATION

Nickel/Lead Free solder coating compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

OPERATING TEMPERATURE

-40°C to +85°C

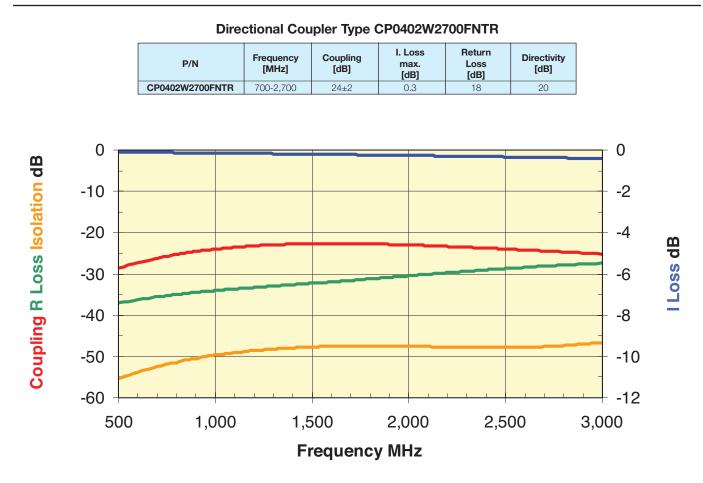
L	1.00±0.05 (0.040±0.002)					
w	0.58±0.04 (0.023±0.002)					
т	0.35±0.05 (0.014±0.002)					
Α	0.20±0.05 (0.008±0.002)					
В	0.18±0.05 (0.007±0.002)					
S, H	0.05±0.05 (0.002±0.002)					
	T A B					


_____W _____

TERMINALS (Top View)

GND Coupling Out IN White Mark

Recommended Pad Layout Dimensions


mm (inches)

Thin Film Directional Couplers Wide Band High Directivity

CP0402W2700FNTR

Thin Film Directional Couplers Wide Band High Directivity

Place the coupler on the measurement iid as follows:

CP0402W2700FNTR Test Jigs

GENERAL DESCRIPTION

These jigs are designed for testing the CP0402W2700FNTR High Directivity Couplers using a Vector Network Analyzer.

They consist of a dielectric substrate, having 50Ω microstrips as conducting lines and a bottom ground plane located at a distance of 0.254mm (0.010") from the microstrips.

The substrate used is Neltec's NH9338ST0254C1BC.

MEASUREMENT PROCEDURE

When measuring a component, it can be either soldered or pressed using a non-metallic stick until all four ports touch the appropriate pads. Set the VNA to the relevant frequency band. Connect the VNA using a 10dB attenuator on the jig The connectors are SMA type (female), 'Johnson Components Inc.' Product P/N: 142-0701-841.

Both a measurement jig and a calibration jig are provided.

The calibration jig is designed for a full 2-port calibration, and consists of an open line, short line and through line. LOAD calibration can be done by a 50Ω SMA termination.

terminal connected to port 2. Follow the VNA's instruction manual and use the calibration jig to perform a full 2-Port calibration in the required bandwidths.

•	n the measurement ji	-					
GND (Coupler)			→ Connector 3 (Jig)				
Coupling (Coupler)	→ Connector 2 (Jig)) Out (Coupler)	→ Connector 4 (Jig)				
To measure I. Loss (connect:						
Connector 3 (Jig) =	Port 1 (VNA)	Connector 2 (Jig) →	- 50Ω				
Connector 4 (Jig) -	Port 2 (VNA)						
To measure R. Loss	and Coupling connec	et:					
Connector 3 (Jig) =	Port 1 (VNA)	Connector 4 (Jig) →	50Ω				
Connector 2 (Jig) → Port 2 (VNA)							
To measure Isolatio	n connect:						
Connector 4 (Jig) –	Connector 4 (Jig) → Port 1 (VNA) Connector 2 (Jig) → Port 2 (VNA)						
Connector 3 (Jig) -	50Ω						
Measuren	nent Jig	Calibration Jig					
	Connector 1	Short Line					
	(not used)	to GND.	Connector				
			Johnson				
	چ Connector 2		F P/N 142-0701-841				
	тн і Т		тн				
Connector 4		Open Line	Load &				
000000	000000		000000				
	Connector 3		Load & Through				