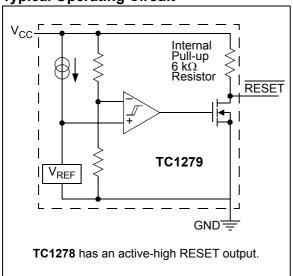


3-Pin Reset Monitors for 5V Systems

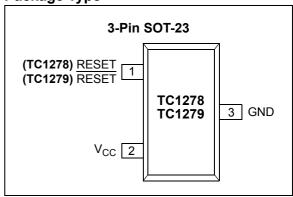

Features

- Precision V_{CC} Monitor for 5.0V System Supplies
- · 250 ms Minimum RESET Output Duration
- Output Valid to V_{CC} = 1.2V
- V_{CC} Transient Immunity
- · Small 3-Pin SOT-23 Package
- · No External Components
- · Internal Pull-up Resistor
- · Available in 3 different voltage detection levels:
 - 4.625V (typ.), -5 suffix
 - 4.375V (typ.), -10 suffix
 - 4.125V (typ.), -15 suffix

Applications

- · Computers
- · Embedded Systems
- Battery Powered Equipment
- · Critical µP Power Supply Monitoring

Typical Operating Circuit



General Description

The TC1278/TC1279 are cost-effective system supervisor circuits designed to monitor V_{CC} in digital systems and provide a reset signal to the host processor when necessary. No external components are required. The open-drain output uses an internal pull-up resistor of approximately 6 k Ω .

The reset output is driven active within 5 μ s of V_{CC} falling through the reset voltage threshold. RESET is maintained active for a minimum of 250 ms after V_{CC} rises above the reset threshold. The TC1278 has an active-high RESET output, while the TC1279 has an active-low RESET output, with both devices having an open-drain output stage. The output is valid down to V_{CC} = 1.2V. Both devices are available in a 3-Pin SOT- 23 package.

Package Type

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage (V _{CC} to GND)	+6.0V
RESET, RESET	$-0.3V$ to $(V_{CC} + 0.3V)$
Input Current, V _{CC}	20 mA
Output Current, RESET	20 mA
Power Dissipation ($T_A \le 70^{\circ}C$)	
3-Pin SOT-23 (derate 4mW/	°C above +70°C)
	230 mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C

† Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $T_A = -40^{\circ}C$ to $+85^{\circ}C$. Typical values are at $T_A = +25^{\circ}C$.								
Parameters	Sym	Min	Тур	Max	Units	Conditions		
Supply Voltage	V _{CC}	1.2	_	5.5	V	Note 1		
Low Level @ RESET (TC1278) RESET (TC1279)	V _{OL}	_	_	0.4	V	Note 1		
Output Current @ 0.4 Volts	I _{OL}	+8	_	_	mA	Note 2		
Operating Current:								
TC1278	I _{CC1}		0.9	2.0	mA	$V_{CC} > V_{CCTP(MAX)}$, RESET = 1, (Note 3)		
TC1279		_	_	40	μA	V _{CC} > V _{CCTP(MAX)} , RESET = 1, Note 4		
Operating Current:								
TC1278	I _{CC2}	_	_	40	μA	$V_{CC} < V_{CCTP(MIN)}$, RESET = 0, (Note 4)		
TC1279		_	0.9	2.0	mA	$V_{CC} < V_{CCTP(MIN)}, \overline{RESET} = 0, $ (Note 3)		
V _{CC} Trip Point (TC1278/9-5)	V _{CCTP-5}	4.50	4.625	4.74	V	Note 1		
V _{CC} Trip Point (TC1278/9-10)	V _{CCTP-10}	4.25	4.375	4.49	V	Note 1		
V _{CC} Trip Point (TC1278/9-15)	V _{CCTP-15}	4.00	4.125	4.24	V	Note 1		
Output Capacitance	C _{OUT}	_	9		pF			
Internal Pull-Up Resistor	R_P	3	6	9	kΩ			

- Note 1: All voltages referenced to ground.
 - 2: A 1 k Ω external resistor may be required in some applications for proper operation of the microprocessor reset control circuit when using the TC1279. V_{CC} = 1.8V.
 - 3: Operating current is specified with the open-drain output in the active ("ON") condition.
 - 4: Operating current is specified with the open-drain output in the non-active ("OFF") condition.

AC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $T_A = -40^{\circ}C$ to $+85^{\circ}C$. Typical values are at $T_A = +25^{\circ}C$.						
Parameters	Sym	Min	Тур	Max	Units	Conditions
RESET Active Time	t _{RST}	250	350	450	ms	
V _{CC} Detect to RESET (TC1279)	t _{RPD1}	l	2	5	μs	Figure 3-2
V _{CC} Detect to RESET (TC1278)	t _{RPD2}	l	2	5	μs	Figure 3-4
V _{CC} Slew Rate (4.75V-4.00V)	t _F	300	_	_	μs	Figure 3-2, Figure 3-4
V _{CC} Slew Rate (4.00V-4.75V)	t _R	0		_	ns	Figure 3-1, Figure 3-3
V _{CC} Detect to RESET (TC1279)	t _{RPU1}	250	350	450	ms	Figure 3-1
V _{CC} Detect to RESET (TC1278)	t _{RPU2}	250	350	450	ms	Figure 3-3

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Pin No.	Symbol	Function
1	RESET (TC1279)	RESET output
1	RESET (TC1278)	RESET output
2	V _{CC}	Supply voltage (1.2V to 5.5V).
3	GND	Ground.

2.1 RESET (TC1279)

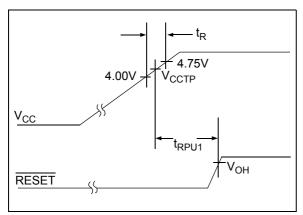
 $\overline{\text{RESET}}$ output remains low while V_{CC} is below the reset voltage threshold, and for 350 ms (250 ms min.) after V_{CC} rises above reset threshold. The output stage of the TC1279 is open-drain.

2.2 RESET (TC1278)

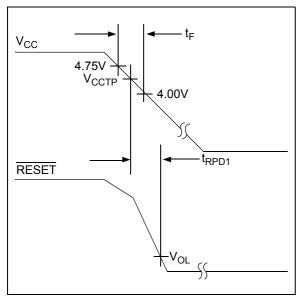
RESET output remains high while V_{CC} is below the reset voltage threshold, and for 350 ms (250 ms min.) after V_{CC} rises above reset threshold. The output stage of the TC1278 is open-drain.

2.3 V_{CC}

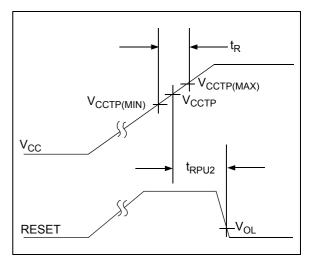
Supply voltage (1.2V to 5.5V).


2.4 Ground

Device ground.


3.0 APPLICATIONS INFORMATION

3.1 Operation – Power Monitor


The TC1278/TC1279 provide the function of detecting out-of-tolerance power supply conditions and warning a processor-based system of impending power failure. When $V_{\rm CC}$ is detected as out-of-tolerance, the RESET signal is asserted. On power-up, RESET is kept active for approximately 350 ms after the power supply has reached the selected tolerance. This allows the power supply and microprocessor to stabilize before RESET is released.

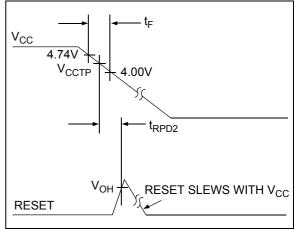

FIGURE 3-1: TC1279 Power Up Timing Diagram.

FIGURE 3-2: TC1279 Power-Down Timing Diagram.

FIGURE 3-3: TC1278 Power-Up Timing Diagram.

FIGURE 3-4: TC1278 Power-Down Timing Diagram.

3.2 V_{CC} Transient Rejection

The TC1278/TC1279 provides accurate V_{CC} monitoring and reset timing during power-up, power-down, and brownout/sag conditions. Furthermore, it rejects negative-going transients (glitches) on the power supply line. Figure 3-5 shows the maximum transient duration vs. maximum negative excursion (overdrive) for glitch rejection. Any combination of duration and overdrive that lays under the curve will not generate a reset signal. Combinations above the curve are detected as a brownout or power-down. Transient immunity can be improved by adding a capacitor in close proximity to the V_{CC} pin of the TC1278/TC1279.

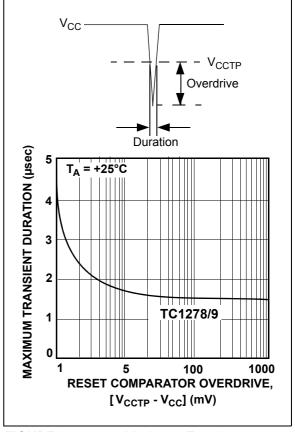
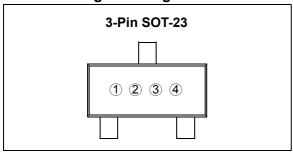



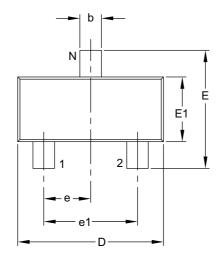
FIGURE 3-5: Maximum Transient
Duration vs. Overdrive For Glitch Rejection At +25°C.

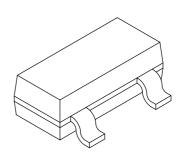
4.0 PACKAGING INFORMATION

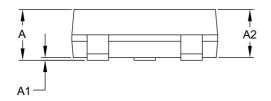
4.1 Package Marking Information

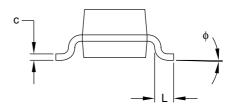
① & ② = part number code + temperature range and voltage

Part Number	Code
TC1278-5ENB	PA
TC1278-10ENB	PB
TC1278-15ENB	PC


TC1279-5ENB	RA
TC1279-10ENB	RB
TC1279-15ENB	RC


③ represents year and 2-month code


④ represents production lot ID code


3-Lead Plastic Small Outline Transistor (TT or NB) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N		3			
Lead Pitch	е		0.95 BSC			
Outside Lead Pitch	e1	1.90 BSC				
Overall Height	A	0.89	_	1.12		
Molded Package Thickness	A2	0.79	0.95	1.02		
Standoff	A1	0.01	_	0.10		
Overall Width	Е	2.10	_	2.64		
Molded Package Width	E1	1.16	1.30	1.40		
Overall Length	D	2.67	2.90	3.05		
Foot Length	L	0.13	0.50	0.60		
Foot Angle	ф	0°	-	10°		
Lead Thickness	С	0.08	_	0.20		
Lead Width	b	0.30	-	0.54		

Notes:

- 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M.

 ${\tt BSC: Basic \ Dimension. \ Theoretically \ exact \ value \ shown \ without \ tolerances.}$

Microchip Technology Drawing C04-104B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NOX	x x xx	Exa	amp
Device Reset	V _{CC} Temperature Package	a)	T
Thres		b)	T
		c)	T
Device	TC1278: 3-Pin Reset Monitor for 5V Systems TC1279: 3-Pin Reset Monitor for 5V Systems	a)	Т
		b)	T
Reset V _{CC} Threshold:	5 = 4.625V 10 = 4.375V 15 = 4.125V	c)	T
Temperature Range	E = -40°C to +85°C		
Package	NBTR = Plastic Small Outline Transistor, (SOT23), 3-lead (Tape and Reel)		

ples:

TC1278-5ENBTR: 4.625 Reset TC1278-10ENBTR: 4.375 Reset TC1278-15ENBTR: 4.125 Reset

C1279-5ENBTR: 4.625 Reset TC1279-10ENBTR: 4.375 Reset TC1279-15ENBTR: 4.125 Reset

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, Keeloq, Keeloq logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://support.microchip.com Web Address:

Web Address: www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509 ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Habour City, Kowloon Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200

Fax: 852-2401-3431 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan Tel: 86-27-5980-5300

Fax: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256 ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512

Fax: 91-20-2566-1513 **Japan - Yokohama** Tel: 81-45-471- 6166

Fax: 81-45-471-6122 Korea - Gumi

Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086

82-2-558-5934

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

SingaporeTel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39

Fax: 43-7242-2244-393 **Denmark - Copenhagen**

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **UK - Wokingham** Tel: 44-118-921-5869

Fax: 44-118-921-5820

12/08/06