

Dual N-Channel Enhancement Mode Field Effect Transistor

General Description

The AO6808/L uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch. It is ESD protected.

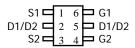
- -RoHS Compliant
- -AO6808L is Halogen Free

Features

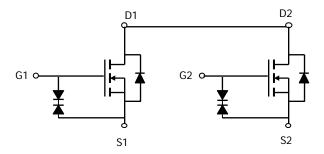
$$V_{DS} = 20V$$

 $I_D = 6A$ $(V_{GS} = 4.5V)$

AO6808 and AO6808L are electrically identical.


 $R_{DS(ON)} = 19m\Omega$ (typical) ($V_{GS} = 4.5V$)

 $R_{DS(ON)} = 20m\Omega$ (typical) ($V_{GS} = 4.0V$)


 $R_{DS(ON)} = 21m\Omega \text{ (typical)} \text{ (V}_{GS} = 3.1V)$

 $R_{DS(ON)} = 23m\Omega$ (typical) ($V_{GS} = 2.5V$)

Absolute Maximum Ratings T _A =25°C unless otherwise noted							
Parameter		Symbol	10 Sec	Steady State	Units		
Drain-Source Voltage		V_{DS}	20		V		
Gate-Source Voltage		V_{GS}	±12		V		
Continuous Drain Current ^A	T _A =25°C		6	4.6			
	T _A =70°C	I _D	4.6	3.7	Α		
Pulsed Drain Current ^B		I _{DM}	60				
Power Dissipation ^A	T _A =25°C	$-P_{D}$	1.3	0.8	W		
	T _A =70°C	T D	8.0	0.5	VV		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150		°C		

Thermal Characteristics								
Parameter	Symbol	Тур	Units					
Maximum Junction-to-Ambient A	t ≤ 10s	D	76	95	°C/W			
Maximum Junction-to-Ambient A	Steady State	$R_{ hetaJA}$	118	150	°C/W			
Maximum Junction-to-Lead ^C	Steady State	$R_{\scriptscriptstyle{ hetaJL}}$	54	68	°C/W			

Dual N-Channel Enhancement Mode Field Effect Transistor

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC P	ARAMETERS					
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 20V, V _{GS} = 0V			1	μА
		$T_J = 55^{\circ}C$			5	μΑ
I_{GSS}	Gate-Body leakage current	$V_{DS} = 0V, V_{GS} = \pm 10V$			±10	μΑ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS} I_{D} = 250 \mu A$	0.5	0.75	1	V
$I_{D(ON)}$	On state drain current	$V_{GS} = 4.5V, V_{DS} = 5V$	60			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 4.5V, I_D = 6.0A$	15	19	23	mΩ
		T _J =125°C	21	27	33	
		$V_{GS} = 4.0V, I_D = 5.5A$	15	20	25	mΩ
		$V_{GS} = 3.1V, I_D = 5A$	16	21	27	mΩ
		$V_{GS} = 2.5V, I_D = 2A$	17	23	30	mΩ
g _{FS}	Forward Transconductance	$V_{DS} = 5V, I_{D} = 6.0A$		34		S
V_{SD}	Diode Forward Voltage	$I_S = 1A, V_{GS} = 0V$		0.65	1	V
I _S	Maximum Body-Diode Continuous Current				1.3	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			620	780	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =10V, f=1MHz		125		pF
C_{rss}	Reverse Transfer Capacitance			64		pF
SWITCHII	NG PARAMETERS					
Q _g (10V)	Total Gate Charge			16.2	21	nC
Q _g (4.5V)	Total Gate Charge	V _{GS} = 10V, V _{DS} = 10V, I _D = 6A		7.7	10	nC
Q_{gs}	Gate Source Charge	V _{GS} - 10V, V _{DS} - 10V, I _D - 0A		1.5		nC
Q_{gd}	Gate Drain Charge			2.7		nC
t _{D(on)}	Turn-On DelayTime			236		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =10V, R_{L} =1.7 Ω ,		448		ns
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		9.5		μS
t _f	Turn-Off Fall Time			4.1		μS
t _{rr}	Body Diode Reverse Recovery Time	I _F =6A, dI/dt=100A/μs		25	33	ns
Q _{rr}	Body Diode Reverse Recovery Charge	dy Diode Reverse Recovery Charge I _F =6A, dI/dt=100A/μs		9		nC

A: The value of R $_{\theta JA}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ = 25°C. in any given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating.

Rev0 April 2008

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient. D. The static characteristics in Figures 1 to 6 are obtained using < 300 μs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The SOA curve provides a single pulse rating.

Dual N-Channel Enhancement Mode Field Effect Transistor

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

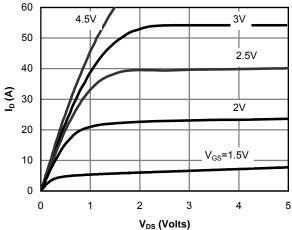


Figure 1: On-Region Characteristics

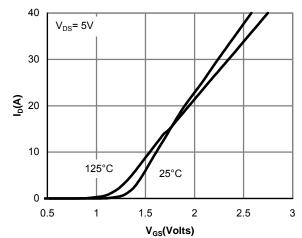


Figure 2: Transfer Characteristics

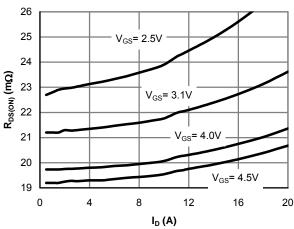


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

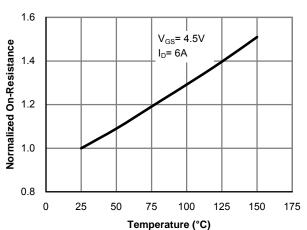


Figure 4: On-Resistance vs. Junction Temperature

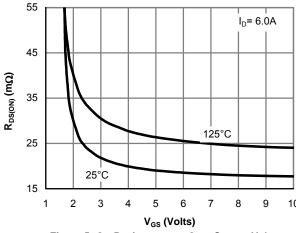


Figure 5: On-Resistance vs. Gate-Source Voltage

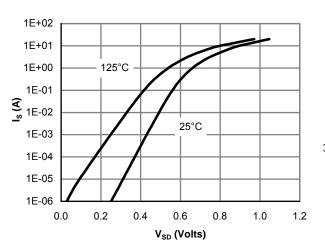


Figure 6: Body-Diode Characteristics

Dual N-Channel Enhancement Mode Field Effect Transistor

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

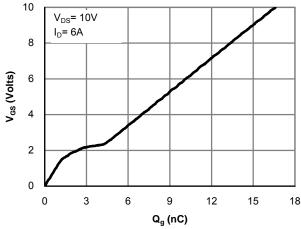


Figure 7: Gate-Charge Characteristics

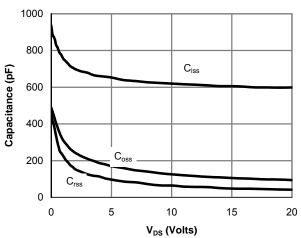


Figure 8: Capacitance Characteristics

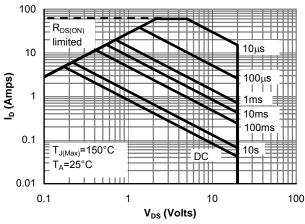


Figure 9: Maximum Forward Biased Safe
Operating Area (Note E)

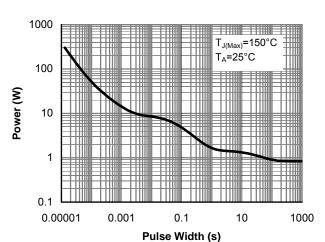


Figure 10: Single Pulse Power Rating Junctionto-Ambient (Note E)

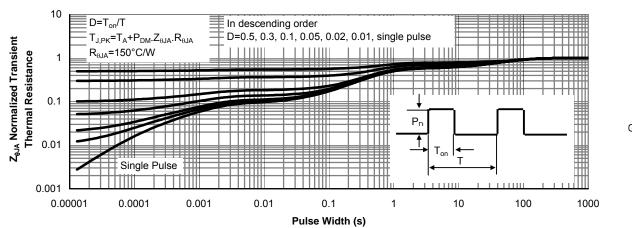


Figure 11: Normalized Maximum Transient Thermal Impedance(Note E)