V54C316162VC 200/183/166/143 MHz 3.3 VOLT, 2K REFRESH ULTRA HIGH PERFORMANCE 1M X 16 SDRAM 2 BANKS X 512Kbit X 16

V54C316162VC	-5	-55	-6	-7	Unit
Clock Frequency (t _{CK})	200	183	166	143	MHz
Latency	3	3	3	3	clocks
Cycle Time (t _{CK})	5	5.5	6	7	ns
Access Time (t _{AC})	5	5.3	5.5	5.5	ns

Features

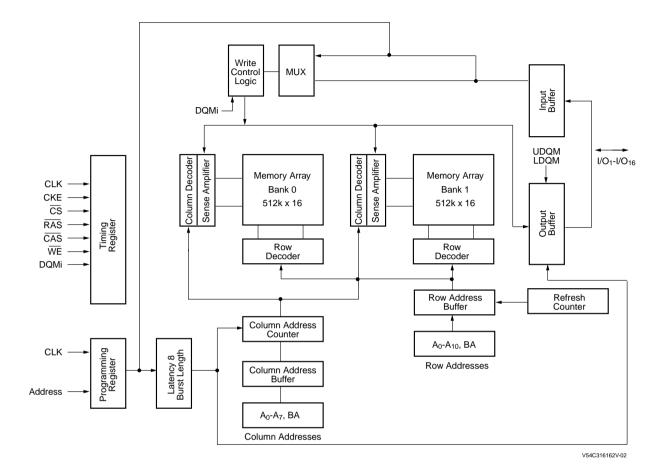
- JEDEC Standard 3.3V Power Supply
- The V54C316162VC is ideally suited for high performance graphics peripheral applications
- Single Pulsed RAS Interface
- Programmable CAS Latency: 2, 3
- All Inputs are sampled at the positive going edge of clock
- Programmable Wrap Sequence: Sequential or Interleave
- Programmable Burst Length: 1, 2, 4, 8 and Full Page for Sequential and 1, 2, 4, 8 for Interleave
- UDQM & LDQM for byte masking
- Auto & Self Refresh
- 2K Refresh Cycles/32 ms
- Burst Read with Single Write Operation

Description

The V54C316162VC is a 16,777,216 bits synchronous high data rate DRAM organized as 2 x 524,288 words by 16 bits. The device is designed to comply with JEDEC standards set for synchronous DRAM products, both electrically and mechanically. Synchronous design allows precise cycle control with the system clock. The CAS latency, burst length and burst sequence must be programmed into device prior to access operation.

V54C316162VC

	CON	astic TSC FIGURAT o View	
Vcc 01 02 VSSQ 1/03 VCcQ 1/03 VccQ 1/06 VCSQ 1/06 VSSQ 1/06 VSSQ 1/08 1/06 VCC 1/08 1/06	O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26	VSS I/O16 I/O15 VSSQ I/O14 I/O13 VCCQ I/O11 VSSQ I/O12 I/O11 VSSQ I/O10 I/O3 VCCQ NC UDQM CLK CKE NC A8 A7 A6 A5 A4 VSS
		v 3403 10102 V-01	

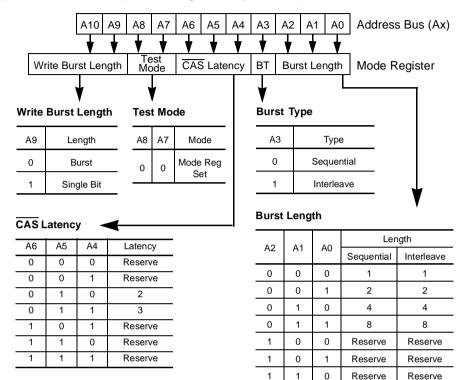

CLK	Clock Input
CKE	Clock Enable
CS	Chip Select
RAS	Row Address Strobe
CAS	Column Address Strobe
WE	Write Enable
A ₀ -A ₁₀	Address Inputs
ВА	Bank Select
I/O ₁ -I/O ₁₆	Data Input/Output
LDQM, UDQM	Data Mask
V _{CC}	Power (+3.3V)
V _{SS}	Ground
V _{CCQ}	Power for I/O's (+3.3V)
V _{SSQ}	Ground for I/O's
NC	Not connected

Pin Names

V54C316162VC Rev. 1.4 December 2001

V54C316162VC

Block Diagram



V54C316162VC

Signal Pin Description

Pin	Name	Input Function
CLK	Clock Input	System clock input. Active on the positive rising edge to sample all inptus
СКЕ	Clock Enable	Activates the CLK signal when high and deactivates the CLK when low. CKE low initiates the power down mode, suspend mode, or the self refresh mode
CS	Chip Select	Disables or enables device operation by masking or enabling all inputs except CLK, CKE and DQMi
RAS	Row Address Strobe	Latches row addresses on the positive edge of CLK with $\overline{\text{RAS}}$ low. Enables row access & precharge
		Latches column addresses on the positive edge of CLK with $\overline{\text{CAS}}$ low. Enables column access
WE	Write Enable	Enables write operation
A ₀ -A ₁₀	Address	During a bank activate command, A_0 - A_{10} defines the row address. During a read or write command, A_0 - A_7 defines the column address. In addition to the column address A_{10} is used to invoke auto precharge BA define the bank to be precharged. A_{10} is low, auto precharge is disabled during a precharge cycle, If A_{10} is high, both bank will be precharged, if A_{10} is low, the BA is used to decide which bank to precharge. If A_{10} is high, all banks will be precharged.
BA	Bank Select	Selects which bank to activate. BA low select bank A and high selects bank B
I/O ₁ -I/O ₁₆	Data Input/Output	Data inputs/output are multiplexed on the same pins
UDQM, LDQM	Data Input/Output Mask	Makes data output Hi-Z. Blocks data input when DQM is active
VDD/VSS	Power Supply/Ground	Power Supply. +3.3V ± 0.3V/ground
VDDQ/VSSQ	Data Output Power/Ground	Provides isolated power/ground to DQs for improved noise immunity
NC	No Connection	

V54C316162VC

1

1

1

1

0

1

Address Input for Mode Set (Mode Register Operation)

Power On and Initialization

The default power on state of the mode register is supplier specific and may be undefined. The following power on and initialization sequence guarantees the device is preconditioned to each users specific needs. Like a conventional DRAM, the Synchronous DRAM must be powered up and initialized in a predefined manner. During power on, all VCC and VCCQ pins must be built up simultaneously to the specified voltage when the input signals are held in the "NOP" state. The power on voltage must not exceed VCC+0.3V on any of the input pins or VCC supplies. The CLK signal must be started at the same time. After power on, an initial pause of 200 µs is required followed by a precharge of both banks using the precharge command. To prevent data contention on the DQ bus during power on, it is required that the DQM and CKE pins be held high during the initial pause period. Once all banks have been precharged, the Mode Register Set Command must be issued to initialize the Mode Register. A minimum of eight Auto Refresh cycles (CBR) are also required. These may be done before or after programming the Mode Register. Failure to follow these steps may lead to unpredictable start-up modes.

Programming the Mode Register

Full Page

The Mode register designates the operation mode at the read or write cycle. This register is divided into 4 fields. A Burst Length Field to set the length of the burst, an Addressing Selection bit to program the column access sequence in a burst cycle (interleaved or sequential), a CAS Latency Field to set the access time at clock cycle and a Operation mode field to differentiate between normal operation (Burst read and burst Write) and a special Burst Read and Single Write mode. The mode set operation must be done before any activate command after the initial power up. Any content of the mode register can be altered by re-executing the mode set command. All banks must be in precharged state and CKE must be high at least one clock before the mode set operation. After the mode register is set, a Standby or NOP command is required. Low signals of RAS, CAS, and WE at the positive edge of the clock activate the mode set operation. Address input data at this timing defines parameters to be set as shown in the previous table.

Reserve

Reserve

Read and Write Operation

When \overline{RAS} is low and both \overline{CAS} and \overline{WE} are high at the positive edge of the clock, a RAS cycle starts. According to address data, a word line of the selected bank is activated and all of sense amplifiers associated to the wordline are set. A \overline{CAS} cycle is triggered by setting \overline{RAS} high and \overline{CAS} low at a clock timing after a necessary delay, t_{RCD} , from the \overline{RAS} timing. \overline{WE} is used to define either a read ($\overline{WE} = H$) or a write ($\overline{WE} = L$) at this stage.

SDRAM provides a wide variety of fast access modes. In a single CAS cycle, serial data read or write operations are allowed at up to a 166 MHz data rate. The numbers of serial data bits are the burst length programmed at the mode set operation, i.e., one of 1, 2, 4, 8 and full page. Column addresses are segmented by the burst length and serial data accesses are done within this boundary. The first column address to be accessed is supplied at the CAS timing and the subsequent addresses are generated automatically by the programmed burst length and its sequence. For example, in a burst length of 8 with interleave sequence, if the first address is '2', then the rest of the burst sequence is 3, 0, 1, 6, 7, 4, and 5.

Full page burst operation is only possible using the sequential burst type and page length is a function of the I/O organisation and column addressing. Full page burst operation do not self terminate once the burst length has been reached. In other words, unlike burst length of 2, 4 or 8, full page burst continues until it is terminated using another command.

V54C316162VC

Similar to the page mode of conventional DRAM's, burst read or write accesses on any column address are possible once the RAS cycle latches the sense amplifiers. The maximum t_{RAS} or the refresh interval time limits the number of random column accesses. A new burst access can be done even before the previous burst ends. The interrupt operation at every clock cycles is supported. When the previous burst is interrupted, the remaining addresses are overridden by the new address with the full burst length. An interrupt which accompanies with an operation change from a read to a write is possible by exploiting DQM to avoid bus contention.

When two or more banks are activated sequentially, interleaved bank read or write operations are possible. With the programmed burst length, alternate access and precharge operations on two or more banks can realize fast serial data access modes among many different pages. Once two or more banks are activated, column to column interleave operation can be done between different pages.

Refresh Mode

SDRAM has two refresh modes, Auto Refresh and Self Refresh. Auto Refresh is similar to the CAS -before-RAS refresh of conventional DRAMs. All of banks must be precharged before applying any refresh mode. An on-chip address counter increments the word and the bank addresses and no bank information is required for both refresh modes.

Burst	Starting Address	Sequential Burst Addressing	Interleave Burst Addressing
Length	(A2 A1 A0)	(decimal)	(decimal)
2	xx0	0, 1	0, 1
	xx1	1, 0	1, 0
4	x00	0, 1, 2, 3	0, 1, 2, 3
	x01	1, 2, 3, 0	1, 0, 3, 2
	x10	2, 3, 0, 1	2, 3, 0, 1
	x11	3, 0, 1, 2	3, 2, 1, 0
8	000 001 010 011 100 101 110 111	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Full Page	nnn	Cn, Cn+1, Cn+2,	not supported

Burst Length and Sequence:

The chip enters the Auto Refresh mode, when RAS and CAS are held low and CKE and WE are held high at a clock timing. The mode restores word line after the refresh and no external precharge command is necessary. A minimum tRC time is required between two automatic refreshes in a burst refresh mode. The same rule applies to any access command after the automatic refresh operation.

The chip has an on-chip timer and the Self Refresh mode is available. It enters the mode when RAS, CAS, and CKE are low and WE is high at a clock timing. All of external control signals including the clock are disabled. Returning CKE to high enables the clock and initiates the refresh exit operation. After the exit command, at least one t_{RC} delay is required prior to any access command.

DQM Function

DQM has two functions for data I/O read and write operations. During reads, when it turns to "high" at a clock timing, data outputs are disabled and become high impedance after two clock delay (DQM Data Disable Latency t_{DQZ}). It also provides a data mask function for writes. When DQM is activated, the write operation at the next clock is prohibited (DQM Write Mask Latency t_{DQW} = zero clocks). DQM is used for device selection, byte selection and bus control in a memory system. LDQM controls DQ0 to DQ7, UDQM controls DQ8 to DQ15.

Suspend Mode

During normal access mode, CKE is held high enabling the clock. When CKE is low, it freezes the internal clock and extends data read and write operations. One clock delay is required for mode entry and exit (Clock Suspend Latency t_{CSL}).

Power Down

In order to reduce standby power consumption, a power down mode is available. All banks must be precharged and the necessary Precharge delay (trp) must occur before the SDRAM can enter the Power Down mode. Once the Power Down mode is initiated by holding CKE low, all of the receiver circuits except CLK and CKE are gated off. The Power Down mode does not perform any refresh operations, therefore the device can't remain in Power Down mode longer than the Refresh period (tref) of the device. Exit from this mode is performed by taking CKE "high". One clock delay is required for mode entry and exit.

V54C316162VC

Auto Precharge

Two methods are available to precharge SDRAMs. In an automatic precharge mode, the CAS timing accepts one extra address, A_{10} , to determine whether the chip restores or not after the operation. If A_{10} is high when a Read Command is issued, the **Read with Auto-Precharge** function is initiated. The SDRAM automatically enters the precharge operation one clock before the last data out for CAS latencies 2, two clocks for CAS latencies 3. If A_{10} is high when a Write Command is issued, the **Write with Auto-Precharge** function is initiated. The SDRAM automatically enters the precharge operation a time delay equal to t_{WR} (Write recovery time) after the last data in.

Precharge Command

There is also a separate precharge command available. When RAS and WE are low and CAS is high at a clock timing, it triggers the precharge operation. With A_{10} being low, the BA is used select bank to precharge. The precharge command can be imposed one clock before the last data out for CAS latency = 2, two clocks before the last data out for CAS latency = 3. Writes require a time delay twr from the last data out to apply the precharge command. If A_{10} is high, all banks will be precharged.

Burst Termination

Once a burst read or write operation has been initiated, there are several methods in which to terminate the burst operation prematurely. These methods include using another Read or Write Command to interrupt an existing burst operation, use a Precharge Command to interrupt a burst cycle and close the active bank, or using the Burst Stop Command to terminate the existing burst operation but leave the bank open for future Read or Write Commands to the same page of the active bank. When interrupting a burst with another Read or Write Command care must be taken to avoid I/O contention. The Burst Stop Command, however, has the fewest restrictions making it the easiest method to use when terminating a burst operation before it has been completed. If a Burst Stop command is issued during a burst write operation, then any residual data from the burst write cycle will be ignored. Data that is presented on the I/O pins before the Burst Stop Command is registered will be written to the memory.

V54C316162VC

Absolute Maximum Ratings*

Operating temperature range0 to 70 °C
Storage temperature range55 to 150 °C
Input/output voltage0.3 to (V _{CC} +0.3) V
Power supply voltage0.3 to 4.6 V
Power dissipation1 W
Data out current (short circuit) 50 mA
*Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage of the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operation and Characteristics

 $T_A = 0$ to 70 °C; $V_{SS} = 0$ V; V_{CC} , $V_{CCQ} = 3.3$ V \pm 0.3 V

		Limit			
Parameter	Symbol	Min.	Max.	Unit	Notes
Input high voltage	V _{IH}	2.0	Vcc+0.3	V	1, 2
Input low voltage	V _{IL}	- 0.3	0.8	V	1, 2
Output high voltage ($I_{OUT} = -2.0 \text{ mA}$)	V _{OH}	2.4	-	V	
Output low voltage (I _{OUT} = 2.0 mA)	V _{OL}	-	0.4	V	
Input leakage current, any input (0 V < V_{IN} < 3.6 V, all other inputs = 0 V)	I _{I(L)}	- 5	5	μA	
Output leakage current (DQ is disabled, 0 V < V _{OUT} < V _{CC})	I _{O(L)}	- 5	5	μA	

Capacitance

 $V_{DD} = 3.3V, T_A = 23^{\circ}C, f = 1MHz, V_{REF} = 1.4V \pm 200mV$

Pin	Symbol	Min.	Max.	Unit
Clock	C _{CLK}	2	4	pF
\overline{RAS} , \overline{CAS} , \overline{WE} , \overline{CS} , CKE, L(U)DQM	C _{IN}	2	4	pF
A ₀ -A ₁₀	C _{ADD}	2	4	pF
DQ ₀ -DQ ₁₅	C _{OUT}	3	5	pF

Note:

All voltages are referenced to V_{SS}.
 V_{IH} may overshoot to V_{CC} + 2.0 V for pulse width of < 4ns with 3.3V. V_{IL} may undershoot to -2.0 V for pulse width < 4.0 ns with 3.3V. Pulse width measured at 50% points with amplitude measured peak to DC reference.

V54C316162VC

Operating Currents ($T_A = 0$ to 70°C, $V_{CC} = 3.3V \pm 0.3V$) (Recommended Operating Conditions unless otherwise noted)

			Ма					
Symbol	Parameter & Test Condition	-5	-55	-6	-7	Unit	Note	
ICC1	Operating Current Active-precharge command cycling, without Burst Operation	1 bank operation $t_{RC} = t_{RCMIN.}, t_{CK} = t_{CKMIN}$ CL = 3	125	120	115	105	mA	3
ICC2P	Precharge Standby Current in Power Down Mode	t _{CK} = min.	2	2	2	2	mA	3
ICC2PS	CS =V _{IH} , CKE≤ V _{IL(max)}	t _{CK} = Infinity	2	2	2	2	mA	3
ICC2N	Precharge Standby Current in Non-Power Down Mode	t _{CK} = min.	15	15	15	15	mA	
ICC2NS	CS =V _{IH} , CKE≥ V _{IL(max)}	t _{CK} = Infinity	5	5	5	5	mA	
ICC3P	Active Standby Current in	CKE= <v<sub>IL(max), t_{ck} = min</v<sub>	3	3	3	3	mA	
ICC3PS	$\label{eq:constraint} \begin{array}{l} \mbox{Operating Current} \\ \mbox{Active-precharge command cycling,} \\ \mbox{without Burst Operation} \\ \mbox{Precharge Standby Current} \\ \mbox{in Power Down Mode} \\ \hline \hline \hline \hline \mbox{CS} = V_{IH}, \mbox{CKE} \leq V_{IL(max)} \\ \mbox{Precharge Standby Current} \\ \mbox{in Non-Power Down Mode} \\ \hline \hline \hline \hline \mbox{CS} = V_{IH}, \mbox{CKE} \geq V_{IL(max)} \\ \hline \end{array}$	CKE =< V _{IL} (max), t _{ck} = infinity	3	3	3	3	mA	
ICC3N	-	CKE=>V _{IL} (max), t _{ck} = min	45	45	45	45	mA	
ICC3NS	non Power-down mode	CKE => V _{IL} (max), t _{ck} = infinity	40	40	40	40	mA	
ICC4		CL = 3 t _{CK} = min.	160	155	150	140	mA	3, 4
		CL = 2 t _{CK} = min.	160	155	150	140	mA	
ICC5		CL = 3 t _{CK} = min.	110	105	100	90	mA	3
ICC6			1	1	1	1	mA	

Notes:

3. These parameters depend on the cycle rate and these values are measured by the cycle rate under the minimum value of t_{CK} and t_{RC} . Input signals are changed one time during t_{CK} except for ICC6 and for standby current when t_{CK} = infinity.

4. These parameter are measured with continuous data stream during read access and all DQ toggling.

V54C316162VC

AC Characteristics ^(1,2,3)

 T_A = 0 to 70°C; V_{SS} = 0 V; V_{CC} = 3.3 V \pm 0.3 V, t_T = 1 ns

			Limit Values									
			-5		-{	55	-	6	-	7		
#	Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
Clo	ock and C	Clock Enable		1					ļ		ļ	4
	t _{СК}	Clock Cycle Time CAS Latency = 3 CAS Latency = 2	5 10		5.5 10		6 10		7 10		ns ns	
	t _{СК}	Clock Frequency CAS Latency = 3 CAS Latency = 2		200 100		183 100		166 100		143 100	MHz MHz	
	t _{AC}	Access Time from Clock CAS Latency = 3 CAS Latency = 2	_	5 7		5.3 7		5.5 7	_	5.5 7	ns ns	
	t _{CH}	Clock High Pulse Width	2.5	-	2.5	_	2.5	-	2.5	-	ns	
	t _{CL}	Clock Low Pulse Width	2.5	-	2.5	-	2.5	-	2.5	_	ns	
	t _T	Transition time	1	10	1	10	1	10	1	10	ns	
Set	tup and H	Hold Times										
	t _{CMDS}	Command Setup Time	2	_	2	_	2	_	2	_	ns	
	t _{AS}	Address Setup Time	2	-	2	_	2	-	2	-	ns	
	t _{DS}	Data In Setup Time	2	-	2	-	2	-	2	-	ns	
	t _{CKS}	CKE Setup Time	2	-	2	-	2	-	2	-	ns	
	t _{CMDH}	Command Hold Time	1	-	1	-	1	-	1	-	ns	
	t _{AH}	Address Hold Time	1	-	1	-	1	-	1	-	ns	
	t _{DH}	Data In Hold Time	1	-	1	-	1	-	1	-	ns	
	t _{СКН}	CKE Hold Time	1	-	1	_	1	-	1	-	ns	
Co	mmon Pa	arameters										
	t _{RCD}	Row to Column Delay Time	15	-	16.5	-	18	-	18	-	ns	
	t _{RAS}	Row Active Time	40	100K	45	100K	48	100K	48	100K	ns	
	t _{RC}	Row Cycle Time	60	_	63	_	66	-	70	_	ns	
	t _{RP}	Row Precharge Time	15	-	17	_	18	-	21	-	ns	
	t _{RRD}	Activate(a) to Activate(b) Com- mand period	10	-	11	_	12	-	14	-	ns	
	t _{CCD}	CAS(a) to CAS(b) Command period	1	-	1	-	1	_	1	_	CLK	
	t _{RCS}	Mode Register Set-up time	10	-	11	-	12	-	14	-	ns	
	t _{SB}	Power Down Mode Entry Time	0	5	0	5.5	0	6	0	7	ns	
	t _{CDL}	Last data in to new column ad- dress delay	5	-	5.5	-	6	-	7	-	ns	

V54C316162VC

AC Characteristics $^{(1,2,3)}$ (Continued) T_A = 0 to 70°C; V_{SS} = 0 V; V_{CC} = 3.3 V ± 0.3 V, t_T = 1 ns

			Limit Values									
			-	5	-55		-6		-7			
#	Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
	t _{BDL}	Last data in to burst stop	5	-	5.5	_	6	_	7	_	ns	
Re	fresh Cy	cle		•			•					
	t _{REF}	Refresh Period (2048 cycles)	-	32	-	32	-	32	-	32	ms	
	t _{SREX}	Self Refresh Exit Time	2 CLK	(+ t _{RC}			2	CLK + t _F	RC			6
Re	ad Cycle											
	t _{OH}	Data Out Hold Time	2.5	-	2.5	-	2.5	-	2.5	-	ns	
	t _{HZ}	$\frac{\overline{CAS}}{\overline{CAS}} \text{ Latency} = 3$ $\overline{CAS} \text{ Latency} = 2$	-	5 7	-	5.3 7	-	5.5 7	-	5.5 7	ns	
	t _{DQZ}	DQM Data Out Disable Latency	2	_	2	_	2	_	2	_	CLK	
	t _{LZ}	Data Out Low-Z time	-	1	-	1	-	1	-	1	ns	
Wr	ite Cycle		•	•	•		•		•			•
	t _{WR}	Write Recovery Time \overline{CAS} Latency = 3 \overline{CAS} Latency = 2	5 10		5.5 10		6 10		7 10		ns ns	
	t _{DQW}	DQM Write Mask Latency	0	-	0	-	0	-	0	-	CLK	
	t _{RDL}	Last data in to row precharge	10	-	11	_	12	-	14	-	ns	t

V54C316162VC

Notes for AC Parameters:

1.For proper power-up see the operation section of this data sheet.

2.AC timing tests have $V_{IL} = 0.8V$ and $V_{IH} = 2.0V$ with the timing referenced to the 1.4 V crossover point. The transition time is measured between V_{IH} and V_{IL} . All AC measurements assume $t_T = 1$ ns with the AC output load circuit shown in Figure 1

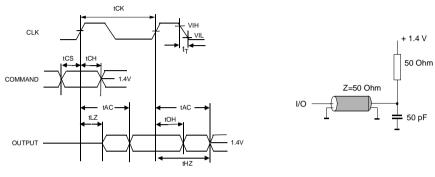


Figure 1.

3. If clock rising time is longer than 1 ns, a time $(t_T/2 - 0.5)$ ns has to be added to this parameter.

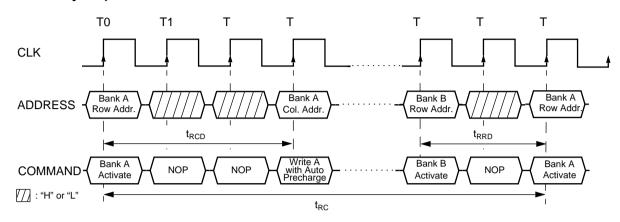
4. If t_T is longer than 1 ns, a time $(t_T - 1)$ ns has to be added to this parameter.

5. These parameter account for the number of clock cycle and depend on the operating frequency of the clock, as follows:

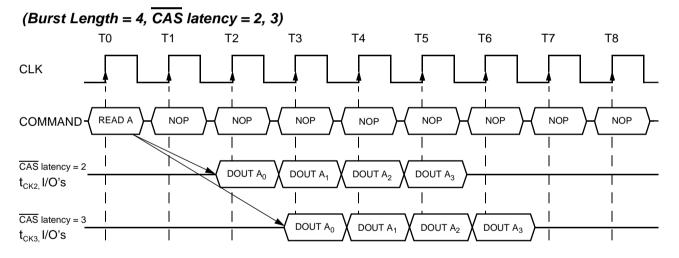
the number of clock cycle = specified value of timing period (counted in fractions as a whole number)

6.Self Refresh Exit is a synchronous operation and begins on the 2nd positive clock edge after CKE returns high. Self Refresh Exit is not complete until a time period equal to tRC is satisfied once the Self Refresh Exit command is registered.

V54C316162VC

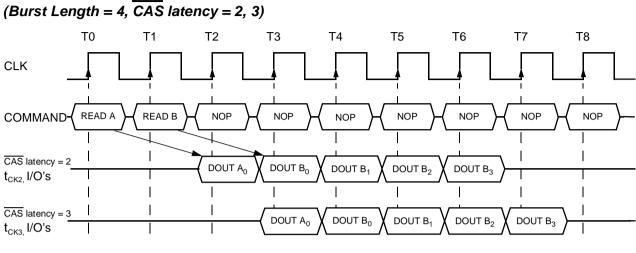

Timing Diagrams

- 1. Bank Activate Command Cycle
- 2. Burst Read Operation
- 3. Read Interrupted by a Read
- 4. Read to Write Interval
 - 4.1 Read to Write Interval
 - 4.2 Minimum Read to Write Interval
 - 4.3 Non-Minimum Read to Write Interval
- 5. Burst Write Operation
 - 5.1 Burst Write to Precharge
- 6. Write and Read Interrupt
 - 6.1 Write Interrupted by a Write
 - 6.2 Write Interrupted by Read
- 7. Burst Write & Read with Auto-Precharge
 - 7.1 Burst Write with Auto-Precharge
 - 7.2 Burst Read with Auto-Precharge
- 8. Burst Termination
 - 8.1 Termination of a Full Page Burst Write Operation
 - 8.2 Termination of a Full Page Burst Write Operation

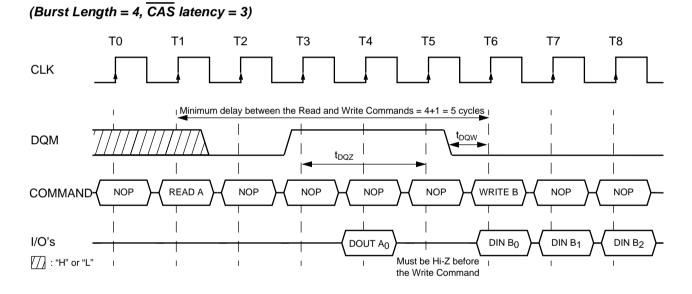

V54C316162VC

1. Bank Activate Command Cycle

$(\overline{CAS} | atency = 3)$

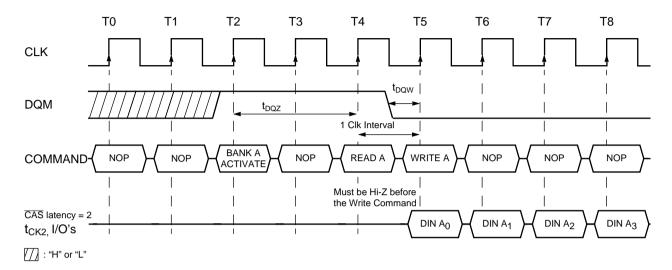


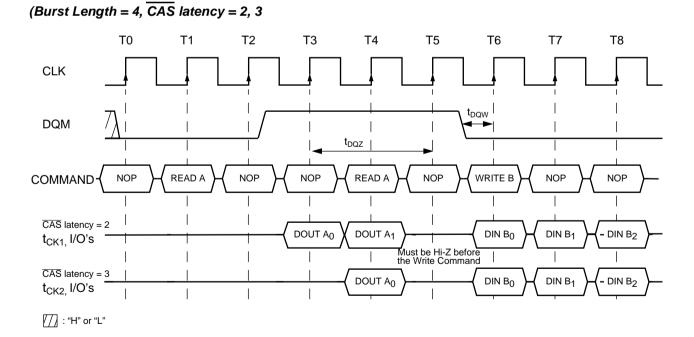
2. Burst Read Operation



V54C316162VC

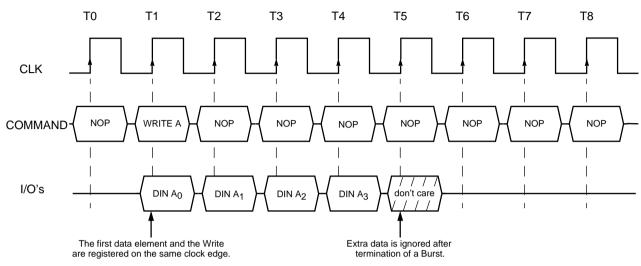
3. Read Interrupted by a Read

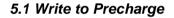

4.1 Read to Write Interval

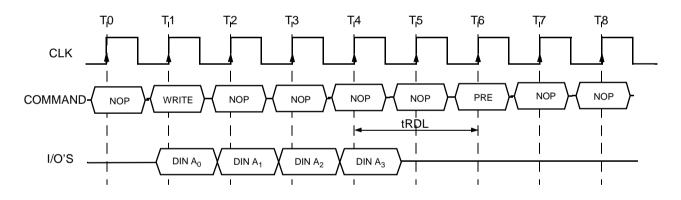

V54C316162VC

4.2 Minimum Read to Write Interval

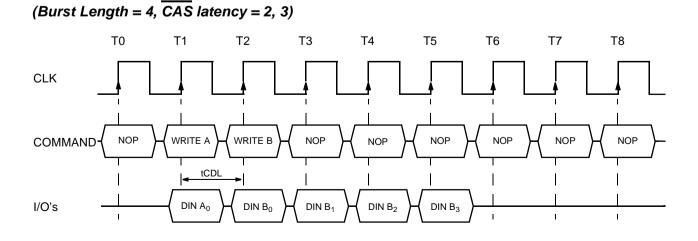
(Burst Length = 4, \overline{CAS} latency = 2)

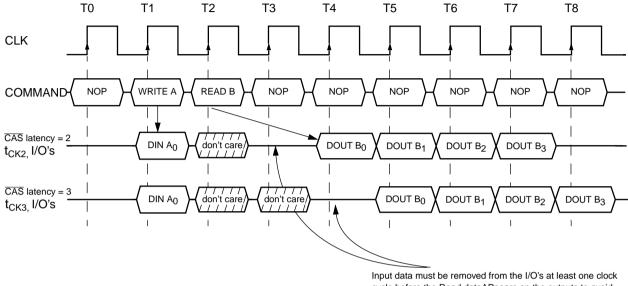

4.3 Non-Minimum Read to Write Interval



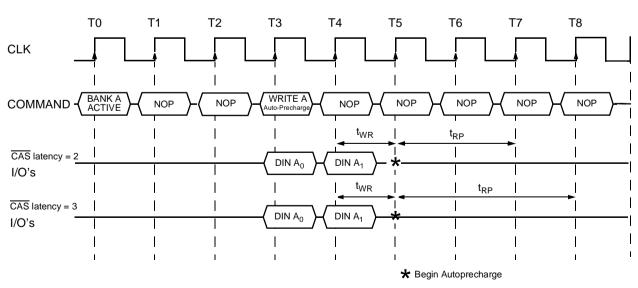

V54C316162VC

5. Burst Write Operation




6.1 Write Interrupted by a Write

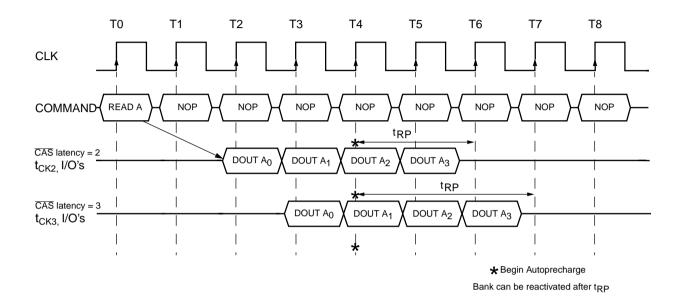
V54C316162VC


6.2 Write Interrupted by a Read

(Burst Length = 4, \overline{CAS} latency = 2, 3)

cycle before the Read dataAPpears on the outputs to avoid data contention.

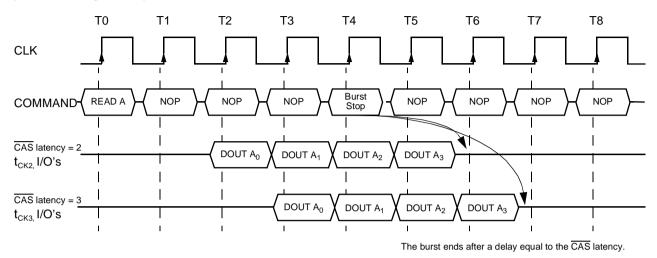
7. Burst Write with Auto-Precharge

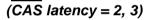

Burst Length = 2, \overline{CAS} latency = 2, 3)

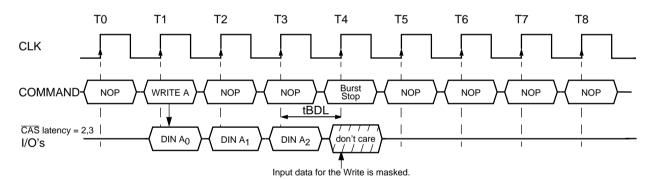
Bank can be reactivated after trp

V54C316162VC

7.2 Burst Read with Auto-Precharge

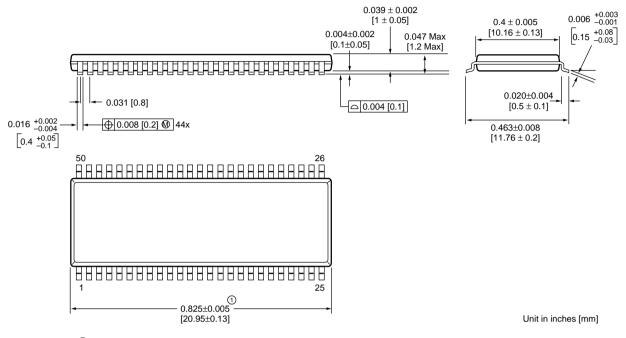

Burst Length = 4, \overline{CAS} latency = 2, 3)


V54C316162VC


8.1 Termination of a Full Page Burst Read Operation

$(\overline{CAS} | atency = 2, 3)$

8.2 Termination of a Full Page Burst Write Operation



V54C316162VC

Package Diagram

50-Pin Plastic TSOP-II (400 mil)

1 Does not include plastic or metal protrusion of 0.010 [0.25] max. per side

WORLDWIDE OFFICES

U.S.A.

3910 NORTH FIRST STREET SAN JOSE, CA 95134 PHONE: 408-433-6000 FAX: 408-433-0952

TAIWAN

7F, NO. 102 MIN-CHUAN E. ROAD, SEC. 3 TAIPEI PHONE: 886-2-2545-1213 FAX: 886-2-2545-1209

NO 19 LI HSIN ROAD SCIENCE BASED IND. PARK HSIN CHU, TAIWAN, R.O.C. PHONE: 886-3-579-5888 FAX: 886-3-566-5888

SINGAPORE

10 ANSON ROAD #23-13 INTERNATIONAL PLAZA SINGAPORE 079903 PHONE: 65-3231801 FAX: 65-3237013

JAPAN

ONZE 1852 BUILDING 6F 2-14-6 SHINTOMI, CHUO-KU TOKYO 104-0041 PHONE: 03-3537-1400 FAX: 03-3537-1402

V54C316162VC

UK & IRELAND

SUITE 50, GROVEWOOD BUSINESS CENTRE STRATHCLYDE BUSINESS PARK BELLSHILL, LANARKSHIRE, SCOTLAND, ML4 3NQ PHONE: 44-1698-748515 FAX: 44-1698-748516

GERMANY (CONTINENTAL EUROPE & ISRAEL)

BENZSTRASSE 32 71083 HERRENBERG GERMANY PHONE: +49 7032 2796-0 FAX: +49 7032 2796 22

U.S. SALES OFFICES

NORTHWESTERN

3910 NORTH FIRST STREET SAN JOSE, CA 95134 PHONE: 408-433-6000 FAX: 408-433-0952

SOUTHWESTERN 302 N. EL CAMINO REAL #200

SAN CLEMENTE, CA 92672 PHONE: 949-361-7873 FAX: 949-361-7807

CENTRAL, NORTHEASTERN & SOUTHEASTERN 604 FIELDWOOD CIRCLE RICHARDSON, TX 75081 PHONE: 214-352-3775 FAX: 214-904-9029

© Copyright, MOSEL VITELIC Inc.

Printed in U.S.A.

The information in this document is subject to change without notice.

MOSEL VITELIC makes no commitment to update or keep current the information contained in this document. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of MOSEL-VITELIC. MOSEL VITELIC subjects its products to normal quality control sampling techniques which are intended to provide an assurance of high quality products suitable for usual commercial applications. MOSEL VITELIC does not do testing appropriate to provide 100% product quality assurance and does not assume any liability for consequential or incidental arising from any use of its products. If such products are to be used in applications in which personal injury might occur from failure, purchaser must do its own quality assurance testing appropriate to such applications.