\

USER'S MANUAL NEC

V850 FAMILY ™
32-/16-BIT SINGLE-CHIP MICROCONTROLLER

ARCHITECTURE

v851™
Vv852™
Vv853™
V854™

Document No. U10243EJ4VOUMOO (4th edition)
Date Published May 1997 N

© NEC Corporation 1995 Printed in Japan

NOTES FOR CMOS DEVICES

@ PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.

@ HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, itis possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Inputlevels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to Voo or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.

@ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, 1/0 settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.

V800 Series, V810 Family, V830 Family, V850 Family, V805, V810, V820, V821, V830, V851, V852, V853,
and V854 are trademarks of NEC Corporation.

UNIX is a registered trademark licensed by X/Open Company Limited in the US and other countries.
Windows is a trademark of Microsoft Corporation.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these
products may be prohibited without governmental license. To export or re-export some or all of these products from a
country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.

NEC Corporation does notassume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated “quality assurance program* for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M7 96.5

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

« Device availability
e Ordering information

¢ Product release schedule

« Availability of related technical literature

< Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

« Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)
Mountain View, California
Tel: 800-366-9782

Fax: 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics ltaliana s.r.1.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
France

Tel: 01-30-67 58 00

Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office

Madrid, Spain

Tel: 01-504-2787

Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby Sweden

Tel: 8-63 80 820

Fax: 8-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-719-2377

Fax: 02-719-5951

NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

J96. 3

Main Revisions in this Edition

Page Description
General V854 is added to target device
p. 3 Figure of 1.3 Product Development is modified.
p.7 Remark of Figure 2-2. Program Register Operations is modified.
p. 18 Addition of description to 4.1 Memory Map
p. 33 SR is added to 5.3 Instruction Set Operation
p. 67 Addition of description to Remark of Saturated Add
p. 68 Addition of description to Remark of Saturated Subtract
p. 69 Addition of description to Remark of Saturated Subtract Immediate
p. 70 Addition of description to Remark of Saturated Subtract Reverse

The mark *xshows major revised points.

Readers

Purpose

Organization

How to read this manual

PREFACE

This manual is intended for users who understand the functions of the V850 family in
designing systems using the products of the V850 family.

This manual presents information on the architecture and instruction set of the V850
family.

e V850 Family Products
e V851 : uPD703000, 703001, 70P3000
e V852 : uPD703002, 70P3002
e V853Nt : yPD703003, 70F3003
e V854Nt - yPD703008, 70F3008, 703008Y, 70F3008Y

Note Under development

This manual contains the following information:
e Register set
e Data type
e Instruction format and instruction set
e |Interrupt and exception
e Pipeline operation

It is assumed that the readers of this manual have general knowledge of electronics
engineering, logic circuits, and microcontrollers.

To learn about the hardware functions,
- Read the User’'s Manual — Hardware of each device.

To learn about the functions of a specific instruction in detail,
- Read CHAPTER 5 INSTRUCTION.

To learn about the electrical specifications,
- Read the DATA SHEET of each device.

To understand the overall functions of the V850 family,
- Read this manual in the order of Contents.

With the V850 family, data consisting of 2 bytes is called a half-word, and data consisting
of 4 bytes is called a word.

Legend Data significance

Active low

Memory map address
*

Caution

Remark

Numeric representation

Most significant bits on the left, and least significant bits
on the right.

xxx (bar over pin or signal hame)

Top - high, bottom - low

Footnote

Important information

Supplement

Binary ... xxxx or xxxxB

Decimal ... xxxx

Hexadecimal ... xxxxH

Prefixes representing an exponent of 2 (for address space or memory capacity):

K (Kilo) : 2% =1024
M (Mega) : 2% = 10242
G (Giga) : 2%°=1024°

Related Documents The related documents indicated here may include preliminary version.
However, preliminary versions are not marked as such.

* Device related documents

Document Name User’s Manual Application Table
Data Sheet
Product Name Hardware Architecture Register Instruction
V851 U10987ENote ! U10935E U10243E U10662E U10229E
U10988EN0e 2
V852 U11826ENote s U10038E U10513E
U11827ENote4
V853 To be prepared™t® | U10913E —
U12036ENoe®
V854 To be prepared U10969E —

Notes 1. pPD703000, 703001
. UPD70P3000

. UPD703002

. UPD70P3002

. UPD703003

. UPD70F3003

o O WN

Development tool related documents (user's manual)

Document Name

Document Number

IE-703002-MC (Incircuit emulator)

U11595E

IE-703003-MC-EM1 (V853 peripheral 1/0 board)

U11596E

|IE-703008-MC-EM1 (V854 peripheral 1/0 board)

To be prepared

CAB850 (C compiler package) Operation UNIX™ based U11013E
Operation Windows™ based U11068E
C language U11010E
Assembly language U10543E
RX850 (Real-time OS) Fundamental U11037E
Technical U11117E
Nucleus Installation U11038E
Debugger Windows based U11158E
AZ850 (System performance analyzer) Operation U11181E
ID850 (C source debugger) Operation UNIX based U12209E
Operation Windows based U11196E
Installation UNIX based U12210E

CONTENTS

CHAPTER 1 INTRODUGCTION ...ttt ettt e e e e e e st e e e e e e e e e s e e nnsbbeaeeeeaaaeaeeaaaannnn aeeas 1
R 1T 1= = | PP TP TSP PPPPPRTTR 1
1.2 ArChiteCUIE FRALUIESeiiiiii ittt ettt e et e e e s e e e nees 2
1.3 ProduCt DEVEIOPMENTcciiiiiiiiiiiitee ettt e ettt e e e e e e e e s e e bbb e e eeeeaaaaeeas . 3
1.4 CPU CONFIQUIALION ...ttt ie ettt ettt e e e e e e e e s e e aabbe e s e e e e e aaeeeaeaannnnbnnnees 1anns 4
CHAPTER 2 REGISTER SET ..ttt ettt e e e e e e e e e s et e e e e e e e e e e e e e annnn eeeeas 5
2.1 Program REQISIEIS . ..o it e ettt e e e e e e ettt e e e e e e e e e e b e e e e e e e e e e e e e anae aaeas 5
2,11 PrOQram FEOISIEI SB....cuiiuiiiiuiitiitesteitete sttt ettt b ettt b bbbttt e e e e eneate e e e e e ens 5
2.2 SYSEEIM REQISTEISeeiiiiiiiiiee ettt e ettt et e e e e e e e et bbb e et eaaaaae e e e annbbbbneeaaaaaaas aaeean 8
2.2.1 Interrupt StatuS SAVING FEGISTEISiiiiiei ittt et e e e et e e e e et e e e e e annneeeae e e e annneeas 8
2.2.2 NMI StatuS SAVING FEQISTETS ..voiiiiiiiiiiiiee ettt e e e et e e e e sttt e e e e st e e e e e st b b e e e e e sabaaaeeeeasstreaeeeesansrnes 9
2.2.3 EXCEPLION CAUSE FEUISTENeeiieieeiiiiiii e ettt e e ettt e e e e ettt e e e e ekt e e e e e e e bb et e e e e e anneeeeaeaaansbeeaeaeeannnnes 9
2.2.4 Program SEAIUS WOIToiuuueiieeaiiiiie e ettt e e e ettt e e e e et e e e e e e atbeee e e e e nbeeeeeeaasneeeeaeaannsaeeeeaeeannnnees 9
2.2.5 SyStemM regiStEr NUIMDETviiiiiii et e e e e e et e e e e s et b e e e e e astreaeeeeeessnees 11
CHAPTER 3 DATA T Y PE ittt e e e e e e e et b b e et e e e e e e e e e s e e nnnnes bereeeeas 13
IR R B = 1= o 1 1 - L PP PP PP PP TP PPPPPPP 13
3.1.1 Data type and @0ArESSINGceeeeiiueiiiaeaaaiiiiieaeaaiieeea e e e atteeteaeaataeeeaaaaaneseeeeaaasaeeeaeaaananeaeaaeaaannans 13
3.2 Data REPIrESENTALIONuiiiiiiiiiiiie ettt e et e et e e e e e e s e st bt et e e e e e e e e e e e aannnnbnnees aeas 14
G J0 0t R 1 1 =T o [PP PO PPN 14
I I U | oIS (oo TTo [N o1 =Te =T RSO RRRP 15
I T N = 11 SRS ERTRRO 15
G TG T B = L = A 1o | T 1Y | PO 15
CHAPTER 4 ADDRESS SPACE ...ttt e e e e e e e e eee oas 17
R V1Y g T Y/ = o R 18
4.2 AJAreSSING MOAEeeeeiiiiiiee ettt e e e ettt e e e e e e e e e e e bbb be e e aaaaaaas eeees 19
o R | 1511 {0 Tox 1o g = To (o [T PSR UUPPRRN 19
N A O o 1= - T [o I-To [| =TT PRSP PRPPTRUPPRPPR 22
CHAPTER 5 INSTRUGCTION ...ttt ettt e e e ettt e e e e e e e e e e e ettt e e e e e aaaeaeaeaann seeeeas 25
5.1 INSIUCHON FOMMAL ...ttt ettt e e e sttt e e e st e e e s abaeees eeean 25
5.2 OULlINE Of INSIIUCLIONS ...ttt e e e et r e e e e e e e e e e aennnee aaeas 28
5.3 INSITUCTION STeeiiiiiiiiee ettt e e e e ettt e e e e e e e e e s e e ann bbb er e e e aaaaaaas erereeeeas 32

5.4 Number of Instruction Execution CIOCK CYCIEScuvviiieeiiiiiiiiiiiieece e 20
CHAPTER 6 INTERRUPT AND EXCEPTION ...ciiiiiiiiiitieieei ettt a e e e 93
0 A 1 (=14 U] o AR Y=T Vo T Vo SRR 94
6.1.1 MaSKaDIE INTEITUPL ...ttt e ettt e e e ettt e e e e e e e ntbe e e e e e enenrreeaeeeannaes 94
6.1.2 NON-MASKADIE INTEITUPLottt e e e ettt e e e e et e e e e e ennneeeeeaeeannneeas 96
6.2 EXCEPLION PrOCESSING .vviiiiiieeeiiiiiiiiiiieiteeee e e e e e ssssteaae e e e e e e e e e s s s st e ereeeeeeseeanassntanneaeeaaaees .97
6.2.1 SOMWAIE EXCEPLION ...ttt e ettt e e e ettt e e e e et be e e e e e neee e e e e e e anneeeeeaeeeanneneas 97
(SO o (o= o (o] 1 B (= 1 o LT PTPUPUPRRRNt 98

6.3 Restoring from INterrUPt/EXCEPLIONuvvviiiiiiieeeee it e e e e e e s e e e e e e e e e e e enaeeeeee s 99

CHAPTER 7 RESET ..ottt ettt e e e e e e e e ree e e e 101

4 R [11 (=114 o [P RP P PPURRTTR 101
A 2 = U 1] o T | o TSP 101
CHAPTER 8 PIPELINE ...ttt e e e e e e e e e ettt e ettt e e eae e et s bab e seeeeeennnes 103
8.1 OULIINE Of OPEIALION ...ttt e e e e e e e e e e s e e bbb e e e e e e e e e e e e e aannns eeeas 103
8.2 Pipeline Flow During Execution of INSrUCHIONScccviviieiiiiie e e e e 104
S T2 R Mo T- To I 0 1S3 (U o4 o] SRRSO RPRR 104
o I S (o] (= 151 1 0T 1o o RSO RRRP 104
8.2.3 Arithmetic operation instructions (excluding multiply and divide instructions)ccccccccceeuvvee.. 104
8.2.4 MUIIPIY INSIFUCHIONS ...eiiiiiiitiie ettt e e e e ettt e e e e et be et e e e e e nsbe e e e e e annnbaeeeaeeannnneas 105
8.2.5 DiVIAE INSIIUCTIONSeeeiiieeiiiiiee ettt ettt e e e ettt e e e e ekttt e e e e e tae e e e e e e anneeeeeeeaansbeeeaesannnsneeaeaaannens 105
8.2.6 Logical Operation iINSIIUCHIONSuuviiieeiiiiiiee e et e e e et e e e s s e e e s et e e e e e sbtb e e e e e s sntbeeaeeeeennsnees 105
8.2.7 Saturation operation INSIFUCLIONSooi it e e e e e e e e e e e eeee e e e eneeeas 106
8.2.8 BranCh INSIIUCTIONeeiiiiiiiieiii et e ettt e ettt e e e ettt e e e e e e aete e e e e e e ansbeeeaesannnnneeaeeaannnns 106
8.2.9 Bit Manipulation iNSIIUCHIONSccuuiiiieiiiiiiiee e e e e e e e e et e e e e s st e e e e e s essnees 107
8.2.10 SPECIAI INSITUCLIONSeeiiiiiiiiiie ettt e ettt e e e ettt e e e e st et e e e e e sbe et e e e e anneeeeaeeaannsbaeeeeeeannnneas 108
8.3 PiIPEINE DISOIUEK ...ceiiiiiiiiii ittt ettt et e e e e e e e e bbb e e e e e aaaaaaaas eeeeeas 110
LIRS I AN [T [a0 (=T a1 B g = V2= 1 (o PSSP UPPRTRP 110
8.3.2 Referencing execution result of 10ad INSTIUCHIONcueiiiiiiiiiii e 111
8.3.3 Referencing execution result of multiply INStrUCHIONcooiiiiiiii e 111
8.3.4 Referencing execution result of LDSR instruction for EIPC and FEPCccccooviiiivieeiiiieen. 112
8.3.5 Cautions When Creating PrOgramMS i e iiae i eeeeeieiiee e e e et ee e e e e aebe e e e e e aanaeeeeaeeaanneeeeaeeanreeeeas 112
8.4 Additional Items Related t0 PIPEIINEoooiiiiiiiii e 113
8.4.1 Harvard arChit@CIUIEc.iiiiiiii e 113
o I o o o - 1 o SRR SRTPP 114
APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER).......cccoviiiiiieiiiiiiiee e, 115
APPENDIX B INSTRUCTION LIST ..ttt e e e e e e e e e e e e e e e e e eeeeeae e bennanannas as 123
APPENDIX C INSTRUCTION OP CODE MAP ... 125
LN 3 127

LIST OF FIGURES

Figure No. Title Page
1-1 INternal CoNFIQUIALIONuviiieiiiiie et e e e e e e e e e e e e e e e et b e e e e e s ensrsaeaeeasaannes 4
2-1 Program REQISIEIS ...ttt e e e et e e e e e et e e e e e e ntbe e e e e e aanneeeeaeeannnnees 6
2-2 Program Register Operations 7
2-3 System Registers 8
4-1 LT g Y 1Y = T o TP TP STSTUOPORTPPPRIN 18
4-2 Relative Addressing (JR disp22/JARL disp22, reg2) 19
4-3 Relative Addressing (Bcond disp9) 20
4-4 Register AAdressing (JMP [FE0L]) «veeeeeiuiiiii ettt e ettt e e e e e e s aaeeeasnnnes 21
4-5 27 Y=o AN [0 [T g T OO PPP S PPPPPRP 22
4-6 27 1Yo AN [0 [113 o T PP UUUPRRT 23
4-7 2 Yo [0 [=TT oo [OO P S PPPPPPPPT 24
6-1 Maskable Interrupt Servicing FOIMALcooiiiuiiiiieeiie e e 95
6-2 Non-maskable Interrupt Servicing FOrMaLtccooiiiiiiieiiiiiiie e 96
6-3 Software Exception Processing FOIMALcooiiiiiiiiiiiiiiies e 97
6-4 lllegal Instruction Codeccoveeeeiiiiiiieeeane 98
6-5 Exception Trap Processing Format 98
6-6 Restoration from INterrUpt/EXCEPLIONviveiiiiiiiie et e e e e et e e e e 99
8-1 Example of Executing Nine Standard Instructions 103
8-2 ACCESS TIMES (IN CIOCKS) ..ottt e e e e e e e e saaaaee s 104
8-3 AlIgN Hazard EXAMPIEooiiiiiiie et 110
8-4 Example of Execution Result of Load INStrUCIONccveiiviieiiiiciiie e 111
8-5 Example of Execution Result of Multiply INStrUCHIONccovvveeeiiiiiiiie e, 111

LIST OF TABLES

Table No. Title Page
2-1 System ReQISTEr NUMDETviiiiiiiiiiie e e e e e e e e st r e e e s etaaaeae s 11
5-1 (o= Te FAS] (o] (=3 1S3 { (F ol o] E USRS PUURRRN 28
5-2 Arithmetic Operation INSIIUCHIONSviiiiiiiiii e e e eaarea s 28
5-3 Saturated Operation Instructions 29
5-4 Logical Operation INSIIUCLIONSccei ittt e e et e e ettt e e e e et ee e e e e aanneeeaaeaaannnes 29
5-5 BrancCh INSIIUCHIONSiiiiiiiiiiie ettt e e n 30
5-6 Bit Manipulation INSTIUCHIONSuiiiiiiiiiiie ettt e e s e e e s e e e e e e e aneees 31
5-7 Special Instructionsccccoceeeeiiiinenen. 31
5-8 Conditional Branch Instructions 41
5-9 (014 To 111 o] o I @2 Lo =1 PP PP PPPRPRUPRN 72
5-10 List of Number of Instruction Execution CIOCK CYCIESccuviiiiiiiiiiiiieee e 90
6-1 INtEITUPL/EXCEPLION COUEScciiiiiiiie ettt e e e e e e e et e e e e e enbsaeaeeeasnnees 94
7-1 Register Status after RESELuviiiiciiiiie et e s e e e s e e e e e e snanees 101
A-1 Instruction Mnemonic (in alphabetical Order) ... 116
B-1 MINEIMONIC LIST ..ottt et e et e et e e et e e entee e e nnnee s 123
B-2 INSTFUCTION ST ...ttt ettt e e ettt e e e e ettt e e e e e e tte et e e e e e ntbseeeeeeannsneeeeaaaannes 124

-V -

CHAPTER 1 INTRODUCTION

The V850 family is a collection of NEC’s single-chip microcontrollers that have a CPU core using the RISC
microprocessor technology of the V800 Series™, with on-chip ROM/RAM and peripheral 1/Os, etc.

The V850 family of microcontrollers provides a migration path to the existing NEC's original single-chip microcontroller
“78K Series”, and boasts higher cost-performance.

This chapter briefly outlines the V850 family.

1.1 General

Real-time control systems are used in a wide range of applications, including:

« office equipment such as HDDs (Hard Disk Drives), PPCs (Plain Paper Copiers), printers, and facsimiles,
» automobile electronics such as engine control systems and ABSs (Antilock Braking Systems), and
« factory automation equipment such as NC (Numerical Control) machine tools and various controllers.

The great majority of these systems employed 8-bit or 16-bit microcontrollers so far. However,the perform-
ance level of these microcontrollers has become inadequate in recent years as control operations have risen
in complexity, leading to the development of increasingly complicated instruction sets and hardware design.
As aresult, the need has arisen for a new generation of microcontrollers operable at much higher frequencies
to achieve an acceptable level of performance under today's more demanding requirements.

The V850 family of microcontrollers was developed to satisfy this need. This family uses RISC architecture
that can provide maximum performance with simpler hardware, allowing users to obtain a performance ap-
proximately 15 times higher than that of the existing 78K/Ill Series and 78K/IV Series CISC single-chip
microcontrollers at a lower total cost.

In addition to the basic instructions of conventional RISC CPUs, the V850 family is provided with special
instructions such as saturate, bit manipulate, and multiply/divide (executed by a hardware multiplier) instruc-
tions, which are especially suited for digital servo control systems. Moreover, instruction formats are de-
signed for maximum compiler coding efficiency, allowing the reduction of object code sizes.

CHAPTER 1 INTRODUCTION

1.2 Architecture Features

¢ High-performance 32-bit architecture for embedded control
e Number of instructions : 74
e 32-bit general registers : 32
« Load/store instructions in long/short format
¢ 3-operand instruction
« 5-stage pipeline of 1 clock cycle per stage
e Hardware interlock on register/flag hazards
¢ Memory space Program space : 16 MB linear
Data space : 4 GB linear
® Special instructions
¢ Saturation operation instructions
¢ Bit manipulation instructions
¢ On-chip multiplier executing multiplication in 1 to 2 clocks (16 bits x 16 bits — 32 bits)

CHAPTER 1 INTRODUCTION

1.3 Product Development

The V850 family is part of the V800 Series and consists of single-chip microcontrollers using a RISC microprocessor
core.

While the V810 family™ of microprocessors is intended for data processing, the V850 family is targeted for
embedded control systems, and can be used in a wide variety of applications.

Product development

V800 Series

/V830 Family™ \

V850Family \

V810 Family i mm
- J
v810™ Vv820™
_‘ vg21™
v8o5™

CHAPTER 1 INTRODUCTION

1.4 CPU Configuration

Figure 1-1 shows the internal configuration of the V850 family.

Internal

peripheral K >
lfe}

Figure 1-1. Internal Configuration

Internal ROM CPU BCU
Instruction
[_pc |
ROM/ e queue
PROM I 32-bit barrel
shifter
- Prefetch
— Multiplier
System 16 x 16 - 32 control
register
Internal RAM
General
register [>
32 bits x 32 Bus
:: control
(N

Internal bus

The function of each har

CPU vy Executes almost all instructions such as address calculation, arithmetic and logical
operation, and data transfer in one clock by using a 5-stage pipeline. Contains dedicated
hardware such as a multiplier (16 x 16 bits) and a barrel shifter (32 bits/clock) to execute

Internal ROM «++vvvverniniennnn

Internal RAM «+vovvevnininnnnn

Internal peripheral 1/0 -----

BCU v Starts a necessary bus cycle based on a physical address obtained by the CPU. If the
CPU does not issue a request for starting a bus cycle, the BCU generates a prefetch
address, and prefetches an instruction code. The prefetched instruction code is loaded

dware block is as follows:

complicated instructions at high speeds.

ROM or EPROM mapped from address 00000000H. Can be accessed by the CPU in

one clock during instruction fetch.

RAM mapped to a space preceding address FFFFEFFFH. Can be accessed by the CPU

in one clock during data access.

Peripheral I/O area mapped from address FFFFFOOOH.

to an internal instruction queue.

CHAPTER 2 REGISTER SET

The registers of the V850 family can be classified into two types: program register sets that can be used for general
programming, and system registers that can control the execution environment. All the registers are 32 bits wide.

2.1 Program Registers
2.1.1 Program register set

(1) General registers
The V850 family has thirty-two general registers, r0 through r31. All these registers can be used for data or
address storage.
However, r0 and r30 are implicitly used by instructions, and care must be exercised in using these registers. r0
is a register that always holds 0, and is used for operations and offset 0 addressing. r30 is used as a base pointer
when accessing memory using the SLD and SST instructions. rl, r2, r3, r4, r5, and r31 are implicitly used by
the assembler and C compiler. Before using these registers, therefore, their contents must be saved so that they
are not lost. The contents must be restored to the registers after the registers have been used.

CHAPTER 2 REGISTER SET

Figure 2-1. Program Registers

31

ro Zero Register

rl Reserved for Address Generation

r2 Interrupt Stack Pointer

r3 Stack Pointer (SP)

rd4 Global Pointer (GP)

r5 Text Pointer (TP)

6

r7

r8

r9

r10

ril

rl2

r13

rl4

rl5

rlé

rl7

rl8

rl9

r20

r21

r22

r23

r24

r25

r26

r27

r28

r29

r30 Element Pointer (EP)

r31l Link pointer (LP)

PC Program Counter

CHAPTER 2 REGISTER SET

Figure 2-2. Program Register Operations

Name Usage Operation
r0 Zero register Always holds 0.
rl Assembler-reserved register Used as working register for address generation.
r2 Interrupt stack pointer Used as stack pointer for interrupt handler.
r3 Stack pointer Used for stack frame generation when function is
called.
r4 Global pointer Used to access global variable in data area.
r5 Text pointer Used as register for pointing start address of text
areaNoe,
ré
through Address/data variable registers
r29
r30 Element pointer Used as base pointer for address generation
when memory is accessed.
r31 Link pointer Used when compiler calls function.
PC Program counter Holds instruction address during program execu-
tion.
Note Text area : Area where program code is placed.

Remark For detailed descriptions of r1 to r31 used by assembler and C compiler, see the C compiler
package (CA850) User's Manual .

(2) Program counter
This register holds an instruction address during program execution. The lower 24 bits of this register are valid,
and bits 31 through 24 are reserved fields (fixed to 0). If a carry occurs from bit 23 to 24, it is ignored.
Bit 0 is always fixed to 0, and execution cannot branch to an odd address.

31 24 23 10
Tt

PC RFU 0

Remark RFU : Reserved field (Reserved for Future Use)

CHAPTER 2 REGISTER SET

2.2 System Registers
The system registers control the status of the V850 family and holds information on interrupts.

Figure 2-3. System Registers

31 0
EIPC Exception/Interrupt PC
EIPSW Exception/Interrupt PSW
FEPC Fatal Error PC
FEPSW Fatal Error PSW
ECR Exception Cause Register
PSW Program Status Word

2.2.1 Interrupt status saving registers

Two interrupt status saving registers are provided: EIPC and EIPSW.

The contents of the PC and PSW are respectively saved in these registers if an exception or interrupt occurs.

If the NMI occurs, however, the contents of the PC and PSW are saved to NMI status saving registers.

When an exception or interrupt occurs, the address of the following instruction is saved in the EIPC register. If
an interrupt occurs while a division (DIVH) instruction is executed, the address of the division instruction currently
being executed is saved.

The current value of the PSW is saved to the EIPSW.

Because only one pair of interrupt status saving registers is provided, the contents of these registers must be saved
by program when multiple interrupts are enabled.

Bits 24 through 31 of the EIPC and bits 8 through 31 of the EIPSW are fixed to 0.

EIPC PC

EIPSW PSW

CHAPTER 2 REGISTER SET

2.2.2 NMI status saving registers
The V850 family is provided with two NMI status saving registers: FEPC and FEPSW.
The contents of the PC and PSW are respectively saved in these registers when an NMI occurs.
The value saved to the FEPC is, like the EIPC, the address of the instruction next to the one executed when the

NMI has occurred (if the NMI occurs while a division (DIVH) instruction is executed, the address of the division
instruction under execution is saved).

The current value of the PSW is saved to the FEPSW.
Bits 24 through 31 of the FEPC and bits 8 through 31 of the FEPSW are fixed to 0.

FEPC

FEPSW

2.2.3 Exception cause register

The exception cause register (ECR) holds the cause information of an exception, maskable interrupt, or NMI when
any of these events occur. The ECR holds a code which identifies each interrupt source.

This is a read-only register, and therefore, no data can be written to it by using the LDSR instruction.

31 16 15 0
e rrrrrrrrprrrrr T
ECR FECC EICC
Bit Position Field Function
31-16 FECC Fatal Error Cause Code
NMI code
15-0 EICC Exception/Interrupt Cause Code
Exception/interrupt code

2.2.4 Program status word

The program status word is a collection of flags that indicate the status of the program (result of instruction
execution) and the status of the CPU. If the contents of the PSW register are modified by the LDSR instruction, the
PSW will assume the new value immediately after the LDSR instruction has been executed. In setting the ID flag
to 1, however, interrupts are already disabled even while the LDSR instruction is executing.

31 876543210
. \\\\\\\\\\\\\\\\\\\\\\\NEIECOSZ
RFU PIP|D|IT|Y|V

CHAPTER 2 REGISTER SET

Bit Position Flag Function
31-8 RFU Reserved for Future Use
Reserved field (fixed to 0).
7 NP NMI Pending

Indicates that NMI processing is in progress. This flag is set when NMI is granted.
The NMI request is then masked, and multiple interrupts are disabled.

NP = 0: NMI processing is not in progress

NP = 1: NMI processing is in progress

6 EP Exception Pending
Indicates that exception processing is in progress. This flag is set when an excep-
tion occurs.

EP = 0: Exception processing is not in progress

EP = 1. Exception processing is in progress

5 ID Interrupt Disable

Indicates whether external interrupt request can be accepted.
ID = 0: Interrupt can be accepted
ID = 1: Interrupt cannot be accepted

4 SATNote Saturated Math Result
Indicates that an overflow has occurred in a saturate operation and the result is
saturated. This is a cumulative flag. Once the result is saturated, the flag is set to
1 and is not reset to 0 even if the next result does not saturate. To reset this flag,
load data to PSW.
This flag is neither set nor reset by general arithmetic operation instruction.

SAT = 0: Not saturated

SAT = 1: Saturated

3 CY Carry

Indicates whether carry or borrow occurred as a result of the operation.
CY = 0: Carry or borrow did not occur
CY = 1: Carry or borrow occurred

2 Q\hote Overflow

Indicates whether overflow occurred as a result of the operation.
OV = 0: Overflow did not occur
OV = 1: Overflow occurred

1 Shote Sign

Indicates whether the result of the operation is negative
S = 0: Result is positive or zero
S = 1. Result is negative

0 z Zero

Indicates whether the result of the operation is zero
Z = 0: Result is not zero
Z = 1: Resultis zero

Note In the case of saturate instructions, the SAT, S, and OV flags will be set accordingly by the result of the
operation as shown in the table below. Note that the SAT flag is set to 1 only when the OV flag has been
set due to an overflow condition caused by a saturate instruction.

Status of Operation Result SAT-S-OV Result of Saturation Processing
Maximum positive value is 1 0 1 7FFFFFFFH

exceeded

Maximum negative value 1 1 1 80000000H

is exceeded

Others 0 X 0 Operation result

CHAPTER 2 REGISTER SET

2.2.5 System register number

Data in the system registers is accessed by using the load/store system register instructions, LDSR and STSR.

Each register is assigned a unique number which is referenced by the LDSR and STSR instructions.

Table 2-1. System Register Number

Number System Register Operand Specification
LDSR STSR

0 EIPC J N

1 EIPSW N v

2 FEPC v J

3 FEPSW N 7

4 ECR _ y

5 PSW N N
6-31 Reserved

— 1 Accessing prohibited
v . Accessing enabled

Reserved : Accessing registers in this range is prohibited and will lead to undefined

results.

Caution When using the LDSR instruction with the EIPC and FEPC registers, only even address values
should be specified. Afterinterrupt servicing has ended with a RETI instruction, bit O in the EIPC
and FEPC registers will be ignored and assumed to be zero when the PC is restored.

11

[MEMO]

12

CHAPTER 3 DATA TYPE

3.1 Data Format

The V850 family supports the following data types:

Integer (8, 16, 32 bits)
Unsigned integer (8, 16, 32 bits)
Bit

3.1.1 Data type and addressing

The V850 family supports three types of data lengths: word (32 bits), half-word (16 bits), and byte (8 bits). Byte

0 of any data is always the least significant byte (this is called little endian) and shown at the rightmost position in
figures throughout this manual. The following paragraphs describe the data format where data of fixed length is in

memory.

)

)

Byte (BYTE)

A byte is 8-bit contiguous data that starts from any byte boundary™**. Each bit is assigned a number from 0 to
7. The LSB (Least Significant Bit) is bit 0 and the MSB (Most Significant Bit) is bit 7. A byte is specified by its
address A.

Data

A Address

Half-word (HALF-WORD)

A half-word is 2-byte (16-bit) contiguous data that starts from any half-word boundary™®®¢. Each bit is assigned
a number from 0 to 15. The LSB is bit 0 and the MSB is bit 15. A half-word is specified by its address A (with
the lowest bit fixed to 0), and occupies 2 bytes A and A+1.

15 87 0

Data

A+l A Address

13

CHAPTER 3 DATA TYPE

(3) Word (WORD)
A word is 4-byte (32-bit) contiguous data that starts from any word boundary"*®. Each bit is assigned a number
from O to 31. The LSB is bit 0 and the MSB is bit 31. A word is specified by its address A (with the 2 lowest
bits fixed to 0), and occupies 4 bytes A, A+1, A+2, and A+3.

31 24 23 16 15 87 0

Data

A+3 A+2 A+l A Address

(4) Bit (BIT)
A bit is 1-bit data at the nth bit position in 8-bit data that starts from any byte boundary™. A bit is specified by
its address A and bit number n.

7 n 0 Bit number

Byte of address A - -+ - o v Data

A Address

Note Refer to 3.3 Data Alignment .
3.2 Data Representation

3.2.1 Integer

With the V850 family, an integer is expressed as a binary number of 2's complement and is 8, 16, or 32 bits long.
Regardless of its length, the bit 0 of an integer is the least significant bit. The higher the bit number, the more significant
the bit. Because 2's complement is used, the most significant bit is used as a sign bit.

Data Length Range
Byte 8 bits -128 to +127
Half-word 16 bits —32768 to +32767
Word 32 bits —2147483648 to +2147483647

14

CHAPTER 3 DATA TYPE

3.2.2 Unsigned integer

While an integer is data that can take either a positive or a negative value, an unsigned integer is an integer that
is not negative. Like an integer, an unsigned integer is also expressed as 2's complement and is 8, 16, or 32 bits
long. Regardless of its length, the bit 0 of an unsigned integer is the least significant bit, and the higher the bit number,
the more significant the bit. However, no sign bit is used.

Data Length Range
Byte 8 bits 0 to 255
Half-word 16 bits 0 to 65535
Word 32 bits 0 to 4294967295

3.2.3 Bit
The V850 family can handle 1-bit data that can take a value of O (cleared) or 1 (set). Bit manipulation can be
performed only to 1-byte data in the memory space in the following four ways:

* Set

* Clear
* Invert
* Test

3.3 Data Alignment

With the V850 family, word data to be allocated in memory must be aligned at an appropriate boundary. Therefore,
word data must be aligned at a word boundary (the lower 2 bits of the address are 0), and half-word data must be
aligned at a half-word boundary (the lowest bit of the address is 0). If data is not aligned at a boundary, the data
is accessed with the lowest bit(s) of the address (lower 2 bits in the case of word data and lowest 1 bit in the case
of half-word data) automatically masked. This will cause lost of data and truncation of the least significant bytes. Byte
data can be placed at any address.

15

[MEMO]

16

CHAPTER 4 ADDRESS SPACE

The V850 family supports a 4-GB linear address space. Both memory and 1/0O are mapped to this address space
(memory-mapped I/O). The V850 family outputs 32-bit addresses to the memory and I/O. The maximum address

is 2321,

Byte ordering is little endian. Byte data allocated at each address is defined with bit 0 as LSB and bit 7 as MSB.
In regards to multiple-byte data, the byte with the lowest address value is defined to have the LSB and the byte with

the highest address value is defined to have the MSB.

Data consisting of 2 bytes is called a half-word, and 4-byte data is called a word. In this User's Manual, data
consisting of 2 or more bytes is illustrated as below, with the lower address shown on the right and the higher address

on the left.

7
Byte of addreSS A - -t s e e e
15 87
Half-word at address A -« - - x v s s s s
A+l
31 2423 1615 87
Word at address A = -+ crr e
A+3 A+2 A+l

Data

Address

Data

Address

Data

Address

17

CHAPTER 4 ADDRESS SPACE

4.1 Memory Map

The V850 family employs a 32-bit architecture and supports a linear address space (data space) of up to 4 GB.

It supports a linear address space (program space) of up to 16 MB for instruction addressing.

Figure 4-1 shows the memory map of the V850 family.

The capacity of the on-chip ROM and RAM depends on each product. For details, refer to the memory map section
in the User's Manual-Hardware of each product.

Figure 4-1. Memory Map

FFFFFFFFH O
0
Peripheral /0O 0
0
]
0
FFFFEFFFH O
0
Internal RAM g
0
]
0
]
0
]
0
]
0
]
0 4GB linear
]
0
]
0
]
0
]
0
]
0
]
0
]
0
]
0
Internal ROM/PROM g
]
00000000H

18

CHAPTER 4 ADDRESS SPACE

4.2 Addressing Mode

The CPU generates two types of addresses: instruction addresses used for instruction fetch and branch operations;
and operand addresses used for data access.

4.2.1 Instruction address

Aninstruction address is determined by the contents of the program counter (PC), and is automatically incremented
(+2) according to the number of bytes of an instruction to be fetched each time an instruction has been executed.
When a branch instruction is executed, the branch destination address is loaded into the PC using one of the following
two addressing modes:

(1) Relative address (PC relative)
The signed 9- or 22-bit data of an instruction code (displacement: disp) is added to the value of the program
counter (PC). At this time, the displacement is treated as 2's complement data with bits 8 and 21 serving as
sign bits.
This addressing is used for Bcond disp9, JR disp22, and JARL disp22, reg2 instructions.

Figure 4-2. Relative Addressing (JR disp22/JARL disp22, reg2)

31 24 23 0
B I B S B B S S I O S D B B S I B O N B B
00 0O0O0OOODO PC 0
31 2221 0
L L I B B S) B B B B B B

Sign extension S disp22 0

31 24 23 0
T T

00 0O0OO0OOODO PC 0

Memory to be manipulated

\]

19

CHAPTER 4 ADDRESS SPACE

20

Figure 4-3. Relative Addressing (Bcond disp9)

31 24 23 0
B I B S B B S I B S D B B S I B B HO B
0000O0O0OOO PC 0
31 9 8 0
I B B) B B B S B S) B B B N I B B B N B

Sign extension S disp9 0

31 24 23 0
T T
0000O0O0OO PC 0

Memory to be manipulated

CHAPTER 4 ADDRESS SPACE

(2) Register addressing (address indirect)
The contents of a general register (rO - r31) specified by an instruction are transferred to the program counter

(PC).
This addressing is applied to the JMP [regl] instruction.

Figure 4-4. Register Addressing (JMP [regl])

31 0
B O O H B B
m
31 24 23 0
T T
00 0O0O0O0OOO PC 0

Memory to be manipulated

21

CHAPTER 4 ADDRESS SPACE

4.2.2 Operand address
When an instruction is executed, the register or memory area to be accessed is specified in one of the following
four addressing modes:

(1) Register addressing
The general register (may be system register) specified in the general register specification field is accessed as
operand. This addressing mode applies to instructions using the operand format regl, reg2, or regID.

(2) Immediate addressing
The 5-bit or 16-bit data for manipulation is contained directly in the instruction. This addressing mode applies
to instructions using the operand format imm5, imm16, vector, or cccc.

Remark vector: Operand that is 5-bit immediate data to specify trap vector (OOH-1FH), and is used in TRAP
instruction.

cccc : Operand consisting of 4-bit data used in SETF instruction to specify condition code. Assigned

as part of instruction code as 5-bit immediate data by appending 1-bit 0 above highest bit.

(3) Based addressing
The following two types of based addressing are supported:

(a) Typel
The address of the data memory location to be accessed is determined by adding the value in the specified
general register to the 16-bit displacement value contained in the instruction. This addressing mode applies
to instructions using the operand format disp16 [regl].

Figure 4-5. Based Addressing

31 0
r 1111111 TrrTrrirrrrrrrrT71r1T 11 1T 1 1T 1 1.1
regl
31 16 15 0
1 1 1 1 1 1 1T 1 1T 1 1 1T 11 1 1 1 1 1 1 1T 1 1T 1 1 1T 11
Sign extension disp16

Memory to be manipulated

\i

22

CHAPTER 4 ADDRESS SPACE

(b) Type 2

The address of the data memory location to be accessed is determined by adding the value in the 32-bit

element pointer (r30) to the 7- or 8-bit displacement value contained in the instruction. This addressing mode
applies to SLD and SST instructions.

Figure 4-6. Based Addressing

31 0
B B B B B O
r30 (element pointer)

31 7 0
B T D L D T D D L L L L T T T T T 1
0000O0OO0ODOOOODOOOOOOOOOOOOOO d'(SJIrDS

(Zero extension) disp7

Memory to be manipulated

Byte access = disp7
Half-word access and word access = disp8

23

CHAPTER 4 ADDRESS SPACE

(4) Bit addressing
This addressing is used to access 1 bit (specified with bit#3 of 3-bit data) among 1 byte of the memory space
to be manipulated by using an operand address which is the sum of the contents of a general register and a 16-
bit displacement sign-extended to aword length. This addressing mode applies only to bitmanipulate instructions.

Figure 4-7. Bit Addressing

31 0
1 1
regl
31 16 15 0
T
Sign extension disp16
Memory to be manipulated
n
e EE—

Remark n: Bit position specified with 3-bit data (bit#3) (n =0 - 7)

24

CHAPTER 5 INSTRUCTION

5.1 Instruction Format

The V850 family has two types of instruction formats: 16-bit and 32-bit. The 16-bit instructions include binary
operation, control, and conditional branch instructions, and the 32-bit instructions include load/store, jump, and
instructions that handle 16-bit immediate data.

Some instructions have an unused field (RFU). This field is reserved for future expansion and must be fixed
to 0.

An instruction is actually stored in memory as follows:

* Lower bytes of instruction (including bit 0) - lower address
* Higher bytes of instruction (including bit 15 or 31) - higher address

(1) reg-reg instruction (Format I)
A 16-bit instruction format having a 6-bit op code field and two general register specification fields for operand
specification.

15 11 10 5 4 0

reg2 opcode regl

(2) imm-reg instruction (Format II)
A 16-bit instruction format having a 6-bit op code field, 5-bit immediate field, and a general register specification
field.

15 11 10 5 4 0

reg2 opcode imm

(3) Conditional branch instruction (Format IIl)
A 16-bit instruction format having a 4-bit op code field, 4-bit condition code, and an 8-bit displacement.

15 11 10 7 6 4 3 0
et

disp opcode disp cond

25

CHAPTER 5 INSTRUCTION

4

®)

(6)

7

26

16-bit load/store instruction (Format 1V)
A 16-bit instruction format having a 4-bit op code field, a general register specification field, and a 7-bit
displacement (or 6-bit displacement + 1-bit sub-op code).

15 11 10 7 6 5 1 0

T

disp/sub-opcode
Jump instruction (Format V)
A 32-bit instruction format having a 5-bit op code field, a general register specification field, and a 22-bit
displacement.
15 1110 6 5

ey ey rererr e et rrrr
reg2

opcode

3-operand instruction (Format VI)
A 32-bit instruction format having a 6-bit op code field, two general register specification fields, and a 16-bit
immediate field.

15 1110 5 4

reg2 opcode

32-bit load/store instruction (Format VII)
A 32-bit instruction format having a 6-bit op code field, two general register specification fields, and a 16-bit
displacement (or 15-bit displacement + 1-bit sub-op code).

1110

opcode

disp/sub-opcode

CHAPTER 5 INSTRUCTION

(8) Bit manipulation instruction (Format VIII)

A 32-bit instruction format having a 6-bit op code field, 2-bit sub-op code, 3-bit bit specification field, a general

register field, and a 16-bit displacement.

1514 13 1110 5 4 0 31 16

sub | bit# opcode regl disp

(9) Extended instruction format 1 (Format IX)

A 32-bit instruction format having a 6-bit op code field, 6-bit sub-op code, and two general register specification

fields (one field may be regID or cond).

15 1110 5 4 0 31 27 26 2120 16

reg2 opcode regl/reglD/cond RFU sub-opcode RFU

(10) Extended instruction format 2 (Format X)
A 32-bit instruction format having a 6-bit op code field and 6-bit sub op code.

15 13121110 5 4 0 31 27 26 2120 16

RFU opcode T RFU sub-opcode RFU

L

Remark RFU : Reserved field (Reserved for Future Use)

L RFU/sub-opcode RFU/immediate/vector

27

CHAPTER 5 INSTRUCTION

5.2 Outline of Instructions

Load/store instructions ccccco..... Transfer data from memory to a register or from a register to memory.

Table 5-1. Load/Store Instructions

SLD

LD

SST

ST

Arithmetic operation instructions ... Add, subtract, multiply, divide, transfer, or compare data between regis-
ters.

Table 5-2. Arithmetic Operation Instructions

MOV

MOVHI

MOVEA

ADD

ADDI

SuUB

SUBR

MULH

MULHI

DIVH

CMP

SETF

28

CHAPTER 5 INSTRUCTION

Saturated operation instructions ... Execute saturation addition or subtraction. If the result of the operation
exceeds the maximum positive value (7FFFFFFFH), 7FFFFFFFH is
returned. Ifthe result exceeds the negative value (80000000H), 80000000H
is returned.

Table 5-3. Saturated Operation Instructions

SATADD

SATSUB

SATSUBI

SATSUBR

Logical operation instructions These instructions include logical operation instructions and shift instruc-
tions. The shift instructions include arithmetic shift and logical shift
instructions. Operands can be shifted by two or more bit positions in one
clock cycle by the universal barrel shifter.

Table 5-4. Logical Operation Instructions

TST

OR

ORI

AND

ANDI

XOR

XORI

NOT

SHL

SHR

SAR

29

CHAPTER 5 INSTRUCTION

30

Branch instructionsccee. Branch operations include unconditional branch along with conditional branch
instructions which alter the flow of control, depending on the status of
conditional flags in the PSW. Program control can be transferred to the
address specified by a branch instruction.

Table 5-5. Branch Instructions

JMP

JR

JARL

BGT

BGE

BLT

BLE

BH

BNL

BL

BNH

BE

BNE

BV

BNV

BN

BP

BC

BNC

Bz

BNZ

BR

BSA

CHAPTER 5 INSTRUCTION

Bit manipulation instructions Execute a logical operation to bit data in memory. Only a specified bit is
affected as a result of executing a bit manipulation instruction.

Table 5-6. Bit Manipulation Instructions

SET1

CLR1

NOT1

TST1

Special instructions cccceeeeeens These instructions are special in that they do not fall in any of the categories
of instructions described above.

Table 5-7. Special Instructions

LDSR

STSR

TRAP

RETI

HALT

DI

E

NOP

31

CHAPTER 5 INSTRUCTION

5.3 Instruction Set

Example of instruction description

Mnemonic of instruction

Meaning of instruction

Instruction format Indicates the description and operand of the instruction. The following symbols are used in
description of an operand:

Symbol Meaning
regl General register (used as source register)
reg2 General register (mainly used as destination register. Some are also used as
source registers)
bit#3 3-bit data for specification bit number
immx x-bit immediate
dispx x-bit displacement
reglD System register number
vector 5-bit data for trap vector (OOH-1FH) specification
ccee 4-bit data for condition code specification
ep Element pointer (r30)

32

CHAPTER 5 INSTRUCTION

Operation

Format

Describes the function of the instruction. The following symbols are used:

Symbol Meaning
- Assignment
GR] General register
SR[] System register

zero-extend (n)

Zero-extends n to word

sign-extend (n)

Sign-extends n to word

load-memory (a, b)

Reads data of size b from address a

store-memory (a, b, c)

Writes data b of size c to address a

load-memory-bit (a, b)

Reads bit b from address a

store-memory-bit (a, b, c)

Writes c¢ to bit b of address a

saturated (n)

Performs saturation processing of n.

If n > 7FFFFFFFH as result of calculation, 7FFFFFFFH.

If n < 80000000H as result of calculation, 80000000H.

result Reflects result on flag
Byte Byte (8 bits)
Halfword Half-word (16 bits)
Word Word (32 bits)

+ Add

- Subtract

I Bit concatenation
x Multiply

+ Divide

AND And

OR Or

XOR Exclusive Or

NOT Logical negate

logically shift left by

Logical left shift

logically shift right by

Logical right shift

arithmetically shift right by

Arithmetic right shift

Indicates instruction format number.

33

CHAPTER 5 INSTRUCTION

Op code Describes the separate bit fields of the instruction opcode.
The following symbols are used:

Symbol Meaning
R 1-bit data of code specifying regl or reglD
r 1-bit data of code specifying reg2
d 1-bit data of displacement

i 1-bit data of immediate

ccee 4-bit data for condition code specification
bbb 3-bit data for bit number specification
Flag Indicates the flags which are altered after executing the instruction.
CY - < Indicates that the flag is not affected.
OV 0 < Indicates that the flag is cleared to O.
S 1 < Indicates that the flag is set to 1.
Z —
SAT -
Instruction Describes the function of the instruction.
Explanation Explains the operation of the instruction.
Remark Supplementary information on the instruction
Caution Important cautions regarding use of this instruction

34

CHAPTER 5 INSTRUCTION

Instruction List

Mnemonic Function Mnemonic Function

Load/Store instructions Logical operation instructions

SLD.B Load Byte TST Test

SLD.H Load Half-word OR Or

SLD.W Load Word ORI Or Immediate

LD.B Load Byte AND And

LD.H Load Half-word ANDI And Immediate

LD.W Load Word XOR Exclusive-Or

SST.B Store Byte XORI Exclusive-Or Immediate

SST.H Store Half-word NOT Not

SST.W Store Word SHL Shift Logical Left

ST.B Store Byte SHR Shift Logical Right

ST.H Store Half-word SAR Shift Arithmetic Right

ST.W Store Word Branch instructions
Arithmetic instructions JMP Jump

MOV Move JR Jump Relative

MOVHI Move High half-word JARL Jump and Register Link

MOVEA Move Effective Address Bcond Branch on Condition Code

ADD Add Bit manipulation instructions

ADDI Add Immediate SET1 Set Bit

SuUB Subtract CLR1 Clear Bit

SUBR Subtract Reverse NOT1 Not Bit

MULH Multiply Half-word TST1 Test Bit

MULHI Multiply Half-word Immediate Special instructions

DIVH Divide Half-word LDSR Load System Register

CMP Compare STSR Store System Register

SETF Set Flag Condition TRAP Trap
Saturate instructions RETI Return from Trap or Interrupt

SATADD Saturated Add HALT Halt

SATSUB Saturated Subtract DI Disable Interrupt

SATSUBI Saturated Subtract Immediate El Enable Interrupt

SATSUBR Saturated Subtract Reverse NOP No Operation

35

CHAPTER 5 INSTRUCTION

ADD

Add

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

36

)
)

)
)

)

)

)

)

CY
ov

SAT

1
)

)

)

ADD regl, reg2
ADD immb5, reg2

GR [reg?] ~ GR [reg2] + GR [regl]
GR [reg2] ~ GR [reg2] + sign-extend (immb5)

Format |
Format Il
15 0
|rrr001110RRRRR |
15 0
|rrrrro10010iii |
1 if a carry occurs from MSB; otherwise, 0.

1 if Overflow occurs; otherwise, 0.
1 if the result of an operation is negative; otherwise, O.
1 if the result of an operation is 0; otherwise 0.

ADD Add Register
ADD Add Immediate (5-bit)

Adds the word data of general register regl to the word data of general register reg2, and
stores the result to general register reg2. The data of general register regl is not affected.
Adds 5-bit immediate data, sign-extended to word length, to the word data of general
register reg2, and stores the result to general register reg2.

CHAPTER 5 INSTRUCTION

ADDI

Add Immediate

Instruction format ADDI imm16, regl, reg2

Operation GR [reg2] — GR [regl] + sign-extend (imm16)
Format Format VI
Op code 15 0 31 16
rrrrr110000RRRRR ifiiiiiiiiiiiii
Flag CcY 1 if a carry occurs from MSB; otherwise, 0.
oV 1 if Overflow occurs; otherwise, 0.
S 1 if the result of an operation is negative; otherwise, O.
Z 1 if the result of an operation is 0; otherwise 0.
SAT -
Instruction ADDI Add immediate
Explanation Adds 16-bit immediate data, sign-extended to word length, to the word data of general register
regl, and stores the result to general register reg2. The data of general register regl is not
affected.

37

CHAPTER 5 INSTRUCTION

AND

And

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

38

AND regl, reg2

GR [reg2?] —~ GR [reg2] AND GR [regl]

Format |

15 0

rrrrrO01010RRRRR

CY -

oV 0

S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise 0.

SAT -

AND And

ANDs the word data of general register reg2 with the word data of general register regl, and
stores the result to general register reg2. The data of general register regl is not affected.

CHAPTER 5 INSTRUCTION

ANDI

And Immediate

Instruction format ANDI imm16, regl, reg2

Operation GR [reg2?] ~ GR [regl] AND zero-extend (imm16)
Format Format VI
Op code 15 0 31 16
rrrrrl10110RRRRR iliiiiiiiiiiii
Flag CcY -
ov 0
S 0
Z 1 if the result of an operation is 0; otherwise 0.
SAT -
Instruction ANDI And Immediate (16-bit)
Explanation ANDs the word data of general register regl with the value of the 16-bit immediate data, zero-

extended to word length, and stores the result to general register reg2. The data of general
register regl is not affected.

39

CHAPTER 5 INSTRUCTION

Bcond

Branch on Condition Code

Instruction format Bcond disp9

Operation if conditions are satisfied
then PC — PC + sign-extend (disp9)

Format Format Il
Op code 15 0
ddddd1011dddcccc

dddddddd is the higher 8 bits of disp9.

Flag CcY -
ov -
S —
Z —
SAT -

Instruction Bcond Branch on Condition Code with 9-bit displacement

Explanation Tests a condition flag specified by the instruction. Branches if a specified condition is satisfied;
otherwise, executes the next instruction. The branch destination PC holds the sum of the
current PC value and 9-bit displacement, which is 8-bit immediate shifted 1 bit and sign-
extended to word length.

Remark Bit O of the 9-bit displacement is masked to 0. The current PC value used for calculation is

the address of the first byte of this instruction. If the displacement value is 0, therefore, the
branch destination is this instruction itself.

40

CHAPTER 5 INSTRUCTION

Table 5-8. Conditional Branch Instructions

Instruction Condition Code Status of Condition Flag Branch Condition
(ccce)
Signed BGT 1111 ((SxorOV)orz)=0 Greater than signed
integer BGE 1110 (S xorOV) =0 Greater than or equal signed
BLT 0110 (Sxor0Ov) =1 Less than signed
BLE 0111 ((SxorOV)orz)=1 Less than or equal signed
Unsigned | BH 1011 (CYorz)y=0 Higher (Greater than)
integer BNL 1001 Cy=0 Not lower (Greater than or equal)
BL 0001 Cy=1 Lower (Less than)
BNH 0011 (CYorz)=1 Not higher (Less than or equal)
Common BE 0010 zZ=1 Equal
BNE 1010 Z=0 Not equal
Others BV 0000 ov=1 Overflow
BNV 1000 ov=0 No overflow
BN 0100 S=1 Negative
BP 1100 S=0 Positive
BC 0001 Cy=1 Carry
BNC 1001 CYy=0 No carry
Bz 0010 Z=1 Zero
BNZ 1010 Z=0 Not zero
BR 0101 - Always (unconditional)
BSA 1101 SAT=1 Saturated
Caution If executing a conditional branch instruction of a signed integer (BGT, BGE, BLT, or BLE) when

the SAT flag is set to 1 as a result of executing a saturated operation instruction, the branch
condition loses its meaning. In ordinary arithmetic operations, if an overflow condition occurs,
the Sflagisinverted (0 - 1or1 - 0). Thisis because the resultis a negative value if it exceeds
the maximum positive value and it is a positive value if it exceeds the maximum negative value.
However, when a saturated operation instruction is executed, and if the result exceeds the
maximum positive value, the result is saturated with a positive value; if the result exceeds the
maximum negative value, the result is saturated with a negative value. Unlike the ordinary
operation, therefore, the S flag is not inverted even if an overflow occurs.

Hence, the S flag of the PSW is affected differently when the instruction is a saturate operation,
as opposed to an ordinary arithmetic operation. A branch condition which is an XOR of S and
QV flags will therefore, have no meaning.

41

CHAPTER 5 INSTRUCTION

CLR1

Clear Bit

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

Remark

42

CLR1 bit#3, displ6 [regl]

adr — GR [regl] + sign-extend (disp16)

Z flag — Not (Load-memory-bit (adr, bit#3))
Store-memory-bit (adr, bit#3, 0)

Format VIII

15 0 31 16
10bbb111110RRRRR| dddddddddddddddd

cy -

ov -

S —

z 1 if bit NO.bit#3 of memory disp16 [regl] = 0.
0 if bit NO.bit#3 of memory disp16 [regl] = 1.

SAT -

CLR1 Clear Bit

Adds the data of general register regl to the 16-bit displacement, sign-extended to word length,
to generate a 32-bit address. Then clears the bit, specified by the bit number of 3 bits, of the
byte data referenced by the generated address. Not specified bit is not affected.

The Z flag of the PSW indicates whether the specified bit was a 0 or 1 before this instruction
is executed. It does not indicate the content of the specified bit after this instruction has been
executed.

CHAPTER 5 INSTRUCTION

CMP

Compare

Instruction format (1) CMP regl, reg2

(2) CMP immb5, reg2
Operation (1) result -« GR [reg2] — GR [regl]

(2) result - GR [reg2] — sign-extend (immb5)
Format (1) Format |

(2) Format Il
Op code 15 0

(1) | rrrrr001111RRRRR |

15 0

(2) | rrrro10011iii |
Flag CcY 1 if a borrow to MSB occurs; otherwise, 0.

oV 1 Overflow occurs; otherwise 0.

S 1 if the result of the operation is negative; otherwise, 0.

Z 1 if the result of the operation is 0; otherwise, 0.

SAT -
Instruction (1) CMP Compare Register

(2) CMP Compare Immediate (5-bit)
Explanation (1) Compares the word data of general register reg2 with the word data of general register

regl, and indicates the result by using the condition flags. To compare, the contents of
general register regl are subtracted from the word data of general register reg2. The data
of general registers regl and reg2 are not affected.

(2) Compares the word data of general register reg2 with 5-bit immediate data, sign-extended
to word length, and indicates the result by using the condition flags. To compare, the
contents of the sign-extended immediate data is subtracted from the word data of general
register reg2. The data of general register reg2 is not affected.

43

CHAPTER 5 INSTRUCTION

Dl

Disable Interrupt

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

Remark

44

DI
PSW.ID — 1 (Disables maskable interrupt)
Format X

15 0 31 16
0000011111100000 (t)OOOOOOlOllOOOOO

CY -
ov -

DI Disable Interrupt

Sets the ID flag of the PSW to 1 to disable the acknowledgement of maskable interrupts during
executing this instruction.

Interrupts are not sampled during execution of this instruction. The ID flag actually becomes
valid at the start of the next instruction. But because interrupts are not sampled during
instruction execution, interrupts are immediately disabled. Non-maskable interrupts are not
affected by this instruction.

CHAPTER 5 INSTRUCTION

DIVH

Divide Half-word

Instruction format DIVH regl, reg2

Operation GR [reg2?] ~ GR [reg2] + GR [regl]
Format Format |
Op code 15 0
rrrrrO00010RRRRR
Flag CY -
oV 1 if Overflow occurs; otherwise, O.
S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.
SAT -
Instruction DIVH Divide Half-word
Explanation Divides the word data of general register reg2 by the lower half-word data of general register

regl, and stores the quotient to general register reg2. If the data is divided by 0, Overflow
occurs, and the quotient is undefined. The data of general register regl is not affected.

Remark The remainder is not stored. Overflow occurs when the maximum negative value (80000000H)
is divided by —1 (in which case the quotient is 80000000H) and when data is divided by 0 (in
which case the quotient is undefined).

If an interrupt occurs while this instruction is executed, division is aborted, and the interrupt is
processed. Upon returning from the interrupt, the division is restarted from the beginning, with
the return address being the address of this instruction. Also, general registers regl and reg2
will retain their original values prior to the start of execution.

The higher 16 bits of general register regl are ignored when division is executed.

45

CHAPTER 5 INSTRUCTION

El

Enable Interrupt

Instruction format El

Operation PSW.ID — 0 (enables maskable interrupt)
Format Format X
Op code 15 0 31 16

1000011111100000 4)000000101100000

Flag CcY -
ov -

Instruction El Enable Interrupt

Explanation Resets the ID flag of the PSW to 0 and enables the acknowledgement of maskable interrupts
beginning at the next instruction.

Remark Interrupts are not sampled during instruction execution.

46

CHAPTER 5 INSTRUCTION

HALT

Halt

Instruction format

Operation.

Format

Op code

Flag

Instruction

Explanation

Remark

HALT
Halts
Format X

15 0 31 16
0000011111100000 (t)OOOOOOlOOlOOOOO

CY -
ov -
S —
Z —
SAT -

HALT Halt
Stops the operating clock of the CPU and places the CPU in the HALT mode.
The HALT mode is exited by any of the following three events:

* RESET input

e NMI input
* Maskable interrupt (when ID of PSW = 0)

If an interrupt is acknowledged during the HALT mode, the address of the following instruction

is stored to EIPC or FEPC.

47

CHAPTER 5 INSTRUCTION

JARL

Jump and Register Link

Instruction format JARL disp22, reg2

Operation GR [reg2] - PC +4
PC —~ PC + sign-extend (disp22)

Format Format V

Op code 15 0 31 16
rrrrr11110dddddd dd(iiddddddddddddo

ddddddddddddddddddddd is the higher 21 bits of disp22.

Flag CcY -
ov -
S —
Z —
SAT -

Instruction JARL Jump and Register Link

Explanation Saves the current PC value plus 4 to general register reg2, adds the current PC value and 22-
bit displacement, sign-extended to word length, and transfers control to that PC. Bit O of the
22-bit displacement is masked to 0.

Remark The current PC value used for calculation is the address of the first byte of this instruction. If
the displacement value is 0, the branch destination is this instruction itself.
This instruction is equivalent to a call subroutine instruction, and saves the PC return address
to general register reg2. The JMP instruction, which is equivalent to a subroutine-return
instruction, can be used to specify the general register containing the return address saved
during the JARL subroutine-call instruction, to restore the program counter.

48

CHAPTER 5 INSTRUCTION

JMP

Jump Register

Instruction format JMP [regl]

Operation PC —~ GR [regl]
Format Format |
Op code 15 0
00000000011RRRRR
Flag CcY -
ov -
S —
Z —
SAT -
Instruction JMP Jump Register
Explanation Transfers control to the address specified by general register regl. Bit O of the address is
masked to 0.
Remark When using this instruction as the subroutine-return instruction, specify the general register

containing the return address saved during the JARL subroutine-call instruction, to restore the
program counter. When using the JARL instruction, which is equivalent to the subroutine-call
instruction, store the PC return address in general register reg2.

49

CHAPTER 5 INSTRUCTION

JR

Jump Relative

Instruction format JR disp22

Operation PC —~ PC + sign-extend (disp22)
Format Format V
Op code 15 0 31 16

0000011110dddddd (ilddddddddddddddo

ddddddddddddddddddddd is the higher 21 bits of disp22.

Flag CcY -
ov -
S —
Z —
SAT -

Instruction JR Jump Relative

Explanation Adds the 22-bit displacement, sign-extended to word length, to the current PC value and stores
the value in the PC, and then transfers control to that PC. Bit O of the 22-bit displacement is
masked to 0.

Remark The current PC value used for the calculation is the address of the first byte of this instruction

itself. Therefore, if the displacement value is 0, the jump destination is this instruction.

50

CHAPTER 5 INSTRUCTION

LD

Load

Instruction format

Operation

Format

Op code

Flag

Instruction

(1) LD.B disp16 [regl], reg2
(2) LD.H disp16 [regl], reg2
(3) LD.W disp16 [regl], reg2

(1) adr -~ GR [regl] + sign-extend (disp16)

GR [reg2?] ~ sign-extend (Load-memory (adr, Byte))
(2) adr — GR [regl] + sign-extend (disp16)

GR [reg2] ~ sign-extend (Load-memory (adr, Halfword))
(3) adr — GR [regl] + sign-extend (disp16)

GR [reg2?] ~ Load-memory (adr, Word)

Format VII

15 0 31 16
(1) | rrT111000RRRRR dddddddddddddddd |

15 0 31 16
(2) | rmT111001RRRRR dddddddddddddddo |

ddddddddddddddd is the higher 15 bits of disp16.

15 0 31 16
@3) | rrrrr111001RRRRR d|dddddddddddddd1

ddddddddddddddd is the higher 15 bits of disp16.

CY -
ov -
IS —
Z —
SAT -

(1) LD.B Load Byte
(2) LD.H Load Half-word
(3) LD.W Load Word

51

CHAPTER 5 INSTRUCTION

Explanation

Caution

52

(1) Adds the data of general register regl to a 16-bit displacement, sign-extended to word
length, to generate a 32-bit address. Byte data is read from the generated address, sign-
extended to word length, and then stored to general register reg2.

(2) Adds the data of general register regl to a 16-bit displacement sign-extended to word
length to generate a 32-bit address. Half-word data is read from this 32-bit address with
its bit 0 masked to 0, sign-extended to word length, and stored to general register reg2.

(3) Adds the data of general register regl to a 16-bit displacement sign-extended to word
length to generate a 32-bit address. Word data is read from this 32-bit address with bits
0 and 1 masked to 0, and stored to general register reg2.

When the data of general register regl is added to a 16-bit displacement sign-extended to word
length, the lower bits of the result may be masked to 0 depending on the type of data to be
accessed (half word, word) to generate an address.

CHAPTER 5 INSTRUCTION

LDSR

Load to System Register

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

Remark

Caution

LDSR reg2, reglD
SR [regID] « GR [reg2]
Format IX

15 0 31 16
rrrrr111111RRRRR ObOOOOOOOOlOOOOO

Remark The fields used to define regl and reg2 are swapped in this instruction. Normally,
"RRR" is used for regl and is the source operand while “rrr” signifies reg2 and is
the destination operand. In this instruction, “RRR” is still the source operand, but
is represented by reg2, while “rrr” is the special register destination, as labeled
below:

rrrrr: reglD specification
RRRRR: reg2 specification

CY — (Refer to Remark below.)
OV — (Refer to Remark below.)
S — (Refer to Remark below.)
z — (Refer to Remark below.)

SAT - (Refer to Remark below.)

LDSR Load to System Register

Loads the word data of general register reg2 to a system register specified by the system
register number (regiD). The data of general register reg2 is not affected.

If the system register number (reglD) is equal to 5 (PSW register), the values of the
corresponding bits of the PSW are set according to the contents of reg2. This only affects the
flag bits, the reserved bits remain at 0. Also, interrupts are not sampled when the PSW is being
written with a new value. If the ID flag is enabled with this instruction, interrupt disabling begins
at the start of execution, even though the ID flag does not become valid until the beginning of
the next instruction.

The system register number reglD is a number which identifies a system register. Accessing

system registers which are reserved or write-prohibited is prohibited and will lead to undefined
results.

53

CHAPTER 5 INSTRUCTION

Move

Instruction format (1) MOV regl, reg2

(2) MOV immb5, reg2
Operation (1) GR [reg2?] ~ GR [regl]

(2) GR [reg2] — sign-extend (immb5)
Format (1) Format |

(2) Format Il
Op code 15 0

(1) | rrrrrO00000RRRRR |

15 0

2) | rrrr010000iii |
Flag CcY -

ov -

S —

Z —

SAT -
Instruction (1) MOV Move Register

(2) MOV Move Immediate (5-bit)
Explanation (1) Transfers the word data of general register regl to general register reg2. The data of

general register regl is not affected.
(2) Transfers the value of a 5-bit immediate data, sign-extended to word length, to general
register reg2.

54

CHAPTER 5 INSTRUCTION

MOVEA

Moves Effective Address

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

Remark

MOVEA imm16, regl, reg2

GR [reg2] —~ GR [regl] + sign-extend (imm16)

Format VI

15 0 31 16

rrrrrl10001RRRRR - difiiiiiiiiiiiii

CY -
ov -
S —
Z —
SAT -

MOVEA Move Effective Address

Adds the 16-bit immediate data, sign-extended to word length, to the word data of general
register regl, and stores the result to general register reg2. The data of general register regl

is not affected. The flags are not affected by the addition.

This instruction calculates a 32-bit address and stores the result without affecting the PSW

flags.

55

CHAPTER 5 INSTRUCTION

MOVHI

Move High half-word

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

Remark

56

MOVHI imm16, regl, reg2
GR [reg2] — GR [regl] + (imm16 Il 016)
Format VI

15 0 31 16

rrrrrl10010RRRRR - ifiiiiiiiiiiiii

CY -
ov -
S —
Z —
SAT -

MOVHI Move High half-word
Adds a word value, whose higher 16 bits are specified by the 16-bit immediate data and lower
16 bits are 0, to the word data of general register regl and stores the result in general register

reg2. The data of generalregisterreglis not affected. The flags are not affected by the addition.

This instruction is used to generate the high 16 bits of a 32-bit address.

CHAPTER 5 INSTRUCTION

MULH

Multiply Half-word

Instruction format (1) MULH regl, reg2
(2) MULH immb5, reg2

Operation (1) GR [reg2] (32) — GR [reg2] (16) x GR [regl] (16)
(2) GR [reg2] — GR [reg2] x sign-extend (imm5)

Format (1) Format |
(2) Format Il
Op code 15 0

(1) |rrrrr000111RRRRR |

15 0
@) | rrerro1011.3iii |

Flag CcY -
ov -
S —
Z —
SAT -

Instruction (1) MULH Multiply Half-word by Register
(2) MULH Multiply Half-word by Immediate (5-bit)

Explanation (1) Multiplies the lower half-word data of general register reg2 by the half-word data of general
register regl, and stores the result to general register reg2 as word data. The data of
general register regl is not affected.

(2) Multiplies the lower half-word data of general register reg2 by a 5-bitimmediate data, sign-
extended to half-word length, and stores the result to general register reg2.

Remark The higher 16 bits of general registers regl and reg2 are ignored in this operation.

57

CHAPTER 5 INSTRUCTION

MULHI

Multiply Half-word Immediate

Instruction format MULHI imm16, regl, reg2

Operation GR [reg2?] ~ GR [regl] x imm16
Format Format VI
Op code 15 0 31 16
rrrrrl10111RRRRR Giliiiiiiiiiiiii
Flag CcY -
ov -
S —
Z —
SAT -
Instruction MULHI Multiply Half-word by immediate (16-bit)
Explanation Multiplies the lower half-word data of general register regl by the 16-bit immediate data, and

stores the result to general register reg2. The data of general register regl is not affected.

Remark The higher 16 bits of general register regl are ignored in this operation.

58

CHAPTER 5 INSTRUCTION

NOP

No Operation

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

Remark

NOP

Executes nothing and consumes at least one clock.

Format |

15 0
0000000000000000

SAT -

NOP No Operation

Executes nothing and consumes at least one clock cycle.

The contents of the PC are incremented by two. The op code is the same as that of MOV rO0,

r0.

59

CHAPTER 5 INSTRUCTION

NOT

Not

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

60

NOT regl, reg2

GR [reg2] — NOT (GR [regl])

Format |
15 0
rrrrrO00001RRRRR
CY -
oV -
S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.
SAT -
NOT Not

Logically negates (takes the 1's complement of) the word data of general register regl, and
stores the result to general register reg2. The data of general register regl is not affected.

CHAPTER 5 INSTRUCTION

NOT1

Not Bit

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

Remark

NOT1 bit#3, displ16 [regl]

adr — GR [regl] + sign-extend (displ16)

Z flag — Not (Load-memory-bit (adr, bit#3))
Store-memory-bit (adr, bit#3, Z flag)

Format VI

15 0 31 16
01bbb111110RRRRR| dddddddddddddddd

cy -

ov -

S —

z 1 if bit NO.bit#3 of memory disp16 [regl] = 0.
0 if bit NO.bit#3 of memory disp16 [regl] = 1.

SAT -

NOT1 Not Bit

Adds the data of general register regl to a 16-bit displacement, sign-extended to word length
to generate a 32-bit address. The bit, specified by the 3-bit field “bbb”, is inverted at the byte
data location referenced by the generated address. The bits other than the specified bit are
not affected.

The Z flag of the PSW indicates whether the specified bit was 0 or 1 before this instruction is

executed, and does not indicate the content of the specified bit after this instruction has been
executed.

61

CHAPTER 5 INSTRUCTION

OR

Or
Instruction format OR regl, reg2
Operation GR [reg?] ~ GR [reg2] OR GR [regl]
Format Format |
Op code 15 0
rrrrrO01000RRRRR

Flag CcY -

ov 0

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT -
Instruction OR Or
Explanation ORs the word data of general register reg2 with the word data of general register regl, and

stores the result to general register reg2. The data of general register regl is not affected.

62

CHAPTER 5 INSTRUCTION

ORI

Or Immediate

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

ORI imm16, regl, reg2

GR [reg?] ~ GR [regl] OR zero-extend (imm16)

Format VI

15 0 31 16
rrrrr110100RRRRR ifiiiiiiiiiiiii

CY -

oV 0

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

OR Or immediate (16-bit)
ORs the word data of general register regl with the value of the 16-bit immediate data, zero-

extended to word length, and stores the result to general register reg2. The data of general
register regl is not affected.

63

CHAPTER 5 INSTRUCTION

RETI

Return from Trap or Interrupt

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

64

RETI

if PSW.EP =1
then PC ~ EIPC
PSW ~ EIPSW
else if PSW.NP =1
then PC « FEPC
PSW ~ FEPSW
else PC ~ EIPC
PSW ~ EIPSW

Format X

15 0 31 16
0000011111100000 (Q000000101000000

CcY Value read from FEPSW or EIPSW is restored.
oV Value read from FEPSW or EIPSW is restored.
S Value read from FEPSW or EIPSW is restored.
z Value read from FEPSW or EIPSW is restored.
SAT Value read from FEPSW or EIPSW is restored.

RETI Return from Trap or Interrupt

This instruction restores the return PC and PSW from the appropriate system register and
returns from an exception or interrupt routine. The operations of this instruction are as follows:
(1) Ifthe EP flag of the PSW is 1, the return PC and PSW are read from the EIPC and EIPSW,
regardless of the status of the NP flag of the PSW.
If the EP flag of the PSW is 0 and the NP flag of the PSW is 1, the return PC and PSW
are read from the FEPC and FEPSW.
If the EP flag of the PSW is 0 and the NP flag of the PSW is 0, the return PC and PSW
are read from the EIPC and EIPSW.
(2) Oncethe PC and PSW are restored to the return values, control is transferred to the return
address.

CHAPTER 5 INSTRUCTION

Caution When returning from an NMI or exception routine using the RETI instruction, the PSW.NP and
PSW.EP flags must be set accordingly to restore the PC and PSW:
e When returning from non-maskable interrupt routine using the RETI instruction:
PSW.NP =1 and PSW.EP = 0
e When returning from an exception routine using the RETI instruction:
PSW.EP =1
Use the LDSR instruction for setting the flags.

All interrupts are not accepted in the latter half of the ID stage during LDSR execution because
of the operation of the interrupt controller.

65

CHAPTER 5 INSTRUCTION

SAR

Shift Arithmetic Right

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

66

)
)

)
)

)
)

)

CY
ov
S

z
SAT

1
)

)

)

SAR regl, reg2
SAR immb5, reg2

GR [reg2] ~ GR [reg2] arithmetically shift right by GR [regl]
GR [reg2] — GR [reg2] arithmetically shift right by zero-extend

Format IX

Format Il

15 0 31 16

| rrrrrl11111RRRRR ObOOOOOOlOlOOOOO

15 0

| rrrrro10101iiii |
1 if the bit shifted out last is 1; otherwise, 0.
However, if the number of shifts is 0, the result is 0.
0
1 if the result of an operation is negative; otherwise, 0.
1 if the result of an operation is 0; otherwise, 0.

SAR Shift Arithmetic Right by Register

SAR Shift Arithmetic Right by Immediate (5-bit)

Arithmetically shifts the word data of general register reg2 to the right by ‘n’ positions, where
‘n’is a value from 0 to +31, specified by the lower 5 bits of general register regl (after the
shift, the MSB prior to shift execution is copied and set as the new MSB value), and then
writes the result to general register reg2. If the number of shifts is 0, general register reg2
retains the same value prior to instruction execution. The data of general register regl
is not affected.

Arithmetically shifts the word data of general register reg2 to the right by ‘n’ positions, where
‘n’is a value from 0 to +31, specified by the 5-bit immediate data, zero-extended to word
length (after the shift, the MSB prior to shift execution is copied and set as the new MSB
value), and then writes the result to general register reg2. If the number of shifts is 0,
general register reg2 retains the same value prior to instruction execution.

CHAPTER 5 INSTRUCTION

SATADD

Saturated Add

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

Remark

Caution

(1) SATADD regl, reg2
(2) SATADD immb5, reg2

(1) GR [reg2] — saturated (GR [reg2] + GR [regl])
(2) GR [reg2] — saturated (GR [reg2] + sign-extend (immb5))

(1) Format |
(2) Format Il

15 0
(1) |rrrrr000110RRRRR |

15 0
2) | rrrrro10001iiii |

CcY 1 if a carry occurs from MSB; otherwise, 0.

oV 1 if Overflow occurs; otherwise, 0.

S 1 if the result of the saturated operation is negative; otherwise, 0.
Z 1 if the result of the saturated operation is O; otherwise, 0.

SAT 1 if OV = 1; otherwise, not affected.

(1) SATADD Saturated add register
(2) SATADD Saturated add Immediate (5-bit)

(1) Adds the word data of general register regl to the word data of general register reg2, and
stores the result to general register reg2. However, if the result exceeds the maximum
positive value 7FFFFFFFH, 7FFFFFFFH is stored to reg2; if the result exceeds the
maximum negative value 80000000H, 80000000H is stored to reg2. The SAT flag is set
to 1. The data of general register regl is not affected.

(2) Adds a 5-bit immediate data, sign-extended to word length, to the word data of general
register reg2, and stores the result to general register reg2. However, if the result exceeds
the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored to reg2; if the result
exceeds the maximum negative value 80000000H, 80000000H is stored to reg2. The SAT
flag is set to 1.

The SAT flag is a cumulative flag. Once the result of the saturated operation instruction has
been saturated, this flag is set to 1 and is not reset to 0 even if the result of the subsequent
operation is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

To reset the SAT flag to O, load data to the PSW by using the LDSR instruction.

67

CHAPTER 5 INSTRUCTION

SATSUB

Saturated Subtract

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

Remark

Caution

68

SATSUB regl, reg2

GR [reg2?] -~ saturated (GR [reg2] — GR [regl])

Format |

15 0
rrrrrO00101RRRRR

CY 1 if a borrow to MSB occurs; otherwise, 0.

oV 1 if Overflow occurs; otherwise, 0.

S 1 if the result of the saturated operation is negative; otherwise, 0.
Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1 if OV = 1; otherwise, not affected.

SATSUB Saturated Subtract

Subtracts the word data of general register regl from the word data of general register reg2,
and stores the result to general register reg2. However, if the result exceeds the maximum
positive value 7FFFFFFFH, 7FFFFFFFH is stored to reg?2; if the result exceeds the maximum
negative value 80000000H, 80000000H is stored to reg2. The SAT flag is setto 1. The data
of general register regl is not affected.

The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation
instruction has been saturated, this flag is set to 1 and is not reset to 0 even if the result of the
subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

To reset the SAT flag to O, load data to the PSW by using the LDSR instruction.

CHAPTER 5 INSTRUCTION

SATSUBI

Saturated Subtract Immediate

Instruction format SATSUBI imm16, regl, reg2

Operation GR [reg2?] ~ saturated (GR [regl] — sign-extend (imm16))
Format Format VI
Op code 15 0 31 16
rrrrrl10011RRRRR Gifiiiiiiiiiiiii
Flag CcY 1 if a borrow to MSB occurs; otherwise, 0.
oV 1 if Overflow occurs; otherwise, 0.
S 1 if the result of the saturated operation is negative; otherwise, 0.
Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1 if OV = 1; otherwise, not affected.

Instruction SATSUBI Saturated Subtract Immediate

Explanation Subtracts the 16-bit immediate data, sign-extended to word length, from the word data of
general register regl, and stores the result to general register reg2. However, if the result
exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored to reg2; if the result
exceeds the maximum negative value 80000000H, 80000000H is stored to reg2. The SAT flag
is set to 1. The data of general register regl is not affected.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation
instruction has been saturated, this flag is set to 1 and is not reset to 0 even if the result of the
subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To reset the SAT flag to O, load data to the PSW by using the LDSR instruction.

69

CHAPTER 5 INSTRUCTION

SATSUBR

Saturated Subtract Reverse

Instruction format SATSUBR regl, reg2

Operation GR [reg2?] ~ saturated (GR [regl] — GR [reg2])
Format Format |
Op code 15 0
rrrrr000100RRRRR
Flag CcY 1 if a borrow to MSB occurs; otherwise, 0.
oV 1 if Overflow occurs; otherwise, 0.
S 1 if the result of the saturated operation is negative; otherwise, 0.
Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1 if OV = 1; otherwise, not affected.

Instruction SATSUBR Saturated Subtract Reverse

Explanation Subtracts the word data of general register reg2 from the word data of general register reg1l,
and stores the result to general register reg2. However, if the result exceeds the maximum
positive value 7FFFFFFFH, 7FFFFFFFH is stored to reg?2; if the result exceeds the maximum
negative value 80000000H, 80000000H is stored to reg2. The SAT flag is setto 1. The data
of general register regl is not affected.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation
instruction has been saturated, this flag is set to 1 and is not reset to 0 even if the result of the
subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To reset the SAT flag to O, load data to the PSW by using the LDSR instruction.

70

CHAPTER 5 INSTRUCTION

SETF

Set Flag Condition

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

Remark

SETF cccc, reg2

if conditions are satisfied
then GR [reg2] — 00000001H
else GR [reg2] — 00000000H

Format IX

15 0 31 16
rrrrr1111110cccc 00(10000000000000

CY -
ov -
IS -
Z -
SAT -

SETF Set Flag Condition

The general register reg2 is set to 1 if a condition specified by condition code “cccc” is satisfied;
otherwise, 0 are stored to the register. One of the codes shown in Table 5-9 should be specified
as the condition code “cccc”.

Here are some examples of using this instruction:

(1) Translation of two or more condition clauses: If A of statement if (A) in C language consists
of two or more condition clauses (a1, a2, a3, and so on), itis usually translated to a sequence
of if (a1) then, if (a2) then. The object code executes “conditional branch” by checking the
result of evaluation equivalent to an. A pipeline processor takes more time to execute
“condition judgment” + “branch” than to execute an ordinary operation, the result of
evaluating each condition clause if (an) is stored to register Ra. By performing a logical
operation to Ran after all the condition clauses have been evaluated, the delay due to the
pipeline can be prevented.

(2) Double-length operation: To execute a double-length operation such as Add with Carry,
the result of the CY flag can be stored to general register reg2. Therefore, a carry from
the lower bits can be expressed as a numeric value.

71

CHAPTER 5 INSTRUCTION

72

Table 5-9. Condition Codes

Condition Code . . .
(cece) Condition Name Condition Expression
0000 \% ov=1
1000 NV oV =0
0001 C/L Cy=1
1001 NC/NL CYy=0
0010 z Z=1
1010 NZ Z=0
0011 NH (CYorz)=1
1011 H (CYorz)=0
0100 S/N S=1
1100 NS/P S=0
0101 T always
1101 SA SAT =1
0110 LT (S xor OV) = 1
1110 GE (S xor OV) = 0
0111 LE ((SxorOV)orz)y=1
1111 GT ((S xor OV) or Z) =0

CHAPTER 5 INSTRUCTION

Set Bit

Instruction format SET1 bit#3, displ6 [regl]
Operation adr — GR [regl] + sign-extend (displ16)

Z flag — Not (Load-memory-bit (adr, bit#3))

Store-memory-bit (adr, bit#3, 1)
Format Format VIII
Op code 15 0 31 16

00bbb111110RRRRR| dddddddddddddddd

Flag CcY -

ov -

S —

z 1 when bit NO.bit#3 of memory disp16 [regl] = 0.

0 when bit NO.bit#3 of memory disp16 [regl] = 1

SAT -
Instruction SET1 Set Bit
Explanation Adds the 16-bit displacement, sign-extended to word length, to the data of general register regl

to generate a 32-bit address. The bit, specified by the 3-bit field “bbb”, is set at the byte data
location referenced by the generated address. The bits other than the specified bit are not
affected.

Remark The Z flag of the PSW indicates whether the specified bit was 0 or 1 before this instruction is

executed, and does not indicate the content of the specified bit after this instruction has been
executed.

73

CHAPTER 5 INSTRUCTION

SHL

Shift Logical Left

Instruction format (1) SHL reg1l, reg2
(2) SHL immb5, reg2

Operation (1) GR [reg2] —~ GR [reg2] logically shift left by GR [regl]
(2) GR [reg2] — GR [reg2] logically shift left by zero-extend (immb5)

Format (1) Format IX
(2) Format Il
Op code 15 0 31 16

(1) |rrrrr111111RRRRR ObOOOOOOllOOOOOO

15 0

Flag CcY 1 if the bit shifted out last is 1; otherwise, 0.
However, if the number of shifts is 0, the result is 0.
oV 0
S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.
SAT -
Instruction (1) SHL Shift Logical Left by Register

(2) SHL Shift Logical Left by Immediate (5-bit)

Explanation (1) Logically shifts the word data of general register reg2 to the left by ‘n’ positions, where ‘n’
is a value from 0 to +31, specified by the lower 5 bits of general register regl (0 is shifted
to the LSB side), and then writes the result to general register reg2. If the number of shifts
is 0, general register reg?2 retains the same value prior to instruction execution. The data
of general register regl is not affected.

(2) Logically shifts the word data of general register reg2 to the left by ‘n’ positions, where ‘n’
isavalue from 0to +31, specified by the 5-bitimmediate data, zero-extended to word length
(0 is shifted to the LSB side), and then writes the result to general register reg2. If the
number of shifts is 0, general register reg2 retains the value prior to instruction execution.

74

CHAPTER 5 INSTRUCTION

SHR

Shift Logical Right

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

)
)

)
)

)
)

)

CY
ov
S

z
SAT

1
)

)

)

SHR regl, reg2
SHR immb5, reg2

GR [reg2] ~ GR [reg2] logically shift right by GR [reg1]
GR [reg2] — GR [reg2] logically shift right by zero-extend (immb5)

Format IX
Format Il

15 0 31 16
| rrrrr111111RRRRR ObOOOOOOlOOOOOOO

15 0

1 if the bit shifted out last is 1; otherwise, 0.

However, if the number of shifts is 0,the result is 0.

0

1 if the result of an operation is negative; otherwise, 0.
1 if the result of an operation is 0; otherwise, 0.

SHR Shift Logical Right by Register
SHR Shift Logical Right by Immediate (5-bit)

Logically shifts the word data of general register reg2 to the right by ‘n’ positions where
‘n’is avalue from 0 to +31, specified by the lower 5 bits of general register regl (0 is shifted
to the MSB side). This instruction then writes the result to general register reg2. If the
number of shifts is 0, general register reg2 retains the same value prior to instruction
execution. The data of general register regl is not affected.

Logically shifts the word data of general register reg2 to the right by ‘n’ positions, where
‘n’is a value from 0 to +31, specified by the 5-bit immediate data, zero-extended to word
length (0 is shifted to the MSB side). This instruction then writes the result to general
register reg2. If the number of shifts is 0, general register reg2 retains the same value prior
to instruction execution.

75

CHAPTER 5 INSTRUCTION

SLD

Load

Instruction format (1) SLD.B disp7 [ep], reg2
(2) SLD.H disp8 [ep], reg2
(3) SLD.W disp8 [ep], reg2

Operation (1) adr — ep + zero-extend (disp7)
GR [reg2?] ~ sign-extend (Load-memory (adr, Byte))
(2) adr — ep + zero-extend (disp8)
GR [reg2] ~ sign-extend (Load-memory (adr, Halfword))
(2) adr — ep + zero-extend (disp8)
GR [reg2] —~ Load-memory (adr, Word)

Format Format IV

Op code 15 0
(1) |rrr0110ddddddd |

15 0
(2) |rrrri000ddddddd |

ddddddd is the higher 7 bits of disp8.

15 0
(3) | rrrrr1010ddddddO

dddddd is the higher 6 bits of disp8.

Flag CY -
ov -
S —
Z —
SAT -

Instruction (1) SLD.B Short format Load Byte

(2) SLD.H Short format Load Half-word
(3) SLD.W Short format Load Word

76

CHAPTER 5 INSTRUCTION

Explanation

Caution

(1) Adds the 7-bit displacement, zero-extended to word length, to the element pointer to
generate a 32-bit address. Byte data is read from the generated address, sign-extended
to word length, and stored to reg2.

(2) Adds the 8-bit displacement, zero-extended to word length, to the element pointer to
generate a 32-bitaddress. Half-word data is read from this 32-bit address with bit 0 masked
to 0, sign-extended to word length, and stored to reg2.

(3) Adds the 8-bit displacement, zero-extended to word length, to the element pointer to
generate a 32-bit address. Word data is read from this 32-bit address with bits 0 and 1
masked to O, and stored to reg2.

When the element pointer is added to the 8-bit displacement zero extended to word length, the

lower bits of the result may be masked to 0 depending on the type of data to be accessed (half
word, word).

77

CHAPTER 5 INSTRUCTION

SST

Short Store

Instruction format

Operation

Format

Op code

Flag

Instruction

78

(1) SST.B reg2, disp7 [ep]
(2) SST.H reg2, disp8 [ep]
(3) SST.W reg2, disp8 [ep]

(1) adr — ep + zero-extend (disp7)
Store-memory (adr, GR [reg2], Byte)

(2) adr — ep + zero-extend (disp8)
Store-memory (adr, GR [reg2], Halfword)

(2) adr — ep + zero-extend (disp8)
Store-memory (adr, GR [reg2], Word)

Format IV

15 0
1) |rrrrr011lddddddd |

15 0
(@) [rrr1001ddddddd |

ddddddd is the higher 7 bits of disp8.

15 0
(3) |rrrrr1010dddddd1l

dddddd is the higher 6 bits of disp8.

CY -
ov -
S -
Z -
SAT -

(1) SST.B Short format Store Byte
(2) SST.H Short format Store Half-word
(3) SST.W Short format Store Word

CHAPTER 5 INSTRUCTION

Explanation

Caution

(1) Adds the 7-bit displacement, zero-extended to word length, to the element pointer to
generate a 32-bit address, and stores the data of the lowest byte of reg2 to the generated
address.

(2) Adds the 8-bit displacement, zero-extended to word length, to the element pointer to
generate a 32-bit address, and stores the lower half-word data of reg2 to the generated
32-bit address with bit 0 masked to 0.

(3) Adds the 8-bit displacement, zero-extended to word length, to the element pointer to
generate a 32-bit address, and stores the word data of reg2 to the generated 32-bit address
with bits 0 and 1 masked to O.

When the element pointer is added to the 8-bit displacement zero-extended to word length, the

lower bits of the result may be masked to 0 depending on the type of data to be accessed (half
word, word).

79

CHAPTER 5 INSTRUCTION

ST

Store

Instruction format

Operation

Format

Op code

Flag

Instruction

80

(1) ST.B reg2, displ6 [regl]
(2) ST.H reg2, displ6 [regl]
(3) ST.W reg2, displ6 [regl]

(1) adr -~ GR [regl] + sign-extend (disp16)
Store-memory (adr, GR [reg2], Byte)

(2) adr — GR [regl] + sign-extend (disp16)
Store-memory (adr, GR [reg2], Halfword)

(2) adr — GR [regl] + sign-extend (disp16)
Store-memory (adr, GR [reg2], Word)

Format VII

15 0 31 16
(1) | rmT111010RRRRR dddddddddddddddd |

15 0 31 16
(2) | rmT111011RRRRR dddddddddddddddo |

ddddddddddddddd is the higher 15 bits of disp16.

15 0 31 16
@3) | rrrrr111011RRRRR dlddddddddddddddl

ddddddddddddddd is the higher 15 bits of disp16.

CY -
ov -
IS —
Z —
SAT -

(1) ST.B Store Byte
(2) ST.H Store Half-word
(3) ST.W Store Word

CHAPTER 5 INSTRUCTION

Explanation

Caution

(1) Addsthe 16-bit displacement, sign-extended to word length, to the data of general register
regl to generate a 32-bit address, and stores the lowest byte data of general register reg2
to the generated address.

(2) Adds the 16-bit displacement, sign-extended to word length, to the data of general register
regl to generate a 32-bit address, and stores the lower half-word data of general register
reg2 to the generated 32-bit address with bit 0 masked to 0. Therefore, stored data is
automatically aligned on a half-word boundary.

(3) Addsthe 16-bit displacement, sign-extended to word length, to the data of general register
regl to generate a 32-bit address, and stores the word data of general register reg2 to the
generated 32-bit address with bits 0 and 1 masked to 0. Therefore, stored data is
automatically aligned on a word boundary.

When the data of general register regl is added to a 16-bit displacement sign-extended to word

length, the lower bits of the result may be masked to O depending on the type of data to be
accessed (half word, word) to generate an address.

81

CHAPTER 5 INSTRUCTION

STSR

Store Contents of System Register

Instruction format STSR regID, reg2

Operation GR [reg2] ~ SR [regID]
Format Format IX
Op code 15 0 31 16

rrrrr111111RRRRR ObOOOOOOOlOOOOOO

Flag CcY -
ov -
S —
Z —
SAT -

Instruction STSR Store Contents of System Register

Explanation Stores the contents of a system register specified by system register number (reglD) to general
register reg2. The contents of the system register are not affected.

Remark The system register number reglD is a number which identifies a system register. Accessing
system register which is reserved is prohibited and will lead to undefined results.

82

CHAPTER 5 INSTRUCTION

SUB

Subtract
Instruction format SUB regl, reg2
Operation GR [reg?] ~ GR [reg2] — [regl]
Format Format |
Op code 15 0
rrrrr001101RRRRR

Flag CcY 1 if a borrow to MSB occurs; otherwise, 0.

oV 1 if Overflow occurs; otherwise, 0.

S 1 if the result of an operation is negative; otherwise, O.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT -
Instruction SUB Subtract
Explanation Subtracts the word data of general register regl from the word data of general register reg2,

and stores the result to general register reg2. The data of general register regl is not affected.

83

CHAPTER 5 INSTRUCTION

SUBR

Subtract Reverse

Instruction format SUBR regl, reg2

Operation GR [reg2?] ~ GR [regl] — GR [reg2]
Format Format |
Op code 15 0
rrrrrO01100RRRRR
Flag CcY 1 if a borrow to MSB occurs; otherwise, 0.
oV 1 if Overflow occurs; otherwise, 0.
S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.
SAT -
Instruction SUBR Subtract Reverse
Explanation Subtracts the word data of general register reg2 from the word data of general register reg1l,

and stores the result to general register reg2. The data of general register regl is not affected.

84

CHAPTER 5 INSTRUCTION

TRAP

Software Trap

Instruction format TRAP vector

Operation EIPC ~ PC + 4 (return PC)
EIPSW ~ PSwW
ECR.EICC < interrupt code
PSW.EP <1
PSW.ID <1

PC ~ 00000040H (vector = 00H-OFH)
00000050H (vector = 10H-1FH)

Format Format X
Op code 15 0 31 16

Flag CcY -
ov -
S —
Z —
SAT -

Instruction TRAP Trap

Explanation Saves thereturn PC and PSW to EIPC and EIPSW, respectively; sets the exception code (EICC
of ECR) and the flags of the PSW (EP and ID flags); jumps to the address of the trap handler
corresponding to the trap vector specified by vector number (0-31), and starts exception
processing. The condition flags are not affected.

The return PC is the address of the instruction following the TRAP instruction.

85

CHAPTER 5 INSTRUCTION

TST

Test

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

86

TST regl, reg2

result — GR [reg2] AND GR [regl]

Format |
15 0
rrrrr001011RRRRR
CY -
oV 0
S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.
SAT -
TST Test

ANDs the word data of general register reg2 with the word data of general register regl. The
result is not stored, and only the flags are changed. The data of general registers regl and
reg2 are not affected.

CHAPTER 5 INSTRUCTION

Test Bit

Instruction format TST1 bit#3, displ6 [regl]
Operation adr — GR [regl] + sign-extend (displ16)

Z flag « Not (Load-memory-bit (adr,bit#3))
Format Format VIII
Op code 15 0 31 16

11bbb111110RRRRR| dddddddddddddddd

Flag CcY -

ov -

S —

z 1 if bit NO.bit#3 of memory disp16 [regl] = 0.

0 if bit NO.bit#3 of memory disp16 [regl] = 1.

SAT -
Instruction TST1 Test Bit
Explanation Adds the data of general register regl to a 16-bit displacement, sign-extended to word length,

to generate a 32-bit address. Performs the test on the bit, specified by the 3-bit field “bbb”,
at the byte data location referenced by the generated address. If the specified bit is 0, the Z
flag is set to 1; if the bitis 1, the Z flag is reset to 0. The byte data, including the specified bit,
is not affected.

87

CHAPTER 5 INSTRUCTION

XOR

Exclusive Or

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

88

XOR regl, reg2

GR [reg?] - GR [reg2] XOR GR [regl]

Format |
15 0
rrrrrO01001RRRRR
CY -
oV 0
S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.
SAT -

XOR Exclusive Or

Exclusively ORs the word data of general register reg2 with the word data of general register
regl, and stores the result to general register reg2. The data of general register regl is not
affected.

CHAPTER 5 INSTRUCTION

XORI

Exclusive Or Immediate

Instruction format

Operation

Format

Op code

Flag

Instruction

Explanation

XORI imm16, regl, reg2

GR [reg2?] —~ GR [regl] XOR zero-extend (imm16)

Format VI

15 0 31 16
rrrrrl10101RRRRR Gifiiiiiiiiiiiii

CY -

oV 0

S 1 if the result of an operation is negative; otherwise, 0.

Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

XORI Exclusive Or Immediate (16-bit)
Exclusively ORs the word data of general register regl with a 16-bit immediate data, zero-

extended to word length, and stores the result to general register reg2. The data of general
register regl is not affected.

89

CHAPTER 5 INSTRUCTION

5.4 Number of Instruction Execution Clock Cycles

The number of instruction execution clock cycles differ depending on the combination of instructions. For details,
refer to CHAPTER 8 PIPELINE.
Table 5-10 shows a list of the number of instruction execution clock cycles.

Table 5-10. List of Number of Instruction Execution Clock Cycles (1/3)

Instructions Mnemonic Operand Byte Exe(.:ution TIOCk
i—r—
Load/store SLD.B disp7 [ep], r 2 1-1-2
SLD.H disp8 [ep], r 2 1-1-2
SLD.W disp8 [ep], r 2 1-1-2
SST.B r, disp7 [ep] 2 1-1-1
SST.H r, disp8 [ep] 2 1-1-1
SST.W r, disp8 [ep] 2 1-1-1
LD.B disp16 [R], r 4 1-1-2
LD.H disp16 [R], r 4 1-1-2
LD.W disp16 [R], r 4 1-1-2
ST.B r, disp16 [R] 4 1-1-1
ST.H r, disp16 [R] 4 1-1-1
ST.W r, disp16 [R] 4 1-1-1
Arithmetic MOV R, r 2 1-1-1
operation MOV imms, r 2 1-1-1
MOVEA imm16, R, r 4 1-1-1
MOVHI imm16, R, r 4 1-1-1
DIVH R, r 2 36 — 36— 36
MULH R, T 2 1-1-2
MULH immb5, r 2 1-1-2
MULHI imm16, R, r 4 1-1-2
ADD R, T 2 1-1-1
ADD immb5, r 2 1-1-1
ADDI imm16, R, r 4 1-1-1
CMP R, T 2 1-1-1
CMP immb5, r 2 1-1-1
SUBR R, T 2 1-1-1
SUB R, T 2 1-1-1
SETF ccee, r 4 1-1-1
Saturated SATSUBR R, r 2 1-1-1
operation SATSUB R, T 2 1-1-1
SATADD R, T 2 1-1-1
SATADD imm5, r 2 1-1-1
SATSUBI imm16, R, r 4 1-1-1

90

CHAPTER 5 INSTRUCTION

Table 5-10. List of Number of Instruction Execution Clock Cycles (2/3)

Execution clock

Instructions Mnemonic Operand Byte . :
i—r—
Logical NOT R, r 2 1-1-1
operation OR R, T 2 1-1-1
XOR R, T 2 1-1-1
AND R, T 2 1-1-1
TST R, r 2 1-1-1
SHR immb5, r 2 1-1-1
SAR immb5, r 2 1-1-1
SHL immb, r 2 1-1-1
ORI imm16, R, r 4 1-1-1
XORI imm16, R, r 4 1-1-1
ANDI imm16, R, r 4 1-1-1
SHR R, T 4 1-1-1
SAR R, T 4 1-1-1
SHL R, r 4 1-1-1
Branch JMP [R] 2 3-3-3
JR disp22 4 3-3-3
JARL disp22, r 4 3-3-3
Bcond disp9 | When condition is satisfied 2 3-3-3
When condition is not satisfied 2 1-1-1
Bit SET1 bit#3, disp16 [R] 4 4-4-4
manipulation | ¢ r1 bit#3, disp16 [R] 4 4-4-4
NOT1 bit#3, disp16 [R] 4 4-4-4
TST1 bit#3, disp16 [R] 4 3-3-3
Special LDSR R, SR 4 1— 1 Noe
STSR SR, r 4 1-1-1
NOP — 2 1-1-1
DI - 4 1-1-1
El — 4 1-1-1
TRAP vector 4 4—-4-4
HALT — 4 1-1-1
RETI — 4 4-4-4
Undefined instruction code trap 4 4-4-4

Note When accessing EIPC, FEPC: 3
When accessing EIPSW, FEPSW, PSW: 1

91

CHAPTER 5 INSTRUCTION

Table 5-10. List of Number of Instruction Execution Clock Cycles (3/3)

Operand
Symbol Meaning
R: regl General register (used as source register)
r: reg2 General register (mainly used as destination register)

SR: System Register

System register

immx: immediate

x-bit immediate

dispx: displacement

x-bit displacement

bit#3: bit number

3-bit data for bit number specification

ep: Element Pointer

Element pointer

B: Byte Byte (8 bits)
H: Halfword Half-word (16 bits)
W: Word Word (32 bits)

cccc: conditions

4-bit data condition code specification

vector

5-bit data for trap vector (00H-1FH) specification

Execution clock

Symbol Meaning
i: issue When other instruction is executed immediately after executing an instruction
r: repeat When the same instruction is repeatedly executed immediately after the instruction has
been executed
I: latency When a subsequent instruction uses the result of execution of the preceding instruction
immediately after its execution

92

CHAPTER 6 INTERRUPT AND EXCEPTION

Interrupts are events that occur independently of the program execution and are divided into two types: maskable
and non-maskable interrupts. In contrast, an exception is an event whose occurrence is dependent on the program
execution. There is no major difference between the interrupt and exception in terms of control flow. However, the
interrupt takes precedence over the exception.

The V850 can process various interrupt requests from the on-chip peripheral hardware and external sources. In
addition, exception processing can be started by an instruction (TRAP instruction) and by occurrence of an exception
event (exception trap).

The interrupts and exceptions supported in the V850 family are described below. When an interrupt or exception
is deleted, control is transferred to a handler whose address is determined by the source of the interrupt or exception.
The source of the event is specified by the exception code that is stored in the exception cause register (ECR). Each
handler analyzes the exception cause register (ECR) and performs appropriate interrupt servicing or exception
handling. The return PC and PSW are written to the status saving registers (EIPC, EIPSW/FEPC, FEPSW).

To return execution from interrupt or exception processing, use the RETI instruction.

Read the return PC and PSW from the status saving register, and transfer control to the return PC.

* Types of interrupt/exception processing
The V850 family handles the following four types of interrupts/exceptions:
* Non-maskable interrupt
* Maskable interrupt
« Software exception
« Exception trap

93

CHAPTER 6

INTERRUPT AND EXCEPTION

Table 6-1. Interrupt/Exception Codes

Interrupt/Exception Cause

Classification | Exception Code Handler Address Return PC
Name Trigger
NMI NMI input Interrupt 0010H 00000010H next PCNete 2
Maskable interrupt Note 1 Interrupt Note 1 Note 1 next PChete 2
TRAPON (n =0 - FH) | TRAP instruction Exception 004nH 00000040H next PC
TRAP1n (n =0 - FH) | TRAP instruction Exception 005nH 00000050H next PC
ILGOP lllegal op code Exception 006nH 00000060H next PCNete 3
Notes 1. Differs depending on the type of the maskable interrupts.

2. Ifaninterruptis acknowledged during execution of a DIVH (divide) instruction, the Restore PC becomes

the PC value for the currently executed instruction (DIVH).

3. The execution address of the illegal instruction is obtained by “retention PC-4" when an illegal op code

exception occurs.

The return PC is the PC saved to the EIPC or FEPC when interrupt/exception processing is started. “next PC”

is the PC that starts processing after interrupt/exception processing.

The processing of maskable interrupts is controlled by the user through the INTC unit (interrupt controller). The
INTC is different for each device in the V850 family due to the variations of on-chip peripherals, interrupt/exception

causes and exception codes.

6.1 Interrupt Servicing

6.1.1 Maskable interrupt
The maskable interrupt can be masked by the program status word (PSW).

The INTC issues an interrupt request to the CPU, based on the accepted interrupt with the highest priority.

If a maskable interrupt occurs due to INT input, the processor performs the following steps, and transfers control

to the handler routine.

(1) Saves restore PC to EIPC.
(2) Saves current PSW to EIPSW.
(3) Writes exception code to lower half-word of ECR (EICC).

(4) Sets ID bit of PSW and clears EP bit.

(5) Sets handler address for each interrupt to PC and transfers control.

Interrupts are held pending in the interrupt controller (INTC) when one of the following two conditions occur: when
the interrupt input (INT) is masked by its INTC, or when an interrupt service routine is currently being executed (when
the NP bit of the PSW is 1 or when the ID bit of the PSW is 1). Interrupts are enabled by clearing the mask condition
and by resetting the NP and ID bits of the PSW to 0 with the LDSR and RETI instructions, which will be enabling

servicing of a new or already pending interrupt.

The EIPC and EIPSW are used as the status saving registers. These registers must be saved by program to enable
nesting of interrupts because there is only one set of EIPC and EIPSW is provided. Bits 31 through 24 of the EIPC

and bits 31 through 8 of the EIPSW are fixed to 0.
Figure 6-1 illustrates how the maskable interrupt is serviced.

94

CHAPTER 6 INTERRUPT AND EXCEPTION

Figure 6-1. Maskable Interrupt Servicing Format

Maskable]

[Interrupt (INT) Occurs

Y

Interrupt Request Pending

Y

/

Yes
Mask
No
1
PSW.NP
0
1
PSW.ID
0
EIPC ~ Restore PC
EIPSW - PSW
ECR.EICC ~ Exception code
PSW.EP -~ 0
PSW.ID - 1
PC — Handler address

Interrupt Servicing Pending

Interrupt Servicing]

95

CHAPTER 6 INTERRUPT AND EXCEPTION

6.1.2 Non-maskable interrupt

The non-maskable interrupt cannot be disabled by an instruction and therefore can be always accepted. The non-
maskable interrupt of the V850 family is generated by the NMI input.

When the non-maskable interrupt is generated by the NMI input, the processor performs the following steps, and
transfers control to the handler routine.

(1) Saves restore PC to FEPC.

(2) Saves current PSW to FEPSW.

(3) Writes exception code to higher half-word of ECR (FECC).

(4) Sets NP and ID bits of PSW and clears EP bit.

(5) Sets handler address (00000010H) for the non-maskable interrupt to PC and transfers control.

Non-maskable interrupts are held pending in the INTC when other non-maskable interrupt is currently being
executed (when the NP bit of the PSW is 1). Non-maskable interrupts are enabled by resetting the NP bit of the PSW
to 0 with the RETI and LDSR instructions, which will be enabling servicing of a new or already pending interrupt.

The FEPC and FEPSW are used as the status saving registers.

Figure 6-2 illustrates how the non-maskable interrupt is serviced.

Figure 6-2. Non-maskable Interrupt Servicing Format

Non-Maskable
Interrupt (NMI) Occurs

1
PSW.NP
0
i

FEPC — Restore PC Interrupt Servicing Pending |
FEPSW - PSW
ECR.FECC « Exception Code
PSW.NP < 1
PSW.EP < 0
PSW.ID - 1
PC < 00000010H

[Interrupt Servicing]

96

CHAPTER 6 INTERRUPT AND EXCEPTION

6.2 Exception Processing

6.2.1 Software exception
A software exception is generated when the CPU executes the TRAP instruction and is always accepted.
If a software exception occurs, the CPU performs the following steps,and transfers control to the handler routine.

(1) Saves restore PC to EIPC.

(2) Saves current PSW to EIPSW.

(3) Writes exception code to lower 16 bits (EICC) of ECR (interrupt cause).

(4) Sets EP and ID bits of PSW.

(5) Sets handler address (00000040H or 00000050H) for software exception to PC and transfers control.

Figure 6-3 illustrates how the software exception is processed.

Figure 6-3. Software Exception Processing Format

Software
Exception (TRAP Instruction) Occurs

EIPC < Restore PC
EIPSW -~ PSW

ECR.EICC ~ Exception Code
PSW.EP - 1

PSW.ID < 1

PC < Handler Address

[Exception Processing]

Handler address: 00000040H (vector = OnH)
00000050H (vector = 1nH)

97

CHAPTER 6 INTERRUPT AND EXCEPTION

6.2.2 Exception trap

The exception trap is an interrupt requested when an instruction is illegally executed. The exception trap of the
V850 family is generated by an illegal op code instruction code trap (ILGOP: ILIleGal OPcode trap).

An illegal op code instruction has an instruction code with an op code (bits 5 through 10) of 111111B and a sub-
op code (bits 23 through 26) of 0011B through 1111B. When this kind of an illegal op code instruction is executed,
an illegal op code instruction code trap occurs.

Figure 6-4. lllegal Instruction Code

15 13 12 11 10 5 4 0 31 27 26 23 22 21 20 17 16
— \ S B B — T T] T T 1 —— T T T
0011
x x x|x x|1 11 1 1 1|x x x x x|[x x x x X ! x x| x x x x|x
11 1 1

Remark x: don't care
[O0: Op code/sub-op code portion

If an exception trap occurs, the CPU performs the following steps, and transfers control to the handler routine.
(1) Saves restore PC to EIPC.
(2) Saves current PSW to EIPSW.
(3) Writes exception code to lower 16 bits (EICC) of ECR.
(4) Sets EP and ID bits of PSW.
(5) Sets handler address (00000060H) for exception trap to PC and transfers control.

Figure 6-5 illustrates how the exception trap is processed.

Figure 6-5. Exception Trap Processing Format

Exception Trap

(ILGOP) Occurs
EIPC < Restore PC
EIPSW < PSW
ECR.EICC ~ Exception code
PSW.EP - 1
PSW.ID < 1
PC < 00000060H

[Exception Processing]

The execution address of the illegal instruction is obtained by “restore PC - 4” when an exception trap occurs.
Caution In addition to the defined op codes and illegal op codes, there is a range of codes not recognized

by this processor. If an instruction corresponding to these codes is executed, normal operation
is undetermined.

98

CHAPTER 6 INTERRUPT AND EXCEPTION

6.3 Restoring from Interrupt/Exception

restore PC.

All restoration from interrupt servicing/exception processing is executed by the RETI instruction.
With the RETI instruction, the processor performs the following steps,and transfers control to the address of the

(1) If the EP bit of the PSW is 0 and the NP bit of the PSW is 1, the restore PC and PSW are read from the FEPC

and FEPSW. Otherwise, the restore PC and PSW are read from the EIPC and EIPSW.
(2) Control is transferred to the address of the restored PC and PSW.

When execution has returned from exception processing or non-maskable interrupt servicing, the NP and EP bits

of the PSW must be set to the following values by using the LDSR instruction immediately before the RETI instruction,
in order to restore the PC and PSW normally:

To restore from non-maskable interrupt -« eoeveeenes

NP =1, EP=0
To restore from exception processing

Figure 6-6 illustrates how restoration from interrupt/exception is performed.

Figure 6-6. Restoration from Interrupt/Exception

RETI Instruction

Restoration
from
Exception 1
0
> Restoration Restoration from
from Maskable Non-Maskable
Interrupt Interrupt
PC ~ EIPC PC < FEPC
PSwW ~ EIPSW PSW «~ FEPSW

l Jump to PC l

99

[MEMO]

100

CHAPTER 7 RESET

When a low-level signal is input to the RESET pin, the system is reset, and each on-chip hardware is initialized.
7.1 Initializing

When a low-level signal is input to the RESET pin, the system is reset, and each hardware register is set in the
status shown in Table 7-1. When the RESET signal goes high, program execution begins. If necessary, re-initialize

the contents of each register by program control.

Table 7-1. Register Status after Reset

Hardware (symbol) Status after Reset

Program counter PC 00000000H
Interrupt status saving register EIPC Undefined

EIPSW Undefined
NMI status saving register FEPC Undefined

FEPSW Undefined
Exception cause register (ECR) FECC 0000H

EICC 0000H
Program status word PSW 00000020H
General register r0 Fixed to 00000000H

rl-r31 Undefined

7.2 Starting Up
All devices in the V850 family begin program execution from address 00000000H after it has been reset. After

reset, no immediate interrupt requests are accepted. To enable interrupts, clear the ID bit of the program status word
(PSW) to 0.

101

[MEMO]

102

CHAPTER 8 PIPELINE

The V850 family is based on the RISC architecture and executes almost all the instructions in one clock cycle under
control of a 5-stage pipeline.

The processor uses a 5-stage pipeline.

The operation to be performed in each stage is as follows:

IF (instruction fetCh)cccceeiiei i Instruction is fetched and fetch pointer isincremented.

ID (instruction deCode)cocueiiieiiiiiiiiee e Instruction is decoded, immediate data is generated,
and register is read.

EX (execution of ALU, multiplier, and barrel shifter)......... The instruction is executed.

MEM (MEMOIY GQCCESS) wuvverieiiuiiiiiaeaaiiieeaaeaaiiieeae e e aneeeaaeens Memory at specified address is accessed.

WB (WrIte DACK) ..eveieiiiiiiiee e Result of execution is written to register.

8.1 Outline of Operation

The instruction execution sequence of the V850 family consists of five stages including fetch and write back stages.

The execution time of each stage differs depending on the type of the instruction and the type of the memory to
be accessed.

As an example of pipeline operation, Figure 8-1 shows the processing of the CPU when nine standard instructions
are executed in succession.

Figure 8-1. Example of Executing Nine Standard Instructions

Time Flow (State) _
SystemClock -1 1T 1T 1T 1 IT1LIT1LIT1LITLI LT LT 1LITLT

Processing CPU Performs | ! ! ! ! !

Simultaneously ®' @ 60 @' ® ' ® 0 ®® © O 0 © 6.
Instruction 1 «+++++- IF__[ID__[EX _|[MEM [WB ‘ 1 : : : i } !
INStruction 2 ««««=«eveeeeees LIF ID EX |MEM [WB ‘ | | : ! ! !
INSLIUCHION 3 =+ v veeeereeenrenens IF ID EX [MEM |WB ‘ | | : ! !
INSEIUCLION 4 +vovrererereerereneaeennnennns IF 1D EX MEM |WB ! ' ! ! !
INSLIUCLION 5 v evevrrrerencnreeecneeeciciceeccnenns IE 1D EX MEM |WB ! ! ! !
INSEIUCLION B s+ verrrrerereneerenentatanetneananns peveenes \E ID EX MEM |WB ! ' !
INSEIUCLION 7 +vcvrerercrrerencecnescicienicneaenanns eeenes beeesnes T= 1D EX MEM |WB ! '
INSEIUCHION 8 v cvvevrmereemerennneenieiinieinieennns [EEPRER Feeenane peeeees IF D EX MEM |WB ‘ '
INSEFUCHION O ++vvvrreresemnscenssennneinnieinneeennes heeeenns beeennns Beeenens peeeees ”: |D EX MEM ‘WB ‘

\ End of | End of ‘End of ‘End of ‘End of End of ‘End of ‘End of ‘End of :

! Instruc- ! Instruc- L Instruc- 1 Instruc- | Instruc- | Instruc- | Instruc- ‘Instruc 1 Instruc- |

‘tonl 'tion2 'tion3 'tion4 'ton5 'ton6 'ton7 'ton8 'tion9 !
DOo0000O0000000000000000D0000DoO0000oooooo

Executes Instruction Every 1 Clock Cycle

@through @ in the figure above indicate the states of the CPU. In each state, write back of instruction n, memory
access of instruction n+1, execution of instruction n+2, decoding of instruction n+3, and fetching of instruction n+4
are simultaneously performed. It takes five clock cycles to process a standard instruction, including fetching and write
back. Because five instructions can be processed at the same time, however, a standard instruction can be executed
in 1 clock cycle on the average.

103

CHAPTER 8 PIPELINE

8.2 Pipeline Flow During Execution of Instructions

This section explains the pipeline flow during the execution of instructions.

During instruction fetch (IF stage) and memory access (MEM stage), the internal ROM/PROM and the internal RAM
are accessed, respectively. In this case, the IF and MEM stages are processed in 1 clock. In all other cases, the
required time for access consists of the fixed access time, with the addition in some cases of the path wait time. Access

times are shown in Figure 8-2 below.

Figure 8-2. Access Times (in clocks)

Resource (bus width) Internal ROM/PROM Internal RAM Internal peripheral I/0 | External memory
Stage (32 bits) (32 bits) (8/16 bits) (16 bits)
Instruction fetch 1 3 Not possible 3+n
Memory access (MEM) 3 1 3+n 3+n

Remark n: Wait number

8.2.1 Load instructions

[Instructions] LD, SLD
[Pipeline] Load instruction ~ |IF___[ID___|EX__|[MEM_[wB
Next instruction IF ID EX MEM |WB |

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. If an instruction using the execution
result is placed immediately after the load instruction, data wait time occurs. For details, see
8.3 Pipeline Disorder .

[Description]

8.2.2 Store instructions

[Instructions] ST, SST
[Pipeline] Store instruction | IF ID EX MEM _/\-/I_3_-_-'
Next instruction IF ID EX |MEM |[wB |

The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. However, no operation is performed
in the WB stage, because no data is written to registers.

[Description]

8.2.3 Arithmetic operation instructions (excluding multiply and divide instructions)

[Instructions] MOV, MOVEA, MOVHI, ADD, ADDI, CMP, SUB, SUBR, SETF

Arithmetic operation
instruction | IF 1D EX WB

Next instruction IF ID EX |[MEM |wB |

[Pipeline]

The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. However, no operation is performed
in the MEM stage, because memory is not accessed.

[Description]

104

CHAPTER 8 PIPELINE

8.2.4 Multiply instructions

[Instructions] MULH, MULHI

[Pipeline] (1) When next instruction is not multiply instruction
O @ & e 6 ®
Multiply instruction | IE ID EX1 |EX2 |wB
Next instruction IF ID EX |MEM |wB |

(2) When next instruction is multiply instruction

O 2 6 ® 6 o

Multiply instruction 1| IF ID EX1 [EX2 [wWB
Multiply instruction 2 IF ID EX1 |EX2 WB |

[Description] The pipeline consists of 5 stages, IF, ID, EX1, EX2, and WB. There is no MEM stage. The EX
stage requires 2 clocks, but the EX1 and EX2 stages can operate independently. Therefore,
the number of clocks for instruction execution is always 1, even if several multiply instructions
are executed in a row. However, if an instruction using the execution result is placed
immediately after a multiply instruction, data wait time occurs. For details, see Section 8.3
Pipeline Disorder .

8.2.5 Divide instruction

[Instructions] DIVH

Divide instruction ~ [IF D |Ex1 [Ex2 (__|Ex35 |EX36 |MEM [wB
Next instruction IF - - P ID EX |MEM |[wB
Next to next instruction ? IF ID EX MEM [WB |

—: ldle inserted for wait

[Description] The pipeline consists of 40 stages, IF, ID, EX1 to EX36, MEM, and WB. The EX stage requires
36 clocks. No operation is performed in the MEM stage, because memory is not accessed.

8.2.6 Logical operation instructions

[Instructions] NOT, OR, ORI, XOR, XORI, AND, ANDI, TST, SHR, SAR, SHL

Pipeline Logical operation
[Pip] instruction [ID EX MEM |WB

Next instruction IF ID EX |[MEM |wB |

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. No operation is performed in the
MEM stage, because memory is not accessed.

105

CHAPTER 8 PIPELINE

8.2.7 Saturation operation instructions

[Instructions] SATADD, SATSUB, SATSUBI, SATSUBR

[Pipeline] Saturation operation ————T——------
instruction [F D EX MEM _|wB
Next instruction IF ID EX |[MEM |wB |
[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed

in the MEM stage, because memory is not accessed.
8.2.8 Branch instruction
(1) Conditional branch instructions

[Instructions] Bcond instructions (BGT, BGE, BLT, BLE, BH, BNL, BL, BNH, BE, BNE, BV, BNV, BN, BP,
BC, BNC, BZ, BNZ, BSA): Except BR instruction

[Pipeline] (@) When the condition is not realized
O @ ® ® 6 ®
Conditional branch = Tim e Iven YV :
instruction L ID EX __|MEM__WB___ .
Next instruction IF ID EX]MEM wB

(b) When the condition is realized

O @ e @ 6 6 0 ®

...... e mmmm--

Conditional branch

instruction LiF ID EX MEM WB___J

Next instruction IF x ID x

Next to next instruction IF x

Branch destination instruction IF |ID | EX |MEM | WB |

IF x : Instruction fetch that is not executed
ID x : Instruction decode that is not executed

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed
inthe MEM and WB stages, because memory is not accessed and no data is written to registers.

(&) When the condition is not realized
The number of execution clocks for the branch instruction is 1.

(b) When the condition is realized

The number of execution clocks for the branch instruction is 3. IF stage of the next
instruction and next to next instruction of the branch instruction is not executed.

106

CHAPTER 8 PIPELINE

(2) Unconditional branch instructions

[Instructions] JMP, JR, JARL, BR

[Pipeline] Unconditional branch |IF® |D® Ex@ MS\DAWS‘ © @
instruction S I '
Next instruction IF %
Branch destination instruction |IF |ID | EX |MEM |WB |
IF x . Instruction fetch that is not executed
WBNote - No operation is performed in the case of the JMP instruction,
JR instruction, and BR instruction, but in the case of the JARL
instruction, data is written to the restore PC.
[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed

inthe MEM and WB stages, because memory is not accessed and no data is written to registers.
However, in the case of the JARL instruction, data is written to the restore PC in the WB stage.
Also, the IF stage of the next instruction of the branch instruction is not executed.

8.2.9 Bit manipulation instructions

(1) SET1, CLR1, NOT1

[Pipeline] © o 66 ® 6 6 O ® ©
SET1, CLR1, NOT1 CPEEEEH
instruction |IF ID Ex1 [MEM [Ex2 |EX3 |MEM [wB
Next instruction IF - - - ID EX MEM | WB
Next to next instruction IF ID EX MEM [WB |

—: Idle inserted for wait

[Description] The pipeline consists of 8 stages, IF, ID, EX1, MEM, EX2, EX3, MEM, and WB. However, no
operation is performed in the WB stage, because no data is written to registers.
In the case of these instructions, the memory access is read modify write, and the EX and MEM
stages require 3 and 2 clocks, respectively.

107

CHAPTER 8 PIPELINE

(2) TST1

[Pipeline]

[Description]

O @ ® ® 66 ® 0o ® 6o O

TST1instruction [IF ID EXIL_ |[MEM |EX2 |EX3 |MEM :WB :
Next instruction IF — — — ID EX MEM |WB
Next to next instruction IF ID EX MEM |WB |

—: lIdle inserted for wait

The pipeline consists of 8 stages, IF, ID, EX1, MEM, EX2, EX3, MEM, and WB. However, no
operationis performed in the second MEM and WB stages, because there is no second memory
access nor data write to registers.

In the case of this instruction, the memory access is read modify write, and the EX and MEM
stage require 3 and 2 clocks, respectively.

8.2.10 Special instructions

(1) LDSR, STSR

2

©)

108

[Pipeline]

[Description]

NOP

[Pipeline]

[Description]

El, DI

[Pipeline]

[Description]

LDSR, STSR instruction| [F ID EX MEM |WB

Next instruction IF ID EX MEM |WB |

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed
in the MEM stage, because memory is not accessed. Also, if the STSR instruction using the
EIPC and FEPC systemregisters is placed immediately after the LDSR instruction setting these
registers, data wait time occurs. For details, see Section 8.3 Pipeline Disorder .

NOP instruction [IF ID EX iMEM :WB i
Next instruction IF ID 1EX MEM |WB

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed
in the EX, MEM and WB stages, because no operation and no memory access is executed,
and no data is written to registers.

El, DI instruction [IF To Jex |Mem we
Next instruction IF ID EX]MEM WB

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is performed
in the MEM and WB stages, because memory is not accessed and data is not written to
registers.

CHAPTER 8 PIPELINE

(4) HALT

[Pipeline]

HALT |
instruction
Next
instruction

Next to next instruction

[Description]

(5) TRAP

[Pipeline]

[Description]

(6) RETI

[Pipeline]

[Description]

HALT release

| IF

[A
\T\ N

WB
MEM

MEM
EX

EX

WB

Idle inserted for wait

The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. No operation is performed in the
MEM and WB stages, because memory is not accessed and no data is written to registers. Also,
for the next instruction, the ID stage is delayed until the HALT state is released.

O @ & ® 66 & 0o 6 0

D1 [ID2 [EX
IF x

TRAP instruction
Next instruction

| IF

[Ex [MEM [wB |

Jump destination instruction

IF x:
ID1 :
ID2 :

Instruction fetch that is not executed
Trap code detect
Address generate

The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is
performed in the MEM stage, because memory is not accessed. The ID stage requires 2 clocks.
Also, the IF stage of the next instruction and next to next instruction is not executed.

O @ @ ® 66 & 0o 6 0

RET! instruction | IF

D1 |2 [EX

Next instruction
Jump destination instruction

IF x:
ID1 :
ID2 :

IF x

Instruction fetch that is not executed
Register select
Read EIPC/FEPC

The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is
performed in the MEM and WB stages, because memory is not accessed and no data is written
to registers. The ID stage requires 2 clocks. Also, the IF stage of the next instruction and next

to next instruction is not executed.

109

CHAPTER 8 PIPELINE

8.3 Pipeline Disorder

The pipeline consists of 5 stages from IF (Instruction Fetch) to WB (Write Back). Each stage basically requires

1 clock for processing, but the pipeline may become disordered, causing the number of execution clocks to increase.

This section describes the main causes of pipeline disorder.

8.3.1 Alignment hazard

If the branch destination instruction address is not word aligned (A1=1, A0=0) and is 4 bytes inlength, itis necessary

to repeat IF twice in order to align instructions in word units. This is called align hazard.
For example, let us suppose that instructions a to e are placed from address XOH, and that instruction b consists
of 4 bytes, and the other instructions each consist of 2 bytes. In this case, instruction b is placed at X2H (A1=1, A0=0),

and is not word aligned (A1=0, A0=0). Therefore, when this instruction b becomes the branch destination instruction,
an align hazard occurs. When an align hazard occurs, the number of execution clocks of the branch instruction

becomes 4.

(@) Memory map

~— 32 bits —>
Instruc- | Instruc-
X8H |[tiond |tione
Instruc- | Instruc-
X4H [tionb |tion c
Instruc- | Instruc-
XOH |tion a_[tion b

Address of branch destination
instruction (instruction b)

Figure 8-3. Align Hazard Example

(b) Pipeline

O o @@ ® 66 & © 6 0 o

Branch instruction | IF ID EX M-IE:M-_E\-/\!I?-_-.

Next instruction IF x -

Next to next instruction IF x

Branch destination instruction (instruction b) | IF1 |IF2 ID EX MEM |[WB

Branch destination’s next instruction (instruction c) IF ID EX MEM |[WB
IF x : Instruction fetch that is not executed

- : Idle inserted for wait

IF1 : Firstinstruction fetch that occurs during align hazard. Itis a 2-byte
fetch that fetches the 2 bytes on the lower address of instruction
b.

IF2 : Second instruction fetch that occurs during align hazard. It is
normally a 4-byte fetch that fetches the 2 bytes on the upper
address of instruction b in addition to instruction ¢ (2-byte length).

Align hazard can be prevented through the following handling in order to obtain faster instruction execution.

e Use 2-byte branch destination instruction.

» Use 4-byte instructions placed at word boundaries (A1=0, A0=0) for branch destination instructions.

110

CHAPTER 8 PIPELINE

8.3.2 Referencing execution result of load instruction

Forload instructions (LD, SLD), dataread in the MEM stage is saved during the WB stage. Therefore, if the contents
of the same register are used by the instruction immediately after the load instruction, it is necessary to delay the
use of the register by this later instruction until the load instruction has ended using that register. Thisis called a hazard.
The V850 family has an interlock function that causes the CPU to automatically handle this hazard by delaying the
ID stage of the next instruction.

The V850 family also has a short path that allows the data read during the MEM stage to be used in the ID stage
of the next instruction. This short path allows data to be read with the load instruction during the MEM stage and the
use of this data in the ID stage of the next instruction with the same timing.

As aresult of the above, when using the execution result in the instruction following immediately after, the number
of execution clocks of the load instruction is 2.

Figure 8-4. Example of Execution Result of Load Instruction

O @ e ® 6 & 0o e e

Load instruction 1

(LD [R4], R6) [iF ID EX |MEM, |wB

Instruction 2 (ADD 2, R6) IF 1L 1D Y EX MEM |WB

Instruction 3 IF — ID EX MEM |(WB
Instruction 4 IF ID EX MEM |WB

IL : Idle inserted for data wait by interlock function
— : Idle inserted for wait
l . Short path

As described above, when an instruction placed immediately after a load instruction uses its execution result, a
data wait time occurs due to the interlock function, and the execution speed is lowered. This drop in execution speed
can be avoided by placing instructions that use the execution result of a load instruction at least 2 instructions after
the load instruction.

8.3.3 Referencing execution result of multiply instruction

For multiply instructions (MULH, MULHI), the operation result is saved to the register in the WB stage. Therefore,
if the contents of the same register are used by the instruction immediately after the multiply instruction, itis necessary
to delay the use of the register by this later instruction until the multiply instruction has ended using that register
(occurrence of hazard).

The V850 family’s interlock function delays the ID stage of the instruction following immediately after. A short path
is also provided that allows the EX2 stage of the multiply instruction and the multiply instruction’s operation result
to be used in the ID stage of the instruction following immediately after with the same timing.

Figure 8-5. Example of Execution Result of Multiply Instruction

@ ® @ 66 6 o 6 6

Multiply instruction 1

(MULH 3, R6) [ID Ex1 |Ex2, |wB

Instruction 2 (ADD 2, R6) IF IL D ¥ |EX MEM |WB

Instruction 3 IF - ID EX MEM |[WB
Instruction 4 IF ID EX MEM |WB

IL : Idle inserted for data wait by interlock function
— : Idle inserted for wait
l . Short path

111

CHAPTER 8 PIPELINE

As described above, when an instruction placed immediately after a multiply instruction uses its execution result,
a data wait time occurs due to the interlock function, and the execution speed is lowered. This drop in execution speed
can be avoided by placing instructions that use the execution result of a multiply instruction at least 2 instructions
after the multiply instruction.

8.3.4 Referencing execution result of LDSR instruction for EIPC and FEPC

When using the LDSR instruction to set the data of the EIPC and FEPC system registers, and immediately after
referencing the same system registers with the STSR instruction, the use of the system registers for the STSR
instruction is delayed until the setting of the system registers with the LDSR instruction is completed (occurrence of
hazard).

The V850 family’s interlock function delays the ID stage of the STSR instruction immediately after.

As aresult of the above, when using the execution result of the LDSR instruction for EIPC and FEPC for an STSR
instruction following immediately after, the number of execution clocks of the LDSR instruction becomes 3.

LDSR instruction @ @ @ @ @ @ @ @ @

(LDSRRG, 0) Nete [ID EX __|MEM |WB

STSR instruction

(STSR 0, R7) Note IF IL IL ID EX _|MEM |wB

Next instruction IF - — ID EX MEM |WB

Next to next instruction IF ID EX MEM |(WB

IL: Idle inserted for data wait by interlock function
— : Idle inserted for wait

Note System register O used for the LDSR and STSR instructions designates EIPC.

As described above, when an STSR instruction is placed immediately after an LDSR instruction that uses the
operand EIPC or FEPC, and that STSR instruction uses the LDSR instruction execution result, the interlock function
causes a data wait time to occur, and the execution speed is lowered. This drop in execution speed can be avoided
by placing STSR instructions that reference the execution result of the preceding LDSR instruction at least 3
instructions after the LDSR instruction.

8.3.5 Cautions when creating programs
When creating programs, pipeline disorder can be avoided and instruction execution speed can be raised by
observing the following cautions.

« Place instructions that use the execution result of load instructions (LD, SLD) at least 2 instructions after the
load instruction.

« Place instructions that use the execution result of multiply instructions (MULH, MULHI) at least 2 instructions
after the multiply instruction.

« |If using the STSR instruction to read the setting results written to the EIPC or FEPC registers with the LDSR
instruction, place the STSR instruction at least 3 instructions after the LDSR instruction.

» For the first branch destination instruction, use a 2-byte instruction, or a 4-byte instruction placed at the word
boundary.

112

CHAPTER 8 PIPELINE

8.4 Additional Items Related to Pipeline

8.4.1 Harvard architecture
The V850 family uses the Harvard architecture to operate an instruction fetch path from internal ROM and a memory

access path to internal RAM independently. This eliminates path arbitration conflicts between the IF and MEM stages
and allows orderly pipeline operation.

(1) V850 family (Harvard architecture)
The MEM stage of instruction 1 and the IF stage of instruction 4, as well as the MEM stage of instruction 2 and
the IF stage of instruction 5 can be executed simultaneously with orderly pipeline operation.

O @@ ® ® 6 & 0o ® O

Instruction 1 [IF ID EX |MEM |wB

Instruction 2 IF ID EX MEM | WB

Instruction 3 IF ID EX MEM |WB

Instruction 4 IF 1D EX MEM |WB
Instruction 5 IF ID EX MEM |WB

(2) Not V850 family (Other than Harvard architecture)
The MEM stage of instruction 1 and the IF stage of instruction 4, in addition to the MEM stage of instruction 2
and the IF stage of instruction 5 are in contention, causing path waiting to occur and slower execution time due
to disorderly pipeline operation.

o o @ ®»® 6 & 0 ® 66 O O

Instruction 1 | IF ID EX MEM |WB

Instruction 2 IF ID — EX MEM |WB

Instruction 3 IF - ID — EX MEM |WB

Instruction 4 IF — 1D EX MEM |WB
Instruction 5 IF ID EX MEM |WB

— : Idle inserted for wait

113

CHAPTER 8 PIPELINE

8.4.2 Short path

The V850 family provides on chip a short path that allows the use of the execution result of the preceding instruction

by the following instruction before write back (WB) is completed for the previous instruction.

Example 1.

Example 2.

114

Execution result of arithmetic operation instruction and logical operation used by instruction

following immediately after

V850 family (on-chip short path)

The execution result of the preceding instruction can be used for the ID stage of the instruction
following immediately after as soon as the resultis out (EX stage), without having to wait for write
back to be completed.

O o @ ® 6 6

ADD 2, R6 [IF ID EX | [MEM |wB
MOV R6, R7 IF D VI[Ex [Mem |we |

Not V850 family (No short path)
The ID stage of the instruction following immediately after is delayed until write back of the
previous instruction is completed.

O o ® @ &6 & 0 ®

ADD 2, R6 [IF ID EX |MEM |wB
MOV R6, R7 IF - — ID EX |MEM |wB |

—: ldle inserted for wait
l . Short path

Data read from memory by the load instruction used by instruction following immediately after

V850 family (on-chip short path)

The execution result of the preceding instruction can be used for the ID stage of the instruction
following immediately after as soon as the result is out (MEM stage), without having to wait for
write back to be completed.

o @ @ ®® 66 & © ® 0

LD [R4], R6 |IF ID EX MEM | |WB

ADD 2, R6 IF 1L D Y[EX MEM |WB

Next instruction IF — 1D EX MEM |(WB

Next to next instruction IF ID EX MEM |(WB

Not V850 family (No short path)
The ID stage of the instruction following immediately after is delayed until write back of the
previous instruction is completed.

o @ ® ® 66 & 0 ©® 0 o

LD [R4], R6 [IF ID EX |MEM |wB

ADD 2, R6 IF — — ID EX MEM [wWB

Next instruction IF ID EX MEM |WB

Next to next instruction IF ID EX MEM |WB

IL : Idle inserted for data wait by interlock function
— : Idle inserted for wait
£ . Short path

APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER)

This appendix summarizes the properties and functions of the V850 family’s instructions to allow users to know
the outline of the desired instruction quickly. Instructions are listed in alphabetical order of their mnemonics.
The illustration and table shown below indicates how to read this appendix and what each legend and word means.

Instruction Operand Format CYQOV S ZSAT
Mnemonic
Legend
ADD regl, reg2 | x x ok x =
Instruction Operand Indicates Describes
Mnemonic Name Instruction Format. Movements of Flags.
Name Meaning
regl General register (used as source register)
reg2 General register (mainly used as destination register. Some are also
used as source registers)

bit#3 3-bit data for bit number specification

immx x-bit immediate

dispx x-bit displacement

reglD System register number

vector Trap handler address corresponding to trap vector

ccce 4-bit data for 4-bit condition code specification

Y

Identifier Meaning
0 Reset (to 0)
* Set (to 1) or reset (to 0) according to instruction execution result
- No change

115

APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonic (in alphabetical order) (1/7)

Instruction
Mnemonic

Operand Format

z

Instruction Function

ADD

ADD

ADDI

AND

ANDI

Bcond

CLR1

CMP

CMP

DI

116

regl, reg2 |

immb5, reg2 1]

imm16, regl, reg2 \|

regl, reg2 |

imm16, regl, reg2 \|

disp9 1

bit#3, disp16 [regl] Vil

regl, reg2 |

immb5, reg2 Il

Add. Adds the word data of regl to the word
data of reg2, and stores the result to reg2.
Add. Adds the 5-bit immediate data, sign-
extended to word length, to the word data of
reg2, and stores the result to reg2.

Add. Adds the 16-bit immediate data, sign-
extended to word length, to the word data of
regl, and stores the result to reg2.

AND. ANDs the word data of reg2 with the word

data of regl, and stores the result to reg2.

AND. ANDs the word data of regl with the 16-bit
immediate data, zero-extended to word length,
and stores the result to reg2.

Conditional branch (if Carry). Tests a condition
flag specified by an instruction. Branches if a
specified condition is satisfied; otherwise,
executes the next instruction. The branch

destination PC holds the sum of the current PC
value and 9-bit displacement which is the 8-bit
immediate shifted 1 bit and sign-extended to
word length.

Bit clear. Adds the data of regl to 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. Then clears the bit,
specified by the instruction bit field, of the byte
data referenced by the generated address.

Compare. Compares the word data of reg2 with
the word data of regl, and indicates the result
by using the condition flags. To compare, the
contents of regl are subtracted from the word
data of reg2.

Compare. Compares the word data of reg2 with
the 5-bit immediate data, sign-extended to word
length, and indicates the result by using the
condition flags. To compare, the contents of the
sign-extended immediate data are subtracted
from the word data of reg2.

Disables maskable interrupt. Sets the ID flag of
the PSW to 1 to disable the acknowledgement of
maskable interrupts from acceptance; interrupts
are immediately disabled at the start of this
instruction execution.

APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonic (in alphabetical order) (2/7)

Instruction Operand Format CY OV S Z SAT Instruction Function
Mnemonic
DIVH regl, reg2 | - * * * - Signed divide. Divides the word data of reg2 by

the lower half-word data of regl, and stores the
quotient to reg2.

El - X - - - - - Enables maskable interrupt. Resets the ID flag
of the PSW to 0 and enables the acknowledge-
ment of maskable interrupts at the beginning of
next instruction.

HALT - X - - - - - CPU halt. Stops the operating clock of the CPU
and places the CPU in the HALT mode.

JARL disp22, reg2 \% - - - - - Jump and register link. Saves the current PC
value plus 4 to general register reg2, adds a 22-
bit displacement, sign-extended to word length,
to the current PC value, and transfers control to
the PC. Bit 0 of the 22-bit displacement is
masked to 0.

JMP [regl] | - - - - - Register indirect unconditional branch. Trans-
fers control to the address specified by regl. Bit
0 of the address is masked to 0.

JR disp22 \% - - - - - Unconditional branch. Adds a 22-bit displace-
ment, sign-extended to word length, to the
current PC value, and transfers control to the
PC. Bit 0 of the 22-bit displacement is masked
to 0.

LD.B displ6 [regl], reg2 VI - - - - - Byte load. Adds the data of regl to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. Byte data is read
from the generated address, sign-extended to
word length, and then stored to reg2.

LD.H displ6 [regl], reg2 VI - - - - - Half-word load. Adds the data of regl to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. Half-word data is
read from this 32-bit address with its bit O
masked to 0, sign-extended to word length, and
stored to reg2.

LD.W displ6 [regl], reg2 VI - - - - — Word load. Adds the data of regl to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. Word data is read
from this 32-bit address with bits 0 and 1 masked
to 0, and stored to reg?2.

117

APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonic (in alphabetical order) (3/7)

Instruction
Mnemonic

Operand

Format

Instruction Function

LDSR

MOV

MOV

MOVEA

MOVHI

MULH

MULH

MULHI

NOP

NOT

NOT1

OR

118

reg2, reglD

regl, reg2

immb5, reg2

imm16, regl, reg2

imm16, regl, reg2

regl, reg2

immb5, reg2

imm16, regl, reg2

regl, reg2

bit#3, displ6 [regl]

regl, reg2

Vi

VIl

Load to system register. Set the word data of
reg2 to a system register specified by regID. If
reglD is PSW, the values of the corresponding
bits of reg2 are set to the respective flags of the
PSW.

Moves data. Transfers the word data of regl to
reg2.

Moves data. Transfers the value of a 5-bit
immediate data,sign-extended to word length, to
reg2.

Moves effective address. Adds a 16-bit immediate
data, sign-extended to word length, to the word
data of regl, and stores the result to reg2.

Moves higher half-word. Adds word data, in
which the higher 16 bits are defined by the 16-bit
immediate data while the lower 16 bits are set to
0, to the word data of regl and stores the result
to reg2.

Signed multiply. Multiplies the lower half-word
data of reg2 by the lower half-word data of regl,
and stores the result to reg2 as word data.

Signed multiply. Multiplies the lower half-word
data of reg2 by a 5-bit immediate data, sign-
extended to half-word length, and stores the
result to reg2 as word data.

Signed multiply. Multiplies the lower half-word
data of regl by a 16-bit immediate data, and
stores the result to reg2.

No operation. Executes nothing and consumes
at least one clock cycle.

Logical Not. Logically negates (takes 1's comple-
ment of) the word data of regl, and stores the
result to reg2.

Bit not. First, adds the data of regl to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. The bit specified by
the 3-bit field “bbb” is inverted at the byte data
location referenced by the generated address.

Logical sum. ORs the word data of reg2 with the
word data of regl, and stores the result to reg2.

APPENDIX A

INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonic (in alphabetical order) (4/7)

Instruction
Mnemonic

Operand

Format CY OV S

z

SAT

Instruction Function

ORI

RETI

SAR

SAR

SATADD

SATADD

SATSUB

imm16, regl, reg2

regl, reg2

immb5, reg2

regl, reg2

immb5, reg2

regl, reg2

Vi

Logical sum. ORs the word data of regl with the
16-bit immediate data, zero-extended to word
length, and stores the result to reg2.

Returns from exception or interrupt routine.
Restores the return PC and PSW from the
appropriate system register, and returns from
exception or interrupt routine.

Arithmetic right shift. Arithmetically shifts the word
data of reg2 to the right by ‘n’ positions, where ‘n’
is specified by the lower 5 bits of regl (the MSB
prior to shift execution is copied and set as the
new MSB), and then writes the result to reg2.

Arithmetic right shift. Arithmetically shifts the word
data of reg2 to the right by ‘n’ positions specified
by the 5-bit immediate data, zero-extended to
word length (the MSB prior to shift execution is
copied and set as the new MSB), and then writes
the result to reg2.

Saturated add. Adds the word data of regl to the
word data of reg2, and stores the result to reg2.
However, if the result exceeds the maximum
positive value, the maximum positive value is
stored to reg2; if the result exceeds the maximum
negative value, the maximum negative value is
stored to reg2. The SAT flag is set to 1.

Saturated add. Adds the 5-bit immediate data,
sign-extended to word length, to the word data of
reg2, and stores the result to general register
reg2. However, if the result exceeds the positive
maximum value, the maximum positive value is
stored to reg2; if the result exceeds the maximum
negative value, the maximum negative value is
stored to reg2. The SAT flag is set to 1.

Saturated subtract. Subtracts the word data of
regl from the word data of reg2, and stores the
result to reg2. However, if the result exceeds the
maximum positive value, the maximum positive
value is stored to reg2; if the result exceeds the
maximum negative value, the maximum negative
value is stored to reg2. The SAT flag is set to 1.

119

APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonic (in alphabetical order) (5/7)

Instruction
Mnemonic

Operand

Format

Cy ov

S

z

SAT

Instruction Function

SATSUBI

SATSUBR

SETF

SET1

SHL

SHL

SHR

SHR

120

imm16, regl, reg2

regl, reg2

cccece, reg2

bit#3, disp16 [regl]

regl, reg2

immb5, reg2

regl, reg2

immb5, reg2

\Y|

VIl

Saturated subtract. Subtracts a 16-bit immediate
sign-extended to word length from the word data
of regl, and stores the result to reg2. However,
if the result exceeds the maximum positive value,
the maximum positive value is stored to reg2; if
the result exceeds the maximum negative value,
the maximum negative value is stored to reg2.
The SAT flag is set to 1.

Saturated subtract reverse. Subtracts the word
data of reg2 from the word data of regl, and
stores the result to reg2. However, if the result
exceeds the maximum positive value, the
maximum positive value is stored to reg2; if the
result exceeds the maximum negative value, the
maximum negative value is stored to reg2. The
SAT flag is set to 1.

Set flag condition. The reg2 is setto 1 if a
condition specified by condition code “cccc” is
satisfied; otherwise, a 0 is stored to the register.

Bit set. First, adds a 16-bit displacement, sign-
extended to word length, to the data of regl to
generate a 32-bit address. The bits, specified by
the 3-bit bit field “bbb” is set at the byte data
location specified by the generated address.

Logical left shift. Logically shifts the word data of
reg2 to the left by ‘n’ positions (0 is shifted to the
LSB side), where ‘n’ is specified by the lower 5
bits of regl, and writes the result to reg2.

Logical left shift. Logically shifts the word data of
reg2 to the left by ‘n’ positions (0 is shifted to the
LSB side), where ‘n’ is specified by a 5-bit
immediate data, zero-extended to word length,
and writes the result to reg2.

Logical right shift. Logically shifts the word data
of reg2 to the right by ‘n’ positions (0 is shifted to
the MSB side), where ‘n’ is specified by the lower
5 bits of regl, and writes the result to reg2.

Logical right shift. Logically shifts the word data
of reg2 to the right by ‘n’ positions (0 is shifted to
the MSB side), where ‘n’ is specified by a 5-bit
immediate data, zero-extended to word length,
and writes the result to reg2.

APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonic (in alphabetical order) (6/7)

Instruction Operand Format CY OV S Z SAT Instruction Function
Mnemonic
SLD.B disp7 [ep], reg2 [\ - - - - — Byte load. Adds the 7-bit displacement, zero-

extended to word length, to the element pointer to
generate a 32-bit address. Byte data is read
from the generated address, sign-extended to
word length, and stored to reg2.

SLD.H disp8 [ep], reg2 [\ - - - - — Half-word load. Adds the 8-bit displacement,
zero-extended to word length, to the element
pointer to generate a 32-bit address. Half-word
data is read from this 32-bit address with bit 0
masked to 0, sign-extended to word length, and
stored to reg2.

SLD.W disp8 [ep], reg2 \ - - - - — Word load. Adds the 8-bit displacement, zero-
extended to word length, to the element pointer to
generate a 32-bit address. Word data is read
from this 32-bit address with bits 0 and 1 masked
to 0, and stored to reg2.

SST.B reg2, disp7 [ep] v - - - - — Byte store. Adds the 7-bit displacement, zero-
extended to word length, to the element pointer to
generate a 32-bit address, and stores the data of
the lowest byte of reg2 to the generated address.

SST.H reg2, disp8 [ep] v - - - - — Half-word store. Adds the 8-bit displacement,
zero-extended to word length, to the element
pointer to generate a 32-bit address, and stores
the lower half-word of reg2 to the generated 32-
bit address with bit 0 masked to 0.

SST.W reg2, disp8 [ep] \% - - - - — Word store. Adds the 8-bit displacement, zero-
extended to word length, to the element pointer to
generate a 32-bit address, and stores the word
data of reg2 to the generated 32-bit address with
bits 0 and 1 masked to 0.

ST.B reg2, disp16 [regl] VIl - - - - — Byte store. Adds the 16-bit displacement, sign-
extended to word length, to the data of regl to
generate a 32-bit address, and stores the lowest
byte data of reg2 to the generated address.

ST.H reg2, disp16 [regl] VIl - - - - — Half-word store. Adds the 16-bit displacement,
sign-extended to word length, to the data of regl
to generate a 32-bit address, and stores the
lower half-word of reg2 to the generated 32-bit
address with bit 0 masked to 0.

121

APPENDIX A INSTRUCTION MNEMONIC (IN ALPHABETICAL ORDER)

Table A-1. Instruction Mnemonic (in alphabetical order) (7/7)

Instruction
Mnemonic

Operand

Format

Cy ov

S

z

SAT

Instruction Function

ST.W

STSR

SuUB

SUBR

TRAP

TST

TST1

XOR

XORI

122

reg2, disp16 [regl]

reglD, reg2

regl, reg2

regl, reg2

vector

regl, reg2

bit#3, disp16 [regl]

regl, reg2

imm16, regl, reg2

VII

Vil

Vi

Word store. Adds the 16-bit displacement, sign-
extended to word length, to the data of regl to
generate a 32-bit address, and stores the word
data of reg2 to the generated 32-bit address with
bits 0 and 1 masked to 0.

Stores contents of system register. Stores the
contents of a system register specified by reglD
to reg2.

Subtract. Subtracts the word data of regl from
the word data of reg2, and stores the result to
reg2.

Subtract reverse. Subtracts the word data of reg2
from the word data of regl, and stores the result
to reg2.

Software trap. Saves the return PC and PSW to
EIPC and EIPSW, respectively; sets the excep-
tion code (EICC of ECR) and the flags of the
PSW (EP and ID flags); jumps to the address of
the trap handler corresponding to the trap vector
specified by vector number (0 to 31), and starts
exception processing.

Test. ANDs the word data of reg2 with the word
data of regl. The result is not stored, and only
the flags are changed.

Bit test. Adds the data of regl to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. Performs the test on
the bit, specified by the 3-bit field “bbb”, at the
byte data location referenced by the generated
address. If the specified bit is 0, the Z flag is set
to 1; if the bitis 1, the Z flag is reset to 0. The
byte data, including the specified bit, is not
affected.

Exclusive OR. Exclusively ORs the word data of
reg2 with the word data of regl, and stores the
result to reg2.

Exclusive OR immediate. Exclusively ORs the
word data of regl with a 16-bit immediate data,
zero-extended to word length, and stores the
result to reg2.

APPENDIX B

INSTRUCTION

Table B-1. Mnemonic List

LIST

Mnemonic Function Mnemonic Function
Load/store (3-operand)
LD.B Load Byte MOVHI Move High Halfword
LD.H Load Halfword MOVEA Move Effective Address
LD.W Lord Word ADDI Add Immediate
SLD.B Load Byte MULHI Multiply Halfword Immediate
SLD.H Load Halfword SATSUBI Saturated Subtract Immediate
SLD.W Load Word ORI Or Immediate
ST.B Store Byte ANDI And Immediate
ST.H Store Halfword XORI Exclusive Or Immediate
ST.W Store Word Branch
SST.B Store Byte
SST.H Store Halfword IMP Jump Register
SST.W Store Word JR Jump Relative
JARL Jump and Register Link
Integer arithmetic operation/logical Bcond Branch on Condition Code
operation/saturated operation
(2-operand register) Bit manipulation
MOV Move SET1 Set Bit
ADD Add CLR1 Clear Bit
SUB Subtract NOT1 Not Bit
SUBR Subtract Reverse ST Test Bit
MULH Multiply Halfword Special
DIVH Divide Halfword LDSR Load System Register
CMP Compare STSR Store System Register
SATADD Saturated Add TRAP Trap
SATSUB Saturated Subtract RETI Return from Trap or Interrupt
SATSUBR Saturated Subtract Reverse HALT Halt
ST Test DI Disable Interrupt
OR or El Enable Interrupt
AND And NOP No Operation
XOR Exclusive Or
NOT Not
SHL Shift Logical Left
SHR Shift Logical Right
SAR Shift Arithmetic Right
(2-operand immediate)
MOV Move
ADD Add
CMP Compare
SATADD Saturated Add
SETF Set Flag Condition
SHL Shift Logical Left
SHR Shift Logical Right
SAR Shift Arithmetic Right

123

APPENDIX B

INSTRUCTION LIST

Table B-2. Instruction Set
Instruction Code Instruction Format Format Remarks
00O0O0O0O0/| MOV regl, reg2 | When regl, reg2 = 0, NOP
00O0O0O01]|NOT regl, reg2
00O0O0O1O0/|DIVH regl, reg2
00O0O011]|JMP [regl]
0 0010 0| SATSUBR regl, reg2
00010 1| SATSUB regl, reg2
00011 0| SATADD regl, reg2
00011 1| MULH regl, reg2
001000O0]|OR regl, reg2
001001]|XOR regl, reg2
001010/ AND regl, reg2
001011]|TST regl, reg2
00110 0| SUBR regl, reg2
001101]|SuB regl, reg2
001110/ ADD regl, reg2
001111]|CMP regl, reg2
01000 0| MOV immb5, reg2 Il
01000 1| SATADD immb5, reg2
010010 | ADD immb5, reg2
010011]|CMP immb5, reg2
01010 0| SHR immb5, reg2
010101]|SAR immb5, reg2
010110/ SHL immb5, reg2
010111]| MULH immb5, reg2
0110 x x| SLDB disp7 [ep], reg2 v
0111 x x| SST.B reg2, disp7 [ep]
1 00 0 x x| SLD.H disp8 [ep], reg2
100 1 x x| SST.H reg2, disp8 [ep]
1010 x x| SLDW disp8 [ep], reg2
1 010 x x| SSTW reg2, disp8 [ep]
101 1 x x| Bcond disp9 1
1100 0 0| ADDI imm16, regl, reg2 \|
11000 1| MOVEA imm16, regl, reg2
110010 /| MOVHI imm16, regl, reg2
1100 1 1| SATSUBI imm16, regl, reg2
110100]ORI imm16, regl, reg2
11010 1| XORI imm16, regl, reg2
110110/ ANDI imm16, regl, reg2
11011 1| MULHI imm16, regl, reg2
111000]|LDB displ6 [regl], reg2 Vil
111001]|LDH displ6 [regl], reg2
111010]|LDW displ6 [regl], reg2
111010]|STB reg2, displ6 [regl]
111011]|STH reg2, displ6 [regl]
111011]|STW reg2, displ6 [regl]
11110 x| JARL disp22, reg2 \% When reg2 = r0, JR disp22
111110]|SET1 bit#3, disp16 [regl] VI
111110]|CLR1 bit#3, disp16 [regl]
111110 NOTL bit#3, disp16 [regl]
111110]|TSTL bit#3, disp16 [regl]
11111 1| SETF cccece, reg2 I1X
111111|LDSR reg2, reglD
111111]|STSR reglD, reg2
111111]|SHR regl, reg2
111111]|SAR regl, reg2
11111 1| SHL regl, reg2
111111]| TRAP vector X
11111 1| HALT
11111 1| RETI
111111]|Dl
111111]|El
1 11 1 1 1 | Undefined instruction

124

APPE

NDIX C

INSTRUCTION OP CODE MAP

The following tables (a) through (f) show the op code maps corresponding to instruction codes.

Instruction code

¢ 16-bit instruction format

15 1110 5 4 0
|
L Sub op code (refer to (b))
— Op code (refer to (a))
e 32-bit instruction format
15 14 1312 1110 5 4 0 31 27 26 21 20 17 16
| | | |
t L L Op code (refer to (a)) LSub-op code
Sub-op code (refer to (f)) (refer to (c))
Sub-op code (refer to (d)) Sub-op code (refer o (e))
(@) Op code
Bits 65 00 01 10 11 Format
Bits 10 - 7

0000 MOV/NOP NOT DIVH JMP |
0001 SATSUBR SATSUB SATADD MULH
0010 OR XOR AND TST
0011 SUBR SUB ADD R, r CMP R,r
0100 MOV immb5, r SATADD ADD immb5, r CMP immb5, r 1l
0101 SHR imm5, r SAR immb5, r SHL immb5, r MULH
0110 SLD.B \Y
0111 SST.B
1000 SLD.H
1001 SST.H
1010 SLD. W/SST.whete 1
1011 Bcond 1
1100 ADDI MOVEA MOVHI SATSUBI Vi
1101 ORI XORI ANDI MULHI
1110 LD.B LD.H/LD.WNote 2 ST.B ST.H/ST.Whete 2 VIVIIVINIXIX
1111 JARL Bit manipulation™°®¢ | Extension 1Nt 4

Notes 1. Refer to (b).
2. Refer to (c).
3. Refer to (d).
4. Refer to (e).

125

APPENDIX C

INSTRUCTION OP CODE MAP

(b) Short format load/store instruction (displacement/sub-op code)

Bit 0
0 1
Bits 10 - 7
0110 SLD.B
0111 SST.B
1000 SLD.H
1001 SST.H
1010 SLD.W SST.W

(c) Load/store instruction (displacement/sub-op code)

Bit 16
0 1
Bits 6 - 5
00 LD.B
01 LD.H | LD.W
10 ST.B
11 ST.H | ST.W

(d) Bit manipulation

instruction (sub-op code)

Bit 14
0 1
Bit 15
0 SET1 NOT1
1 CLR1 TST1
(e) Extension 1 (sub-op code)
Bits 22 - 21
00 01 10 11
Bits 26 - 23
0000 SETF LDSR STSR Undefined
0001 SHR R, r SARR, r SHLR, r Undefined
0010 TRAP HALT RETI Extension 2Nt
0011
l lllegal instruction
1111
Note Refer to (f).
(f) Extension 2 (sub-op code)
Bits 14 - 13
00 01 10 11
Bit 15
0 DI Undefined
1 El

126

INDEX

Addressing Modes ADD ..o 36
Operand Addresscccceeue.e. 22 ADDI oot 37
Based Addressingcceeueen. 22 AND oo 38

Bit Addressing........ccccoeevvveeeeennen. 24 ANDI o 39
Immediate Addressing 22 BCONG e 40
Register Addressing 22 (O 1 = 3 PR 42
Instruction Address............ccccoeinies 19 CMP e 43
Register Addressingccc.cee.. 21 Dl e 44
Relative Addressing 19 DIVH woiiieieiseeensieeseeeeeee e 45
Data Format Bl 46
Alignment ... 15 HALT oo 47
Representationc.cccoeeeevene 14 JARL e 48
TYPES oo 13 IMP o, 49
Execution clock ... 92 JR o 50
Instruction Format LD o 51
3-operand.........cccoeeeiiiinineni, 26 LDSR oottt 53
16-bit load/store...........cccceveiinennan. 26 MOV ..o 54
32-bit load/store..........cc.ccoeeinns 26 MOVEA ..ottt 55
Bit manipulationccccocvinen 27 MOVHI ..o 56
Conditional branch 25 MULH ..o 57
Extended format ... 27 MULHI oo 58
IMM-TEJ ..o 25 NOP ..ot 59
JUMP e 26 NOT oo 60
F=T0 =T T 25 NOTL oot 61
Memory Map ... 18 OR o 62
Program Registers............ccoccooiis 6 ORI ettt 63
Program Status Word 9 RET it 64
System Registers..........cocovviiniiiiennn 8 SAR e 66
System Register Number 11 SATADD ..o 67
SATSUB ..o 68

127

INDEX

SATSUBI i, 69
SATSUBR ..o 70
SETF e 71
SETL . 73
SHL o 74
SHR 75
SLD oo 76
SST 78
ST 80
STSR o 82
SUB o 83
SUBR ..., 84
TRAP o 85
TST e 86
TSTL e 87
XOR oo 88
XORI oo 89

128

Facsimile

NEC

Message

Although NEC hastaken all possible steps
to ensure thatthe documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that

From: .
errors may occur. Despite all the care and
precautions we've taken, you may

Name encounter problemsinthe documentation.
Please complete this form whenever

Company you'd like to report errors or suggest
improvements to us.

Tel. FAX

Address

Thank you for your kind support.

North America

NEC Electronics Inc.

Corporate Communications Dept.
Fax: 1-800-729-9288

Europe

NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-889-1689

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea

NEC Electronics Hong Kong Ltd.
Seoul Branch

Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan

NEC Corporation

Semiconductor Solution Engineering Division
Technical Information Support Dept.

Fax: 044-548-7900

| would like to report the following error/make the following suggestion:

Document title:

Document number:

Page number:

If possible, please fax the referenced page or drawing.

Document Rating
Clarity

Technical Accuracy
Organization

Excellent Good
a a
a a
a a

Acceptable Poor
0 a
0 Qa
0 Qa

CS 96.4

