
IGD841

Hybrid Integrated Isolated N-Channel IGBT Driver

Key Features:

- Internal OptoCoupler
- 30 kV/µS CMR
- VISO = 3,750V
- One Supply Drive Topology
- Compact SIP Package
- Short Circuit Protected
- Fault Signal Output
- Switching Freq. to 20 kHz
- Compatible With EXB841

Recommended For:

- 600V Series IGBT (up to 600A)
- 1200V Series IGBT (up to 400A)
- 1700V Series IGBT (up to 200A)

MicroPower Direct

292 Page Street Suite D Stoughton, MA 02072 USA

T: (781) 344-8226 **F:** (781) 344-8481

E: sales@micropowerdirect.com

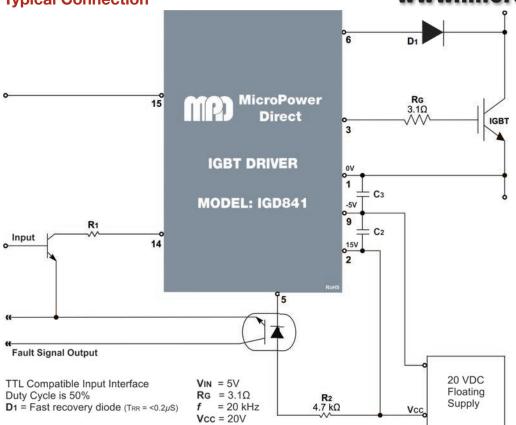
W: www.micropowerdirect.com

Electrical Specifications

Absolute Maximum Ratings, TA = 25 °C unless otherwise noted.

Parameter		Conditions	Min.	Тур.	Max.	Units
Supply Voltage	Vcc	DC			25	VDC
Input Voltage	VIN	See Note 3			50	VDC
Input Current	lin	See Note 4			25	mA
Output Current	Igon	Pulse Width 2μ S, Frequency \leq 20 kHz			+5.0	Α
	Igoff				-5.0	
Isolation Voltage	Viso	Sine Wave Voltage 50 Hz/ 60 Hz , 1 Min			3,750	VAC
Junction Temperature	TJ				150	°C
Operating Temperature	Тор		-20		+70	°C
Storage Temperature	Tst		-40		+125	°C
Fault Output Current	IFO	See Note 5			20	mA

Electrical Characteristics, TA = 25 °C, Vcc = 15 VDC unless otherwise noted.


Electrical Characteristics,	1A = 25 °C	, vcc = 15 vdc uniess otherwise noted.				
Parameter		Conditions	Min.	Тур.	Max.	Units
Supply Voltage	Vcc	Recommended Range	14	15		VDC
Reverse Bias Supply Voltage	VRB	Recommended Range		-5		VDC
Switching Frequency	f	Recommended Range	0		20	kHz
Gate Resistor	Rg		2			Ω
Input CMR			15	30		kV/μS
"H" Input Current	lін	Recommended Range	10	16	20	mA
"H" Output Voltage	Vон	Vcc = 20V		14		VDC
"L" Output Voltage	Vol	Vcc = 20V		-5		VDC
"L-H" Propagation	TPLH	I _{IH} = 16 mA		0.5	1.0	μS
"L-H" Rise Time	TR	I _{IH} = 16 mA		0.6	1.0	μS
"H-L" Propagation	TPHL	I _{IH} = 16 mA		1.0	1.3	μS
"H-L" Fall Time	TF	I _{IH} = 16 mA		0.4	1.0	μS
Protection Threshold Voltage	Vocp	Vcc = 20V		8.5		VDC
Protection Reset Time	TTIMER		1.0	1.4	2.0	mS
Fault Output Current	IFO	See Note 6			5.0	mA
Controlled Time Detect	TTRIP1	Short Circuit 1, See Note 7		2.6		μS
Soft Turn-Off Time	Toff2	See Note 8		5.0		μS
SC Detect Voltage	Vsc	Collector Voltage of Module	15			VDC

Notes:

- 1. Exceeding Absolute Maximum Ratings may damage the module. These are not continuous operating ratings.
- 2. "H" = high level signal. "L" = low level signal.
- 3. The voltage applied to pin 15.
- 4. The current measured between pins 15 and 14.
- 5. The current at pin 5.
- 6. The current at pin 5. $R_2 = 4.7 \text{ k}\Omega$.
- 7. Pin $6 \ge 15 \text{ VDC}$.
- 8. Pin 6 ≥ 15 VDC.

Typical Connection

www.micropowerdirect.com

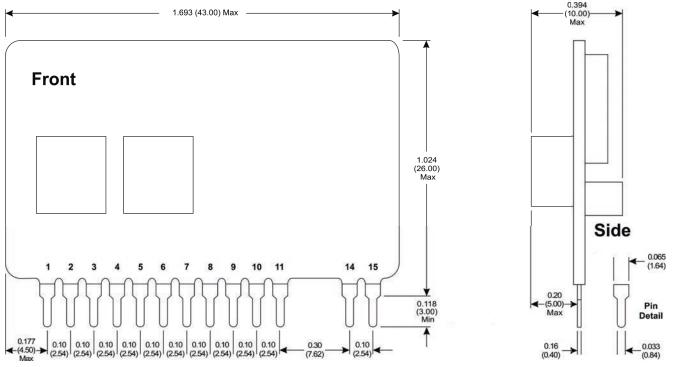
Connection Notes:

To minimize the potential for problems (and/or failures) caused by induced noise, EMI interference and/or oscillation, the connection of the gate driver must be done with great care. Some recommendations would include:

 The input signal voltage (pin 14) cannot exceed 5.25V. The internal dissipation caused by the resultant increase in input current could damage the input optocoupler. A current limiting resistor (R₁) is used to help prevent this. The resistor value is calculated by the formula:

$$R_1 = \frac{V_{IN} - 1.7V}{16 \text{ mA}} - 150\Omega$$

- The gate wiring of the IGBT gate-emitter drive loop must be shorter than 1 meter.
- Twisted pair wiring is recommended for the gate-emitter drive loop to minimize mutual induction.
- Pins 4, 7, 8, 10 and 11 (not shown in the connection diagram) of the IGD841 are only used for testing. They should not be used as a connection in any application circuit.
- If a large voltage spike is generated at the IGBT collector, the value of the gate resistor (Rg) should be increased.
- Smoothing capacitors C₂ and C₃ should be mounted as close to the driver as possible.
- An internal circuit sets up a -5V off-gate voltage at pin 9 to protect against faults in the off state.
 Do not apply an external voltage to pin 1.
- The peak reverse voltage rating of D₁ must be higher than the peak value of the IGBT collector voltage.
- The traces (or wires) between the power source (Vcc) and the driver circuit should be as short as possible.


Pin Connections

Pin	Function
1	Smoothing Capacitor
2	Power Supply (+)
3	Drive Output

Pin	Function
5	Fault Signal Output
6	Fault Detect
9	Gnd

Pin	Function
14	Drive Signal Input (-)
15	Drive Signal Input (+)
4,7,8,10,11	No Connection

Mechanical Dimensions

MicroPower Direct We Power Your Success - For Less!

Notes:

- All dimensions are typical in inches (mm)
- Tolerance $x.xx = \pm 0.01 \ (\pm 0.25)$